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On essential variables of functions, especially in the algebra of logic

Current research in the theory of finite automata and deterministic
operators has led to problems concerning essential variables of functions
in the algebra of logic. In the present paper we give some results in this
direction. As it turns out, many of the proofs remain valid for arbitrary
functions.

SoLovJEv, [2], has considered the problem how many escential variables
are preserved if a constant value is assigned for some variable. He has
proved two theorems, one of which has been established also by Lupaxov,
[1, pp. 95—97]. All these proofs make use of some intrinsic properties of
functions in the algebra of logic. By an argument of a more general character,
we prove two theorems which are extensions of SorovJev’s theorems for
arbitrary functions. This is done in section 1.

In section 2, we discuss the problem how the number of escential vari-
ables is reduced if some variables are identified. We prove two theorems.
One of them (theorem 3) deals with arbitrary functions. In the other (theo-
rem 4) we show that in the algebra of logic, for any function f of n essential
variables, there is a function of at least n-2 essential variables which is
obtained from f by identifying some of its variables.

Section 3 deals with the distribution of values of functions, all of whose
variables are essential. We prove a theorem which strengthens the well-
known »fundamental lemma» of JABLONSKII, [3, pp. 68—70].

1. Let %ﬁl
product M, x ...x M, of non-empty sets M, ¢=1,...,n, into a
non-empty set N. Assume M, is a non-empty subset of M, =
1,...,n Then, for any function

u, denote the set of functions mapping the Cartesian

.....

f(xl""sxn)e%%l ..... M, >
we denote by f(M,,...,M.) the set of values assumed by f(z,,...,x,)
when, for ¢ =1,...,n, the variable x, is restricted to the set M.
A function f(x;,..., x;...,%,) depends essentially on the variable ;

(or a; is an essential variable of this function) if there are sets M, ¢ =
1,...,n, such that

fy,, ..., M;, ..., M)

H i



4 Ann. Acad. Scient. Fennicae A. 1. 339

contains at least two elements and every M;, i ==j, contains only one
element.

Theorem 1. Let the function f(x,,...,z,) € %NMI m, depend es-
sentially on all of its n wvariables, n = 2. Then there is an index j and
an element ¢ € M; such that the function

J@ ..oz e r,,.0.0.,1,)

depends essentially on all of its n — 1 variables.

Proof. For n = 2, the assertion follows by the definition of essential
variables. (In fact, we may choose j = 1 or j = 2.) We, therefore, assume
that n > 2.

Because f depends essentially on the variable z;, we have

’ ’
fla,, ay, ... «a,) = fla,,0,,....0a,),

for some a, €M, and @, €M, i=1,...,n Hence, the function
fl@,.a,, ..., a,) depends essentially on the variable ;. Le., we have
replaced n — 1 variables of f by constants (elements of the sets M)
in such a way that f depends essentially on the remaining variable.

We shall now make the following hypothesis of induaction: we have
replaced # — & vaviables of f, 1 <k <n — 1, by constants J; in such
a way that f depands essentially on the remaining £ variable:. By a
suitable renumbering of the variables, we may assume that they are the
first & variables, i.e. the function

Sy, o) =fley oo b .b,)

depends essentially on all of its & variables.
Let I, L+ 1=<1=n, be the number defined as follows: for some
elements ;€ M, k-1 =<¢ <1,

O fley. oo a0 b b)) = e v,)
whereas, for all elements y; € M;, £+ 1 =i =7— 1,
(2) fler, oo Yy e s Y b D) =l ooy

Such a number [ exists because, otherwise, f would depend essentially
on the variables x,,..., 2, only. The function

(3) folwy ..o oo o) =f@, . X Gy s 0y, Dy)
depends essentially on all of its £ 4 1 wvariables. In fact, by (2) and (1)

foley, oo 2, 0) =filey, .00, 2y

and

f2(x19~"7xk7cl)élzfl(xl7'-'axk)'
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Hence, (3) defines a function of k -+ 1 essential variables which is obtained
by replacing n — (k + 1) variables of f by constants. The proof of theorem
1 is completed by induction.

Theorem 1 implies that it is always possible to replace n — 2 variables
of f by constants in such a way that the resulting function depends es-
sentially on both of the remaining variables. The following theorem gives
a stronger result.

