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1. Introduction

1. We call a set E a Picard set for entire functions if every entire non-
rational function f omits at most one finite value in — K.
Lehto [2] has proved that a countable set

E’ B {OO} U {an}n=1,2q--'

whose points converge to infinity is a Picard set for entire functions if the
points a, satisfy the condition

|00/ @ 1] = O(n7?) .
Matsumoto [4] has proved the same assertion under the condition
log (@, 1/a,| = M(n),

where M(n) are positive numbers such that

Kl‘}](n)
]imsup AT . < ©

ot M)+ M2) + ...+ M(n)

(K a positive constant). In this paper we prove that there exist Picard sets

for entire functions, which contain a sequence of discs converging to the
point at infinity.

Winkler [7] has among other things proved that the entire functions

ee]

wz) =T (1 — z/am)
n=1
with |a, ;/a,| = ¢ > 1 take any finite value a infinitely often in the
union of the discs

D, ={z: |z — an < 0n}

with ¢, = ¢|a,|™? forany ¢> 0 and p > 0, and that they take any value
only finitely often in the complement of this union (See also Lehto [3],
Theorem 4). Our Theorem 1 shows that the same is not true if the radii
on of D, satisfy the condition |a.| = o(— log g.).
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2. Picard sets for entire functions

2. We begin by presenting three lemmas. We denote 16g 0=
max{0, log 6} for 6 > 0. Our first lemma is a consequence of Schottky’s
theorem which is proved by Ahlfors in the following form (Dinghas [1],
p. 294):

If g(z) is regular in |z2] <1 and g¢(z) # 0,1 there, then

Lemma 1. Let f be analytic in an annulus » < 2] <R (0 <7 <
R < ) and omit the values 0 and 1 there. Then

1 Hf(z)] § 1 YR A
og (zrria;_R‘f( )) <7 + log (flir;g(z)l)}expllog B

Proof. We choose z, such that |z, = VrR and f(z)] = min [f(2)].
s— VR

We denote u = log (R/r). The composite function ¢({) = f(z, \/r/Re:)

is regular, different from 0 and 1, and has the period 2z¢ in the strip domain

D={:0<Rel{<pu,— o<Im{<+ oo}.
Hence any value taken by f on [z = V'rR is taken by ¢ on the segment
I={,:Rel=pu2,—a<Im{<a}.

Especially ¢(u/2) = f(z,). The function

et — g
w(8) = s g
maps D onto the unit disc w < 1 conformally and
f el — 1 Al | |
w(l) = lw: — 7674/'7;;#—1 < Rew < ;,:*u _—?_-—1 ,Im w = 0[ .

Since w(u/2) = 0 and ¢(u/2) = f(z), the lemma follows from Schottky’s
theorem.

Let X be the Riemann sphere with radius 1/2 touching the w-plane
at the origin. The chordal distance of the images on 2 of two points w
and w’ in the plane is denoted by [w,w’], and C(w, 0) is the spherical
open disc with centre at the image of w and with chordal radius 0. The
following lemma is proved by Matsumoto [5].

Lemma 2. Let f be analytic in an annulus 1 < z| < ¢ and omit
the values 0 and 1. There exists a positive constant A such that the
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spherical diameter of the image curve of |z| = ¢** by f is not greater
than Ae™*? for all u > 0.
Let 4 be a triply connected domain with boundary components /7,

I, and I';, and let f be analytic and omit the values 0 and 1 in 4.
We assume that the images of /7, [, and I’y by f are contained in the
spherical discs C;, C, and C;, respectively, and give the following lemma
of Matsumoto [5].

Lemma 3. Let 6 > 0 be so small that the spherical discs C(0, 20),
C(1, 26) and C(c0, 20) are mutually disjoint. If the radii of €, C, and C,
are less than 4/2, only two possibilities can occur:

(1) €, O, and Oy contain the origin, the point w = 1, and the point
at infinity, one by one, so that C;, €, and C; are contained in C(0, ),
C(1, ) and C(oo, d), respectively, and f takes each value outside the
union of C(0,d), C(1,d) and C(oo, §) once and only once in A.

(2) Of ¢, C, and C4 none can be disjoint from the union of the
other two, so that there is a disc with radius less than 36/2 which contains
the image of A.

