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1. Introduction

We shall consider in this paper regular functions in the unit disk |2| < 1
which have the normalized power series development

(1) f@)=z4 a2+ ...+ a"+ ...
and whose boundary rotation is bounded by the number
(2) k.

It is well known that for 2 < k =< 4 the functions f(z) are univalent [1].
We denote the class of functions in question by 8.

In a preceding paper, we developed a variational method to solve
extremum problems within the class S, [2]. It was shown that an extremum
function f(z) with maximal real coefficient a, must satisfy the differential
equation

3) 1+J{ s

where

1

lG’,.(z) = > e —{—E v’a, 2" + n(n — 1)a, ,

r=1 ry=1
(4) n—1 pq n—1

va, 2"

M

lgn(Z) =

n
1 % =1

From this condition we deduced that the extremum function maps the
unit disk onto a polygon with N corner points with
(5) 2SN =2n—2.

On the other hand, the Poisson-Stieltjes representation for the functions
of the class S, reduces in the case of such a polygonal mapping to the form

"(2) N oz +
(6) 1+%=%.§11_:%-

This work was supported in part by Air Force Contract AF 49 (638) 1345 at
Stanford University.
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Here the points z; (1 = 1,...,N) are the pre-images of the corner points,
and zy; is the angle of change of direction between the two sides which
join at that corner. It was shown in [2] (formula (71) ) that in the extremal
_case we have

(7) l

Let us combine the representations (3) and (6) for the extremum function
and write

(8) 14+ o =

Here the z, are now the roots of the equation

(9) gu(z) = 0.

The pre-images z; are among the roots. If N < 2n — 2, the equation
(9) has also roots which do not correspond to actual corner points of the
polygon. We call these roots free roots. In order to satisfy the identity
(8), we must define

(10) y, = 0 if z, is a free root.

Observe that with this definition we can replace (7) by

2n—2 2n—2

(11) 20 =22 lnl=
y=1 y=1
From the identity (8) we can derive relations between the roots of
equation (9) and the coefficients of the extremum function. Indeed, using
the definitions (4), we find

n—1
/ n(n — Da, + 2n > va z"~"
G e ) =1 207
gn(z) - n—1 1'(1’,, n—1 _ o
— Z va 2"

n—v
r=1 z =1

n—1
n(n — Daz""" + 2n > a1
=1

v

. _ n—1 n
1 242 1 ... = n(n — Laz2"" -+ (27).

On the other hand, from the definition (4) of ¢.(z) we can express the
rational function in terms of its roots and write
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1 2
(13) g2) = — ol e —2).
r=1
Hence
9a(2) n2og ;Mo
zgn(z) =— @@=+ 121 z—z, = 2(z — z,)

and inserting this identity into (12) we find by virtue of (8):

Gi(2) gn(z) S 2,42
14 — —n=13%2 (1+y)"— —n
( ) gn(z) g"( ) 2 vil ( /:) z,—z
2n—2 2 2n—‘2 B r”z w
=2 (+7); =guTm;k)
Comparing the expansions (12) and (14) we find the following equations:
2n—2 1 + ’
IZI Z,uy'=0 (w=1,2,...,n—2),
(15) T
l2n——2 :'l + v, B .
e} Z:—l - n(n - )an .
Moreover, we read off from equations (13) and (15) that
2n—2
(16) TTz=—1
y=1

(cf. formulas (142) and (143) of [2]).

The numbers 1 4 y, can be estimated by aid of (11). We denote the
positive and negative jumps y, by A7 and — A, respectively (4,
47 = 0). For them (11) yields

A £ 547 =5 +1,4; =3 47 =

2

k Ld
2

Hence
(17) 02—

If N=2n—2 or N = 2n — 3, all theroots z, lie on the unit circum-
ference (|z,] = 1) and we conclude from (15), (17) and (11):

2n—2 9

1
(18) @] = wn — 1) Zl 1+vy,) =

n(n

1<lforng4.
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Since we know that the maximum value of |a,| in the class S, is larger
than 1 for £ > 2, we see that the cases N =2n — 2 and N = 2n — 3
are excluded. In the case n = 4, which will now be discussed in detail,
we may thus assume that N =< 4.

