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Non-negativity properties of operators in spaces with indefinite metric

1. The following statements concerning a bounded self-adjoint operator
A on a Hilbert space H are known to be equivalent:

a. (Ax,x) = 0 for every x € H .

b. A4 = 0* C with some bounded linear operator C' .

c. A = B? where B is a bounded self-adjoint operator.

d. The spectrum of A contains non-negative values only.

e. For sufficiently small positive numbers « there exists a projector
P(x) in a wider Hilbert space H(x) such that « 4 is the projection of
the operator P(x) onto the original space H (cf. [6], p. 443).

Operators A fulfilling the conditions a—e are said to be non-negative.

Now let H be a linear space with a hermitian bilinear »inner product»
(x,y), the form (x,x) being not necessarily definite. Let 4 denote a
linear operator, defined everywhere in this space and satisfying
(Ax,y) = (x,Ay) for every pair of elements x,y € H. For such an
operator one may try to introduce the notion of »on-negativeness with
respect to the space H » by generalizing the conditions a—e. But the
conditions a—e are five in number, and some of them have several »natural»
generalizations. Which one should we choose? If we could find a property.,
generalizing at the same time all the properties a—e (or so many of them
as possible), we might expect that this property would provide us a useful
notion of non-negativeness.

Thus we are led to the problem of finding generalizations of the conditions
a—e to the case of more general inner product space: than Hilbert space,
and of studying their logical connections.

In the present paper we make a step in this direction. We restrict our
attention to the class of Hjy spaces (k= 0,1, 2,...), i.e. direct products
of a Hilbert space and a £ -dimensional negative unitary space. It is evident
that H, space and Hilbert space are the same thing, so that our class con-
tains all Hilbert spaces and we may speak about generalizations of the con-
ditions a—e to this class of spaces. On the other hand, in the case of H,
spaces the necessary definitions and lemmas are at our disposal in works
of L. 8. Pontrjagin [5] and I. S. Iohvidov—M. G. Krein [4].

So we are going to examine non-negativity properties of operators in
Hy . We list the proposed generalizations of a—e, announce some impli-
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cations between them, and give examples which show the failure of some
other implications. For several pairs of properties the question whether
one implies the other remains open.

The proofs of the stated implications will appear in [2].

2. TIn this section we recall some notions and facts concerning Hj
spaces and their operators (cf. [5], [4]).

We consider a complex linear space H together with a hermitian bilinear
functional (x,y) defined for every pair of elements z,y € I .

An element a is called positive (resp. negative, non-negative, non-positive,
neutral) if (x.,x) >0 (resp. (z,2)< 0. (v,2)=0. (x,2)=0,
(x,x) = 0). A linear subspace is said to be positive (resp. negative, non-
negative, non-positive, neutral) if all its elements, with the possible ex-
ception of the vector 0, have the respective property.

Two elements .y are said to be orthogonal if (x,y) = 0. The de-
finition of the orthogonality of a vector to a subspace or of two subspaces
to each other is evident. The orthogonal complement of a subspace M con-
sists of all elements which are orthogonal to M .

H is a space of type H, or an H, space if it has the following three
properties (cf. [4], p. 371):

I. H contains a negative subspace of dimension &, but H contains
no negative subspace of dimension k1.

II. 0 is the only vector orthogonal to the whole space H .

I11. The k -dimensional negative subspace H~ C H can be chosen
so that its orthogonal complement H* (which is a positive linear subspace
by T and IT) is complete with respect to the norm lx™ = (. )P
(xt € HT).

Accordingly, an H, space is the orthogonal direct sum of a »negative
unitary space» of dimension & and a Hilbert space of arbitrary dimension?).

Tt can be shown ([4], pp. 375—377) that in an [, space III is satisfied
for every k -dimensional negative subspace H~, and the Hilbert-norms

|zl = V- (@, a) + (. at) (x=a +at; 2~ €H™ . T €EHY).

corresponding to different direct decompositions H, = H~ @ H + . induce
the same notion of strong convergence. Consequently, the notions of closed
subspace, bounded operator, spectrum of an operator etc., introduced with
the aid of one of these norms, are independent of the choice of the
subspace H~™ .

