ANNALES ACADEMIAE SCIENTIARUM FENNICAE

 $S_{\text{eries}} \ A$

I. MATHEMATICA

421

SOME REMARKS ON THE VALUE DISTRIBUTION OF ENTIRE FUNCTIONS

 $\mathbf{B}\mathbf{Y}$

SAKARI TOPPILA

HELSINKI 1968 SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1969.421

Communicated 9 February 1968 by K. I. VIRTANEN and LAURI MYRBERG

KESKUSKIRJAPAINO HELSINKI 1968

.

.

1. Introduction

1. We call a set E a Picard set for entire functions if every entire nonrational function f omits at most one finite value in -E.

Lehto [2] has proved that a countable set

$$E = \{\infty\} \cup \{a_n\}_{n=1,2,\ldots}$$

whose points converge to infinity is a Picard set for entire functions if the points a_n satisfy the condition

$$|a_n/a_{n+1}| = O(n^{-2})$$

Matsumoto [4] has proved the same assertion under the condition

$$\log |a_{n+1}/a_n| \ge M(n) ,$$

where M(n) are positive numbers such that

$$\limsup_{n o \infty} \, rac{K^{1/M(n)}}{M(1) \, + \, M(2) \, + \, \ldots \, + \, M(n)} < \, \infty$$

(K a positive constant). In this paper we prove that there exist Picard sets for entire functions, which contain a sequence of discs converging to the point at infinity.

Winkler [7] has among other things proved that the entire functions

$$w(z) = \prod_{n=1}^{\infty} (1 - z/a_n)$$

with $|a_{n+1}/a_n| \ge q > 1$ take any finite value a infinitely often in the union of the discs

$$D_n = \{z : |z - a_n| < \varrho_n\}$$

with $\varrho_n = \varepsilon |a_n|^{-p}$ for any $\varepsilon > 0$ and p > 0, and that they take any value only finitely often in the complement of this union (See also Lehto [3], Theorem 4). Our Theorem 1 shows that the same is not true if the radii ϱ_n of D_n satisfy the condition $|a_n| = o(-\log \varrho_n)$.

2. Picard sets for entire functions

2. We begin by presenting three lemmas. We denote $\log \delta = \max\{0, \log \delta\}$ for $\delta \ge 0$. Our first lemma is a consequence of Schottky's theorem which is proved by Ahlfors in the following form (Dinghas [1], p. 294):

If g(z) is regular in |z| < 1 and $g(z) \neq 0, 1$ there, then

$$\lim_{z \to 0}^{+} |g(z)| \leq rac{1+|z|}{1-|z|} \left(7 + \lim_{z \to 0}^{+} |g(0)|
ight).$$

Lemma 1. Let f be analytic in an annulus r < |z| < R $(0 < r < R < \infty)$ and omit the values 0 and 1 there. Then

$$\sup_{|z|=\sqrt{rR}}^+ (\max_{|z|=\sqrt{rR}} |f(z)|) \leq \{7 + \log_{|z|=\sqrt{rR}}^+ (\min_{|z|=\sqrt{rR}} |f(z)|)\} \exp\left\{rac{\pi^2}{\log_{-}(R/r)}
ight\}\,.$$

Proof. We choose z_0 such that $|z_0| = \sqrt{rR}$ and $|f(z_0)| = \min_{\substack{|z| = \sqrt{rR} \\ |z| = \sqrt{rR}}} |f(z)|$. We denote $\mu = \log (R/r)$. The composite function $g(\zeta) = f(z_0 \sqrt{r/Re^2})$ is regular, different from 0 and 1, and has the period $2\pi i$ in the strip domain

 $D = \left\{ \zeta : 0 < \operatorname{Re}\, \zeta < \mu \;, - \; \infty < \operatorname{Im}\, \zeta < + \; \infty \right\}.$

Hence any value taken by f on $|z| = \sqrt{rR}$ is taken by g on the segment

$$I = \{\zeta : \operatorname{Re} \zeta = \mu/2 , -\pi \leq \operatorname{Im} \zeta \leq \pi\}.$$

Especially $g(\mu/2) = f(z_0)$. The function

$$w(\zeta) = \frac{e^{\pi i \zeta/\mu} - i}{e^{\pi i \zeta/\mu} + i}$$

maps D onto the unit disc |w| < 1 conformally and

$$w(I) = \left\{ w : - rac{e^{\pi^2 | \mu|} - 1}{e^{\pi^2 | \mu|} + 1} \le \operatorname{Re} w \le rac{e^{\pi^2 | \mu|} - 1}{e^{\pi^2 | \mu|} + 1} ext{, Im } w = 0
ight\} \,.$$

Since $w(\mu/2) = 0$ and $g(\mu/2) = f(z_0)$, the lemma follows from Schottky's theorem.

