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1. Introiluction

Some years ago, Nehari [7] found a remarkable connection between
the Schwarzian derivative

{u, } -
a,nd univalence. He

(1)

showed that if f is analytic in the unit disk and

(#)'-;ffr

imply univalence. On the other hand, every univalent function satisfies (2)

with å : 6, as Nehari showed, and this inequality is sharp for eachfixed a .

More recently, Ahlfors and Weill [2] proved that if an anal5rtic function

/ satisfies (2) for some constant lc < 2, then / has a quasiconformal
extension to the entire complex plane. In particular, ;f maps the unit
disk onto a Jordan domain; that is, onto the interior of a Jordan curve on
the Riemann sphere. The purpose of the present paper is to show that the
theorem of Ahlfors and trtrreill remains essentiallv true when the constant
lc < 2 is replaced by a furrction of lzl rvhich increases »slowly» to 2 as

lzl-->1. Specifically, our main result is as follo'ws.

Theorem. Let ]" be nondecreasing on the interval O 1r < I , with
0</.(r)<t and

then f is univalent.
that is, for no l§ > 2

(2)

l{f ,r}i < 2(L lzi')-z ,

Hille t3l showed that the constant
does the condition

l{f , z)l < k(L lzl')-',

2 is best possible;

(3)

Let f

(4)

r+L

t{f,*}t < #?*,
Then / is univalent in lrl < t and has a homeomorphic extension to the
whole plane. The continuation is quasiconformal with the possible exception
of the unit circle lzl : | .



Ann. Acacl. Sci. Fennica: A. I. 477

Our proof involves no estimates of solutions to differential equations,
and it makes no appeal to Nehari's theorem. We first construct a normal
family of quasiconfcrmal mappings which are approximate extensions of
,f ("f. Ahlfors [t]). The family is proved to be normal, and the desired
homecmorphic extension is obtained as a limit.

The grorrth condition (3) can be relaxed, as we point out at the end of
the paper.

2. Approximate quasiconformal extensions

The first step in the proof is to construct
mapping of the extended plane onto itself which

Let §(r) - {.f , z}, and let LL'L ar}d 'u,12

soluticns to the differential equation

a certain quasiconformal
agrees $'ith the function

be litretrrlv indepen,Cent

10" + :0,

Ilormalized

(5)

for every z in the unit disk. The most general analytic function g with
Schwarzian derivative § then has the form g : T . (wrlwr), where T
is an arbitrary linear fractional mapping. Hence we may assume f : wrlw, .

The functions ?r1 and w, are analytic in lzl < | and cannot vanish
simultaneously, by (5). This shows t}r,at w, has no zeros in lzl < I , since

wrlw, is analytic. Thus /' : lwr))-' is finite and nonvanishing in ]z i < I .

In particular, / is locally conformal in the open unit disk.
I{ow fix r.0 (r< I- fn Pl>r', define the function g:Erl7z,

where

and 6 :1212. ft follows from (5) t'hat E and g, canuot r.anish simulta-
neously. The function g has continuous first partial derivatives except
at the zeros (if any) of gz . In vierv of the relations

wi u:, - utwi - 0

t
isu

I
-,5,

and

illlilwtuz - wtwz
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a, calculation gives

and

g r(z)
I
2

where g, : *(g* - igr) and g, : ä(g, * igr),2 : n + i,y . Let' p : 9rlg,
denote the complex dilatation of g . Then we have

I
p(") : -; (rl2)z (z - ()'zs(6)

t-
(ClC), r_r(r, _ lflr), s(6) .

Since 0 <r-L(rz - lll') < I - If l', it follows from (4) that

(6) lp@)l < l(lfl) < 1, l"l> r'.
X'or the Jacobian J : lg,l, - lgrl, we have

J(") : lEr@)lu (L - lp@)l\ , lzl > r2 .

Thus the function g is locally homeomorphic in l"l > ,', except perhaps

at the zeros of g, . But g is locally homeomorphic at these points also,

since we can repeat the above calculations for the function llg. H.ence g

is locally a quasiconformal mapping in lzl > ,' .

