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1. Introduction

We shall consider in this paper regular functions in the unit disk lrl < I
which have the normalized power series development

(1) f("):zlarzz +...*anz" +...
and whose boundary rotation is bounded by the number

(2) kn .

It is well known that, for 2 < k < 4 the functions f(z) arc univalent [].
We denote the class of functions in question by §r .

In a preceding paper, we developed a variational method to solve
extremum problems within the class §* [2]. It, was shown that an extremum
function /(z) with maximal real coefficienl ao must satisfy the differential
equation

(3)

rvhere

(4)

(6) 1*ffi zi*z

-/;
fitr H

From this condition we deduced that the extremum function maps the
unit dish onto a po§gon with .tr[ corner points with

(5) 2<N12n-2.
On the other hand, the Poisson-Stieltjes representation for the functions

of the class §r reduces in the case of such a polygonal mapping to the form

IT
1\i
6./4 /-tj-t

Thie work was supported in part by Air Forco Contract AF 49 (638) 1345 at
Stanford University.
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Here the points z; (i : I , . . . , -tr[) are the pre-images of the corner points,
and nTi is the angle of change of direction between the two sides which
join at that corner. ft was shown in [2] (formula (7I) ) that in the extremal
case we have

' r. I
f l 2 '

ly,l - k

combine the representatiorrs (3) and (6) for the extremum function

Ns,L
i-L

.N

;
i:1

(7)

Let us
and w:rite

(8)

Here the zt, &re

(e)

(10)

Observe that

(1 1)

The pre-images z; are a,mong the roots. If N < 2n, - 2, the equat'ion
(9) has also roots which do not correspond to actual corner points of the
polygon. We call these roots free roots. In order to satisfy the identity
(8), we must define

T, : 0 if zv is a free root'

with this definition we can replace (7) by
2n,-2 2n-2

v:l v:L

g"(z)

From the identity (8) we can derive relations between the roots of
equation (9) and the coefficients of the extremum function. Indeed, using
the definitions (4), we find

ng*(z) ?L(n - L)a* * zn")',rrd,,zn-'

(12) n-l TCl, n-l
; 

Y 
; y1j^n-r

lJ -n- Y /-t t'
y:L H r':1

n(n - l)anz"-r + 2"2 d,oz2"-r-"

. : : n(n - L)a,2"-tL- (2") .t { 2arz + ...

On the other hand, from the definition (q of g"(z) rle can express the
rational funct'ion in terms of its roots and write
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(13)

Hence

2n-2

n
y:L

(z - zr)

g*(z) 2n-2 z 2n'-2 ry J ry

and inserting this identity into (12) we find bJ, virtue of (8)'

(r4)

( 15)

Comparing the expansions (I2) and (f4) u'e find the follov'ing equations:

'§' 1+ y
L-^r:u

y:L (,
(lr: I 12r... r%-Z)

Moreo

l5' !!? _.n(n- L)an
| ,2, zi-

ver, we read off from equations (I3) and (15) that

( 16)

(cf.

Hence

(r 7)

If .nrl

ference

(18)

'fr, z"- I

formulas (L42) and (143) of [2]).
The numbers I * y, can be estimated by aid of (lt). We denote the

positive and negative jumps y, by /; arrd - /; , respectively (/| ,

/; > O). X'or them (11) yields

lc

k{§
T 1;

lc4=Za::t+1

kk

- 2n - 2 or ÄI - 2n - 3, all the roots zv

(lz,l- 1) and we conclude from (15), (17)

I 'i:' 2

lie on the unit circum-
and (11) :

l for TL>4.
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Since we know that the maximum value of I a. I in the class & is larger
thanlfor hS2, we seethatthecases N:2n,-2 and N:2n-Z
are excluded. In the case n : {, which will now be discussed in detail,
we ma,y thus assurne that, -Ar < 4.

2. Direet estimation

X'rom now on we shall deal with the problem of maximizing the fourtlr
coefficient on which may be assumed positive whithout any loss of gene-
rality. We may then restrict ourselves to discuss polygons with N :2,
3 and 4 corners.

Let us denote the roots of go@): 0 by

?17 22, Zgt ?4, Zg1 26.

In the case N : 4 we are interested only in the case where

lrrl +t, l"ul +t.

