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Introduction

Every Riemann surface with the unit disk D as a universal covering
surface can be represented as a quotient space D/G , where the covering
group G, consisting of conformal self-mappings of D, is discontinuous
and fixed point free. If the fixed points of G are dense in the unit circle
K , the group G is said to be of the first kind.

In this paper we consider isomorphisms j between two covering groups
G and @' of the first kind, with the following property: There exists
a homeomorphism ¢ : K — K sending the attracting fixed point of every
g € G to the attracting fixed point of j(g) . We call ¢ the boundary map-
ping of j. 1t induces the isomorphism j on K, ie., gog=j(g)coq.

An isomorphism j has a boundary mapping if and only if there exists
a homeomorphism f: D — D inducing j in D . This was proved by
Nielsen [17] in the case of compact surfaces D/G' and D/G’, and by
Fenchel and Nielsen [9] if G is finitely generated. In the general case,
the simultaneous existence of ¢ and f was recently proved by Tukia
[20], and it also follows from earlier unpublished results of Marden [16].

After some preliminary considerations in §§1 and 2, we summarize
and complement results of Nielsen, Marden and Tukia in §3. Isomor-
phisms not possessing a boundary mapping are analyzed and an example
of the situation is given.

In § 4 we introduce the dilatation of an isomorphism defined as follows:
If x(g) denotes the multiplier of g € ¢, then the dilatation d(j) of j
is the smallest number a > 1 for which x(9)"* < %(j(g)) < %(g)* holds
for all g € G. We prove that if 6(j) = 1, then the boundary mapping
¢ of j exists and preserves cross ratios, i.e., j is induced by a M&bius
transformation. Secondly, if j is induced by a K -quasiconformal map-
ping f, then 4(j) < K. Our third result connects d(j) and the quasi-
symmetry of ¢ : If @ and G’ act in the upper half-plane and ¢ : R — R
is A -quasisymmetric, then §(j) <log 2/log (1 + 1/4). The section is
concluded by an example of an isomorphism possessing ¢ and satisfying
5(j) = @ .

Section 5 deals with isomorphisms with a special boundary mapping.
We prove that if ¢ and ¢! are locally Lipschitzian, then j is induced
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by a Mobius transformation. Remarks are made on isomorphisms with
quasisymmetric boundary mappings, recently treated by Lehto [14].
and some conjectures and open problems are mentioned.

§ 1. The universal covering surface

1. Let C denote the complex plane, C the extended plane C'U{ccj .
R the set of real numbers and R = R U{— o, w0}. Set D={2€C]
2] <1}, K={2€C||z] =1}, ={€R|0<t<1} and H={2€C(C
Im z > 0} . The complex conjugate of z = x 4 iy is denoted by Z ==
— .

If 4 is 2 subset of a topological space, the closure of 4 is denoted
by Cl A and the boundary by Bd 4. Let 4\ B mean the complement
of B in A.

A universal covering surface of a Riemann surface S is a pair (5 , 7T)
satisfying the following conditions:

(1) S is a simply connected Riemaun surface.

(i) o: S8 isa locally conformal mapping

(iii) If y:I-—>8 is a path and =(p) = y(0). there exists a path
77:[—>S such that »(0) =9 and zop =1y

The path % in (iii) is referred to as the lifting of y from the point p
over y(0).

By the Riemann mapping theorem. S is conformally equlvalent to
one of the canonical regions C,C or D. The case 8 = 0 is possible
if and only if S is conformally equivalent to C, and § = C oceurs if
and only if § is conformally equivalent to €' or € {0}, or S isa compact
Riemann surface of genus one (i.e. a torus). The special cases will be ex-
cluded in the following: If not otherwise stated. we shall always assume
that S is conformally equivalent to D.

2. Throughout the paper D’. D" will denote arbitrary disks (half-
planes included).

Let G be a group of Mobius transformations acting in D', i.e., g(D’)
=D’ forall g€G. A set AC D" is called a fundamental set of G if
it has the following properties:

(i) g(4)NA =0 for all g €G™ {id}.

(i) D' =U g(4).

8EG
By the axiom of choice, G has fundamental sets if and only if G acts

freelyin D’ . i.e., the fixed points of ' lie in BdD’.
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If G has fundamental sets containing interior points, then G is called
a covering group of D' . It follows immediately that a covering group is
denumerable.

A region BC D' is called a fundamental domain of G if G has a
fundamental set A4 such that BC A CClB. It follows that every
covering group has fundamental domains (cf. 3.3).

3. Let (', n) be the universal covering surface of a Riemann sur-
face S. A covering transformation of (D’ ,x) over S is a conformal
mapping g¢:D’ —D’ (ie., a Mobius transformation fixing D’) satis-
fying meog = . The group of covering transformations of (D'.x) over
S is a covering group of D’.

On the other haund, if a covering group G of D’ is given, then D’|G
is a Riemann surface and G is the group of covering transformations of
(D', 7) over D'|G, where m:D’'— D'|G is the canonical projection.

Let @ and G be covering groups of D’ and D", respectively. The
groups G and G’ are conjugate if there exists a Mobius transformation
h:D — D" such that @' =h G k1. The Riemann surfaces D’/G and
D"|@ are conformally equivalent if and only if ¢ and G’ are con-
jugate. (For details, see [3].)

