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1. Introduction

For k> 2 let Vi denote the class of locally univalent analytic func-
tions

(1.1) f) =2+ ay2® + az2® + . ..

that map |z| <1 conformally onto a domain whose boundary rotation
is at most km . (See [9] for the definition and basic properties of the class

Vi)
The function
1[[1 4+ 2\ ©

belongs to Vi and the ‘coefficient conjecture’ for the class Vi is that
for a function (1.1) in Vi,

(1.3) laa) < A (n>1).

This conjecture was proved for n = 2 by Pick (see [9]), for n =3 by
Lehto [9] and for n = 4 in [17], [10], [2] a:d [4]. Ia support of the con-
jecture Noonan [12] has showwu that for a given function (1.1) in Vi,
Y On
wom A
real ¢ .

In this paper we prove the corj ciure (1.3) for k>4. If 2 <k <4
we prove the coij-ciure for all n < 14; for all = if f(z) has real
coefficients; and, for 21l =, that la,! < 1.05 A.. Each of these results
holds in fact for the larg r class of close-to-coavex functions of order
B =k/2 — 1> 0. The definition is given in § 2 of this class of functions.

exists and is less than 1 uuless f(z) = e “fi(e'%2) for some

2. Sharp coefficient bounds

A function f(z) =z + ax2?... analytic in [z] <1, is said to be
close-to-convex of order B (8> 0) if there exists a winvlike fuiction
s(z) =2+ b2+ ... (2] < 1) a:d a constant @ such that
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#'(2)

as(z)

(2.1) larg i <B 5 (lz] < 1).
The class of such functions f(z) will be denoted by K(B). This class of
functions was introduced by Pommerenke [14] who was primarily con-
cerned with § in the range 0 < f < 1. The case > 1 was studied by
Goodman [6]. When g =1, K(f) reduced to the well known class of
close-to-convex functions introduced by Biernacki [1] and Kaplan [8].

We will make reference to one additional class of functions, namely
the class ¥ of functions p(z) that are analytic and satisfy Rep(z) > 0
in 2] <<1.

The condition (2.1) is equivalent to the statement that there exists
a p(z) in < such that

(2.2) f'(2) = alp()Y () (21 <1).
Since f/(0) =1, it is clear from (2.2) that if p(0) = b then ab’ =1,
and we may assume (as we always will) that |¢| = b = 1.

Our first result is a simple observation relating the classes Vi and
K(p) .

Theorem 2.1. For all k> 2, Vi is properly contained in K(B), where
B=k2—1.

Proof. The geometrical interpretation of (2.1) is that for 0 <r < 1,
the tangent to C, = {w:w = f(re’), 0 <0 < 2} does not turn back
on itself by more than fz as 0 increases from 0 to 2z (see [14]). If
f(z) € Vi then the total variation of the argument of the tangent to C.
is at most kn. Hence the tangent to C. cannot turn back on itself
by more than (k/2 —1)m as 0 increases from 0 to 27 and thus
flx) € K(kf2 — 1). It is clear from the geometrical interpretation of (2.1)
that Vi is properly contained in K(k/2 — 1).

It follows from Theorem 2.1 that if f(z) € Vi,

k

o) = alb s(2)

where p(z) € and s(z) is starlike. Sharp estimates for the coefficients
of s(z) are of course known, so we turn our attention to estimating the
size of the coefficients of functions of the form [p(z)]* where p(z) €Y .
This information is contained in the next theorem which is an extension
of the classical Herglotz formula.

Before stating the theorem we recall some notation and facts from the
theory of linear topological spaces that will be needed for the proof. If E is
a subset of such a space, then a pointin E is an extreme point of F if it
cannot be non-trivially expressed as the convex combination of two points
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in B . We denote by ext E the sct of extreme points of K and by cof
and coF the convex hull of £ and the closed convex hull of E respectively;
i.e., the smallest convex set and the smallest closed convex set containing
E . The Krein-Milman Theorem [5, p. 440] asserts that if E is a compact
convex subset of a locally convex linear space, then E = co(ext ).