2. Direet estimation

From now on we shall deal with the problem of maximizing the fourth
coefficient @, which may be assumed positive whithout any loss of gene-
rality. We may then restrict ourselves to discuss polygons with N = 2,
3 and 4 corners.

Let us denote the roots of ¢,(2) =0 by

2y, Bg, Bg, Ry, 25, % -
In the case N =4 we are interested only in the case where

2] %1, |z] #1.

The structure of g¢,(z) implies that with any 2 also —is a root of

g4(2) = 0. Hence, we may denote
(19) 2y = 1€, 2g = — = — €7 .

In the case N = 3 we may assume z; and 2, to have the same form (19).
If z, is a free root of the equation g,(z) = 0, it still must lie on the unit
circumference as can be seen from equation (16).

Hence, in both cases N =3 and N =4 we may suppose the form
(19) for the last two roots and write

(20) 2, = €91, 2, = €72, 23 = €73, 2, = €'%s,

However, for N =4 we have

(21) Yis Var V3o Vs F 05 95 =p=0; N =4,

and for N =3

(22) Vio Voo V3 F 05 va=9;=9=0; N =3.
We introduce the abreviation

(23) 6,=14+2 =0 @p=1,2,...,6)

(cf. (17) ) and write the equations (15) in the case n = 4 in the form
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24 % 8 % 0y < 1) —ip
(24) L
8, 8 6 & ( 1) _
- 2 - 2 — | p—i2
(25) 23 + z§ + Zg + Zi = 2+ 2 e,
(26) 12 — ﬁ EZ_ _63 + ﬁ + (7.3 .l) —i3p
i i M e S U A

We deduce from (25) and (11) the estimate

1 4

(27) 72+;§§25v=4+2%=6-
v=1 r=1
Hence, we infer
" 1 )2 2 i 1 5
(28) (\7‘—!—7/=7‘ —1—72—}—2§8.
This leads to the estimate
1 ’ 1)\ / 1

(29) ﬁ+ﬁ=(r+7/)(r2+72—1>§10'\/‘2—.

Thus, finally, we find the following inequality for a, by using (26):
4 _ —
120, <56, - 10V2 =6 + 10V2;
y=1

that is,
(30) a, <3 +34/2<1,6786.

On the other hand, consider the case N = 2. The extremal function
is, in this case, easily determined (see Section 8). One finds for its fourth
coefficient the expression

k3 4 8k
(31) Uy = "% -

This value for a, exceeds the upper bound (30) as long as
(32) 2,67 =k = 4.

Thus, as long as the boundary rotation satisfies the inequality (32), we are
sure that the maximum for @, is achieved in the case N = 2 and that
| ay | has the upper bound (31) for all functions of the class ;.

Qur aim is to prove that N = 2 yields the extremum function even
for 25k 4.
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3. A sharper estimate

Multiplying both sides of (24), (25) and (26) by €, ¢°* and €®7, res-
pectively, we obtain

1 4
(33) P == 388,
y=1
]_ 4
(34) Pt =—2040,
ry=1
. 4 1
(35) 120, €% =3 0,5; + ©° + 3
r=1
with
e )
(36) Cy:—;:p""v v=1,2,3,4).
From
1 4
r+—=—>9,0c08%,,
r y=1
]_ 4
(37) it = — >4, cos 2z, ,
r=1
4
6 = Z é,,

we deduce
/ 1 4 4
(38) 6 — (,.2 + ;é) => 68,1+ cos2w)=2> 4, cos’x,.
y=1 v=]
We apply the Schwarz inequality
4 4
(39) (> 8, cosa)=>06,2 0, cosPx, =620, cos?x,

1 =1 r=1

and see that

o2 et 3]

Rearranging, we find

1
(40) 7‘2-—}—','5 <4
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and since

[ 1\)2 ) 1

r+ ) =r+st+2=0
we get

1 _

(41) r— =6,
This leads to

1 N1 ) =
and thus we derive from (35) the estimate

6 + 316 _
(43) < ———— =14+146 <1, 11238.