1y In [4] the symbol IT, is used instead of Hj ., and the roles of positive and
negative subspaces are interchanged in the definition.
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The adjoint T* of a bounded linear operator 7' in Hj is defined by
(Tx,y)= (x,T*y) (x,y €H). The operator T is self-adjoint if
T* = T . The self-adjoint operator P is a projector if P> = P . Projectors
have a geometrical meaning analogous to that in Hilbert space, apart from
the fact that in H, projectors can be associated only with those closed
subspaces which contain no vector x, # 0 orthogonal to the whole subspace
([5], p. 255). This is in connection with the fact that a closed subspace and
its orthogonal complement in H, do not span, as a rule, the space, and
they can have common elements other than 0.

We mention two important theorems concerning self-adjoint operators
in H;. The first asserts that any of these operators has a k -dimensional,
non-positive, invariant subspace ([5], p. 257). According to the second, the
spectrum of a self-adjoint operator in Hy lies on the real axis, excepting
at most k conjugate complex pairs of proper values ([4], p. 424).

3. 1In the following A denotes a bounded, self-adjoint operator in a
space H; .

For the sake of brevity we shall say that the subspace M C H. is
A -positive (resp. A -negative, A -non-negative, A -non-positive, A -neutral), if
for every element x € M (x # 0) wehave (4 x,2) >0 (resp. (Az,z) <O,
Ax,z) =0, Az,x) =0, (Ax.x)=0).

Using these terms, the following generalizations of the conditions a—e
(cf. Section 1) seem to be natural.

a 1. The whole space is 4 -non-negative.

a 2. No subspace of dimension k-1 is A -negative.

a 3. There exists a k -dimensional A4 -non-positive subspace, but no
subspace of dimension k+1 is A4 -negative.

a 4. There exists a k-dimensional A4 -non-positive subspace with
A -non-negative orthogonal complement.

ab. There exists a k-dimensional, non-positive, A -non-positive
subspace, but no subspace of dimension k-1 is A -negative.

a 6. There exists a k& -dimensional, non-positive, A4 -non-positive
subspace with A -non-negative orthogonal complement.

a 7. There exists a k -dimensional, negative, 4 -non-positive subspace,
but no subspace of dimension k-1 is A4 -negative.

a 8. There exists a k -dimensional negative, A -non-positive subspace
with A -non-negative orthogonal complement.

a9. A hasa k-dimensional, non-positive, 4 -non-positive, invariant
subspace, but no subspace of dimension k4-1 is A -negative.

a 10. A hasa k -dimensional, non-positive, 4 -non-positive, invariant
subspace with A4 -non-negative orthogonal complement.
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all. A4 has a £k-dimensional, negative, A4 -non-positive, invariant
subspace, but no subspace of dimension k-1 is A -negative.

al2. A has a k-dimensional, negative. A -non-positive, invariant
subspace with A4 -non-negative orthogonal complement.

a 13. Every non-negative vector is 4 -non-negative; every non-positive
vector is A -non-positive.

b 1. There exists a bounded operator ' such that 4 = C* (.

c 1. There exists a bounded, self-adjoint operator B such that 4 = B2

d 1. The real values in the spectrum of 4 are non-negative.

d 2. The spectrum of 4 contains real, non-negative values only.

e 1. For sufficiently small positive numbers ~ there exists a projector
P(x) in a space H, («), containing the original space H, as a closed
subspace, such that ~ A4 is the projection of the operator P(x) onto [ .

e 2. For sufficiently small positive numbers « there exists a projector
P(x) in a space Hi.(x), containing the original space H, as a closed sub-
space, such that x 4 is the projection of the operator P(x) onto H .