Theorem 2. Let f(x, ,...,x,) be as in the preceeding theorem. Then for
any pu, 1 = u =mn, there isa v = u and n — 2 constants such that if the
variables of [ distinct from x, and x, are replaced by these constants then
the resulting function depends essentially on both of its variables.

Proof. Without loss of generality, we let u = 1 because we may, if
necessary, transpose the indices p and 1. As in the proof of the preceeding
theorem, we first determine constants «;, ¢ = 2,...,n, such that the
function

fl(xl) :f(x17a2’ AR .’an)

depends escentially on ;. We defire [, 2
such that, for scme elements ¢; € M;, 2 <1

(4) f@y.conoiieap o a,) = filz)

(5) Sl gy, oo, Yy s e v s ay) = [1(2y) .

Tken it is a consequence of (4) and (5) that the function

foly ) =fle, ¢, Qs .. a,)

satisfies the requirements of the theorem, i.e. we may choose » = [. Thus.
theorem 2 follows.

Tt is obvious that if we chcose two arbitrary variables x, and x, then
we do not always find % — 2 constants such that when the variables of f
distinet from x, and z, are replaced by there constants then the resulting
function depends essentially on both x, and w, Even the weaker state-
ment obtained from theorem 2 by changing the order of quantification of w and
v is false. This is shown in [2]. We give the following more general counter-
example.

Consider the set

(6) A
where each of tke sets M, ,...,M,, N ccntairs at least two elements.
Choose two elements, denoted Ly 0 and 1, frcm each of thesets M, , ...,

M,,N and denote by & scme fixed furction in Fa, i=1,....4,
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which interchanges the elements 0 and 1. We now define by the following
equations a function f belonging to the set (6):

f@,0,0,2) =a,
S, 0,1, 2) =u,
S, 1,0, 2) =&,
Sy, cay) =&Y,
f(O,xz,x3, 0) ==z,
SO, @y, 25,1) X3 s
f,ay, 25,00 =3
(

f13x2>x3a 1) :£g2)7
flay , g, 2, , ) = @, , otherwise .

It is easy to check that no contradiction arises in this definition, i.e. there
is no argument for which f has been defined twice. Furthermore, f de-
pends essentially on all of its four variables. But, for any constants « and
b, both f(x,, a, b, x,) and f(a, x,, x; b) depend essentially on one variable
only. It is not possible to construct a 3-place function which would provide
a similar counter-example.

We note, finally, that the converse of theorem 2 holds, whereas the
converse of theorem 1 is false.

2. We denote

n=1l pn copies

where A4 is a set containing at least two elements. Following [3], we also
denote &, = P, if A is a finite set of cardinality k. The set P, is
termed the set of functions in the algebra of logic.

Any function, obtained from a given function f(x,,....x,) € F,
by identifying some of its variables, is called a diagonalization of f. In
this section, we consider the problem whether essential variables are pre-
served in diagonalizations. If » is less than or equal to the cardinality of
A (denoted by card (4)), we may choose n distinct elements a, ,...,a, € 4
and define a function f as follows:

f(ala*'°9an):al’
flxy,...,x,) = ay, otherwise .

Clearly, f depends essentially on all of its n variables. But all diagonali-
zations of f are constants (= a,). Hence, we have the following
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Theorem 3. For any n = card (4), there is an n-place function f€ F,
such that all variables of f are essential and every diagonalization of f is a
constant.

Theorem 3 shows that, in general, essential variables can be preserved
in diagonalizations only in the case that n > card(4). We shall now con-
sider functions in the algebra of logic. It is well-known that every function
in the algebra of logic can be uniquely expressed as a polynomial modulo 2.
All variables appearing in this polynomial representation are essential.

A linear polynomial of = variables possesses diagonalizations of at
most n — 2 variables. Similarly, the polynomial zx, + z,x; + 242, does
not possess diagonalizations of two variables. Hence, given a function f
of n essential variables in the algebra of logic, one can not always find a
diagonalization of f which possesses n — 1 essential variables. However,
as shown in our next theorem, a diagonalization of n — 2 essential variables
can always be found.

Theorem 4. For any function in the algebra of logic possessing n (= 2)
essential variables, there is a diagonalization possessing at least n — 2 es-
sential variables.

