ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

442

ON A CLASS OF KLEINIAN GROUPS

 $\mathbf{B}\mathbf{Y}$

BERNARD MASKIT

HELSINKI 1969 SUOMALAINEN TIEDEAKATEMIA

.

doi:10.5186/aasfm.1969.442

Communicated 13 December 1968 by L. V. Ahlfors and P. J. Myrberg

KESKUSKIRJAPAINO HELSINKI 1969

•

ON A CLASS OF KLEINIAN GROUPS

Let \hat{C} denote the Riemann sphere $(\hat{C} = C \cup \{\infty\})$. A Kleinian group G is a group of Mobius transformations (directly conformal self maps of \hat{C}) which is discontinuous somewhere. The set of points at which G is discontinuous is called the *regular set* and is denoted by R(G). A connected component of R(G) is called a *component* of G.

Every Mobius transformation g can be written in the form $z \rightarrow (az + b) / (cz + d)$, ad - bc = 1. g determines a, b, c, and d up to sign, and $tr^2(g) = (a + d)^2$ is well defined. g is called *loxodromic* if $tr^2(g)$ does not lie in the closed real segment [-4,4].

A Kleinian group G is called a π^p group if every $g \in G, g \equiv 1$, is loxodromic, and G is isomorphic to the fundamental group of a closed orientable surface of genus $p, p \geq 2$. G then has a presentation of the form $a_1, b_1, \ldots, a_p, b_p : \pi_{i=1}^p [a_i, b_i]$.

The main result of this paper (theorem 3) is that every π^{p} -group has a simply connected invariant component.

Let Γ be a Fuchsian π^{p} -group acting on the lower half plane L. A quadratic differential on Γ is a holomorphic function φ on L, where $\varphi(\gamma(z)) (\gamma'(z))^{2} = \varphi(z)$, for all $\gamma \in \Gamma$. The space of all quadratic differentials on Γ , with norm

$$\|arphi\| = \sup_{z = x + iy \in L} |y^2 arphi(z)|$$

is denoted by $B(\Gamma)$.

Every $\varphi \in B(\Gamma)$ induces a homomorphism x_{φ} of Γ into the group of all Mobius transformations as follows. Given φ , there is a unique meromorphic function w_{φ} on L, where the Schwartzian derivative of w_{φ} equals φ , and near -i, $w_{\varphi}(z) = 1/(z+i) + 0(|z+i|)$. For each $\gamma \in \Gamma$, there is a unique Mobius transformation $x_{\varphi}(\gamma)$ so that

$$w_{\alpha} \circ \gamma(z) = x_{\alpha}(\gamma) \circ w_{\alpha}(z)$$
, for all $z \in L$.

A point $\varphi \in B(\Gamma)$ is called *regular* if x_{φ} is an isomorphism, and if every non-trivial element of $x_{\varphi}(\Gamma)$ is loxodromic. It was observed by Kra [5], that almost all $\varphi \in B(\Gamma)$ are regular. Our main result asserts that if $\varphi \in B(\Gamma)$ is regular and $x_{\varphi}(\Gamma)$ is discontinuous, then $x_{\varphi}(\Gamma)$ has a simply connected invariant component. One might suppose that this would imply that w_{φ} is univalent in L. Theorem 5 shows that this is not necessarily true.

Throughout this paper we will use various well known facts about quadratic differentials, Fuchsian and quasi-Fuchsian groups, and quasiconformal mappings. The reader is referred to [2] for the basic definitions and proofs.

The author would like to thank Irwin Kra for several conversations during which he raised these questions.

Theorem 1: Let G be a Kleinian group isomorphic to the fundamental group of a closed orientable surface of genus $p \ge 2$. Suppose that G has an invariant component R_0 . Then R_0 is simply connected and R_0/G is a closed orientable surface of genus p.

Proof: G is finitely generated. By Ahlfors theorem [1] $S = R_0/G$ is a closed Riemann surface from which a finite number of points have been removed.

Assume that R_0 is not simply connected. Then by the planarity theorem [6], there is a set $w_1, \ldots, w_q, q \ge 1$, of simple disjoint loops on Swith the following properties. No w_i bounds either a disc or a punctured disc on S. Each w_i lifts to a loop on R_0 . R_0 with group G is the highest regular covering of S for which w_1, \ldots, w_q lift to loops.