Let Σ be the Riemann sphere with radius 1/2 touching the *w*-plane at the origin. The chordal distance of the images on Σ of two points wand w' in the plane is denoted by [w, w'], and $C(w, \delta)$ is the spherical open disc with centre at the image of w and with chordal radius δ . The following lemma is proved by Matsumoto [5].

Lemma 2. Let f be analytic in an annulus $1 < |z| < e^{\mu}$ and omit the values 0 and 1. There exists a positive constant A such that the

spherical diameter of the image curve of $|z| = e^{\mu/2}$ by f is not greater than $Ae^{-\mu/2}$ for all $\mu > 0$.

Let Δ be a triply connected domain with boundary components Γ_1 , Γ_2 and Γ_3 , and let f be analytic and omit the values 0 and 1 in $\overline{\Delta}$. We assume that the images of Γ_1 , Γ_2 and Γ_3 by f are contained in the spherical discs C_1 , C_2 and C_3 , respectively, and give the following lemma of Matsumoto [5].

Lemma 3. Let $\delta > 0$ be so small that the spherical discs $C(0, 2\delta)$, $C(1, 2\delta)$ and $C(\infty, 2\delta)$ are mutually disjoint. If the radii of C_1 , C_2 and C_3 are less than $\delta/2$, only two possibilities can occur:

(1) C_1 , C_2 and C_3 contain the origin, the point w = 1, and the point at infinity, one by one, so that C_1 , C_2 and C_3 are contained in $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, \delta)$, respectively, and f takes each value outside the union of $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, \delta)$ once and only once in Δ .

(2) Of C_1 , C_2 and C_3 none can be disjoint from the union of the other two, so that there is a disc with radius less than $3\delta/2$ which contains the image of Δ .

3. We consider first a sequence of discs with the middle points lying in a half plane.

Theorem 1. Let D_n , n = 1, 2, ..., be a sequence of discs with centre z_n , Re $z_n > 1$, and with radius ϱ_n . If

$$|z_{n+1}/z_n| > \alpha > 1$$

for n = 1, 2, ..., and

$$|z_n| = o(-\log \varrho_n),$$

then $E = \{\infty\} \cup \bigcup_{n=1}^{\infty} D_n$ is a Picard set for entire functions.

Proof. It is obviously sufficient to prove that the assumption of the existence of a function f, analytic and non-rational for $z \neq \infty$, and different from 0 and 1 outside E leads to a contradiction. There is no loss of generality to assume that each D_n contains at least one zero or 1-point of f, for we can delete from $\{D_n\}$ all other discs and the remaining discs also satisfy conditions (1) and (2).

We consider the function g(z) = f(1/z). g is analytic and non-rational for $z \neq 0$. Since $\lim_{n \to \infty} \varrho_n = 0$, we can take M > 0 such that the set

$$\{z: |z| > M, \text{ Re } z < 0\}$$

contains no point of $E - \{\infty\}$. Then by (1) and (2), there exist $0 < \varrho_0 < 1/M$ and a sequence of discs B_n , $n = 1, 2, \ldots$, with centre s_n , $\text{Re } s_n > 0$, and with radius σ_n satisfying the conditions

$$|s_n/s_{n+1}| > \alpha > 1$$

for n = 1, 2, ..., and

(4)
$$1/(-\log \sigma_n) = o(|s_n|),$$

such that $\bigcup_{n=1}^{\infty} B_n \subset \{z : \text{Re } z > 0\}, g(z) \neq 0, 1$ outside $F = \{0\} \cup \bigcup_{n=0}^{\infty} B_n$, where $B_0 = \{z : |z| > \varrho_0\}$, and each B_n contains at least one zero or 1-point of g.