The structure of

gn@)- 0 . Hence,

(1e)

g +(z) implies that with any z also

we may denote

Zs: feiq rZa: ; : ei,-zsr

1

- is a, root of

In the case .l[ : 3 we may assume zu and zu to have the same form (19).
Tf zn isa free root of the equation gs,@) : 0, it still must lie on the unit
circumference as can be seen from equation (16).

Hence, in both cases lil : 3 and -l[ : 4 we may suppose the form
(f 9) for the last two roots and writ'e

(20) zL: eiEt, zz: ei't'z, zu: sivr, zr: eiaa .

However, for -ly' : 4 we have

(2r) Tr, ),2, Ts, Tq + 0 ; Te : ?,0- 0 ; 
^r 

_ 4,

and for fV- - 3

(22) Tt,Tz,Ts+ 0;Tq:Ts:To:0;.v"-3.
\Ye introduce the abreviation

(.f.(17) )anrJ write the equations (15) in the case n - 4 in the form
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{26)

We dedu

(24)

{25)

(27)

Hence, we infer

/ t\2 r(28) \r+;) :rzt7*2<a.

This leads to the estimate

t / t\/ t \(2s) r, +A: (\'+ ;)\n+ d-t) <t0\/2.

Thus, finally, we find the follorring inequality for aa by using (26):

rvan{i ,,, * tot/z: G * to t/z;

that is,

(30) aast+t{r<r,6786.
On the other hand, consider the case N : 2. The extremal function

is, in this case, easily determined. (see Section 8). One finds for its fourth
coefficient the expression

ks + 8lc
(31) a^: 

24

This value for a4 exceeds the upper bound (30) as long as

(32) 2,67<k<4.
Thus, as long as the boundary rotation satisfies the inequality (32), we are

sure that the maximum for an is achieved in the case N :2 and that
I aol has the upper bound (31) for all functions of the class §r.

Our aim is to prove that N :2 yields the extremum function even

for 2=k<4.

?L lz Zs Zt \ f ,t

I+ *+ *+ 1: (** *),"*,
d, ä, d3 , Ön / 1\

L2ao: ä + ä + zÅ 
-r åt + lr'+ a) ni3*.

ce from {25) and (1 1) the estimate

rz+ *=;å ö.:u*å,r.:6.
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3. A sharper estimate

Multiplying both sides of (24), (25) and (26) by ei'P, eiz'p &nd et3q', res-

pectir,"e1y, we obtain

(33)

(34)

(35)

with

(36)

tr'rom

14
r +:: Zö,C,,r r':l

14
ro t': I

e"p

211 »
&n

1.4

r 1,:!

14

rt 1,: f
4

6 
-r,ä 

ö'''

(37)

we deduce

i I\ 4 4

(38) 6 - \r'+ ,r) 
:,I,ä,(1 + cos 2r,): rZ_rU, cosz n,,.

\

We apply the Schwarz inequalit;,'

4444

r':1 y:L e:I y:L

and- see that

I 1\2 I I 1\l
(, + ;) .3 lo (,'+ F) ).

Rearranging, wo find

r"
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and since

I r\2 I
\ r,, Fo

we get

I

This leads to
I I r\l I \

and thus \rre derive from (35) the estimate

= 12 :z-f4

This bound lies under the value (31) as long as

Thus the estimate (31) for cL4 is valid in this larger interval.

4. Discussion of the inequalities

ft is clear that the bounds (40) and (41) cannot be improved. Indeed,
the inequality sign entered in these estimates only through the use of the
Schwarz inequality, and this inequality is sharp if we choose all four values
of cos ff/ to be equal. When selecting

(45) cosn,:-+ (a:1,...,4)yb
we see that (37) Ieads to the above upper bounds.

It should be observed, ho$'ever, that our estimates v'ere all based on
the three conditions (33), (34) and (35) and that until now v'e have not taken
into account the additional requirement (16).

We wish to show that the cases .n'r : 3 and N : 4 can never lead
to the actual extremum function. To shorry this, we have only to show that
the necessary extremum conditions can not, be satisfied if

(46) 
^+å=u 

and an)l,

since we know that the oo given by (3t) has always larger value than l.
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We set up

I(47) cosff,:--,-{en (r:L,2,3,4)
\/6

and will show that the €n must, be small if (aG) shall hold. In this case,

we will show that condition (16) wiil be violated. Thus we will exclude
thepossibilityof N:3 or N:4 forall k andshowthat(31)isthe
precise bound for lonl .