I{ov' define the function

lzl 1r

By the definition of g it is clear that -E is continuous (with respect to
the spherical metric) in the whole extended plane. Since / is locally con-

formal in lzl < I and g is locally quasiconformal in izl > r', the func-
tion -F has generalized Z2-derivatives (see [6]). Consequently, -F is a
generalized Zz-solution to the Beltrami equation wz : P1D,, where p(z) is
defined as above for izl > r and p(z) : 0 for lrl < r. From this it
follows ([6]) that .E' admits a representation

r - q o1P,

where g is a quasiconformal homeomorphism of the extend.ed plane onto
itself and g is a rational function.

We have observed tlnat I is locally homeomorphic in lzl < r and
irr lzl > r. In order to show that it is locally homeomorphic on lrl : ,

F (") - {n'r'_'r' ,

(7)
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also, u.'e introduce the following lemma. Recall that an interi,or function
is a continuous light open ma,pping ([6]).

Lemma 1. Let C be an analytic arc passing through a point ao and
dividing a disk D centered at ao into the domains D, and Dr. Let X
be an interior function in D and let fi be the restriction of I to Di ,

'i,: 1,2. If h is injective in a neighborhood of zo and

(8) lr@):alb(z-zo)*o(lz-261). b+0,
as z --> zo , then -F is homeomorphic at zo .

Proof. There is no loss of generality in supposing that C is a segment,
of the real axis andthat zo--0, a:0, and ö: I. fnview of Stoilow,s
theorem. there is a neighborhood V c D of z :0 in which -F has the
form

(9) I:h",
where h is a homeomorphism and n is a positive integer. By hypothesis,
we m&v suppose that the restriction of -E to V n DL is an injection. and
that,

lfr@) - zl < lzl , zevnD2
fn particular, Im{-f'(z)}<0 for ze VnDz. Hence n:L in (9), and
the restriction of "F to Z is a horneomorphism.

Remarlc. The assumption (8) is essential, as the counterexample
fr(z):2, fz@):2212 shows,with C asegment -g(21Q.If we apply the above lemma with /, : g , fz: /, we conclude that
the function -F given by (Z) is locally homeomorphic on lzl : ,, Hence,
in (7), the rational function q has no branch points in the finite plane. ft
follows lhat q is a linear fractional transformation. Thus .F is a quasi-
conformal homeomorphism of the extended plane onto itself.

3. Equicontinuous tamilies of mappings

Now choose an arbitra,ry sequence {r"} with 0 < rn < rntt 1l and
rn + | as n --> oo . Let .t'" be the quasiconformal mapping just constructed.
conesponding to r : r, , &nd let, p^ be the complex dilatation of F^.
Then p"(z): 0 for lzl < r. and by (6),

(10) lp"@)l < ),(rillzl) , l"l ) to .

X'or each fixed zo and for g ) 0, let

d0

r-6,
o
Z,:T

:{M"(Q , zo)
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(lr)

(12)

IVe shall make use of the follou'irg lemma.
Lemma 2. If ). satisfies the condition (3), then for each ?o ,

J QM^(Q, zo) 
-- - \qr

where c( is independent of n , u(q1, Qz, zo) > 0 for Qr ( Qe , and
o(Qr, Qr, zo) -+ oo if g, is fixed and Qr + 0, or if g, is fixed and p, -> oo .

Postponing the proof, let us show how Lemma 2 can be used to complete
the proof of the main theorem. If the sequence {X"} hrt the property (Il)
given by the lemma, then as proved in [4] (see also [5]), {.F,"} is equiconti-
rluous with respect to the spherical metric at each point of the extended
complex plane .(2. It therefore follows from Ascoli's theorem that a sub-

sequence converges uniformly in ,fJ to a continuous function G. But it
is also shown in [a] that under the condition (ll), the limit function G must
be a homeomorphism of ,f) onto itself. X'urthermore, G satisfies the Bel-
trami equation IDz: v't.D, in lzl > t , where

(2lz)z (L lzl-z1z s(1/ä)

1r@)l<1,(tllzl)<t, lrl > 1,

which shows lhat G is locally quasiconformal in lzl > I . Of course, it is

clear from the construction of X" lhat, G(z) : f(z) for lzl < t . Hence

G is the desired homeomorphic extension of /. fn particular, f is uni-
valent, in irl < I . This proves the theorem.