Theorem 2.2. Let ¢ be a constant of modulus 1 at most and let E denote
the set of the functions subordinate to

1 4 cz
T(z) = E

If x>1 and h(z) €E, then there ecists an increasing function w(t) on
[0, 27] with u(2r) — w(0) =1 such that

27

o L oceltz]®
ey = il—”—z] ape)
0

L1 — e’z

Proof. By (a trivial modification of) the Herglotz formula [15, p. 30],
if h(z) € E then there exists a pu(f) satisfying the conditions stated in
the theorem such that

27

1 4 cez
h(z) = fm du(t) .

0
It follows (15, p. 30] that ext K consists of the functions

1 - ce'z
1 s 0<9¢<2a).

Let E, = {|h(z)]*: h(z) € E}. By Montel’s Theorem, E, and coE,
are compact in the lincar space 4 of functions analytic in |2 <1 when
the topology of A4 is the topology of local uniform convergence in 2| < 1.
It is known that this topology for A4 is locally convex [19, p. 150] and
hence by Milman’s Theorem [5, p. 440] if g(z) € ext [coE,], g(2) €E, .
Suppose then that g(z) = [k(z)]* belongs to E, and h(z) € ext . Then
there exists distinet functions 7%,(z) and hy(z) in B anda ¢t,0 <t <1,
such that

g(z) = [Mz)1*"" h(z)
= [h(z)]* {thy(2) -+ (1 — ) ho(2)}
= ()] Iy2) + (10 TR al2) -
Since [A(z)]*" ! hy(z) and [R(2)]* ' hy(z) are distinet furctions in B, g(2)
is not an extreme point of K, . Thus an extreme point of B must be of
the form
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(2.3) (0<¢<27).

1 — ¢z

[l + cei"’zr

By the Krein-Milman Theorem, coE, is the closed convex hull of the set
of functions (2.3). Hence if h(z) € coE, there is a sequence of functions

(ha(2)) 5

a(n) 1 + ce”iz|*
hn(z) :jgltj,n [_1 _ ei¢sz :
o(n)
t.>0 and thj,,, =1 such that lim A,(2) = h(z) locally uniformly
in |z <1. ’
Now,
27

1 + cez|*
h(z) = f [1——&} du(t)
0

where u,(t) is an increasing step function on [0, 27] with jump ¢,
at ¢;. By the Helly S:lection Theorem, there is an increasing function
u(t) on [0, 27] which is the pointwise limit on [0, 27] of an infinite
subsequence of (u,(t)) and hence

27

(2.4) h(z) = lim A,(2) = f {L_—}—c_e'%

1 — ez
0

a

du(t) ,

where the limit is considered as 7 — oo through the appropriate sub-
sequence. (2.4) holds in particular if k(z) € E,, and the proof is complete.

We note for later reference that, if « >0, >0 and 0<6,, 0,,
< 2z, then, by Theorem 2.2, there exists an increasing function u(¢)
on [0, 2z] with u(27) — p(0) =1 such that

27

1 1 1
(25) (1 . eie,z)a (1 . eie%)/’i = / (1 . eitz)a+/3 d,u(t) (:Z: < 1) .
0

Indeed, if « + pf >1, then (2.5) is an immediate consequence of
Theorem 2.2 since

( 1 )a_ 1 3
’ x+8 _ |x+B
(2.5) 1 — é*z (1 — €%

is subordinate to 1/(1 —=z) in |z] <1.
If 0 <-4+ B <1, then the linear operator defined by

1
x—+p

L(f)z) = #f'(2) + f(2)
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transforms functions of the form (2.5)" into function of the form

~ 1 B 1

!

x4 B (L — @2t (1 — e T a4 B (1 — e2)* (1 — )T

It follows from (2.5) as established above that if « 4+ > 0 and f(z) is
of the form (2.5)", then

27

1
L(f) (2) = /(—i—_"mﬂ du(t) (Il < 1).

€"z)

By an argument similar to the one used in [3, Theorem 6] it can be shown
that the extreme points of the set of functions of the form

27
[ =i dut
—ayarar onll
. (]. e A«)

are precisely the set of functions of the form

1

(1 _ eitpz)a+ﬁg (O S @ S 27'6) .

Since L is linear and 1 — 1, the extreme points of the set of functions
on the left of (2.5) are the functions (1 — €¥2)™* % (0 < ¢ < 27) . Hence
(2.5) is now established using the Helly Selection Theorem as in the proof
of Theorem 2.2.