We denote

I(48) s:r* _22.
By (33) we have

(49) § : - j,r, "o. 
*,: \/o - å_rl,r, 

.

The central role in our estimation will be played by the quantity

(50) 
" 

:,9rö,r, .

In view of (aO) u.e have

(51) ,:{a-s(la-2.
From (34) we can then deduce the chain of equalities

2 - sz: j u, cos 2*,: ,;ä, cosz *, - i, o,
t:L v:l v:L

4/1\2:2>ö,(- _,= + r,J - 6
,Er-\. \/6 '/

142\: r\t i),ö,el-f,d")-u
ryhence

44(52) s2:6*t=c-21ö,e1.
\/ 6 t:L

Inserting on the left the value of s given by (51), we obtain

6 - 2{o o'1c2:6 + +o - z} a,u:,
{o ,,4_r' '

and

16 4

(53) -=": cz + 22 A"tl.
\/ 6 t:t
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'W'e 
see that c is non-negative and can complete the estimate (5f ) to

(54) 0<c<la-2.
Moreover, we can estimate

(55) *r."3=J,Zr'' \/:''

This shows that the smallness of c will imply the smallness of all deviation
terms e, .

As stated above, we can assume without loss of generality that

5. An improved estimate for c.

We will now improve the bounds for c by using the second part of
assumption (46), that is, on ) l. We start vrith (33) in the form

(60) Re {r2 aoeisol: 
å,U, 

cos 3r, + ,, + * .

(56) ,r+1>0.r

fn view of (51) we have

t I r\3 / r\(57) f +F: \,*;) - r(,*;/ :sB-Bs

:z\/6 -t5c+B\/6cz-oB.
Thus we obtain from (56) the inequality for c:

(58) A@) : s\/6- 6- 15c*s\/s cz -c3> 0.

We need orrlv to consider those values of c which tie in the interval (54).
There A@) is a monotonic function of c and calculation shows that
U$t-t\ ) 0, y(0,094i8835) < 0 . Thus (58) yields the limitation for c i

(59) 0(c<0,09418835.

To be sure, we start with an accuracy rvhich finally appears to be unne-
cessarily great to obtain the final contradiction.
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The first righl,-hand term can be transformed as follows:

44

3rr, 
.o. 3*, : \rö,14 cos3 r, - 3 cos r,]

: - ,å,,cosnv+ 4j,ä, 
"o*rr,,

/-4lt\3:z\/6 -Bc1-4>ö,1- .,=* r,.)
t:t \ VO I

7,_44:Elu _ c- 2\/6 2.u,"11 +Z.d,el.
?:l t:l

By use of (53) we can replace

416
2)öe1 :--a-cz
,2r' ' t/a

and find
474(61) I.ä,,cos lil,:;{u - L7 c+ \/o cz + 4).a,ul.

Inserting tfril 
"qrution 

and (57) into (60) we get 
'':I

164
(62) -B: Re {t2ane"n}:; {u - B2c+ +\/6 cz - cs t +\.å,e3,.

In ord.er to d.iscuss next Im {12 aneisq} weobserve that by "-;" of (33)
and (3a) we haye

44
(63) ) ö,sin n,:>d,sin 2r,: g.

Thus

.f : Im {12 auerr*} : i, U, fn cosz trn- l) sin a,.,

-^! 

Y:r 
4 / I \2

- - 2 d, cos2 fi,sinru: 4> 6, (cos r, { -) sin r,
,;, v:r \ v6l

: 4> ä,, sin c,,el .
t:l

Hence by use of (55) we find

(64) l/l< +f,a,"1=#".



i\I. Scurrrpn, and" O. Teurrr, On the fourth coefficient 13

Now we know that we can assume in our investigation

I LZ aneisv l' : Rz + 12 > L44 .

I{ence we have a fortiori the estimate

/32 \z

that, is ,

f /qo ^\211(66) o [, * l6;)]u, ,,

According to (59) we have an upper bound for o, and. therefore:

A".-32--<L,280L72.la ro V6

By (65) this implies the lower estimate for -B:

R2 > 144 - L,2304722 > 142,4859.