12
This bound lies under the value (31) as long as
2 =

(44) 2,12969 E< 4.

Thus the estimate (31) for @, is valid in this larger interval.

4. Discussion of the inequalities

It is clear that the bounds (40) and (41) cannot be improved. Indeed,
the inequality sign entered in these estimates only through the use of the
Schwarz inequality, and this inequality is sharp if we choose all four values
of cos x, to be equal. When selecting

1
COS X, =— — —=
v \/6

we see that (37) leads to the above upper bounds.

It should be observed, however, that our estimates were all based on
the three conditions (33), (34) and (35) and that until now we have not taken
into account the additional requirement (16).

We wish to show that the cases N =3 and N = 4 can never lead
to the actual extremum function. To show this, we have only to show that
the necessary extremum conditions can not be satisfied if

(45) 0 =1,...,4)

1
(46) 7‘3—%—73 >6 and a,>1,

since we know that the a, given by (31) has always larger value than 1.
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We set up

v

1
47 cosx,— ———+¢, (»=1,2,3,4
(47) . \/6+ ( )

and will show that the ¢, must be small if (46) shall hold. In this case,
we will show that condition (16) will be violated. Thus we will exclude
the possibility of N =3 or N =4 for all © and show that (31) is the
precise bound for |[a,|.

We denote

1
(48) s=r -+ - =2.
By (33) we have
4
(49) s:—Zéycosxyzx/Ei—z&vsv.

The central role in our estimation will be played by the quantity

4
(50) c=> 0,,.
r=1
In view of (49) we have
(51) c=vV6—5s=<16—2.

From (34) we can then deduce the chain of equalities

4 4 4
2 —s2=>9,cos 2r, =23 0, cos®x, — > 0,
v=1

v=1 y=1

So(— -t
=2>6[—— —6
2Tt

I

4 2
2<1 - 216"8i —\—/fe)— C> — 6

whence
4 4 )
(52) =64+ —=c—2> 0 .
V6 y=1
Inserting on the left the value of s given by (51), we obtain
— 4 4
6—2vV6cLc2=6+ —— S 6.6

—c— 2
'\/6 )'—’l

and

- 16 Sg e
(53) 760262+225V8y.

r=1
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We see that ¢ is non-negative and can complete the estimate (51) to
(54) 0<c=V6—2.

Moreover, we can estimate

(55) 1257‘% = 7 c.

This shows that the smallness of ¢ will imply the smallness of all deviation
terms ¢, .
As stated above, we can assume without loss of generality that

1
(56) P> 6.

In view of (51) we have

(57) 73+1=<r+i>3—3<r—}—i>=53—3s
r3 r 7
= 3\/6_—15c—|—3\/€cz-—c3.

Thus we obtain from (56) the inequality for c:

(58) Ye) =3V6 —6—15¢+3V6c2 —c3>0.

We need only to consider those values of ¢ which lie in the interval (54).
There y(c) is a monotonic function of ¢ and calculation shows that
y(1171) > 0, %(0,09418835) << 0. Thus (58) yields the limitation for c¢:

(59) 0 =< ¢ < 0,09418835.

To be sure, we start with an accuracy which finally appears to be unne-
cessarily great to obtain the final contradiction.