We easily obtain a generalization of [3, Theorem 5] from (2.5). Using
the notation of [3], let I, denote the set of functions

27 |
h(z) = Of 1 =g du(t) .

where u(t) ranges over the set of increasing functions on [0, 27] with
w2m) — w0 =1. If x>0, >0 and we show that

(2.6) I,-1,cl,;,

ie. if hy(z) €1, and hy(z) € I; there exists a function /f, 4(z) in I,
such that hy(2) . hy(z) = k. 4(2) . Indeed suppose that

27

1
hy(z) = Of 0 oo du(t)

and
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then

27 2

1 1
h’a(z) : k‘{;‘(z) - ff (1 . (;izzp ’ (1—‘ piz,,)ﬁ d‘Lt(t)d‘V(‘L') .
0 0 ! -7

By (2.5)

1 1 ;
(1 — d2) (1 — &2)f € Loys

for each ¢ and 7 in [0, 27] and since [, ; is closed and convex we have
that hy(2)hs(z) € 1,,5. This establishes (2.6). (2.6) was proved in [3]
(by a different method) only for positive integral values of &« and f.

Let

f(z) = i bzl and F(z) = i Bjzi
i=o i=0
be analytic in [z] << 1. It will be convenient to denote the condition
bl < B! 0=j=n
by f(z) <n< F(z) . If this relation holds for all n . we write f(z) < F(z). The

following result is an immediate consequence of Theorem 2.2.
1+ ecz

Corollary 2.1. Let h(z) be subordinate to
x > 1. Then

in zl <1 and let
1 —=z '

1+ ez
1 — 2!

e < |

Note. Theorem 2.2 no longer holds if 0 <~x < 1. Indeed let n > 2.
Then

14 2* -
[1 — 7J =1 — 23z — > ) (2l < 1)
z =2
and
142"
T = 1 & 2az" — (2l <)

By a theorem due to Rogosinski [16], . < 2x for j > 2 which shows
that Corollary 2.1 (and hence Theorem 2.2) fails when 0 <& < 1.
We note that when 0 <<« << 1. every function of the form



D. A. Braxvax, J. G. Crunie and W. E. KirwaAN, On the coefficient problem 9

[l 4+ eitsza
1 — eitzn
is an extreme point of K . It is not clear whether or not there ave other
extreme points in K .

We now prove a result that will circumvent the difficulty arising from
the fact that Corollary 2.1 fails when 0 <u < 1.

Lemma 2.1. Let f(z) eK(ﬂ) (B> 0) with

(2.7) of'(z) = alp(2))'s(2) (p(0) = b).
Then
27 .
2 1+ e% 2jit 2
(2.8) f'(2) 220 {Of @ 1T [p(z)Fe” d.’i(f)} =

where u(t) is an increasing function on [0, 27] with p(27x) — u(0) = 1.

Proof. Let ¢(z) =2z 4 a22 + ... J2] < 1) be a convex univaient
functionin |z| < 1. By aresult of Strohhicker [18], Rec(z)/z > 1 (2! -2 1),
and hence by the Herglotz formula

27
c(z) = fr:ji,;du(t),
0

where u(t) is increasing on [0, 27] with u(27) — p(W) = 1. As was
observed in [3], this implies that if s(z) is a normalized starlike function
in 2 <1 (since s(2) = z¢’(z) for some convex function ¢(z)) then

(2.9) s(z) = f = du\t)

It follows that if f(z) € K(p) and is given by (2.7) then

F&) = ap@P | s dutt)
; (1 — €"2)
27

ﬁ/‘ 1+ e 1
= a’[P(Z)] ; it : 1 — e-xt 2 dll

1 — €'z

and the result follows by expanding (1 — €**22)~1 in powers of z2.
Since for each (0 < ¢ < 2n)

1 e

(2.10) 9. 1) =a T [PE)Y
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1 4 cz]f*? 2B
is subordinate to 1 (with ¢ =0t"), it follows from
Corollary 2.1 that N
s p+1
y 1+ ¢z
(2.11) fq(z,t)e“’i"dy(t)« [1 _,} (j=0,1,2,...).
0

Combining (2.8), (2.10) and (2.11), we easily obtain a simple proof of
the coefficient conjecture for K(B) for functions with real coefficients.
More generally we have

Theorem 2.3. Let f(z) € K(f) where B=1Fk/2 —1>0 and suppose
that in (2.2)

#f'(2) = al p(z)]'s(2)

with p(0) = L. Then f(z) < fu(z) where fiu(z) is defined by (1.2).
Proof. If 1 = p(0) = b, then in (2.11) ¢ = 1. Since for any y > 0,

1+ 2z
L —{_— J has positive coefficients it follows from (2.8), (2.10) and (2.11)

that
o [1 4 B+1
k=o Ll — 2
[1 + zr“ 1
1=z 12
= f(z) .