Let K' be the 2-complex obtained from S by passing abstract discs p_1, \ldots, p_q through w_1, \ldots, w_q . By lifting p_1, \ldots, p_q , to abstract discs sewed onto R_0 , in all possible ways, we see that G is isomorphic to $\pi_1(K')$.

There are elementary homotopy equivalences to show that if $q \ge 1$, then $\pi_1(K')$ is a non-trivial free product (see [6] pgs. 352-3 and [7] pg. 228). Briefly, if w_i is dividing, contract p_i to a point; if w_i is nondividing, contract p_i to a point, pull the two pieces of surface apart stretching the point into a 1-cell, and then pull the endpoints of the 1-cell together. The resulting 2-complex K is clearly a wedge product of homotopically non-trivial components. Hence $\pi_1(K') = \pi_1(K)$ is a nontrivial free product.

G is isomorphic to the fundamental group of a closed orientable surface, hence every subgroup of G is either free or of finite index. If G were a non-trivial free product, G = A * B, then A and B, being infinite groups, would both have infinite index in G. Hence A and B would both be free, and so G would be free, which it isn't.

We conclude that R_0 is simply connected. It follows at once from the classification of surfaces that S is a closed Riemann surface of genus p.

The following theorem is a special case of theorem 4 in [8].

4

Theorem 2: Let G be a π^{p} -group with a simply connected invariant component R_{0} . Then either

1) G is degenerate; i.e. $R(G) = R_0$, or

 G is quasi-Fuchsian; i.e. there is a Fuchsian group Γ, and a quasiconformal homeomorphism w: Ĉ→Ĉ so that G = w ∘ Γ ∘ w⁻¹.

Theorem 3: Let G be a π^{p} -group. Then G has a simply connected invariant component.

Proof: Assume not. Then G has at least two components R_0 and R_1 . Let H be the subgroup of G keeping R_0 invariant.

 R_0/H is a connected component of R(G)/G . By Ahlfors theorem [1], R_0/H is a finite surface, and so H is finitely generated.

H is a subgroup of *G*, and so *H* is either free, or *H* is a π^{q} -group for some q > p. Is *H* were free, then by [7], *H* would be a Schottky group, contradicting the fact that *H* has at least two components.

H has an invariant component R_0 . By theorem 1, R_0 is simply connected. By assumption R_0 is a proper subset of $R(G) \subset R(H)$ and so, by theorem 2, H is quasi-Fuchsian. There is then a Fuchsian group Λ^* , acting on the upper half plane U, and a global quasiconformal homeomorphism W, where $W(U) = R_0$, and $W \circ \Lambda \circ W^{-1} = H$. Let $R'_1 = W(L)$.

H is of finite index in G, hence $R(G) = R(H) = R_0 + R'_1$. R_0 and R'_1 are both invariant under H, hence [G:H] = 2, and, using the Riemann-Hurwitz formula, q = 2 p - 1.

Let g be some element of G - H. Then $g \circ h \circ g^{-1} \in H$. Let r denote reflection in the real axis. Then $W \circ r \circ W^{-1}$ commutes with every element of H. It follows that $\bar{g} = g \circ W \circ r \circ W^{-1}$ is an orientation reversing homeomorphism of R_0 , where $\bar{g} \circ h \circ \bar{g}^{-1} \in H$ for every $h \in H$.

Let Γ be some Fuchsian π^p -group acting on U. Let $\psi: G \to \Gamma$ be some isomorphism, and let $\Delta = \psi(H)$. U/Δ and $S = R_0/H$ are both closed Riemann surfaces of genus q, hence they are homeomorphic. Every isomorphism of $\pi_1(S)$ is induced by a homeomorphism of S (Nielsen [9], see also Zieschang [10]). Hence there is a homeomorphism $V: U \to R_0$ so that $V^{-1} \circ h \circ V = \psi(h)$ for every $h \in H$.

Let $\gamma = \psi(g)$, and set $\gamma^* = \gamma^{-1} \circ V^{-1} \circ \tilde{g} \circ V$. γ^* is an orientation reversing homeomorphism of U, and γ^* commutes with every element of Δ , which is absurd.