5. An improved estimate for c.

We will now improve the bounds for ¢ by using the second part of
assumption (46), that is, @, > 1. We start with (33) in the form

1
(60) Re {12 a, €37} = ? 8, cos 3z, + 13 4+ — R

;—1
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The first right-hand term can be transformed as follows:

4 4
> 6, cos 3x, = > 0,[4 cos’x, — 3 cos ,]
=1

=1 v

4 4
= —3>4d,cosx, + 4> 9, cos’x,
r=1

r=1

_ 4 1 3
=3\/6 _36'_'—4261'(_\76‘—’_81')

v=1
7 _ _ 4 4
:E»\/e —c—2V6 S0 4450:.
v=1 r=1
By use of (53) we can replace

4 16
2> 0,6 =

e — 2
r=1 '\/6
and find

4 7 . . 4
(61) Zd,cosS:c,,:—?:\/G—17c+\/6c2—{—426,,sf‘,.
rv=1

r=1

Inserting this equation and (57) into (60) we get

16 — _ 4
(62) R=TRe{l2a,e™}=— V6 —32¢+4V6—c+4>06.

v=1

In order to discuss next Im {12 a, ™"} we observe that by virtue of (33)
and (34) we have

4
(63) > d,sinx, = > 6,sin 2z, =0.

4
=1

r=1 v

Thus

4
I =1Im{12a,e%} => 9, (4 cos® &, — 1) sin 2,
r=1
4 4 1 \e
=4 > 0,cos?x,sinx, =4> 6, (cos x, - —=]| sinz,

v=1 y=1 \/6_/

4
=4> 0, sinae .

y=1

Hence by use of (55) we find

4
(64) I =4 68 =
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Now we know that we can assume in our investigation
| 12 @e? 2 = R* - 12 > 144.

Hence we have a fortiori the estimate
32 \2

(65) B+ (7 c) > 144,
V6

that is,

(66) R [ (\3/9 ;)

According to (59) we have an upper bound for ¢, and therefore:
32

2o 12.

< 1,230472.

RET) \/ 6
By (65) this implies the lower estimate for R :
R2 > 144 — 1,2304722 > 142,4859.
Thus (66) yields

rl+ () > 1
t\lov/s) 142,450 !

and we end up with the lower bound

(67) R > 11,93674.
Insert this estimate into (62) and find the inequality
16 4
(68) 5 V6 —32¢c+41V6 2 — 344> 5 > 11,93674.

r=1

There remains still the problem to replace the sum on the left side by
terms depending only on c. By means of (55) we get

4
(69) > 6,6 < max e, | zée <max|e, |-
v=1

8
y=1 '\/é—

Furthermore, we have

4
g ?g—— (1’:1,2,3,4)
AR
whence
1 8
(70) maxlsvlgl/ — c—¢.
min d, V6
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To find min 6, we observe that we may restrict our attention to the case
(71) 2=k =2]129692.

In view of (17) we have hence
2,129692
——5— = 0,935154.

Thus by use of (70) we obtain finally

1 8 1
73 max e, | S ——— | —=c¢] .
(73) el 1/0,935154 (\/6 )

We combine this with (69) to derive from (68) the inequality for c:

(72) min 6, = 2 —

16
(74) de) = V6 — 11,93674 — 32 ¢
4 S 3/2 _
(== 46 ¢ — > 0.
" 4/0,935154 (x/ﬁ ) ™

It is easy to verify that z(c) is a monotonically decreasing function of ¢
in the interval (59). We compute that

y¥(2471) > 0 but y(0,04244641) < 0.

Thus we conclude that ¢ cannot exceed the upper bound of the improved
estimate

(75) 0 < ¢ < 0,04244641.
If we substitute this estimate into (73), we find

(76) le, | < 0,3850227.

6. The use of condition (16).

The necessary condition (16) which has not yet been used reads in the
case n =4 as follows

(77) 2y . % .25 2. 2 -
With the rotation (19) and (36) this can be expressed in the form
(78) ei(x1+x,+x3+x‘) —_ eﬁir{

or equivalently

4
(79) 2x,=6p+ (2n+ )= m=0,4+1,...).
r=1
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We have to prove that this necessary condition cannot be fulfilled under
the assumptions (46)
We begin with an estimate for ¢ . We use (64) and (75) to obtain

32 32 - 0,04244641

I < —
(80) I = J6¢ < imeez < 0,637784S .