Thus (66) yields

I I 32 \2 r lå
o 

Lt 
* \ rci r4%485r]- > t2

and we end up with the lower bound

(67) E > II,93674.

Insert this estimate into (62) and find the inequality

16 /- /--
(68) ; {u _ 32c+ +t/o cz - c? + -"ä ö,'1,> 11,e3674.

There remains stitl the problem to replace the sum on the left side by
terms depending only on c. By means of (55) we get

(69) 
,1u,t15 

max I e, | ',) d,el ( max l t,l' \/6 
t .

Furthermore, we have

ä,ui ( j ,,ri =+ c (1t: r, 2, 3, 4)
i:l \/ 6

whence

,/ I 8(i0) maxls, l< l'**r,'160-
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To find min d, we observe that vr may restrict our attention to the case

(71) 2<k<2,r29692.
In view of (17) we have hence

(72) min ä, > 2 -Try: 0,985154.

Thus by use of (70) we obtain finally

(7s) maxle.,=#(år-
\rlie combine this with (69) to derive from (68) the inequality for c:

(74) z(c) : # lu - n,e3674 - 32 c

.+ _=L: (+rf" + 4\/6 cz _ as > o.
1/ 0,935154 \V0 I

It is easy to verify that z(c) is a monotonically decreasing function of o

in the interval (59). We compute that

yQa-\>0 but 9(0,04244641) <0.
Thus we conclude that c cannot, exceed the upper bound of the improved
estimate

(75) 0Sc<0,0424464L.

ff we substitute this estimate into (73), we find

(76) 1., l< 0,3850227.

6. The use of conilition (16).

The necessary condition (16) which has not, yet been used reads in the
case n:4 asfollows

(77) zr.zz.zs.?t.?s.za - -1.
trVith the rotation (19) and (36) this can be expressed in the form

(78) ei(\+r'+8s+x'\--"6i'r

or equivalently

(79) ,2r*,:6piQn*t)n (n:0,+1,...).
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We have to prove that this neeessary condition cannot be

the assumptions (46)

We begin rvith an estimate for V . We use (61) and. (75)

32 32- 0,A424164L
(80)

Since I .- LZar sin 3p

sin l\p i <

{*r: ro*rlt
r. ! 

nz: no * tlz

lxr: ror?lt
l*o- -ro*qE

0,0531738

0,1063176.

the conditions

7[
<.fi' 1n,2

fulfilled under

to obtain

1 )" ' r 4) ,

around the

this implies

0,6377848 0,6377848

here w-e used again our assumPtion
inequalities

frE, ) t . We thus proved the

i\v l<
arrd

(81) 'i 6V i <

\Me introduce the angle no by

I
(82) cos n0: - l;

Since by (76)

COS fr, : COS ,r0 -l- €r, t ', €r, I < 0,3850227 (U

we know that the points fry }ie on the rnarked arcs A and

points fro and - a:0 in Figure 1. Since

,å',sinr,:g

it is impossible that all numbers sin r, have the same sign. Thus in each

arc A and J must lie at least one point r, . There are three possibie

cases to be distinguished as is shown in Figure l. We denote the angular

deviation of r, from the points tro or - ro in the arc A and Ä ,res-
pectively, by rln. Thus we have the cases:

:

A

l*r: fro * Ylt

,o l*, - no * rlz
- lrr: -froTrls

[*n - - no * r]a

xo * r?r

fra * rlz
fro + 4t
fra*4a
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A frzfrt %tA

Afr{ fr4

2"

Figure 1.

different forms in the three cases;

4

Zrt, + 2*, - 6V - Qn * L) n ,
,:0,

,Zrr, - 6q: (2n * L) * ,

_1

Zr?, - 2*o - 6V, - Qn * 1) rr .

frs fr4

..)f,
ö

\r'e find

I"

Condition (79) takes

1u

(84) 2"

30

From definition (82) we find

3,982660 < 2ro I 3,982 662 .

proceed now to estimate I q,l by use of our knowledge of the e, . Since

(85)

!trre

we find

(86)