3. We consider first a sequence of discs with the middle points lying
in a half plane.

Theorem 1. Let D, n=1,2,..., be a sequence of discs with
centre 2z, Rez,> 1, and with radius p,. If

(1) !Zn.:.l/znl >a>1
for n=1,2,..., and
(2) 2l = o(— log 0.) .

then B = {0} U U D, is a Picard set for entire functions.

n=1

Proof. It is obviously sufficient to prove that the assumption of the
existence of a function f, analytic and non-rational for z s oo, and
different from 0 and 1 outside £ leads to a contradiction. There is no loss
of generality to assume that each D, contains at least one zero or 1-point
of f, for we can delete from {D,} all other discs and the remaining discs
also satisfy conditions (1) and (2).

We consider the function ¢(z) = f(1/z). g is analvtic and non-rational
for z # 0. Since lim g, = 0. we can take M > 0 such that the set

n—x

{z:]z] > M, Rez < 0}

contains no point of £ — {co}. Then by (1) and (2), there exist 0 < g, <
1/M and a sequence of discs B,, n = 1,2 ,..., with centre s,, Res, > 0,
and with radius o, satisfying the conditions
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(3) 18,/8 i1l > > 1

for n=1,2,..., and

(4) 1/(— log aa) = o(Isal) ,

such that Gan c{z:Rez> 0}, ¢g() 0,1 outside F = {0} U EJOB,,,

where B, = {z:|z| > g,}. and each B, contains at least one zero or
1-point of g¢.
By (3) and (4), we can choose an n; so large that the annulus

Sn =420, < |2 — 8| < [8a](x — 1)/20}

contains no point of F for any n > n,. Applying Lemma 2 to S, we
conclude that the spherical diameter of the image of

yo = {21 2 — su] = Vou|sal(x — 1)/20}
by ¢ is dominated by
(5) b0 = A V200,/(x — 1)|s,|

for n > n;. Hence there exists a spherical disc €, with radius less than
0. which contains this image.

We take 6 > 0 so small that the disecs C(0, 20), C(1, 26) and C(c0, 20)
are mutually disjoint. Since the origin is an essential singularity of g, we
have
(6) lim M(r) = oo,
where M(r) = max {|g(z)| : |z] = r}.

By (3) and (4), we can take an n, > n; such that the annulus

R, = {z 1 |8.](20/(Bx — 1)) < |2} < 2aisn [(3x — 1)}

contains no point of F for n >mn,. The modulus of each R, is
log((8x — 1)/2«) > 0. Applying Lemma 1 to R., n > n,. we see by (6)
that the image of

In = {21 |2l = |8a](2x/(3x — 1))

by g is contained in C(oo, §/2) for sufficiently large =, say for n > ns.
We may assume ng > n,.

By (4) there exists n, > n; such that 0., < 6/4 for n > n,. Applying
Lemma 3 to the triply connected domain with 2., 4,_, and . as boundary,
we see that C, is contained in C(co, d) for n > n,

We choose ng > n, so large that |s.| << 0o/2 for n > n;. We apply
Schottky’s theorem to the disc
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{2117 + /2] < 0/2}

and get

N 3/2y 1 —1¢ /s 32
log g(— Isa| {20/(3x — 1)}**)| < {7 + log |g(— e0/2)[} @olsa|~{(Bor — 1)/2a}""
for n > n;. We use K; and K, to denote positive constants depending

only on g, I(;g I9(— 00/2)] and «. Applying Lemma 1 to the annulus R,
we get

.
(7) log lg(2)| < K, + Kyls.|™' = M,

for z € ..
We denote by 4, the unbounded component of the complement of A,.

The maximum principle applied to A, yields lgg 9@)| < M, in A,.
We take ng > n; so large that

[5al — Vaulsal(x — 1)/2 > [s.](25/(33 — 1))
for any # > mng Then we have yp,c A,, and g¢(y,) € T, with
T.={w:[w, o] > (1 -+ &¥r)~121,

Since g(y.) € Ch, we get C.NT, £ O.
Instead of (4) we can write

82|71 = o(— log 62) ,

and this implies by (5) and (7) that there exists n, > ng; such that

(8) On < 1/4(1 + ¢Vm)!2

for any n > n,.

Since €, N T, # O, we see by (8) that C, cannot contain the point
at infinity for n > n,. Then the maximum principle applied to the bounded
disc G, with y, as boundary yields g(¢,) c C.. Since B, C G,, we get
g(Bn) € C,. This is a contradiction, for €, contains no zero or l-point
of ¢, and the theorem is proved.