4. Proot of Lemma 2

The proof of Lemma 2 rests upon the follou-irg lemma.

Lemma 3. If 1 satisfies the condition (3), then for each zo,

M 
"(Q, 

zi -- O(log t/g) , Q + 0 ,

uniformly in rb .

Proof of Lemma, 3. Suppose first that
that rx 1 l"ol { r.nr+r . Then for n- L,2,

u.hile p,(z):0 for lzl <r". For za > -l[ + I , we have p"(z):0 for

lzl 1r*+r. Thus M,(Q,zo) remains bounded, uniformly in n, as p--+0.

I
,

. . , ff, \Ye harre by (10)
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Nextsuppose lrol >f .Then

lp"@)l 3 )"$llzl) < jL(21(r + lzol)) < I

if l" - "ol 
<*l"rl - l). This again shows that M"(p, zo) is uniformly

bounded. as p -> 0 .

Finally, suppose |rol : I . Then in view of the rotational symmetry,
we ma,yassume zo: l. X'ix g,0 ( g 4 I. If 0 <-ro< I - g, wehave
by (10) and (3)

M*(Q, r) 
= =#4< 

c Iog l/q .

On the other hand, if 1- Q 1r" 41, we have by (10)

fro

(rB) M^(q,t) <2 [ = ., "fl , ,- * n,'- ! r-),(r'"llt+pe'oD

where ll * eeql : r, and nl2 1p,{n. ff we set

r : ll + Q"'ul and ?r : cos I : {*'- (1 + g')}12g ,

the integral in (13) transforms to

101

[-,-:U--: [+ [:r,*L,I t/t - ur{r - t?il*)} .l ' I
say, where 

tn rn o

y.: {r2^ - (1 + e\\lzS .

But

1, S{1 - l(tt\/t + a\}-' j ,*

=;{,- ,(, - ; ,r}- I c tog ttp ,

by (3) and the inequality

tt\/L+ ar<, -l*r, o<s< t.

ft remains now to estimate 4. If I - s { r,<{t - s', we have
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where

rdun
/, S {l - )"(r")}-L 

J 4, _ *,S r{r - i(\/I - pz;1-t

=;1,-,1, - ;,rl' < c tog'ts

On tlre other hand, it lT- n .->r. < I , we find

l/t+a'1 f- rdrL<: I 

--
" = n r;r'" l, | - )'(r:l r)'

Setting t: r'.1*, observing that y'^ t Sn, and assuming Q' S å, v'e

therefore find

3i dt

aJ r- )4t))
oe

I
ar: (1 er)l{t a n , I 2Q' , Q2 .; .

I
Thus in view of (3), we have for p' S i

" =? ,[,,"'* 
(, - ,) 

dt : olqrog 1/s) '

This completes the proof of Lemma 3.

Proof of Lemma 2. It follorvs from Lemma 3 that the integral (11) is

estimated from below by

c f .0n,,, o(qr(92(1,
I Plogl/s'

gl

which tends to oo as q1 -+ 0 . On the other hand, for each fixed zs 1 wa

have

Itr^(2, * Qe's)l <r(i) . ,

for all p) R: lrrl f 2. Thus for -E ( q, ( Pz ( co, the integral (11)

is not less than
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5. Generalizations

It is clear from the proof of Lemma Z that the theorem will remain
true with a growth restriction on .1 weaker than (B). What is needed. is
a condition of the form

I(14) L_A?)_O(v?)), r-->1,

where y) is a positive nondecre&sirg integrable function such that

i(15) I d's 
-ooJ alPQ - a)

and such that

has the property

I

(16) [ !-: oo.

I v(n')

The condition (f6) will hold if, for example,

,p(r) : O((1 - ,)-'t') ,

although such a condition does not imply (15).
The question of the best possible growth condition (14) remains open.

It is of interest to find examples showing that the theorem fails without
some condition of this form.

*,1' -'(l))'- k't*) '
which tends to @ as g2 --> o . This establishes Lemma 2 and hence com-
pletes the proof of the main theorem.

1

ln

\/ I
J

L-x
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