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ON A CLASS OF KLEINIAN GROUPS

Let C' denote the Riemann sphere (6’ = C U{o}). A Kleinian group
G is a group of Mobius transformations (directly conformal self maps

of 6‘) which is discontinuous somewhere. The set of points at which G
is discontinuous is called the regular set and is denoted by R((G). A con-
nected component of R(() is called a component of G.

Every Mobius transformation ¢ can be written in the form z—
(az +b) [ (cz 4+ d), ad —bc=1. g determines a, b, ¢, and d up to
sign, and #2%(g) = (a + d)? is well defined. ¢ is called loxodromic if tr?(g)
does not lie in the closed real segment [—4,4].

A Kleinian group G is called a «@P group if every g€ (G ,g =1, is
loxodromic, and @ is isomorphic to the fundamental group of a closed
orientable surface of genus p,p >2. G then has a presentation of
the form a;,b,,...,a,,6,: al | [a:,b].

The main result of this paper (theorem 3) is that every =?-group has
a simply connected invariant component.

Let I' be a Fuchsian =aP-group acting on the lower half plane L.
A quadratic differential on [" is a holomorphic function ¢ on L, where
o(y()) (¥'(2))2 = @(z), for all y € I'. The space of all quadratic dif-
ferentials on I, with norm

lgll = sup [y%p(2)]
s=x+4IiyEL
is denoted by B(I").

Every ¢ € B(I') induces a homomorphism z_ of I' into the group
of all Mobius transformations as follows. Given ¢, there is a unique
meromorphic function w,_ on L, where the Schwartzian derivative of
w, equals ¢, and near —i,w, (z) = 1/(z +¢) + 0(z -+ ¢]). For each
y € I', there is a unique Mobius transformation w (y) so that

w,op() =2, (y)ow,(2), forall z€L.

A point ¢ € B(I') is called regular if 2  is an isomorphism, and if
every non-trivial element of =z (/') is loxodromic. It was observed by
Kra [5], that almost all ¢ € B(I") are regular.
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Our main result asserts that if ¢ € B(I") is regular and x, (I') is dis-
continuous, then x (I') has a simply connected invariant component.
One might suppose that this would imply that w, is univalent in L.
Theorem 5 shows that this is not necessarily true.

Throughout this paper we will use various well known facts about
quadratic differentials, Fuchsian and quasi-Fuchsian groups, and quasicon-
formal mappings. The reader is referred to [2] for the basic definitions
and proofs.

The author would like to thank Irwin Kra for several conversations
during which he raised these questions.

Theorem 1: Lei G be a Kleinian group isomorphic to the fundamental
group of a closed orientable surface of genus p > 2. Suppose that G has
an invariant component R,. Then R, is simply connected and Ry|G is
a closed orientable surface of genus p .

Proof: G is finitely generated. By Ahlfors theorem [1] S = R,/G
is a closed Riemann surface from which a finite number of points have
been removed.

Assume that R, is not simply connected. Then by the planarity theo-
rem [6], there is a set w;,...,w,,q > 1, of simple disjoint loops on S
with the following properties. No w; bounds either a disc or a punctured
disc on S. Each w; lifts to a loop on R,. R, with group G is the

highest regular covering of § for which wy,...,w, lift to loops.
Let K’ be the 2-complex obtained from S by passing abstract dises
Pis- -5 pg through w,,...,w,. By lifting p,,...,p,. to abstract

discs sewed onto F,, in all possible ways, we see that ¢ is isomorphic
to m(K').

There are elementary homotopy equivalences to show that if ¢ > 1,
then m;(K') is a non-trivial free product (see [6] pgs. 352—3 and [7] pg.
228). Briefly, if w; is dividing, contract p; to a point; if w; is non-
dividing, contract p; to a point, pull the two pieces of surface apart
stretching the point into a 1-cell, and then pull the endpoints of the 1-cell
together. The resulting 2-complex K is clearly a wedge product of homo-
topically non-trivial components. Hence =,(K’) = 7;(K) is a non-
trivial free product.