Since I = 12a, sin 3¢ this implies

0,6377848  0,6377848
12a, — 12

sin | 3p | < < 0,05314874 ;

here we used again our assumption a,> 1. We thus proved the
inequalities

| 3¢ | < 0,0531738
and
(81) | 6 | < 0,1063476 .

We introduce the angle z, by the conditions

1 7
(82) cosx(,:—%, §<x0<n.
Since by (76)
cos x, = cosx, -+~ ¢, , 6 1<<0,3850227 (v=1,...,4),

we know that the points z, lie on the marked arcs A4 and A around the
points z, and — a, in Figure 1. Since

4
> d,sinz, =0

r=1

it is impossible that all numbers sin #, have the same sign. Thus in each
arc A and A must lie at least one point z,. There are three possible
cases to be distinguished as is shown in Figure 1. We denote the angular
deviation of x, from the points 2, or — z, in the arc 4 and A, res-
pectively, by #,. Thus we have the cases:

’xl'_: Xy + My T = Xy + M T = X+ M
1° Xy = X+ 90 Ty= X+ N 30 Xy = — Ty + 1z
lw3= 2y + 73 lx3=’—xo+773 lvvs:_%‘!"?s

Xy = — Ty + "4 Xy = — Ty + Ny Xy = — T+ Ny -
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A = A
2 /&\ ’
\ ™
Zg J Lo o
A 2 A 23 x4
1C 20 33
Figure 1.

Condition (79) takes different forms in the three cases; we find

4
1° >, 4+ 22— 6p=(2n+ 1)z,

rv=1

4
(84) 2° Sy, —6p=(2n -+ ),
r=1

4
3° 27“—‘2%—6@:(27@—{-1)7[.

From definition (82) we find

1,991330 < a, < 1,991331 ;
(85) 3,982660 < 2, < 3,982662 .

We proceed now to estimate |7, | by use of our knowledge of the ¢, . Since

R D .
€, = COS X, — COS Xy = — 2 sin g Sin 5

we find

(86) le, | = 2 |sin —

[ x;' - xO ’
|1 sin
. 2

Observe that x, — 2, =1, if @, lies in 4 and z, + 2y =17, if «, lies
in A. Denote

1
cos x = — —= — 0,3850227
Ve

and find
(87) & < 2,4869590.
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Thus
x, 4w, | Xy + & 1,991331 - 2,4869590
sin | =5 = sin = 5~ >sin 5 > 0,7848460 .
|

By use of this estimate we deduce from (86) the inequality

o le, |
. v -
(88) 1sm 3 (< 2 0,784846 < 0,2452856

and arrive at the numerical bound
', |

151 < 0,2478143.

sin x

Since decreases with increasing positive small xz, we can assert

|2 sin0,2478143  0,2452855
. 02478143~ 0,2478143 °

Hence, using the estimate (88) again we arrive at

" E 0,2478143 17, 02478143 ¢, |
5 < 02452855 " |2 < 0,2452855  1,569692 °
(89) 9, | <Kl|e | with K =1,287272,

Now we use the Schwarz inequality to estimate X7, , which occurs in
(84). We find by use of (72), (55) and (75):

4 4 4 4K?2
2 <45} < 4K2 2 < ‘“
=zl ] 77v — y:,lnv —_ K ;216' - mln 6 6 8
4K2 8 4-1,2872 - 8+0,04244641
= — c— < < 0,9825913.
min 8, /6 0,9351539 - V6
Thus, ultimately we obtain
4
(90) >, | < 0,9912574
r=1