1. For later reference we recall here some basic properties of Mdbius
transformations.

Suppose that g is a Mobius transformation fixing a disk or a half-
plane D’. Then, by the reflection principle, the fixed points x and y
of ¢ either lie on Bd D’ or are symmetric points with respect to Bd D’ .
If in the former case x ==y, g is called hyperbolic, and if x =y, g is
parabolic. In the latter case g is elliptic. Since a covering group of D’
acts freely in D', it contains hyperbolic and parabolic transformations
only.

For a hyperbolic transformation g, let P(g) and N(g) denote the
attracting and the repelling fixed point of ¢, i.e., for every z € 6'\\{;1: s Y}

P(g) = lim ¢g"(2) , N(g) = lim g—™(z) .

n—>ao n—>oo

Suppose that P(g) == o == N(g) . Then there is a real number = > 1
such that

(1.1)

If P(g) = o, then
(1.1) g(z) — N(g) = =(z — N(9)) ,
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and if N(g) = oo, then
(L.1%) 9(z) — P(g) = (z — P(g))/x .

The real number x» = x(g) is called the multiplier of ¢ .

Two Mbbius transformations ¢ and ¢* are conjugate if there is a
Mobius transformation % such that g* = hogoh1. Then g¢g* is hyper-
bolic if and only if ¢ is, and it follows that

(1.2) #(g) = #(9%) -
If a hyperbolic transformation ¢ is given in the form
az + b

g(z):cz—I—d’ ad —bc=1,

an elementary calculation shows that
(1.3) (@~ d)P — 2 = =(g) + 1/x(g) -

Hence @ 4 d is always real. The number y(9) = la + d! is called the
trace of g. By (1.3) we have

(14) 19) = g + ().

It follows that x(g) > 2, and x(g,) = x(¢5) if and only if x(g;) = x(g,) -
Thus by (1.2)

(1.5) 72(9) = x(g*) -

If ¢ is parabolic, then @ + d = 4 2. Therefore it is natural to define
2(9) =2 and x(9) = 1. Then formulae (1.2)—(1.5) automatically hold
also in this case. If x is the only fixed point of ¢, then

x = lim ¢ (2) .
)
Therefore we set P(g) = N(9) =« .

The cross ratio (2,2, ,%3,2,) of four distinet points z;,...,2, of
O is defined as the image of z; under the Mobius transformation which
carries z,,2;,%, to the points 1,0, oo, respectively. It follows that
there is a Mobius transformation carryving z;,...,z, to wy,...,w,
if and only if (2,2, ,25,2,) = (wy, Wy, wy, wy) . Consequently the points
21,...,24 lie on a circle or a straight line if and only if (2;,2,, 25, 24)
is real.

5. We conclude this preliminary section with some remarks concerning
quasiconformal mappings.

Let ¢: R—2R be an increasing bijection and define
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1

1
w(x 4 iy) = 5f(¢(x +ty) + glx —ty))dt +
(1.6) !

%f(<p(x+ty)—<p(x—ty))dt»

0

It is well known that w:C — O is a homeomorphism with the following
properties (see [8] and [15]):

(i) w|R=gp,

(i) wH)=H,

(i) w(?) = w(z),

(iv) w|H is a diffeomorphism.
It follows from (iv) that w | H is locally quasiconformal, ie., if A is a
region such that Cl A € H is compact, then w | A is quasiconformal.

Suppose that ¢ is quasisymmetric on an open interval I, C R, i.e.,
there exists a real number 2 >1 such that

v + 1) — ¢lx)
(1.7) 17 < u’— <7
) — gle — 1)

holds for all « and ¢, a4+t €l,. If I, C I, is a closed interval, then
I; has a neighborhood U such that w | U is quasiconformal (see [15],
p- 88). If (1.7) holds for all « and ¢, then w: C—0C s quasiconformal.
Conversely, if a quasiconformal mapping w : H — H is given, then w can
be extended to a homeomoiphism w:H URU{w}—-HURU/{w},
and if w(w) = oo, then w|R is quasisymmetric.

6. To generalize the last remark in 5, consider the following situation:
Let  wy: HURU{ow}—-HURU{w} be a homeomorphism such
that wy(o) = oo and w, | B is increasing. Suppose that D’ is an open
disk such that Iy =D"NR O and w,|D' N H is quasiconformal.
Let I,,ClI, CI;, be an open interval. We prove that w, | I, is quasi-
symmetric. First, it follows that the interval wy(l,) is a free boundary

arc of wy(D'N H). Thus, if we define wy(Z) = wy(2), the mapping w,
is quasiconformal in a region containing ClI;. Since ClI; is compact,
there exists a quasiconformal mapping w; : ¢ —C such that wy, | I; =
wo | 1, ([15], I1.8.1). If 2 €l,, t>0 and x4+ t€I,, then (x, o,
+t,x—1) = — 1. Therefore, by the quasi-invariance of cross ratios
under a quasiconformal mapping, there exists a A > 1 which does not
depend on the choice of =z and ¢, such that

12 < [(wy(@) , wi(00) , wy( + 1) , w—y(x 8)| < 4.
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(This follows from Theorem 3.2 in [1].) If wy(w0) = o, there is nothing
more to prove. If not, then

[(wy(x) , wy(0) , wi(@ + 8) , wy(x — 1))| =

Yo (x +1t) — wo(x) wy(00) — wy(x — 1)

wy (¢) — wo(@ — t) wy(0) — wy(x + 1) [

By the compactness of ClI;, [wy(o0) — wy(x — t)| - [wy(0) — wy(z + £)|~t
is bounded away from 0 and oo, and the proof is complete.