G is isomorphic to the fundamental group of a closed orientable sur-
face, hence every subgroup of @ is either free or of finite index. If G were
a non-trivial free product, ¢ = 4 * B, then 4 and B, being infinite
groups, would both have infinite index in ¢'. Hence 4 and B would
both be free, and so G would be free, which it isn't.

We conclude that R, is simply connected. It follows at once from
the classification of surfaces that S is a closed Riemann surface of genus p .

The following theorem is a special case of theorem 4 in [8].
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Theorem 2: Let G be a ar-group with a simply connected invariant
component R,. Then either

1) G s degenerate; ie. R(G) = R,, or
2) G s quasi-Fuchsian; i.e. there is a Fuchsian group I', and a quasicon-
Jormal homeomorphism w : € —C so that ¢ — wo I'o w1,

Theorem 3: Let G be a af-group. Then G has a stmply connected
nvariant component.

Proof: Assume not. Then G has at least two components R, and
R, . Let H be the subgroup of G keeping R, invariant.

Ry/H is a connected component of R(G)/G'. By Ahlfors theorem [1].
Ry/H is a finite surface, and so H is finitely generated.

H is a subgroup of ¢, and so H is either free, or H is a ad-group
for some ¢ > p. Is H were free, then by [7], H would be a Schottky
group, contradicting the fact that H has at least two components.

H has an invariant component R,. By theorem 1, R, is simply
connected. By assumption R, is a proper subset of R(G)c R(H) and
so, by theorem 2, H is quasi-Fuchsian. There is then a Fuchsian group
A*, acting on the upper half plane U, and a global quasiconformal
homeomorphism 1V, where W(U)=R,, and Wodo W-1— H.
Let R, = W(L).

H is of finite index in &, hence R(G) = R(H) = R, + R;. R, and
R, are both invariant under H , hence [G:H]= 2, and, using the
Riemann-Hurwitz formula, ¢ =2p — 1.

Let g be some element of ¢ — H. Then gohogl€H. Let r
denote reflection in the real axis. Then Woro W-1 commutes with every
element of H . It follows that §=go Woro W-1 is an orientation
reversing homeomorphism of R;, where §-hog'€H for every h € H .

Let I' be some Fuchsian =P-group acting on [ . Let w:G =T
be some isomorphism, and let A = y(H). U/4 and S = R/H are
both closed Riemann surfaces of genus ¢, hence they are homeomorphic.
Every isomorphism of 7,(S) is induced by a homeomorphism of S (Niel-
sen [9], see also Zieschang [10]). Hence there is a homeomorphism
V:U-—Ry sothat V-1cho V = y(h) for every h€H.

Let y =9(9), and set y* =y 1o V-1ogc V. y* is an orientation
reversing homeomorphism of U, and »* commutes with every element
of A, which is absurd.

Theorem 4: There exists a Kleinian group G, which is isomorphic
to the fundamental group of a closed orientable surface, and which has no
tnvariant component.

Proof: We write the Mobius transformation z — (32 + B) | (vz 4 0)
as (x,f,9,0). Let a = (1, —4;0,1),b = (1L,0;1,1),¢c=(—3,4; —1,1),
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d=(—i,2;—1,2+1),e=(1+ 4,16, 1,1—43) , f = (3 + 44, 12—167;
1, —1—44), and g = (37,8—6¢; 1, —2—3i) . Let G be the group gene-
rated by a,...,9. We remark that ¢ is a subgroup of the Picard
group.

Let €, and C, be the lines Rez =3 and Rez = -1, respectively.
Let C,,...,C), be the circles of radius 1 with centers at —1, 1, 3,
24+4¢, 4, —1+4i, 147, 3445, 2+ 3¢, 3¢ respectively. Let
P,...,P, be the non-Euclidean planes in the upper half space,
whose boundaries are the circles C), ..., (., , respectively. Observe that
a(Py) = Py ,b(Pg) = Py, c(Py) = P5, d(Pg) = Py, e(Pg) = Py, f(Pg) = Py,
and g(Py,) = Py, . Splitting P, and P, into two pieces each, using the
plane bounded by Re z =1, we get a polyhedron ¢ whose sides are
pairwise identified by @ ,...,g. We also observe that any two interesting
sides of @ meet an angle of z/2 or =.