By (3) and (4), we can choose an n_1 so large that the annulus

 $S_n = \{z : \sigma_n < |z - s_n| < |s_n|(\alpha - 1)/2\alpha\}$

contains no point of F for any $n \ge n_1$. Applying Lemma 2 to S_n we conclude that the spherical diameter of the image of

$$\gamma_n = \{z : |z - s_n| = \sqrt{\sigma_n |s_n| (\alpha - 1)/2\alpha}\}$$

by g is dominated by

(5)
$$\delta_n = A \sqrt{2\alpha \sigma_n/(\alpha - 1)} |s_n|$$

for $n \ge n_1$. Hence there exists a spherical disc C_n with radius less than δ_n which contains this image.

We take $\delta > 0$ so small that the discs $C(0, 2\delta)$, $C(1, 2\delta)$ and $C(\infty, 2\delta)$ are mutually disjoint. Since the origin is an essential singularity of g, we have

(6)
$$\lim_{r \to 0} M(r) = \infty ,$$

where $M(r) = \max \{ |g(z)| : |z| = r \}.$

By (3) and (4), we can take an $n_2 \ge n_1$ such that the annulus

$$R_n = \{z : |s_n|(2lpha/(3lpha-1))^2 < |z| < 2lpha |s_n|/(3lpha-1)\}$$

contains no point of F for $n \ge n_2$. The modulus of each R_n is $\log((3\alpha - 1)/2\alpha) > 0$. Applying Lemma 1 to R_n , $n \ge n_2$, we see by (6) that the image of

$$\lambda_n = \{z : |z| = |s_n|(2\alpha/(3\alpha - 1))^{3/2}\}$$

by g is contained in $C(\infty, \delta/2)$ for sufficiently large n, say for $n \ge n_3$. We may assume $n_3 \ge n_2$.

By (4) there exists $n_4 \ge n_3$ such that $\delta_n < \delta/4$ for $n \ge n_4$. Applying Lemma 3 to the triply connected domain with λ_n , λ_{n-1} and γ_n as boundary, we see that C_n is contained in $C(\infty, \delta)$ for $n > n_4$.

We choose $n_5 > n_4$ so large that $|s_n| < \varrho_0/2$ for $n \ge n_5$. We apply Schottky's theorem to the disc

 $\{z: |z + \varrho_0/2| < \varrho_0/2\}$

and get

 $\log_{\alpha} |g(-|s_n| \{ 2\alpha/(3\alpha-1) \}^{3/2})| \le \{ 7 + \log_{\alpha} |g(-\varrho_0/2)| \} |\varrho_0|s_n|^{-1} \{ (3\alpha-1)/2\alpha \}^{3/2}$

for $n \geq n_5$. We use K_1 and K_2 to denote positive constants depending only on ϱ_0 , $\log |g(-\varrho_0/2)|$ and α . Applying Lemma 1 to the annulus R_n we get

(7)
$$\log |g(z)| < K_1 + K_2 |s_n|^{-1} = M_n$$

for $z \in \lambda_n$.

We denote by Λ_n the unbounded component of the complement of λ_n . The maximum principle applied to Λ_n yields $\log |g(z)| < M_n$ in Λ_n . We take $n_6 \ge n_5$ so large that

$$|s_n| = \sqrt{\sigma_n |s_n| (lpha = 1)/2 lpha} > |s_n| (2 lpha / (3 lpha = 1))^{3/2}$$

for any $n \ge n_6$. Then we have $\gamma_n \subset \Lambda_n$, and $g(\gamma_n) \subset T_n$ with

$${T}_n = \{w: [w, \infty] \ge (1 + e^{2M_n})^{-1/2}\}.$$

Since $g(\gamma_n) \subset C_n$, we get $C_n \cap T_n \neq \emptyset$.

Instead of (4) we can write

$$|s_n|^{-1} = o(-\log \sigma_n) ,$$

and this implies by (5) and (7) that there exists $n_7 \ge n_6$ such that

(8)
$$\delta_n < 1/4(1 + e^{2M_n})^{1/2}$$

for any $n \ge n_7$.

Since $C_n \cap T_n \neq \emptyset$, we see by (8) that C_n cannot contain the point at infinity for $n \geq n_7$. Then the maximum principle applied to the bounded disc G_n with γ_n as boundary yields $g(G_n) \subset C_n$. Since $B_n \subset G_n$, we get $g(B_n) \subset C_n$. This is a contradiction, for C_n contains no zero or 1-point of g, and the theorem is proved.