We note that if f(z) € K(f) and has real coefficients then it follows that
the p(z) in (2.7) can be chosen so that p(0) = 1. The following simple
proof of this fact was suggested by Ch. Pommerenke. If f(z) has real
coefficients

and

Thus

f'(2) = [(PRIPENTT - [s(2) - s(3)]"*

and (p(z)p(2)"* €y (and has real coefficients) and [s(z)s()]*? is a
univalent starlike mapping of |2] << 1.

The proof of the coefficient conjecture for K(B) would follow from
(2.8), (2.10) and (2.11) in precisely the same way if one could show that
for || =1 and x>1,
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a

[1 -+ sez]> 1+2
(2.12) [I_ZJ < L_Z

(2.12) is trivially true if ~ is an integer and hence gives a proof of the

coefficient conjecture for ¥V, when k£ is an even integer (see [11] for a

different proof of this fact). We suspect that (2.12) is true for arbitrary

« > 1 but have been unable to find a proof. On the other hand our next

1 4 2| 142

1 — z] § [

coefficient conjecture for K(f) for n < 14.
Theorem 2.4. Let f(z) € K(f) (f = k/2 — 1> 0). Then

f&) < fil?) -

[e4
result shows that for ~>1, [ J , Which proves the

1 —2z

Proof. As noted above the result follows from (2.8), (2.10) and (2.11)

once we show that
{l - xzr ['1 + zr .
1z Sh=2 (x=1).

As observed above (2.12) is true when « is a positive integer. Hence if
we restrict in the first instance x to satisfy 1 <« << 2 the general result
1+ %z

—z

a+n
] with 1 <a<<2 and =n a

+ z

will follow by considering [
14
) has positive

positive integer. This depends on the fact that (1

coefficients for any vy > 0. We assume in what follows, therefore. that
l<<a<<?2.
Let

Am(%) = Am(x : 3&) = Z

= (m — »)!

m x(x—'—l)...(x—‘—m—v—l)(oc) )
#

v
= ay(m) -+ a,(m)x + a,(m)=® + i (— a,(m)x,
v=3

where each a,(m) > 0. Since

[1_“3“ Zr _ 2‘4,,,(1)2,,,

!.l_z m=0
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we must show |A.(%)] < An(1) for m < 13 . This is easily seen to be the
case for m < 4. However to prove the result for @ <13, it is more
convenient to prove a stronger statement. namely.

(2.14) (A, () + A (— 7)) < A5 — An(— 1) = 45(1).
If %= €70 < ¢ < 2n), then

1 Au(€)]* + [An(— ™)

(2.15) M m—2j
2y = o
= 2ay + ... Fan) 4D (A — 3,8y — D Gy.,) COS 2jp
j=1 s=2

where M = m/2 if m isevenand (m — 1)/2 if m is odd. (2.14) is certainly
valid if for each j the coefficient of cos 2j¢ in (2.15) is positive. This is
clearly the case if

(2.16) Qolly; — (yllg; .y 22 U (1<j< M)
i.e.
i yj )
0—12 as; (1<j<MNM.
Now
@y A --m— 1
ai T am
and
41 mo— 2 2j — a
2 x+m—2j—1 2j-+1°

Thus (2.16) is equivalent to

x+m—1 m — 2§ 2§ — x oy , N
o _oc—!—m~2j~l.2j—§~1 (<M. lax<2, m=2).

When m <12, or m =13 and j= 1.2, 3, and 6 this inequality is
easily verified by lengthy but elementary calculation. If m = 13 and j = 4
or 5 we show that the coefficient of cos 8¢ and cos 10¢ are positive by
showing that

Qg — Qg —+ Aalhyy > O (1 =4)
and
Uglhyy — iy == altyy = 0 (J=25).