If we define w by (1.6) with the boundary values ¢ = w; | R, then
it follows that w is quasiconformal in a neighborhood of I;.

7. Applying the considerations in 6, we prove the following lemma
needed in § 2.

Lemma 1.1. Let f:D—D be a sense-preserving homeomorphism
and D’ an open disk such that Cl D’ C D . Then there is a homeomor-
phism f':D—D having the following properties:

) f/'=f in D\D,

(11) f' is locally quasiconformal in D',

(iii) if f is quasiconformal in a neighborhood of a point of BdD’,
then the same holds true of f’,

(iv) if f is quasiconformal in a neighborhood of every point of Bd D",
then f’ is quasiconformal in a region containing Cl.D".

Proof: Suppose first that f is quasiconformal in a neighborhood of
every point of BdD’. Then f is quasiconformal in a region containing
Bd D’ and we can use quasiconformal continuation to obtain f’ satis-
fying (i)—(iv) ([15], IL. 8.1).

In other cases choose z, € BAD'.Let :D'— H and u:f(D')—H
be conformal mappings such that %(z) = o = u(f(z)) . Define w: H — H
by (1.6) with the boundary values ¢ = wofo 1 R and set

, _Jutowoh in D,
J= { f elsewhere in D .

Then (i) and (i) hold. If f is quasiconformal in a neighborhood of 2€Bd D',
then the mapping ¢ is quasisymmetric on an interval containing h(z)
as proved in 6, and (iii) follows.[]

§ 2. Homotopic mappings of Riemann surfaces

1. Let 8= D/G and S = D|@ be Riemann surfaces, (D ,x) and
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(D, 7’) their universal covering surfaces, and f:S -8 a continuous
mapping. As a generalization of the path lifting, we construct a lifting

f: D — D of f as follows: Choose p €8,z € z~(p) and 2’ € (a')(p’), p”
=f(p). Let [ €D and let y:I—->D be a path from 2z to . Define

f(C) as the end point of the lifting of fomoy from 2z’ . It follows that

f is well defined and continuous. Moreover, f satisfies the following
equation:

(2.1) fom=1n'of.

If 8’ is not simply connected, there exist different liftings of f (i.e.,
continuous mappings f:D —D satisfying (2. )) On the other hand,
a connectedaess argument shows that two hftlngs f and f of f coincide

if there is a point 2z € D such that f f (2) . Therefore, if 2’ runs
through the set (z')~(p’), all liftings of f are obtained by the above

construction of f Especially, this observation yields the following lemmas:

Lemma 2.1. If f and f’ are liftings of f, there exists a unique cov-
ering transformation ¢’ € G such that f' =g of.

By Lemma 2.1, every lifting f of f induces a homomorphism f* :
G — @' satisfying

Je@)of=feyg.
If f is a homeomorphism, then j:( is an isomorphism.

Note that f inherits many properties from f. For instance, }’ is
homeomorphic, differentiable, quasiconformal or conformal simultane-
ously with f.

2. Let Hom (¢', @) be the set of all homomorphisms between G
and G’ . We define in Hom (@, ¢") an equivalence relation ~ by setting
J ~j’ if there exists an inner automorphism A4 :@ — G’ such that
j =A0-j. Let [j] denote the equivalence class of j.

By Lemma 2.1, f defines a unique equivalence class [ f*] in Hom
(G, @) . Moreover, if j € [f*] then there is a lifting f of f such that
J =f* .

In fact, the class [f;] does not change if f is deformed continuously:

Lemma 2.2. Contlnuous mappmgs fi:8§—=8,4=0,1, are homo-
topic if and only if [f(,*] [jl*]
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For a proof, see [11] and [4]. Note that Lemma 2.2 can be stated also
as follows: f, and f; are homotopic if and only if there are liftings f,
and f; such that fo. = fi..

3. Let C(S,8’) be the set of continuous mappings f:8— 8", and
let ~ denote the equivalence relation homotopy defines in C(S,S’).
By Lemma 2.2, we can define an injective mapping F: (S, S8')/~ —
Hom (&, &)/~ by [f1> [fi]-

In the classical surface theory, S and S’ are supposed to be compact.
Then, by a theorem of Hopf [11]. Fis a bijection. Moreover, given an
isomorphism j: G — G, there exists a homeomorphism f:8S— 8" such
that }* = j . This result is due to Nielsen [17] and is referred to as Niel-
sen's theorem in the following.

In the general case, Nielsen’s theorem is trivially false: choose S = C
and 8" = C.If D is required to be the universal covering surface of §
and S, a counter example is obtained as follows: let S be a disk pune-
tured twice and 8’ a torus punctured once. Then S and S’ have iso-
morphic fundamental groups (free groups generated by two elements),
and thus G and G’ are isomorphic ([3]I19 A). On the other hand, S
and 8’ are not topologically equivalent because there are Jordau curves
y:I-—>S8" such that S’y(I) iz connected.

4, We conclude this section by presenting a new proof to the following
well-known theorcm (Teichmiiller [18], [19] and Bers [4], [5]):

Theorem 2.1. Let S and 8’ be compact Riemann surfaces. Then
the homotopy class of a sense-preserving homeomorphism f:8— 8’
contains quasiconformal mappings.