4. If we assume that the middle points of the discs D_n need not lie in a half plane, we must replace the condition (2) by a stronger one.

Theorem 2. Let D_n , $n = 1, 2, \ldots$, be a sequence of discs with centre z_n and with radius ϱ_n . If

$$|z_{n+1}/z_n| > \alpha > 1$$

for n = 1, 2, ..., and

(b)
$$|z_n|^n = O(-\log \varrho_n)$$
,

the $E = \{\infty\} \bigcup_{n=1}^{\infty} D_n$ is a Picard set for entire functions.

Proof. As in the proof of Theorem 1, it is sufficient to prove that the assumption of the existence of a function f, analytic and non-rational for $z \neq \infty$, and different from 0 and 1 outside E, leads to a contradiction.

We consider the function g(z) = f(1/z). g is analytic and non-rational for $z \neq 0$. By (a) and (b), there exist $\varrho_0 > 0$ and a sequence of discs B_n , $n = 1, 2, \ldots$, with centre t_n and with radius σ_n satisfying the conditions

$$|t_n/t_{n+1}| > \alpha > 1$$

for $n = 1, 2, \ldots$, and

(d)
$$1/(-\log \sigma_n) = O(|t_n|^n)$$

such that $g(z) \neq 0, 1$ outside $F = \{0\} \cup \bigcup_{n=0}^{\infty} B_n$, where $B_0 = \{z : |z| > \varrho_0\}$, and each B_n contains at least one zero or 1-point of g.

We take $\delta > 0$ so small that the spherical disc $C(0, 2\delta)$, $C(1, 2\delta)$ and $C(\infty, 2\delta)$ are mutually disjoint. As in the proof of Theorem 1, we can take n_1 so large that for any $n \ge n_1$ the image of

$$\gamma_n = \{z: |z - t_n| = \sqrt{\sigma_n |t_n|(lpha - 1)/2lpha}\}$$

by g is contained in a spherical disc C_n with radius less than

(e)
$$\delta_n = A \sqrt{2\alpha \sigma_n/(\alpha-1)|t_n|}$$

where A is the constant of Lemma 2, and $C_n \subset C(\infty, \delta)$.

We choose $n_2 \ge n_1$ so large that

(f)
$$2d = |t_{n_2}| < \min \{ \varrho_0 , (2\alpha/(3\alpha-1))^{3/2} \},$$

(g)
$$\sum_{n=n_2}^{\infty} \sigma_n / |t_n| < 1/8$$

and that for any $n \ge n_2$, the annulus

$$R_n = \{z : |t_n|(2lpha/(3lpha-1))^2 < |z| < 2lpha|t_n|/(3lpha-1)\}$$

contains no point of F. We denote $L = \max \{ \log |g(z)| : |z| = d \}$. We take $n_3 \ge n_2$ such that $|t_{n_3}| < d$. Then we see by (g) that there exists for each $n \ge n_3$ a φ_n such that the set

$$\{z: |t_n|(2lpha/(3lpha-1))^2 < |z| < 2d \ , \ |rg z - arphi_n| < \pi/2n\}$$

contains no point of F. Considering the function $h(\zeta) = g(\sqrt[n]{\zeta})$ on the disc

$$\{\zeta: |\zeta - d^n e^{in\varphi_n}| < d^n - |t_n|^n (2lpha/(3lpha - 1))^{2n}\}$$

we get by Schottky's theorem

$$egin{aligned} N_n &= \log \ |g(|t_n|\{2lpha/(3lpha-1)\}^{3/2}e^{iarphi}_n)| \ &\leq rac{2d^n(7+L)}{(|t_n|\{2lpha/(3lpha-1)\}^{3/2})^n-(|t_n|\{2lpha/(3lpha-1)\}^2)^n} \ . \end{aligned}$$

We take $n_4 \geq n_3$ such that

(h)
$$N_n \leq 4d^n(7+L)(|t_n|\{2\alpha/(3\alpha-1)\}^{3/2})^{-n}$$

for $n \ge n_4$. We apply Lemma 1 to R_n and get

(i)
$$\log |g(z)| \le (7 + N_n) \exp \{\pi^2/\log((3\alpha - 1)/2\alpha)\}$$

for $z \in \lambda_n$ with

$$\lambda_n = \{ z: |z| = |t_n| (2lpha/(3lpha - 1))^{3/2} \}$$
 .