Given an arbitrary function in the algebra of logic, we denote by p
the polynomial representing it. We shall first prove the following

Lemma. If p contains a conjunction of rank = 3 then, for some i and j,

(7) P = 220, + 2,05 + 205 + a4

where either a; contains a term which is both in ay and ay or a, contains
a term which is neither in a, nor in ay .l

Proof. We choose from p a conjunction b such that p contains
no conjunction of a rank higher than the rank of b. By renumbering the
variables, we may assume

b=x2,...x,

where k = 3. Consider the following conjunctions:

b, = zoz, ... 2,
by, = 22y, . ..y,
by = a3z, . .., .

If at least two of them, say b, and b, are contained in p, then we
choose ¢ = 2 and j = 3 and obtain an equation (7) where the first alter-
native for a; is satisfied. If at least two of them, say b, and b, are

! The notion of rank is defined in [3, p. 22]. No superfluous terms (subject to
cancellation) are allowed on the right side of the equation (7) which is the ex-
pansion of p in the variables »; and ;.
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missing from p, then we choose i = 1 and j = 2 and obtain an equation
(7) where the second alternative for q is satisfied. This proves our lemma.

Proof of the main theorem. The assertion is trivial for n = 2. We assume
the assertion holds for n < m (= 3). Let p be the polynomial represent-
ing an arbitrary given function of m essential variables. We ceparate two
cages.

Case 1. p contains at least one conjunction of rank = 3. We choose
variables @; and a; as in the lemma and write p in the form (7). Next,
we define polynomials ¢, . ..., ¢, as follows:

¢, consists of tetms common to a;, @, and as

¢, i = 2,3, consists of those terms common to a and q; which
are not in ¢;.

¢, consists of those terms common to a, and az which are not in ¢.

Gy @ = 1,2, 3, consists of the remaining terms in a,.

Hence,

p = xx;(c; + €2+ + ¢5) + a;(c; 4 €a -+ ¢4+ Ce)
xj(cl + C3 + (‘4 + C7) + (14 .
According to the choice of z; and z;,

(9) 6+ ==0.

(8)

We now form a diagonalization p’ by identifying a; and ;. Clearly,

p = ac, + ¢+ o+ c) +oag.
We denote
¢ = Co -+ ¢35+ ¢4

and refer to the variables which appear in ¢’ but do not apyear elsewhere
in p as C-variables. If r is the number of (-variables then, by the choice
of the polynomials ¢;, p’ possesses m — (r + 1) essential variables. Hence,
if =0 or r—= 1 we obtain the required diagonalization by identifying
x; and ;.

We, therefore, assume that r = 2. (Clearly, r =m — 2.) Our in-
ductive assumption implies that we may identify some I-variables in
such a way that, after the identification, the resulting polynomial con-
tains at least r — 2 (-variables. (In this identification, some variables
other than (-variables may vanish from ¢’.) This identification gives
the required diagonalization because no variables other than {-variables
vanish from p. In particular, by (8) and (9), @ and z; are preserved.

Case 2. p contains only conjunctions of ranks 1 and 2. If p is linear
we may identify any two variables. Otherwise, we choose some non-linear
term, say ,%,, and write
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P = 2@, + 21(by + D2) + (b 4 D3) + Dy

where p;, d,, Dy are linear and b, and b; do not contain common
terms. We separate three subcases.

Subcase 2a. b, contains at least two variables which do not appear
elsewhere in p. We may identify any two such variables.

Subcase 2b. KEvery variable of b, appears also elsewhere in p. In
this case, we identify «; and ,.

Subcase 2c. b, contains exactly one variable, say x,;, which does not
appear elsewhere in p. We identify first 2; and x,. If the resulting poly-
nomial depends on the variable identified we have finished the proof.
Otherwise, p is of one of the forms

P = 2y + xy(wy + 1) + 22 + Dy
or

D= gy ey Ty 4 1) + by

In the former case, we identify 2, and w;. in the latter, »; and x.

We have. thus. completed the induction. (In fact. the inductive assump-
tion was not u=ed in case 2.) This proves t%zeorem 4.

The proof is easier in some apeelal cases ag, for instance, if p contains
some conjunction of rank = n — 3. It is also easy to sec that the statement
analbzous to theorewn 2 is false for diagonalizations of functions in the alge-
bra of logic. In fact. if we choose some variable @, it may happen that.
for any other variable x . the diagonalization obtained by identifying
and x, is a constant. '

3. JABLONSKIT has proved in [3. pp. 68—70] the following

Fundamental lemma. Let f(r,.....2,) €R, (k = 3) depend essentially
on at least two variables and asswme Z\> 2 values. T/ze;z there are sets (.
i =1,...,n each containing at most two eclewents such that the set
G, ....G) contains at least three elements.