Proof: Suppose first that D is the universal covering surface of S
and 8’ . Then, by the compactness of . there exists a fundamental
sett A of G containedin a disk {z | 2! << 1 — ¢} forsome ¢,0 <e<<1.
Let {D,, ..., D} beanopen covering of A with disks such that = | C1 Dy
is injective, k= 1,...,n, and let f be a lifting of f. Dofine fo =f
and inductively fi, k=1,...,n, as follows:

Ji {ﬂ(g) efiiog in gDy for all g€G,
=1
E_1 elsewhere in D,
where the homeomorphlsm fk 1 satisfies the conditions of Lemma 1.1

with respect to f,,_1 and Dy . One verifies by induction that fk is locally
quasiconformal in the open set



Tuomas Sorvari, The boundary mapping induced by an isomorphism 13

k
U UgD).
2€6G i=1

Hence f. is a quasiconformal self-mapping of D .

On the other hand, fx(g)ofc = feog holds for all k=0,1,...,n
and g € G . Consequently there is a unique continuous mapping f.: S — 8’
such that f,. is a lifting of f.. By Lemma 2.2, f~ f., and by the quasi-
conformality of fn , the mapping f. is quasiconformal.

If, finally, S and 8’ are tori, we can apply the above proof replacing
D by C.O

The preceding proof is modified from one Bers gives in [5]. It can be
interpreted also as follows: Cover § with finitely many parametric disks
Uy,...,U., ie., the images of the disks Dy under the projection map-
ping 7. Set fy,=f and define inductively fi = f,_; in S\ U, and
fu | Ur to be the locally quasiconformal mapping with the boundary
values ¢ = f,_; | Bd U constructed in Lemma 1.1. Then f. is a quasi-
conformal mapping homotopic to f.

Slightly modifying the above proof we obtain the following result:
If 8 is an arbitrarv Riemann surface, f:S— 8’ a sense-preserving
homeomorphism, and U C S a region with a compact closure, then the
homotopy class of f contains homeomorphisms quasiconformal in U .

Theorem 2.1 does not hold for arbitrary Riemann surfaces, since e.g.
C and D are topologically but not quasiconformally equivalent. An
example constructed in 4.8 shows that Theorem 2.1 does not hold even
if D is the universal covering surface of S and §'.

§ 3. The boundary mapping associated with an isomorphism

1. We begin this section by summarizing some properties of the covering
groups.

Let G be a covering group acting in a disk or a half-plane D’ . If
g € G is a hyperbolic transformation, the axis of ¢ is defined to be the
circle or the straight line through the fixed points P(g) and N(g) orthog-
onal to BdD'. If ¢ is parabolic, the point P(g) = N(g) is called the
axis of g. We denote by Adz(g) the axis of ¢ € G\ {id}.

The set of the fixed points of all non-identity transformations of @
is denoted by Fix(@). If Fix(@) is dense in Bd D', the group G is
said to be of the first kind.

Let ¢ and G’ be covering groups. We say that an isomorphism
j G — G is induced by a continuous mapping f: 4 — C inaset ACC
if the following conditions hold:
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(i) g(4)=4 for all g€G,
(i) feg=4jlg)of-

2. In the following lemma, we list properties of covering groups.

Lemma 3.1. A covering group @ of D’ has the following properties:

(i) If z€Fiwx(F), then the set {g €G|g(z) =z} is a maximal
cyclic subgroup of @.

(ii) Let h; and ky be non-identity transformations of G such that
N(hy) &= P(hy), and ¢n=h3oh}. Then N(g.)— N(h;) and P(g.)—
P(hy) as n— oo .

(ili) If @ is of the first kind and A4; and 4, are disjoint open sub-
sets of Bd D', then there is a g € G such that P(g) € 4; and N(g) € 4, .

The first assertion is proved in [13] I 2 H, (ii) in [20] 1.4, and (iii) follows
from (ii).

3. We next introduce a method to construct special covering groups.
Let ¢ be a hyperbolic or a parabolic transformation fixing the unit
disk D . The isometric circle I(g) of ¢ is defined by

Ilg) ={z | l(9)'(x)] = 1},

(g9)" denoting the derivative of g . As proved e.g. in [10], I(g) is a circle
orthogonal to K and to Ax(g), 9(I(g)) = I(g7), and I(g) and I(g7?)
have the same radius. If g is parabolic, then I(g) and I(g~!) are tangent
to each other at P(g), otherwise I(g) N I(g~*) = @ . The inside of I(g)
is mapped by ¢ onto the outside of I(g~'), and we have |(g)'(z)] > 1
inside I(g) and [(9)'(z)! <1 outside I(g).

Let F(g) denote the part of D outside both I(g) and I(97%), i.e.,

Flg)=1{z€D [ |(g)() <1& ,(g7)(z) <1},

For the identity transformation we define F(id) = D . The region F(g)
is a fundamental domain of the group generated by g. Moreover, if &
is a covering group of D, then
F(@) =N F@)
g€G

is a fundamental domain of G . The boundary of F(¢!) contains no arcs
of K if and only if G is of the first kind.

We call a set {g;,¢s,-..} consisting of parabolic or hyperbolic trans-
formations fixing D a free combination if D\Cl F(g:) C F(g;) when-
ever ¢ == .
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Lemma 3.2. Let G be the group generated by a free combination
{1,955 -.}. Then

(i) G is a covering group of D,

(ii) @ is free in the generators g¢;,¢s,..-,

(i) (@) =N F).

Lemma 3.2 is proved in [10], section 25. It also follows from Theorem
2.6 in [20].