Theorem 4: There exists a Kleinian group G, which is isomorphic to the fundamental group of a closed orientable surface, and which has no invariant component.

Proof: We write the Mobius transformation $z \rightarrow (\alpha z + \beta) / (\gamma z + \delta)$ as $(x, \beta; \gamma, \delta)$. Let a = (1, -4; 0, 1), b = (1, 0; 1, 1), c = (-3, 4; -1, 1),

d = (-i, 2i; -1, 2 + i), e = (1 + 4i, 16; 1, 1 - 4i), f = (3 + 4i, 12 - 16i; 1, -1 - 4i), and g = (3i, 8 - 6i; 1, -2 - 3i). Let G be the group generated by a, \ldots, g . We remark that G is a subgroup of the Picard group.

Let C_1 and C_2 be the lines Re z = 3 and Re z = -1, respectively. Let C_3, \ldots, C_{12} be the circles of radius 1 with centers at -1, 1, 3, 2 + i, i, -1 + 4i, 1 + 4i, 3 + 4i, 2 + 3i, 3i respectively. Let $P_1 \ldots, P_{12}$ be the non-Euclidean planes in the upper half space, whose boundaries are the circles C_1, \ldots, C_{12} , respectively. Observe that $a(P_1) = P_2$, $b(P_3) = P_4$, $c(P_4) = P_5$, $d(P_6) = P_7$, $e(P_8) = P_9$, $f(P_9) = P_{10}$, and $g(P_{11}) = P_{12}$. Splitting P_4 and P_9 into two pieces each, using the plane bounded by Re z = 1, we get a polyhedron Q whose sides are pairwise identified by a, \ldots, g . We also observe that any two interesting sides of Q meet an angle of $\pi/2$ or π .

By Poincaré's theorem (see [3] pg. 174-8), Q is a fundamental polyhedron for G. It follows that R(G)/G is the disjoint union of four 3-times punctured spheres. It also follows that $cba = d^{-1}bdc = afe = g^{-1} \ egf = 1$ is a complete set of relations for G. One sees at once that G is generated by b, d, e, and g, and that these generators satisfy the one defining relation $b^{-1} d^{-1} bd \ g^{-1} \ e^{-1} \ ge = 1$.

Remark 1: G constructed above is isomorphic to a π^2 -group. For every $p = 3, 4, \ldots$, there is a Kleinian group which is isomorphic to a π^p -group, and which has no invariant component. The construction of such groups is considerably more complicated, and not worth the effort.

Theorem 5: Let G be a Fuchsian π^{p} -group. Then there is a Mobius transformation a, a Fuchsian π^{p} -group Γ , and a regular $\varphi \in B(\Gamma)$, so that $X_{\sigma}(\Gamma) = a \circ G \circ a^{-1}$, and so that w_{φ} is not univalent in L.

Proof: We normalize G so that the negative imaginary axis projects onto a simple closed curve on L/G. There is then a smallest $\varrho > 1$ so that $z \to \varrho z$ is an element of G. There is also an x > 0 so that no two points of

$$B = \{ z | 1 \le |z| < \varrho \ , \ \ 3\pi/2 - \alpha \le arg \ z \le 3\pi/2 + \alpha \}$$

are equivalent under G.

A fundamental set for G acting on L is a set $D \subset L$ so that the natural projection $p: L \to L/G$, when restricted to D, is a one-to-one map of D onto L/G. It is well known that there is such a fundamental set D with the following additional properties. D is bounded by a non-Euclidean polygon whose sides are pairwise identified by elements of G; these elements generate $G \cdot B \subset D \subset \{z | 1 \le |z| < \varrho\}$.

Let $v(\Theta)$ be a C^{∞} real valued function with the following properties. v is a diffeomorphism of $[3\pi/2 - \alpha, 3\pi/2 + \alpha]$ onto $[3\pi/2 - \alpha, 7\pi/2 + \alpha]$. $v(3\pi/2 - \alpha) = 3\pi/2 - \alpha \ v'(3\pi/2 - \alpha) = v' (3\pi/2 + \alpha) = 1$. All the higher derivatives of v vanish at the endpoints.