Again the required calculation is elementary and will be left to the reader.
This completes the proof of (2.14) and hence the theorem.
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It seems clear that by using additional terms from the coefficients of
cos 2jp in (2.15) that (2.14) and hence the theorem can be extended to
larger values of m . What is not clear is whether a proof for all m can
be found by this method.

3. Uniform coefficient estimates

Theorem 3.1. Let f(z) €K(B) (B =Fk/2— 1> 6). Then
fz) < 105 fi(z) .

The proof of this theorem follows immediately from (2.8). (2.10) and
(2.11) provided we show that (with the notation of § 21

(3.1) |An (%)) << 1.05 A,.(1) (m > 1).

It is only necessary to prove (3.1) for « in the range 1 <<a < 2. The
observation which enabled the proof of Theorem 2.4 to be restricted to
the range 1 <« < 2 also applies in the preseut situation. The proof of
(3.1) for 1 < << 2 is established with the aid of two lemmas. First we
introduce some notation. Let

M

B, (#) =ty — > @y 7
j=1

and
M _
Cpn(#) = z Qs; #
j=1

where the ar are defined by (2.13). and I is defined in (2.15).
Then

Bn(%) = 3 {An(#) — An(— 2),
Om(%) = %‘{4‘1771(%) - ;1,,,(“ /)‘
and
@ 1+ #2) — (1 — x2)
Z Bm(%)zm = ( 231 . :).\ “
(3.2) m 0w —
© wz2)* — (1 — z2)?
3 oue = I

It follows immediately from (3.2) that B.(1) > O(m > 1).
Lemma 3.1. Let 1 <m < N. There erists « polynomial yy ,(%)
with non-negative coefficients and a positive number Iy, such that
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B,(%) = yn,m(*) + Ay, mBn(%) .

Proof. For a given m it follows from the definition of the ax in (2.13)
that

m — 1

(3.3) B (%) — Y m 2

Bm+ (%) = Vmt 1(%)

is a polynomial with non-negative coefficients. The lemma then follows
by repeated application of (3.3).
Lemma 3.2.. Let » be given with |x| = 1. If N s sufficiently large
then
Bj(%)] < 1.10 B(1) (j=N).
Proof. Since

© L (4 ee)” — (1 — =2)”
D =

a standard application of the ‘major-minor arc’ method as it appears in
[7, p. 108] shows that Bn.(x) is asymptotic to the m™ coefficient of
(I + %)* — (L — )

as m — oo, l.e.

2(1 — 2)*
S il S 2 —
Bu(x) ~ 2 (=™, (m — o) .
Let #=¢ | ~ <¢<—). Then
et w=e"|—5 <p<7). e
9x(x) = [(1 — #)* — (1 — )|
. 12
= 2¥ [cos“qz + sin®g — 2 cos v o - sin%g - COSa(p} .

If 1 <o <2 isfixed, g,(») attains its maximum at ¢ = /4 and
. 19 . An
27%g (1) = 2" sin — .
4
Further 27%g,(¢) for varyving « assumes its maximum when

4 ( T )
x = — arc tan
' 7 2 log 2

= 1.47....

Thus g¢,(%) < 1.10 2* (1 <« < 2), and so for given y, if N is suffi-
ciently large (depending upon ),
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|Bu(%)] < 1.10 29=1(— 1)™ (— “) .

m

Since

Bu(1) ~ 227 (— 1) (_ “) (m — ),

m 4

the proof is complete.

We now complete the proof of (3.1). Let #, || = 1, be fixed and let
m > 2 be a positive integer. ((3.1) is trivially true if m = 1.) By Lemma
3.2 we can choose an N > m sufficiently large that

|Bn(2)] << 1.10 By(1) .
By Lemma 3.1,
IBm(”)l = Iyl\f,m(%) + ;"N,mBI\'(%):
S yN,m(]‘) —l— )‘N,m[BN(%”
< Ynm(1) + 1.10 2y, By(1)
< 1.10 B,(1).
Now
Am(x) = Bm(x) + Cm(x)
and since the coefficients of C.(y) are non-n-gative,
|[Am(x)| < |Bum(%)] 4 [Cm(22)]
< 1.10 Bu(1) + Cu(1) .
It follows from (3.2) that Ba.(1) = C(1) (m > 1) and hence
| Am(%)] < 1.10 Bu(1) = Ci(1)
= 2.10 Bu(1)
= 1.05 4,.(1) .