4. Let @ and @ be covering groups of the first kind acting in D’
and D", respectively. A homeomorphism ¢ :Bd D’—Bd D" is called
the boundary mapping of an isomorphism j:G—G" if

(3.1) p(P(g)) = P(3(9))

holds for all g € @\{id}. Since Fix(¢) and Fiz(G') are dense in Bd D’
and Bd D", respectively, (3.1) defines ¢ uniquely. On the other hand,
there are isomorphisms which do not have boundary mappings; an example
is constructed in 3.10.

The existence of the boundary mapping of an isomorphism j: G — &
is, in the following sense, invariant under Mébius transformations: Let
h and k' be Mobius transformations, Gy =hGh1, G=h@G #)?
and j;: G, — G; the isomorphism defined by

(3.2) Julgr) = k"o j(ht o gy 0 h) o (R)7E.
Then the boundary mappings ¢ and ¢; of j and j, exist simultaneously
and

¢ ="h'opoh.

This possibility to transform the given covering group will be used
repeatedly in the following. For instance, in the rest of this section we
shall develop the general properties of the boundary mapping of an iso-
morphism considering only covering groups acting in D

5. By the following theorem, the boundary mapping ¢ is the only
homeomorphism, if any, which induces j : @ — @' in the closure of Fiz(G) .

Theorem 3.1. Let G and G’ be covering groups of the first kind
acting in D and j:G — G’ an isomorphism.

( i) If the boundary mapping ¢ of j exists, then ¢ induces j in K.

(i) If ¢: K — C is a continuous injection inducing j in K, then
¢ is the boundary mapping of j.

(i) If f:DUK-—->DUK is a homeomorphism such that f|D
induces j in D, then f|K is the boundary mapping of j.
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Proof: To prove (i), let g and % be non-identity transformations of G .
Then (¢ o g)(P(h)) = @(P(gehog™) = P(j(g o hog™)) = P(j(g) e j(R)  j(g)™)
=J(@)(P(R)) = (j(g) o p)(P(h)) . Therefore

pog | Fix(G) = j(g) o ¢ | Fiz(Q) .

Because ¢ is continuous, (i) holds.

In (i), choose g € G\ {id} and z € K\ {N(g9)} such that ¢(z) =
N(j(g). Then ¢(g") =j(@)(p(z) and letting n— o, e(P(g)) =
P(j(g)) follows.

By continuity, f| K induces j in K . Thus (iii) follows from (ii). [

Suppose that D/G' and D/G’ are compact. Applying (iii), the exist-
ence of the boundary mapping of an isomorphism j: G — G’ then follows
from Nielsen’s theorem and Theorem 2.1.

In (iii), f has a natural extension to C . If we define

_ ey it <1
(3.3) f*(2)~{fz*)* i 2]>1,

A

A -~
where z* = 1/Z, then f*:C — C is a homeomorphism indueing j in €' .

6. The rest of this section deals with different characterizations for
the existence of a boundary mapping. In the following theorem, we sum-
marize results recently published by Tukia [20].

Theorem 3.2. Let G and G’ be covering groups of the first kind
acting in D and j:G — @' an isomorphism. Then the following condi-
tions are equivalent:

( i) The boundary mapping ¢ of j exists.

(i) If ¢, and ¢, are non-identity transformations of G . then
Ax(gy) N Ax(gy) == O if and only if Ax(j(gy) N da(j(ge) = O .

(iii) There is a homeomorphism f:D — D inducing j in D.

A A
(iv) There is a homeomorphism f*:C — C inducing j in C.

The equivalence of (ii) and (iii) is proved by Tukia [20] (Lemma 3.4
and Theorem 3.6); see also Fenchel and Nielsen [9] and Marden [16].

By Corollary 3.5.1 in [20], every homeomorphism f: D — D inducing
j in D admits a homeomorphic extension to K . Consequently (iii) im-
plies (iv) by formula (3.3). On the other hand, if f* in (iv) maps D onto
{z | |z| > 1}, then 1/f* maps D onto itself and induces j in D . Thus
(iv) implies (iii).

By Proposition 3.5 in [20], (ii) implies (i). Conversely, (i) implies (ii)
by formula (3.1).
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7. Let us make some complementary remarks to Theorem 3.2. Re-
taining the assumptions on G aud G, suppose that an isomorphism
j:G—@G" has the following property:

(A)  j(g) is parabolic if and only if ¢ is parabolic.

Then it follows from (i) in Lemma 3.1 that there is a bijection @ : Fix(G)
— Fiz(@') defined by

(3.4) D(P(g)) = P(j(g)) , g € G \{id} .

In order to extend @ to the boundary mapping ¢ of j, we consider
the following condition:

(B) If z,...,z, are distinet points in Fix(G), then (2,72 ,2;5,2,)
> 1 if and only if (D(z), P(z,) , P(z;), D(z4)) > 1.

Geometrically, (z;,%y,25,%4) > 1 if and only if 2z, and z, lie in dif-
ferent components of K \{z ,z;}, i.e., 2, and 25 separale z, and z,.

We call g € G\ {id} a boundary transformation if it has the following
property: Axz(g) N Ax(h) = @ for an b € G \{id} only if Aw(g) = Ax(h).
(This definition agrees with the corresponding one given by Marden in
[16].) By Lemma 3.1, every parabolic transformation g € G is a boundary
transformation, and if @ is of the first kind, all boundary transformations
are parabolic.

Theorem 3.3. Let & and G’ be covering groups of the first kind
acting in D and j:G— G’ an isomorphism. Then the boundary map-
ping ¢ of j exists if at least one of the following conditions is satisfied:

(1) D|G is compact,

(i) G is finitely generated and (A) holds,

(iii) (A) and (B) hold.