We now define a function f on L. For $z \in D - B$, set f(z) = z. For $z = re^{i\theta} \in B$, set $f(z) = r e^{iv(\theta)}$. If $z \in L - D$, then there is a $g \in G$, and a $w \in D$, so that g(w) = z; set $f \circ g(w) = g \circ f(w)$. One sees at once that f is a C^{∞} map of L onto \hat{C} , f is a local homeomorphism, and for every $g \in G$, $f \circ g = g \circ f$.

For $z \in L$, set $\mu(z) = f_{\bar{z}}/f_z$. Observe that for $g \in G$,

$$\mu(g(z)) \ g'(z) / \overline{g'(z)} = \mu(z) \ .$$

By the compactness of D, there is a k < 1, so that $|\mu(z)| \le k$. For $z \in U$, set $\mu(z) = \overline{\mu(z)}$. For $z \in R \cup \{\infty\}$, set $\mu(z) = 0$.

Let w be the global quasiconformal homeomorphism satisfying $w_z = \mu(z) w_z$, w(O) = O, w(1) = 1, $w(\infty) = \infty$. Then w(L) = L, and for every $g \in G$, $w \circ g \circ w^{-1}$ is a Möbius transformation. Set $\Gamma = w \circ G \circ w^{-1}$. $f \circ w^{-1}$ is meromorphic in L, and is a local homeomorphism; hence φ , the Schwartzian derivative of $f \circ w^{-1}$ is holomorphic. $\varphi \in B(\Gamma)$, since $(f \circ w^{-1}) \circ (w \circ g \circ w^{-1}) = g \circ (f \circ w^{-1})$. w_{φ} and $f \circ w^{-1}$ have the same Schwartzian derivative and so there is a Möbius transformation a so that $w_{\varphi} = a \circ (f \circ w^{-1})$. It follows that $x_a(\Gamma) = a \circ G \circ a^{-1}$.

Remark 2: There is a simple modification of the above construction to yield the same result starting with a quasi-Fuchsian group G. There is also an obvious modification of the construction to yield a sequence of quadratic differentials φ_n in different spaces $B(\Gamma_n)$, with the same properties.

Remark 3: Let $\varphi \in B(\Gamma)$ be as in theorem 5. Then by quasiconformal stability [4], there is a neighborhood U of φ , so that for every $\psi \in U$, $x_{\psi}(\Gamma)$ is quasi-Fuchsian and w_{ψ} is not univalent.

Remark 4: Let Γ be a Fuchsian π^{p} -group. It is not known whether or not there is a regular $\varphi \in B(\Gamma)$ so that x_{φ} is not univalent.

Remark 5: Let $\varphi \in B(\Gamma)$ be as in theorem 5. It was shown by Kra [5] that $w_{\varphi}(L) = \hat{C}$, and that w_{φ} is not a cover map.

Massachusetts Institute of Technology Cambridge, Mass. U.S.A.

References

- AHLFORS, L. V.: Finitely generated Kleinian groups, Am. J. of Math. 86 (1964) 413-429.
- [2] —»— Lectures on quasiconformal mappings. van Nostrand, Princeton, N. J., 1966.
- [3] APPELL, P. et GOURSAT, E.: Théorie des fonctions algébriques et des transcendantes qui s'y rattachent II, par P. Fatou. - Gauthier-Villars, Paris, 1930.
- [4] BERS, L.: On boundaries of Teichmuller spaces and on Kleinian groups I, (to appear).
- [5] Kra, I.: Deformations of Fuchsian groups. Duke Math. J. (to appear).
- [6] MASKIT, B.: A theorem on planar coverings of surfaces with applications to 3manifolds. - Annals of Math. 81 (1965), 341-355.
- [7] —»— A characterization of Schottky groups. J. d'Anal. Math. 19 (1967), 227-230.
- [9] NIELSEN, J.: Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. - Acta Math. 50 (1927), 189-358.
- [10] ZIESCHANG, H.: Über Automorphismen ebener diskontinuierlicher Gruppen, -Math. Ann. 166 (1966), 148-167.

Research supported by NSF contract no. GP-9142.

Printed June 1969