This establishes (3.1) and completes the proof of Theorem 3.1.
Furthermore we have
Theorem 38.2. Let f(z) €EK(S) B=Fk/2—1>1). Then

f) < fil) .

Proof. Using the notation of the above, it is clear that to prove our
result it is sufficient to prove that
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(3:4) An(e?)] < An(1) (m = 1)

for 2 <\ < 3. Reworking the proof of Theorem 3.1 and making the
necessary changes we can verify (3.4) without much trouble.

4. Extreme points of K(B) and V,.

In [3] the authors determined the set of extreme points of various
classes of univalent functions. Combining Theorem 2.2 with a method
from [3] we obtain a generalization of [3, Theorem 6]. The following nota-
tion will simplify the statement of our theorem.

For p>0, 0<t<2x and 0<7v<2n set

. 1 1 [(1 - e"z)ﬁfl IJ t
. ot TN — . N T : _—
g(Z ;€€ /3 + 1 gt — ol L 1 + e’z ( #* T)

2

(4.1)

gz e, 0" = lim g(z; ", €") =

>t

1+ €'z’

|

such that and let X 3 denote the set of functions

27 27

ff Ly it )

where »(t , ) ranges over the positive Borel measures on [0, 27] X [0, 27]

L.

fdvtr—l

Theorem 4.1. For 3= %- k—1>1,

K, = o K(B) = o V.

Further, the extreme points of co K(B) (= co Vi) are precisely the functions
(4.1) with ¢ # 7.
Proof. Tet F(z) € K(3) . Theu by (2.2). (2.9) and the Herglotz formula

2 2

1 — cez p 17 f 1 Z
1 — eit: ‘4“(2()! ' p (l _ eirz)z (1'(7):

where wu(f) and »(t) are increasing functions on [0, 2] with

w(r) — u(0) =1 = »(27) — »(0) .

Since B > 1 it follows from Theorem 2.2 that there exists an increasing
function p(¢) on [0, 2a] with yp(27) — »(0) = 1 such that
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27 27

) [1 -+ ce'z]’ 1
F'(z) = :__1————8’_'3— dy(t) . (—l——-e"_’z—)a dv(7)
(4.2) " ’

/‘ f - ce"‘zr 1 i
= {1 . eitz (1 . eirz)ﬂ ‘)/(f) ’V(T) .
0

0

By (2.5), for each ¢ and 7 in [0, 27],

27

. [1 + c.e"‘z]6 1 f (1 4 ce™z)? .
( 3) 1 — eitz (1 . eirz)zl = (1 _ eiq:z)ﬁ+2 0'(‘77) H
0

where () is increasing on [0, 2n] with ¢(27) — 0(0) = 1. It follows
that

[1 + ce*z]” 1
L1 —e'z] (1 —éw2)

Since KX} is closed and convex, (4.2) and (4.3) imply that F'(z) €K}
and hence co K(B) c <.

The reverse inclusion follows with only a slight modification of the
argument in [3, Theorem 6].

As is easily seen, the functions (4.1) belong to Vi c K(f) and the
remainder of the proof follows using the arguments in [3, Theorem 6].

Our result leaves open the question of whether or not the functions
(4.1) (t # 7) are the extreme points for K(f) when 0 <p <1. We
note in passing that using (2.5) one can easily show that the set of functions
2 (1 — €"2)™ (0 < 7 < 27) are precisely the set of extreme points for
the functions starlike of order x, 0 <~ <1.

If I is a continuous linear functional on 4 (the space of functions
analytic in |z| < 1) then the maximum of Rel on co K(f) must be at-
tained at some extreme point. Consequently, there is a function of the
form (4.1) that solves the coefficient conjecture for Vi, if k>4 . This
observation greatly simplifies what was previously known about the nature
of the extremal functions for this problem (see e.g. [4]).

Addendum. (2.12) has now been established by D. Aharonov and S.
Friedland and their proof wiil be contained in a forthcoming paper.

belongs to °Kj, the set of derived functions ¢'(z) of functions g(z) € ‘K.
(
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