4. 1t is easy to see that in the special case k = 0 the »on-negativity
propertiesy, listed in the previous section, really reduce to the corresponding
Hilbert space properties (Section 1). Consequently, in this special case they
are all equivalent. Now we shall study their inter-relations in the non-
trivial case k& >0 .

It is evident that a 1 implies a 2; a 3 implies a 2; a 5 implies a 3; a 6
implies a 4; a 7 implies a 5; a 8 implies a 6; a 9 implies a 5; a 10 implies a 6;
a 11 implies a 7; a 11 implies a 9: a 12 implies a 8: a 12 implies a 10; ¢ 1
implies b 1; d 2 implies d 1.

It is also not difficult to show that a 4 implies a 3; a 6 implies a 5; a 8
implies a 7; a 10 implies a 9; a 12 implies a 11; a 12 implies d 2: b 1 implies
a 2; a 12 implies ¢ 1; ¢ 1 implies a 10. (Stronger versions of the last two
assertions have been proved in [1].)

Something more interesting are the following relations: a 11 implies a +4;
a 13 implies a 12; e 1 is equivalent to a 2; e 2 is equivalent to a 1.

All these relations are indicated on Fig. 1.

For the special case of H,; spaces we are also able to prove that a3
implies a 4, and a 6 implies a 10. For general & we do not know whether
these statements are true.

5. We give some examples which restrict the number of possible further
implications between the »non-negativity propertiem», and at the same time
show how much more complicated the situation is in H, spaces (k >0)
than in Hilbert space.
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Fig. 1

We consider the H,; space spanned by two vectors e;, e, satisfying
(e1,€) = —1, (e5,e) =1, (e,,¢e,) = 0. Keeping in mind that a linear
operator in this space is self-adjoint if and only if its matrix (a;), belonging
to the basis e;, e,, fulfils the conditions a;; = Gyy, @y = — Gyp, Agp =
@45 , the following statements are easy to verify.

) satisfies a 13,
but does not satisfy a 1.

1

o1

1 0) satisfies a 12,

02 but does not satisfy a 13.

1 O) satisfies a 1,

( 0 but does not satisfy a3, b1 and d 1.
0 O\ satisfies a 11,

(0 1 but does not satisfy a 6 and d 1.

O‘ satisfies ¢ 1,

( 1 but does not satisfy a 7 and d 1.

/

O\' satisfies a 4,
1 but does not satisfy a 3.

-2

0

—1 0 satisfies a 7,

0 2 but does not satisfy a 9.

—1 satisfies a 10 and d 2,
L)
0 z satisfies a 8 and d 1,
but does not satisfy a 11 and d 2

but does not satisfy a 11 and ¢ 1.

Our last example is an operator in the H; space of the square-summable
sequences of complex numbers, the inner product of twe elements x =

{&.& ...}, y={m.ny,...} being defined by
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(,y) = — 5151'*’ sznﬁn-

Let C denote the shift operator: C{& ,&....} = {0,&,&,...}.
Then C*{n ,%s,...} = {—"ns.m3, ...}, and (C*Cx, x) is positive
definite. Hence b 1 does not imply a 3.

Other non-implications may be obtained with the aid of the relations
in Section 4. For instance, from the last example it follows (cf. Fig. 1)
that b 1 does not imply c 1.

The unsolved questions are not many, but interesting. If the propositions
va 3 implies a 4», »a 6 implies a 10», stated here for k = 1, could be proved
for general k, all the inter-relations of the fifteen conditions a 1 — a 13,
el — e 2 would be known. However, in the course of further study of
b1, ¢c1, d1 and d 2 the introduction of new »non-negativity properties»
may turn out to be reasonable.

Finally we mention two theorems of Ju. P. Ginzburg ([3], pp. 15—16),
proved for more general spaces than Hj, which have something to do
with our results: 1. If the whole space is A -non-negative, then the spec-
trum of A is real. 2. If the spectrum of A is positive, then A has a
self-adjoint square-root.

Hungarian Academy of Sciences
Budapest, Hungary
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