Conversely, if ¢ exists, then (A) and (B) hold.

Proof: The sufficiency of (i) is already stated in 3.5. Secondly, suppose
that (i) holds. Then j(g) is a boundary transformation if and only if ¢
is one, and it follows from a theorem of Fenchel —Nielsen [9] and Marden
[16] that j is induced by a homeomorphism in D . Thus by Theorem 3.2,
@ of j exists.

The necessity of the conditions (A) and (B) is clear. Conversely, sup-
pose that (A) holds. Then @ defined by (3.4) exists, and since Fix(Q)
and Fix(G') are dense in K , the existence of ¢ follows from (B) by
standard topological arguments. For the sake of completeness, we repeat
the construction of ¢ .
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Let 2€ K and {z:.} C Fizx (@) such that 2,—>2z as n— oo. We
show that there is a w € K such that @(z.) — w . If not, then there are
two different points w; and w, and two subsequences {z;x} and {2z}
of {z.} such that @(za)—>w; as k— o0, 1=1,2. Since @ is of
the first kind and @ is a bijection, we can choose {; and {, in Fiz (G)
anda ky > 0 suchthat { =2 =% {, and (D({y), P(zw) , D(&) , D(z2k)) > 1
for all k> k,. On the other hand, since zp—>z = ,t=1,2,¢ and
{, cannot separate the points z; and zx from some k& = k; onwards.
This contradicts (B). It follows similarly that ®(z,) —w whenever z, — z
and {z,} C Fix (G) .

Define ¢: K—~K by ¢()=w. Then (3.1) automatically holds.
The above construction of ¢ is symmetric with respect to j and j—*.
Therefore, if @(z.) —-w as n — oo, then we have a unique z € K such
that z, — z . This proves the bijectivity of ¢ . To prove that ¢ and ¢!
are continuous, we show that for any points z;,...,2, € K we have
#(=) , 9() , Plzs) , 9(z)) > 1 if and only if (2,2, 2,2, > 1. Suppose
that (z;,25,23,24) > 1,andlet zi € Fix (F) be points such that zim—2;
as m—>o0, 1=1,2,3,4. Then by (B), (D), Pzm), Pz3,) , P(24,))
> 1 from some n =mn, onwards. Since @P(zin) — @(z:)) as n — o,
(p(21) > p(22) » p(23) » p(24)) > 1 follows. Similarly, (21,2 ,25,24)>1 if
(p(zy) , p(29) , @(z3) » P(24)) > 1. Therefore, if 2 € K and {2.}C K such
that z,—z as n— o, it follows as above that ¢(z.) —> @(z) . Thus ¢
is continuous. The continuity of ¢! can be proved similarly. ]

Since a covering group G corresponding to a compact Riemann sur-
face D/G contains no parabolic elements (see [4]), the condition (i) is
a special case of (ii).

8. From Theorems 3.2 and 3.3 it follows that the axis condition (ii)
in Theorem 3.2 holds if and only if (A) and (B) are valid. This can also
be proved directly as follows:

It is clear that (A) and (B) together imply (ii). It follows from Lemma
3.1 that (ii) implies (A). Hence, it is sufficient to show that (A) and (ii)
together imply (B).

Let z,,...,%, be points in Fiz (G) with (2,2, ,25,24) > 1. Choose
hi €G such that 2z, = N(hy),z, = N(hy), 23 = P(hy), 2y = P(h,), and
set gin = h3 o by and ¢ = kg o A5 . Then, by (ii) in Lemma 3.1, N(gin)
—2 and P(gi) -2, as n— 0,7 =1,2. Thus there is a n,> 0
such that Adx(gm) N 4A2(g2) =G for n > n,. By (4), @ defined by
(3.4) exists, and N(j(gin)) = DP(z:) and P(j(gin)) = DP(z;2) as n— o,
1=1,2. From Ax(j(g1n)) N A2(j(gsn)) = G ,n > n,, it then follows
that (D(zy) , DP(zp) , D(z3) , P(z4)) > 1. Similarly, if (D(%), P(zs) , P(z5) ,
D(zy)) > 1, then (2;,72,,25,24) > 1.
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9. The following theorem tells more about the groups G and G’ if
the boundary mapping does not exist.

Theorem 3.4. Let G and G’ be covering groups of the first kind
acting in D and j:G— G an isomorphism. The boundary mapping
of j does not exist if and only if there is a subgroup &; of G such that
one of the Riemann surfaces D/G, and D/j(G;) is homeomorphic to a
disk punctured twice and the other to a torus punctured once.

Proof: Suppose first that there exists a subgroup &; C G such that
one of the Riemann surfaces D/G,; and D/j(G;) is homeomorphic to a
disk punctured twice and the other to a torus punctured once. Then D/G,
and D[j(G,) are not topologically equivalent. Therefore j cannot be
induced by a homeomorphism in D . By Theorem 3.2, the boundary
mapping of j does not exist.