4. If we assume that the middle points of the discs D, need not lie in
a half plane, we must replace the condition (2) by a stronger one.
Theorem 2. Let D,, n=1,2,..., be a sequence of discs with
centre z, and with radius g, If
(a) 20 1f2n] > > 1

for n=1,2,..., and
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(b) |zn|* = O(— log gn) ,

fesl

the B = {w}UU D,is a Picard set for entire functions.

n=1
Proof. As in the proof of Theorem 1, it is sufficient to prove that the
assumption of the existence of a function f, analytic and non-rational for
z + oo, and different from 0 and 1 outside E, leads to a contradiction.
We consider the function g(z) = f(1/2). ¢ is analytic and non-rational
for z # 0. By (a) and (b), there exist g, > 0 and a sequence of discs B.,

n=1,2,..., with centre ¢, and with radius o, satisfying the conditions
(c) [Eaftnin] > > 1

for n=1,2,..., and

(d) 1/(— log an) = O(|ta]") ,

such that g¢(z) # 0, 1 outside F = {0} U U B,, where B, = {z: [z] > 0},
n=10

and each B, contains at least one zero or 1l-point of g¢.

We take 6 > 0 so small that the spherical disc C(0, 20), C(1, 29)
and C(o0, 20) are mutually disjoint. As in the proof of Theorem 1, we
can take m, so large that for any n > n; the image of

ya= {211z — tal = Voulinl(x — 1)/20}
by ¢ is contained in a spherical disc C. with radius less than
(e) b = AV 200,)(x — 1)[tal ,

where A is the constant of Lemma 2, and C.cC C(0, 9).
We choose m, > n,; so large that

(f) 2d = |t, | < min {g,, (2/(3x — 1))**},
(2) 2 onllta] < 1/8,

and that for any = > n,, the annulus

R = {z: [ta|(26)(Bx — 1)? < || < 2x[t}/(8x — 1)}

"
contains no point of F. We denote L = max {log |g(z)|: || = d}. We
take ng > m, such that |f, | < d. Then we see by (g) that there exists
for each n >my; a @, such that the set

{20 |ta](20/(8x — 1))2 < |2 < 2d, larg 2 — @u| < 7[2n}

contains no point of F. Considering the function A({) = gV ¢) on the disc
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{CI & — d"ei""fni < dr — Itnf"(21x/(3<x _ l))zn}
we get by Schottky’s theorem
Nu = log g([tal{2x/(3x — 1)}¥2¢rn)

S U S
= (BH2x)Ba — NP — (t(2x/(3x — P

i

We take n, > n, such that
(h) Nn S 4d”(7 + L)(gt"t{:z/x/(ga J— 1)}3/2)-71

for n >mn,. We apply Lemma 1 to R, and get

(i) log lg(2)] < (7 -+ N.) exp {#¥/log((3x — 1)/20)}
for z € 1, with
To={z: 2] = [ta](20)(3x — 1))%} .

By the conditions (f), (h) and (i), we get for z € 1, the estimate

+

where K; and K, are positive constants depending only on L and «.
We denote by /1, the unbounded component of the complement of 1,.

The maximum principle applied to A, yields l(;g g(z) <M, in A,.
We take n; >m, so large that y.c A, and 7, N F = @ for n > n.
Then we have g¢(y,) c T, with

To={w:[w, o] > (1 4 M)~
and C.NT,# 0. We get by (d)
™" = O(—log ov)
and this implies by (e) and (j) that there exists ng > n; such that
(k) On << 1/4(1 + ¢*¥m)!?

For any n > n,.

Since C, N T, # O, we see by (k) that C, cannot contain the point
at infinity for n > n,. Then the maximum principle applied to the bounded
disc G, with y, as boundary yields ¢(@,) c C.. Since B, C G, we get
g(Bx) € C,. This is a contradiction, for (!, contains no zero or 1-point
of g, and the theorem is proved.
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3. Meromorphic funections

5. No theorem like the theorems 1 and 2 is valid for meromorphic
functions. We can in fact prove that given any sequence of discs
D., m=1,2,.., which converge to the point at infinity, then there
exists a function f, meromorphic and non-rational for z # oo, and
bounded outside

E={0o}UUD..

n=1

We construct a sequence B, n=1,2,..., of discs with centre =z,

[=s}

and with radius o, satisfying the conditions 2z > 1, and B.c U D),

p=1

(1) lzn+1/zni > e" ’

and

(2) onfl2a] < €7"

for n =1,2,... We denote 7, = gne™", and define

9 =TTy et )
For z¢ B, we get by (1) and (2)

A G )<1—{—16 141
J S | . —n
1 — 2f(zn + 1) = Tl on = Ge" .

Then we have for z € {o}U |J B. the estimate

n=1
g(z)] < '|_|' + 16e™") < .
University of Helsinki and

University of Jyviskyld
Finland
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