By the conditions (f), (h) and (i), we get for $z \in \lambda_n$ the estimate

(j)
$$\log |g(z)| \le K_1 + K_2(2|t_n|)^{-n} = M_n$$
,

-1

where K_1 and K_2 are positive constants depending only on L and α . We denote by Λ_n the unbounded component of the complement of λ_n .

The maximum principle applied to Λ_n yields $\log_{1} |g(z)| \leq M_n$ in Λ_n . We take $n_5 \geq n_4$ so large that $\gamma_n \subset \Lambda_n$ and $\gamma_n \cap F = \emptyset$ for $n \geq n_5$. Then we have $g(\gamma_n) \subset T_n$ with

$${T}_n = \{w: [w \; , \; \infty] \ge (1 \, + \, e^{2M_n})^{-1/2} \} \, ,$$

and $C_n \cap T_n \neq \emptyset$. We get by (d)

$$|t_n|^{-n} = O(-\log \sigma_n) ,$$

and this implies by (e) and (j) that there exists $n_6 \ge n_5$ such that

(k)
$$\delta_n < 1/4(1 + e^{2M_n})^{1/2}$$

For any $n \ge n_6$.

Since $C_n \cap T_n \neq \emptyset$, we see by (k) that C_n cannot contain the point at infinity for $n \geq n_6$. Then the maximum principle applied to the bounded disc G_n with γ_n as boundary yields $g(G_n) \subset C_n$. Since $B_n \subset G_n$, we get $g(B_n) \subset C_n$. This is a contradiction, for C_n contains no zero or 1-point of g, and the theorem is proved.

3. Meromorphic functions

5. No theorem like the theorems 1 and 2 is valid for meromorphic functions. We can in fact prove that given any sequence of discs D_n , $n = 1, 2, \ldots$, which converge to the point at infinity, then there exists a function f, meromorphic and non-rational for $z \neq \infty$, and bounded outside

$$E = \{\infty\} \cup \bigcup_{n=1}^{\infty} D_n.$$

We construct a sequence B_n , n = 1, 2, ..., of discs with centre z_n and with radius ϱ_n satisfying the conditions $|z_1| > 1$, and $B_n \subset \bigcup_{p=1}^{\infty} D_p$,

(1)
$$|z_{n+1}/z_n| > e^n$$
,

and

for n = 1, 2, ... We denote $r_n = \varrho_n e^{-n}$, and define

$$g(z) = \prod_{n=1}^{\infty} \frac{1 - z/(z_n - r_n)}{1 - z/(z_n + r_n)}$$

For $z \notin B_n$ we get by (1) and (2)

$$\left| \frac{1 - z/(z_n - r_n)}{1 - z/(z_n + r_n)} \right| \le 1 + 16r_n/\varrho_n = 1 + 16e^{-n}$$
.

Then we have for $z \notin \{\infty\} \bigcup_{n=1}^{\infty} B_n$ the estimate

$$|g(z)| \leq \prod_{n=1}^\infty (1 + 16e^{-n}) < \, \infty \; .$$

University of Helsinki and University of Jyväskylä Finland

References

- [1] DINGHAS, A.: Vorlesungen über Funktionentheorie. Springer-Verlag. Berlin-Göttingen-Heidelberg, 1961.
- [2] LEHTO, O.: A generalization of Picard's theorem. Ark. Mat. 3 (1958), 495-500.
- [3] -»- The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity. - Comment. Math. Helv. 33 (1959), 196-205.
- [4] MATSUMOTO, K.: Remark on Lehto's paper: »A generalization of Picard's theorem.» -Proc. Japan. Acad. 38 (1962), 636-640.
- [5] -»- Some remarks on Picard sets. Ann. Acad. Sci. Fenn. A I 403, 1967.
- [6] TOPPILA, S.: Picard sets for meromorphic functions. Ann. Acad. Sci. Fenn. A I 417, 1967.
- [7] WINKLER, J.: Zur Verteilung der a-Stellen spezieller ganzer Funktionen. Math.
 Z. 101 (1967), 143-151.

Printed March 1968.