Suppose that the boundary mapping of j does not exist. Then the
axis condition (ii) in Theorem 3.2 does not hold. Since we can replace
4 by j', we may assume that there are hyperbolic transformations ¢,
and ¢, in G such that Axz(g) N Ax(g,) =9 and Axz(j(g,) N Az(j(gs))
= (. Moreover, we may assume that {g,,¢,} and {j(g;),j(g.)} are
free combinations. (By (i) in Lemma 3.1, this is achieved by replacing ¢,
and g, by g7 and g5, where m and = are sufficiently large.) Let &,
be the group generated by {g; , g,} . By (iii) in Lemma 3.2, we know the
fundamental domains F(G;) and F(j(®,)), and it follows that D/G,
is homeomorphic to a torus punctured once and D/j(G;) to a disk punc-
tured twice. ]

10. We conclude this section with an example of an isomorphism whose
boundary mapping does not exist.

Define four Mobius transformations ¢, ,¢,,9:,¢9, fixing D by the
following requirements:

Ig) =1g) ={z|l— Q0+ =1},
Igr) =1(gs) ={zllz—(=1+1)|=1},
Ige) =I((g)™ ={z|lz — (= 1= =1},
Igy) =g ={z 1]z — 1 —d)]=1}.

Then ¢, and g, are parabolic whereas g; and g; are hyperbolic. Let G
and G’ be the groups generated by {g,,¢.} and {g;,gs}, respectively.

Since {g;,¢»} and {g1,g,} evidently are free combinations, ¢ and
@' are covering groups by (i) in Lemma 3.2. Since the boundary of F(G)
= F(@') contains no arcs of K, the groups ¢ and G’ are of the first
kind. By (ii) in Lemma 3.2, we can define an isomorphism j:G — &
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by j(g:) =g:,7 =1,2. Since (A) does not hold, j has no boundary
mapping.

Considering the fundamental domains of G and &, we see that DG
is homeomorphic to a disk punctured twice and D/G’ to a torus puunc-
tured once. Thus by Theorem 3.4, the example constructed is the simplest
possible.

§ 4. The dilatation of an isomorphism

1. In this section we define a measure d(j) for the distortion of an
isomorphism j: G — G’ . We shall see that d(j) has some formal analogy
with the maximal dilatation of a homeomorphism.

Let G and &’ be covering groups of the first kind and j: G — &
an isomorphism. If x(g) is the multiplier of g € G (see 1.4), let A(j)
be the set of real numbers @« > 1 for which

(4.1) #(9)" < #(j(g) < #(g)°

holds for all g € ¢ . If {a.} C A(j) such that ¢, —a, as n— o and if
9o € G is fixed, then (4.1) holds for g, and all numbers a,. Therefore (4.1)
is valid also for ¢, and a,. and it follows that a, € A(j), i.e., A(j) is a
closed set. We call 5(j) ==mina, «a € A(j), the dilatation of j.
(Thus 0(j) = oo if and only if A(j) = @ .) Note that the condition (A)
in 3.7 holds whenever A(j) == @ .

Let j": G — " be another isomorphism with a finite dilatation.
Then it follows from (4.1) that

(42) ()" ) < 6(5)0(J) -

From (1.2) we see that 6(j) =1 if j is induced by a Mobius trans-
formation. Thus by (+.2), 4(j) is invariant under Mobius trausforma-
tions: if j; is defined by (3.2), then 6(j;) = 6(j) . Also analogously with
the maximal dilatation of a homeomorphism, it follows from (4.1) that

o(7) = o(j7) -

2. By the following theorem, the dilatation of an isomorphism induced
by a quasiconformal mapping is finite.

Theorem 4.1. Let G and G’ be covering groups of the first kind
acting in D’ and D", respectively. If an isomorphism j:G — G’ is
induced by a quasiconformal mapping f:D"— D", then 6(j) < K(f).
where K(f) is the maximal dilatation of f.
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Proof: By (iii) in Theorem 3.1 (or by Theorem 3.2), the boundary map-
ping of j exists. Therefore (A) in 3.7 holds, i.e., %(j(g)) = 1 if and only
if %(g)=1.

Let g € G be hyperbolic. By (3.3) we may assume that f is defined

in the whole plane €', and by the invariance of K(f) and 4(j) under
a Mobius transformation, we may assume that P(g) = P(j(g)) = o and

N(g) = N(j(9)) = 0.
Set g'=74(g), and k= x(g), k' = #(¢’) . Then ¢ (z) =kz and ¢'(2)
= k'z, and since f induces j, we have
(4-3) J(kz) = (K')f(z)
for n=20,41,42,.... Let B, be the annulus bounded by the cir-
cles |2|=1 and [zl=Fk",n=1,2,... . We approximate the ring
domain B, = f(B.) by an annulus B, as follows: Let & = min [f(¢")]
@
and & = max [f(¢”)]. Then £ >0 and & < o« . and we set
9
By, ={z & < |zl < (K)&}.
It follows from (4.3) that B, C B, . Moreover, B,
nents of the complement of B, . Thus ([15], 1.6.6)
(k)&
&

On the other hand, since f is K(f)-quasiconformal

M(B) = M(B.)/K(f) = (nlog k)/K(f).

separates the compo-

M(B)) < M(B) = log — nlog k' + log (&%)

So we have
log &k < K(f) log & + (K(f)n) log (&) ,

and letting 7 — o, we conclude that logk < K(f)log k’. Similarly,
log k" << K(f)log k. Thus K(f) € A(j).C

If we assume that 2 and A’ in (3.2) are quasiconformal mappings
such that G; and G are covering groups, then it follows that 6(j)/
(KK ((R')) < 6(j;) < o()K(R)K(R'). In this sense, the dilatation of
an isomorphism is quasi-invariant under quasiconformal mappings.