Observe that n,
in Ä . Denote

le, | - 2

- frO: 4,

. frr,+ froi
SII}_ ^ i2i
if nv lies in

tv- cos frt, - cos to: 2 sin 
fr' * fro ' fr' - fiO

2sm'

frr, - fro

2

and fro * fro : Tn if fry lies

0,3850227

sin

A

cos s, -
I

{o
and find

(87)
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Thus

. lx, t *ol - no * a I,991331 + 2,4869590 ..i" 
l 
tä-l 

= 
ul" t ) sin- > 0,7848460'

By use of this estimate we deduce from (86) the inequality

i. r.
I SIrI ^tr.lu

t^l
,0, I

and arrive at the numerical bound

v
2

sln #
Since 

- 
decreases with increasing positive small * ' we can assert

fr

I

i ?1,. , -? 0,247 8143 '/ o ,217 8143 '

i;i
i2i

Hence, using the estimate (88) again we arrive at

(88)

(8e)

(e0)

sin 0 ,247 8143 A,2452855
, \,?,aml,

l rt,l 0,247 8I43

lri' o,z452BB5 
srn

r?,1, 0,247 8143 I ,, I

-1./.-.z i - 0,2152855 1,569692 '

Now we use the Schwarz inequality to estirnate Z q,, w}aich occurs in
(8a). We find by use of (72), (55) and (25):

4444K24
( I I r" l )' < 42.'t, 

= 
+xz Z,el S --ir 4 :,u,ui

nur:' 8 4'.:r.',r*rrrr' . r. r,on nou^
' 
-- 

c 1 
--- 

,- < 0,9825913.
- min ä,, lA 0,9351539 ' 1/6

Thus, ultimately we obtain

å I ,7,1 < o,ee 12571.

lrl,l <KIu,[ rvith Ii- 1,287272.

For later use we can compute analogously

22

v: I v:L 1'--l



18 Ann. Acad. Sci. Fennicre A. I. 396

Thus, by the same chain of inequalities , we find
2l

(91) Zl q" I I . r= 0,9912574 < 0,7009249.

From (st) aru trol *" ,I"'rn* in the case zo

lzn*l lz shouldbe < *,rr,l * loEl< r,098 (n:0, t l, +2,...).

The equation (8a) ,- ,nr.:t;nossible in the case Zo and we are reduced
to the cases 1o and 3" . Since the signs of the 11, arrd g ate free, there
is no real difference between these two cases. We would have finished our
argument if we could show that equation (8a) is impossible also in the case lo.

By (8f ), (85) and (90) we see that in the case 1o

r,oes > i,tr,l * I oE l>len* r)z - 2*ol

>-lzn l'r r* - zro> l2n * r ln- a,988.

This is impossiblefor n, : l, 2,... . Similarly (8a) in the case 1o gives
for n:-1,-2,. .

1,098 > l2n * L ln * 2uo) )2n * r I z f 3,982

which again is impossible. Hence, the only alternative left is the equation
(8a) in the case lo with tL : 0 .

7. The final argument.

We have now to consider only one possible extremum case with N > Z .

In this case, the points fr1 1fi2, u, lie on the upper are A while rn lies on
the lower arc Ä of X'igure l. We are now able to obtain more specific
estimates for the numbers ä4 and lrlnl which are connected with the
distinguished point rn.

X'rom the equation (cf. (33) )

å,', sin r, : s

we deduce

äu lsin ilEi: drsin r, f drsinr, f drsinrr.

Here (cf. (87))

sin r;) sin alsin 2,4870> 0,6088 (i--1,2,3)
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and hence

ä4 > 0,6088 (d' * ä' * da) : 0,6088 (6 - dn) .

We find, therefore, the lower bound for d+:

6 . 0.6088(92) dn> t+ososs >2'2705'

Next, we shall improye our information regarding €4. We start with
the equations (cf. (33), (34) and (a7))

l.n 4

I 2 ö,sinr, : ) ä,sin {rrcos frr : o,
iv:l t:r
( cosz,:cosro{e,'

They imply
4

(93) Z ö,,r, sin r, - 0 .

X'rom the definition (50) "f ; there follows

4

c sin ro - ) ö,e, sin ro
t:l

and subtracting the equation (93) from this equation, we find

n o _?)t rolr,(94) o sin ro : 
Z. 

d,r, 2 sil'=--: cos ff .