By Poincaré’s theorem (see [3] pg. 174—8), @ is a fundamental poly-
hedron for @ . It follows that R(G)/@ is the disjoint union of four 3-times
punctured spheres. It also follows that cba = d='bdc = afe = g~ egf =1
is a complete set of relations for G. One sees at once that ¢ is generated
by b,d,e, and ¢, and that these generators satisfy the one defining
relation b1dlbdglelge=1.

Remark 1: G constructed above is isomorphic to a na2-group. For
every p = 3,4,..., there is a Kleinian group which is isomorphic to a
aP-group, and which has no invariant component. The construction of
such groups is considerably more complicated, and not worth the effort.

Theorem 5: Let G be a Fuchsian mP-group. Then there is a DMobius
transformation a , a Fuchsian nP-group I', and a regular ¢ € B(I'), so
that X (I') = aoGoa™, and so that w, is not univalent in L .

Proof: We normalize G so that the negative imaginary axis pro-
jects onto a simple closed curve on L/G . There is then a smallest ¢ > 1
so that z — oz is an element of (. There is also an x > 0 so that no
two points of

B={z1<]z| <o, 372 —x<argz < 3x/2 — 1}

are equivalent under G .

A fundamental set for G acting on L is a set D c L so that the
natural projection p : L — L/G', when restricted to D, is a one-to-one
map of D onto L/G. It is well known that there is such a fundamental
set D with the following additional properties. D is bounded by a non-
Euclidean polygon whose sides are pairwise identified by elements of & ;
these elements generate . Bc D c {z|]1 < |2] < o}.

Let v(@) be a C* real valued function with the following properties.
v is a diffeomorphism of [37/2 — « , 37/2 + x] onto [37/2 — «, T7[2 + x).
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v(37/2 — &) = 37/2 — x v'(37/2 — &) = v’ (37/2 4+ &) = 1. All the higher
derivatives of v vanish at the endpoints.

We now define a function f on L. For 2z€ D — B, set f(z) =z.
For z=re"€B, set f(z) =re"@ . If 2€L — D, then there is a
g€G, and a w€ D, so that g(w) =z; set fog(w)=gof(w). One
sees at once that f isa O® map of L onto C, f is a local homeomor-
phism, and for every g € G, fog=gof.

For z€L, set u(z)=f./f.. Observe that for g€ @,

19(@) 9'D/5 ) = u(z)
By the compactness of D, there is a £ <1, so that |u(z) | < k. For
z €U, set u(z) :E. For z€ RU {0}, set u(z) =0.

Let w be the global quasiconformal homeomorphism satisfying
w; = pu@)w,, w0) =0,w(l) =1, w(w)= . Then w(L)= L, and
for every g € (¢ , w o g o w1 is a Mobius transformation. Set I = w o G o w1,
Jow™ is meromorphic in L, and is a local homeomorphism; hence @,
the Schwartzian derivative of fow™! is holomorphic. ¢ € B(I'), since
(few)o(wogow™)=go(fow). w, and fow™ have the same
Schwartzian derivative and so there is a Mobius transformation @ so
that w_ = ao (fow™). It follows that 2, (I')=acGoa™.

Remark 2: There is a simple modification of the above construction
to yield the same result starting with a quasi-Fuchsian group @ . There
is also an obvious modification of the construction to yield a sequence of
quadratic differentials ¢, in different spaces B([},), with the same
properties.

Remark 3: Let ¢ € B(I') be as in theorem 5. Then by quasiconformal
stability [4], there is a neighborhood U of ¢, so that for every p € U,
x,(I') is quasi-Fuchsian and w, is not univalent.

Remark 4: Let I" be a Fuchsian aP-group. It is not known whether
or not there is a regular ¢ € B(I") so that a is not univalent.

Remark 5: Let ¢ € B(I') be as in theorem 5. It was shown by Kra

[5] that w (L) = C, and that w,, is not a cover map.

Massachusetts Institute of Technology
Cambridge, Mass. U.S.A.
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