For later use we can compute analogously

m

2= 2K
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Thus, by the same chain of inequalities , we find
2 1
(91) S, | < —= 0,9912574 < 0,7009249.
y=1 \/2
From (81) and (90) we see that in the case 2°

4
[2n+ 1|z shouldbe = > |7, |+ |6p|<1,098 (n=0,--1,42,...).

r=1

The equation (84) is thus impossible in the case 2° and we are reduced

to the cases 1° and 3°. Since the signs of the 7, and ¢ are free, there

is no real difference between these two cases. We would have finished our

argument if we could show that equation (84) is impossible also in the case 1°,
By (81), (85) and (90) we see that in the case 1°

4
1,008 > 3 |7, | + 60| = | 20 + 1) 7 — 2|
r=1

=Zl2n+41|n—2x,>|2n+ 1|7 — 3,983.
This is impossible for n =1, 2,.... Similarly (84) in the case 1° gives
for n=—1, —2,...
1,098 > | 2n + 1|7 + 22y > | 2n + 1 | & + 3,982

which again is impossible. Hence, the only alternative left is the equation
(84) in the case 1° with n = 0.

7. The final argument.

We have now to consider only one possible extremum case with N > 2.
In this case, the points z,, #,, x5 lie on the upper arc 4 while x, lies on
the lower arc A of Figure 1. We are now able to obtain more specific
estimates for the numbers ¢, and |#,| which are connected with the
distinguished point z, .

From the equation (cf. (33))

sinz, =0

v

4
>0
r»=1
we deduce
Oy 1 sin &y | = O;8in &y + d,8in 2, -+ dysin ;.
Here (cf. (87))
sin a; > sin & > sin 2,4870 > 0,6088 (t=1, 2, 3)
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and hence
8, > 0,6088 (8, L 8, - &) = 0,6088 (6 — 0,) .
We find, therefore, the lower bound for d,:

5 5 60,6088 5 9705
(9) 4>1+0,6088>,'70.

Next, we shall improve our information regarding &,. We start with

the equations (cf. (33), (34) and (47))

4 4
> é,sinz, => d,sinx, cosx, =0,
r=1

r=1

COS &, = COS &y + €, .
They imply
4
(93) >de sinw,=0.
rv=1
From the definition (50) of ¢ there follows
csinxy = > d,¢, sin
=1

and subtracting the equation (93) from this equation, we find

T, — X X, +
. 0 ¥ 0 v
(94) ¢sin z, = Z d,e, 2 sin 5 08 T
Since
. xO —Z, . o + Zz,
g, = COS &, — COS ¥, == 2 sin 5 Sin—

we may bring (94) into the form

¢ sin x, = Z 8.7 cot - + 8484 (sin 2y — sin z,)

whence

Xy + X

3
(95) 0,484 (sin 2y, — sin x,) = z ? cot + csinz,.

Now, since we are in the case 1°, we have

X, X
sinx0>0,sinx0—sinx4>O,cot0 <0(=1,2,3).
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Thus we read off from (95) the important information

(96) g>0, 5n,>0.
We can utilize (95) also to find an upper bound for ¢, . We get
@y -+ ;| )
5 | + csin ;.

(97) 0484 (sin gy + | sin a4 | i
Clearly,
sin @, + | sin &, | > sin &, + sin« > 0,9125 4 0,6088 = 1,5213.
From (92) follows then
04 (sin &y + [sina, | ) > 2,2705 - 1,5213 > 3,4541
and (97) leads to

3 9 E\ 1“0 + x“
(98) 3,4541 ¢, < Z 9,67 | cot 5 + ¢ sin x, .
i=1 I -~
Next, observe that
| a0 xydal ] 1,9920 4 2,4870
icot !< cot — | < icot 5
< \ |

<] cot 2,2395 | < 0,7902
and that
8

NV

Fw

2 <

Q

irm
A

i

Hence (98) yields

3,4541 ¢, < 0,7902 + sin xo) c

<«/‘
< (8-0,7902 - 0,4083 4 0,9130) 0,0425 << 0,1486 .