Since

E, : cos r, - cos fro:2 rinry ,i^!!+-y

we may bring (9a) into the form

3 ry --L o,.

c sin ro : ) ö,el cotA-t' * des* (sin ro - sin rn)
i:L a

whence

(e5) önen (sin ro - sin r) : -.å r,r, "rt5j3 f c sin ro.
i:1

Now, since we are in the case 1o, we have

sin ro ) 0, sin ro - sin rn) 0, "ot*!): < 0 (d : 1, 2, 3) .

19
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Thus \4,e read off from (95) the important information

s+) 0, ??E) 0.

We ca l utilize (95) also to find an upper bound for €4 . We get

(e6)

(e8)

(97) ö&E(sinro + lsin n,tl ) - ) ä,el
tro + fri

ot
o+fri

o i I vSIII frO.
/Jl

,52L3 > 3,4541

+ c sin frs.

1,9920 + 2,4970

Clearly,

From (92) follows then

dn (sin no * isin nq't ) > 2,2705'l

and (97) leads to
3

Ifext, observe that

no*r'
cot ,

no*r'
cot 

z

, froi &'t
cot

and that
348

Z ö,ul <: ö,u1,- ,Z c.

Hence (98) yields

IB \
3,4541 t+< (;e ' 0,7 902 + sin rol c

Thus we proved

(ee)
0,1486

By inequality (89) we can translate each estimate for en into a corresponding
estimate for qn. We find

( 100)

'W'e are now in the position to dispose of the remaining condition (84)

in the case l" f,or z: 0. \t'e write it, in the form

(101) 
å_,r,-Bv:-2ro{n.



(102)

M. Scnrrrpn and O. Tlvmrr. On the fourth coefficient

We distinguish the essentially different cases:

a) All rti (i, : l, 2, 3) have the same sign.
b) Two 4i are non-negative, one is negative.
c) One r1i is non-negative, two are negative.

We begin with case a). We assume that all qi are non-positive; the
case that they are all non-negative is treated in precisely the same manner.
In view of (93) we have

,å 
,,u; sin n; : ö&al sin tra, l.

By (1i) and (71) we have the upper bound for öa:

Hence, by (99) ,

On the other hand , by (72)

Thus (103) gives

i-1

From (89) we then deduce

33 r,2973 . 0,1321
L-' \

-'_ 1
,, _ L 0,5692

and obtain

3

Combining (sl), (100) and trå*l we get

4

On the other hand ,

2L
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and thus, according to (IOf ) , the number

0,4676 should be > 0,8410.

Thus the case a) cannot occur.
We come now to case b): ,4,_10 ,llzZ 0, ?ig ä 0. This implies e, ) 0,

e, ( 0, erS0. - We write (f0f) in the form

(107) 2ro - " +;r,: 6e .

r: I

From (89) and (76) we have the estimate valid for alI q,:

(108) lrt,l < 1,2873'0,385I < 0,4958.

Thus, since 2ro - n > 0,8410 , we know that the left side of (107) is positive.
We have indeed the estimate

2r'^ - " + ;r1, > 0,84L0- 0,4958 : 0,3452.'*o 
t:l

Because of (I07) and (8I) the number

0,1064 should be > 0,3452.

This excludes the case b) .

There remains then the case c): ry>- 0 , 1,2 10 , 17, ( 0 . This implies
er( 0, er) 0, er) 0. - Now rve make use of (9I) andfind

(I09) lrtrl+ lryrl< 0,7010.

Thus the left side of (107) is still positive and satisfies the inequality

2ro- n +i,r,> 0,8410 - 0,7010 : 0,14.
v:l

In view of (107) and (8f) the number

0,Il should be > 0,14.

The last possibfity has thus been excluded and we have shown that the
number of corner points in the ext'remal polygon is precisely I{ : 2 ,

8. The case N: 2.

We have finaily to discuss the case N : 2. Here we ma,y derive from
(7) the information (suppose that h) 0 , tu < 0):

k lk \(Ir0) h:r*1, Tz--\a-r/.
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Elence b;, the representation formula (6) we find easily

f'(z\ Tt Tz(rrr) "Iö): i=+;-,
where z, and z, are the pre-images of the corresponding corner points.
Integrating (1II) and using the normalization (I), we find

* / z\-'r/ z\-',(LLz) f'(") : Zrnaozo't 
: (, - Z) l, - Zl

If we develop the right expression into a power series and compare the
coefficients of zB on both sides, we obtain

(113) 24 a4: yt 0t * t) (y, { 2) zra

* Tyflz [(2, * L)zrzzrl * (yz* t)zrtz2z)* yz\z * t) (2, * 2)zis.