This lemma is an efficient tool in establishing completeness criteria for
sets of functions over a finite domain, and in some analogous problems.
We shall now extend the lemma to arbitrary sels JF, where card(d) = 3.
Furthermore, we strengthen it by cons tructing the sets G; in such a way
that an arbitrary preassigned value of the function [ is included in the set
fG@ ..., G

Theorem 5. Let card(4) = 3 and f(x,,..., ) € ¥, depend essentially
on at least two variables and assume at least three values and let a be one of
these values. Then there are sets Gy C 4. i =1,...,n, ecach consisting of
at most two elements such that f(G1,....3) wnimne at least three elements,
one of which is a.
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Proof. We first choose elements «,,...,a,€ A such that
f(a/la'-~30/n)=a"
Let U be the set of n-tuples (u,,...,u,) where, for n — 1 elements

wi, wi=a; and the n™ element u; is arbitrary € A. Denote by f(U)
the set of values assumed by f when its argument is restricted to the ele-
ments of U. Clearly, « € f(U). We may assume that f(U) contains an
element b = a. For if all elements in U satisfy the equation

fluy, ..., w)=a

then our original n-tuple (a,,...,a,) may be replaced by any element
in U. Then, for every n-tuple in U, we form the set of n-tuples differ-
ing by at most one coordinate from the given n-tuple and, if necessary,
continue the process. Because f does not assume the constant value a
we obtain an element b as required. By a suitable renumbering of the
variables, we may assume that

(10) Aa=f(C ey Oy, ) F=f@,. .., G 1,b,)=0.
In what follows, we separate cases and subcases.

Case 1. There is an n-tuple (¢c;,...,c,) where ¢, = an or ¢, = ba
such that

f(cly"‘)cn) :l:azb'

Then, by (10), we may choose ;= {a:i, ¢}, for i =1,....n —1, and
G = {n , bn}.

Case 2. For all n-tuples (y,,....¥%, where y.=a, Or Y» = bn

f(yl?"'r?/n):a or f(ylz"'3yn):b'

Subcase 2a. All values assumed by f can not be represented in the form
(11) f(ala--~7an_1:xn)
where z, runs through the elements of A. This implies that there is a
d € A such that, for some n-tuple (d,,...,d,),

fdy,....d)=4d
and, for every n-tuple (a,,...,a, 1,%,),
f(alr"'yan_l,xn) Zf:d.

Hence, by (10), d & a , b. By the assumption of case 2, dn = an . bn.
Denote
e:f(al5'-~san—l 5dn)'

According to the definition of d, e = d.
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If e =a we choose G;={a;,d:}, for i =1,...,n —1, and G, =
{bn , dn},
If ¢ == a we choose G; = {ai,d:}, for t=1,...,n.

Subcase 2b. All values assumed by f can be represented in the form
(11). Hence, there are at least three distinct values of the form (11).
There is an n-tuple (%,, ..., A, such that

(12) k’:f(a’l""’an—lvkn) :f:f(h17""kn—lskn):h

because, otherwise, f would depend essentially on the last variable only.
Suppose @ = h or a =h'. By the assumption of subcase 2b, there is
an element %, € A such that

flay, ... an_1, by =h 1.

By (12), we may choose G; = {ai,h;}, for i=1,...,n—1, and
G, = {h,. 1))},

Suppose « == h,h'. Then we may choose G;= {a;, h}, for =
1,...,n

Thus, we have completed the proof of theorem 5 in all cases.

In general, it is not possible to construct the sets @; in such a way that
two arbitrary preassigned values of the function f are included in the set
fGy, ..., G,). Thus, a further strengthening of the fundamental lemma in
this direction is not possible. We shall finally mention a consequence of
theorem 5 which can be proved by an easy induction. (Cf. the proof of con-
sequence 1 in [3, p. 70].)

Theorem 6. Let card(4) =3 and f(x,,...,x,) € F, depend essen-
tially on at least two variables and assume at least r + 2 wvalues and let
@y, ...,a, besomeofthese values. Then there are sets G;C A, i = 1,...,n,
each consisting of at most r -+ 1 elements such that f(G,, ..., G,) contains
at least r -+ 2 elements, including the elements a, , ..., a,.
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