Thus we proved

0,1486

99
(99) 0< e < 3441<004t31

By inequality (89) we can translate each estimate for ¢, into a corresponding

estimate for #n,. We find
(100) 0 < 7, < 1,2873 - 0,0431 < 0,0555 .

We are now in the position to dispose of the remaining condition (84)

in the case 1° for n = 0. We write it in the form

4
(101) >, — 6p=—2x,+ 7.

ry=1
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We distinguish the essentially different cases:

a) All #; (=1, 2, 3) have the same sign.
b) Two »; are non-negative, one is negative.
¢) One 7; is non-negative, two are negative.

We begin with case a). We assume that all #; are non-positive; the
case that they are all non-negative is treated in precisely the same manner.
In view of (93) we have

(102) die; Sin @; = 0,84 | SiD 24 | .

e

i

By (17) and (71) we have the upper bound for 9, :

2,1297
0, =2+ 5 << 3,0649 .
Hence, by (99),
3
(103) > dieisin a; = 3,0649 - 0,0431 < 0,1321.
i=1

On the other hand , by (72)
d; sin a; > 0,9351 sin « > 0,9351 - 0,6088 > 0,5692 .
Thus (103) gives

3
0,5692 > & < 0,1321.

1

t

From (89) we then deduce

23 =1 287323& _ 1,2873 - 0,1321
=T e 0,5692
and obtain
3
(104) i; | 7| < 0,2988 .

Combining (81), (100) and (104) we get

4

Sn, |+ | 6g | < 0,4607.
y=1

(105)

On the other hand,
(106) | — 2, + 7 | > 2wy — 7 > 3,9826 — 3,1416 — 0,8410
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and thus, according to (101) , the number
0,4676 should be > 0,8410.

Thus the case a) cannot occur.
We come now to case b): 7, << 0,5, = 0,5, =0. This implies & > 0,
&5 =0,6=<0. — We write (101) in the form

4
(107) 2y — 7w+ > 1, = 6p.
v=1

From (89) and (76) we have the estimate valid for all #,:
(108) |5, | < 1,2873 - 0,3851 < 0,4958.

Thus, since 2x, — 7 > 0,8410, we know that the left side of (107) is positive.
We have indeed the estimate
4

22y — 7 4+ > 7, > 0,8410 — 0,4958 = 0,3452.

r=1
Because of (107) and (81) the number
0,1064 should be > 0,3452.

This excludes the case b) .

There remains then the case ¢): 17, = 0, 15, << 0, 773, < 0. This implies
§=0,6>0,5>0. — Now we make use of (91) and find

(109) |72 | -+ | 715 | < 0,7010.
Thus the left side of (107) is still positive and satisfies the inequality

4
22y — 7w + 3 7, > 0,8410 — 0,7010 = 0,14.

r=1

In view of (107) and (81) the number
0,11 should be > 0,14.

The last possibility has thus been excluded and we have shown that the
number of corner points in the extremal polygon is precisely N = 2.

8. The case N = 2.

We have finally to discuss the case N = 2. Here we may derive from
(7) the information (suppose that 3; > 0, y, < O):

k k
(110) n=5+1, n=—-I(3-1].
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Hence by the representation formula (6) we find easily
f”’(Z) _n
['(2) S 7
where z; and z, are the pre-images of the corresponding corner points.
Integrating (111) and using the normalization (1), we find

(111)

b

(112) f'(2) :rélna,, 2= (1 — 51)_7'1(1 — i\)—yz .