'Write this in the form

(ll4) 24aozl: TlTr + I) (7, + 2)

* syryr l(2, * r)tl Oz+ l)r'zl * yz\z* L)(yz+z)ts

where

(n5) t:1 .
z2

Because z!: zz leads to the extremal case for convex domains, for which

la^l: l, we see that the right side of (Ila) assumes the value 24 for
t: l. Thus we get

(116) 2+ (aozl - t)
: sTrTz[(2.* 1) (' - L) I Qr+ 1) (,,- 1)] + yz\zl t) (yr* 2) ('3- l) .

X'or brevit5', write this in the form

(I17) 24 (auzl - l) : vr@(t) ,

where

(rr8) A(q: (, - l) {syrlyr+ I + (2, * I) (, + 1)l +
(yr* t) (y, * 2) (t2 + t + l)) .

From (1I7) follows

(rre) Zalanl -1) {lyzl I@(r) l.
We want to maximize the right side of (119) and hope that the upper bound
for I aol thus obtained appears to be sharp.
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For brevity, r,r,rite

(120) O(t): (t - 1) (a * bt + ctz) ,

rvhere

t-2)1

lcz

Z,

(t'++c&

t1
I

c
I

I

-1)

+

(6

o
t)

t-

8

)

(

1)

+

1l

k

T

?)

,t-

(t

k

c

>(t

:

I
€
I

at
a\

t)

a
c)

.k+

-k),

+)

a, - L2y, * (y, + 1) (y, + 2)

b- 2(y,,+ 2) (yr+ I) - (,

c- (yr+ 1) (yr+ 2) -- (,

_ A1t-t7, wo obtain

!@(t)ir: @(t).

t-L) la'+ b'+ cz + b(a *
rrr real variable

(r2r)

I

Because @A

Define the ne

2ul@*b+c)z Z(ab +bc + 1ca)u{4cauzl

maximize the function

I @(t) 12

(122)

In u we get

t@0 i,:
Thus we have to

(123)

u'ith

(124)
+k),

LL : 2 for all k-We
values

?'(0) : A > 0 . Let us show that the discriminant of the equation ,p'(u) : O

is negative; lhen y'(u) cannot change its sign and our proof is finished.
Thus we must have

lA: (a * b + c), : 26, ,

J A : 2@b t bc * 4ca): s6(4 - k) (r0

ll7k2\

have to show that ,p (u) takes its maximlrm at
interesting us: 2<k<4. We compute:

,P'(u)- A + ZBu{3Cu2.
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(125)

This leads to

(126) 4(4- k) (10+ ä)2 < 3(6 -k)(72+ r4t§+k).
Let us here replace 72 + L4k + kz by its minimum value obtained for
k : 2, i.e. , by 104. Thus we are lead to the more restrictive condition

(127) (4- k) (10 + ftF < 72(6 - k).

Rearrange and find

l&a rc762- 52k + 32 ) 0 ;

(r28) (k - 2) (k2 + r8k - 16) > 0.

Hence there remains only to show that

(r2e) tr2118k-16>0
for 2 < l§ < 4 . This quadratic expression is negative for k : 0, but
already for k : 2 ithas the value 24and it remains positive for lc > 2 .
Hence we proved (I29) and since the order of our conclusions can be
reversed from (I29) to (125), we have shown that

(130) maxy(u): y)(2) :2(A + 28 + 4C) : 2(t2 + 2h I tszlz .

IIence

maxl@(l) l:2++4k+2p'
and from (lI9) we obtain the condition

ks + 8lc
lanl< % .

The equality is true only if u : 2, 'u-hich means

t:1--I.
?,2

Our result, which generalizes a theorem for the real class ,S,,[3] , is thus:

Theorem. In the class 8,, (2 S k < 4) of uni,aalent functi,ons with
bound,ed, bound,ary rotat'ion, the coffici,ent a,4 sati,sfi,es the i,neqtality

k3+8k
IanlS % .
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The eutremum functions are

r(,): *l(=)r''-,] tr rt:1)
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