2y
If we develop the right expression into a power series and compare the
coefficients of 23 on both sides, we obtain
(113) 240, =y, (11 + 1) (11 + 2) 273
+ 3y [ + Dar 2t 4 (e + Dt 222 + 72(ye + 1) (2 + 2)25°
Write this in the form
(114) a2y =y + 1) (11 + 2)
+ 3y [+ D4 (o + 1B+ pe(ye + 1) (2 + 2)8

where

%1
(115) f=— .
22

Because z; = z, leads to the extremal case for convex domains, for which
|a. | =1, we see that the right side of (114) assumes the value 24 for
t = 1. Thus we get

(116) 24 (a, 23 — 1)
=3+ DE—1)+ 0+ 1) E=1]+nl+1) 0+ 2)E—1).

For brevity, write this in the form

(117) 24 (a2} — 1) = 3, B(0) ,
where
(118) Ot)=0t—1) By [+ 1+ 0+ -+ 1]+

2+ 1) (ya+2) @+t + 1)}
From (117) follows
(119) 24 (lag|— 1) = {7l [20] .

We want to maximize the right side of (119) and hope that the upper bound
for |a,| thus obtained appears to be sharp.
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For brevity, write
(120) D) = (t — 1) (a + bt + ct?) ,

where
7 k2
a=12y; + (yo +1) (y + 2) = 18+§k+z,

k
(121) =201 +2) o+ 1) = (2 - ;) 6+ 1),

c=(@+1 <y2+2)=(2—§><3_5)'

Because Wt) = (), we obtain
[ @)= @) - D7)
=Q2—t—tY) [+ 2+ 2+ bla+c) (4 t7) + ca(t®+ t72)].
Define the new real variable

1

(122) wu=1l—7(@+tY); 0=u=2

.

A

In u we get
| D) 2= 2u [(@ + b + ¢)®> — 2(ab + bc + 4ca)u - dcau?] .

Thus we have to maximize the function

| D) 2
(123) 5 = y(u) = Au + Bu® + Cu?,
with
]Az(a—f—b—{—c)2=362,
B = —2(ab+ b dca) = — 36(4 — k) (1 k
(124) (ab + bc + 4ca) ( ) (10 + k),

. . 72

C=4ca=(4—k) (6—]0)(18—}——‘;10—!——4—’.

We have to show that ¢(u) takes its maximum at « = 2 for all k-
values interesting us: 2 <k <<4. We compute:

p'(u) = 4 + 2Bu + 3Cu?.
3'(0) = A > 0. Let us show that the discriminant of the equation y’(u) = 0

is negative; then w’(u) cannot change its sign and our proof is finished.
Thus we must have



[
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(125) B — 340 <0 ;
7 k?
362(4 — k) (10 + k)2 < 3 - 36% (4 — k) (6—k)<18+-§k+z> .

This leads to
(126) 464 — k) (10 + k)2 < 3(6 — k) (72 + 14k + £2) .

Let us here replace 72 + 14k + k? by its minimum value obtained for
k=2, ie., by 104. Thus we are lead to the more restrictive condition

(127) (4—Fk) (10 + k)2 < 72(6 — k).
Rearrange and find

K31 16k2— 52k - 32 =0 ;
(128) (k — 2) (k2 + 18k — 16) = 0.
Hence there remains only to show that
(129) B4+ 18k —16=0

for 2 <k < 4. This quadratic expression is negative for &k =0, but
already for k£ = 2 it has the value 24 and it remains positive for £ > 2.
Hence we proved (129) and since the order of our conclusions can be
reversed from (129) to (125), we have shown that

(130) max p(u) = p(2) = 2(4 + 2B + 4C) = 2(12 + 2k + k?)?.
Hence
max | D) | =24+ 4k + 2 k2
and from (119) we obtain the condition
K3+ 8k
24

lag| =
The equality is true only if w = 2, which means

=—1.

t =

ISy I»—-N

~

Our result, which generalizes a theorem for the real class Si[3], is thus:
Theorem. In the class Sp (2 =k = 4) of univalent functions with
bounded boundary rotation, the coefficient a, satisfies the inequality

1+ 8k
24

lay| =
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The extremum functions are

L [(1+ 72\
0= 2 G52 =] =

1 — 1z
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