3. Theorem 4.1 combined with Nielsen’s theorem and Theorem 2.1
implies that 6(j) << co whenever D’/G' is compact. More generally,
applying the theorem of Fenchel and Nielsen [9] referred to in Theorem
3.3 we obtain the following corollary for Theorem 4.1.

Corollary. Suppose that G is finitely generated. Then 6(j) < oo if
and only if the condition (A) in 3.7 holds.
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Proof: If 6(j) < oo, then (A) holds. If, conversely, (A) holds,
then by Theorem 3.3, the isomorphism j is induced by a homeomorphism
f:D"—D". Representing D'/G and D"/G’ as compact Riemanun sur-
faces with finitely many punctures (see [2]) and applying Theorem 2.1
we see that there are quasiconformal mappings inducing j ia D’ (for
details, see [7] p. 71). Then by Theorem 4.1, §(j) << oo .[]

4. Suppose that j:G — G is an isomorphism whose boundary map-
ping ¢ exists. By the follov&mg theorem, 6(j) << oo if there is a quasi-

conformal mapping f: 0 — C such that /= ¢ in the closure of Fix (G).

Theorem 4.2. Let G and G’ be covering groups of the first kind
acting in the upper half plane I . Suppose that the boundary mapping
@ of an isomorphism j: G — G’ exists and @(w) = o .If ¢ is 1 -quasi-
symmetrie, then

(4.4) 8(j) < log 2/log (1 4 1/2) .

Proof: The quasisymmetry of an increasing homeomorphism ¢ : .y
is defined in 1.5. As in the proof of Theorem 4.1, it suffices to consider
hyperbolic transformations ¢ € @ only.

Suppose first that oo is not a fixed point of g . Since we can replace
g by g, we may assume that P(g) << N(g). Then there are Mobius
transformations %, and h, fixing oo such that A, (P(g)) = hz(P(g(g))) =0

and Ay (N(g)) = hy(N(j(g))) = 1. Since &, [R and b, IR are l-quasi-

symmetric, hyoq@o bl | Ris 2 -quasisymmetric. Therefore, we may
assume that P(g) = P(j(g)) = 0 and N(9) = N(j(g)) =1.
Set ¢'=i(g), k= x(g) and k" = «(g'). Then

< 2

=0tk YOO

and

g(1/2) = 1/(L + F).
By 1 -quasisymmetry of ¢, for each m=1,2,...,
(4.5) (L + 2" < g(1j27) < (1 + A

Let p be the natural number for which
(4.6) 120 < 1)(1 + k) < 1/2°-1,
Then by (4.5)
1(1 4 2P < (1)L + k) = plg(1/2)) < 2PY(1 4 AL,
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Set m =1 in (4.5). Then by (i) in Theorem 3.1
(1 + ) = g'(1(L + 2) < plg(1]2)) < ¢/ ()1 + 1) = 4K+ 7).
By (4.6), p >1log (1 + k)/log2> p — 1, and thus

(1/(1 + l))log(2+2k)/]og2< }./(]6’ + }.)
and

(A(1 - A))es@iz koo = /(1 4 1/ 7)
Since y'°¢" = 287 for a,y > 0, we get
(L/A)(L - F)j2yet+1mmeer 1)) < | <
M2 A 2k)lost+Aleez __ 7

This double inequality holds for all hyperbolic transformations of G not
fixing oo . Especially, we may replace ¢ by ¢*, n=1,2,..., and
since x(g") = k",

k < [)(2 _I_ 2 kn)log(l-r/ ;]1/"
A.I/n(2 + 9 kn)log(1+;.)/(nlog2) ,
and letting n— oo,
(4.7) L < Jlost+Aios?
On the other hand, from some » = n, on
B> [(1)A)((1 4 kr))2)let +1nkee2 1 /37tm
(1/(22))1/" (kn//:z)log(l+ 1/7),(nlog2) ,

and letting n — w0,
(4.8) B> plos(t+1i)log2

If oo is a fixed point of a hyperbolic transformation g € G, we may
assume that P(g) = P(g’) = 0,N(g) = N(¢9') = © and ¢(1) = 1. Then
g(z) = z/k and ¢'(z) = z/k’, and we get as above the following double
inequality: ' '

1/(1 + ;») klog(l+1/l)/log2 <k < ;'(Qk)log(l+}.)/log2 .

Thus, replacing g by ¢* and letting n — oo, (4.7) and (4.8) are obtained
also in this case. Consequently

max (log (1 + 4)/log 2, log 2/log (1 + 1/2)) € A(j) .

Finally, one verifies by calculation that log(l 4 1/A)log (1 + 4) <
(log 2)2, ie., log2/log (14 1/2) € A(j).O
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Suppose that ¢ is 1-quasisymmetric. Then there is a Mobius trans-
formation A fixing H such that & [1% = @ .Since j(g) |[R=hogeoh| R,
it follows that % induces j ia 0. Consequently 6(j) = 1. On the other
hand, setting 4 =1 in Theorem 4.2. one obtains 4(j) << 1. Thus the
inequality (4.4) is sharp if A =1.

It follows from (4.4) that 4(j)/2 stays bounded as 71— oo, i.e.,
5(j) = O(3) .

5. We prove next a special case of Nielsen’s theorem (see 2.3) which
holds also for open surfaces.

Theorem 4.3. Let (¢ and G’ be coveriag groups of the first kind.
An isomorphism j:G -G is induced by a Méobius transformation in
C if and only if 6(j) = 1.

Proof: If j is induced by a Mobius transformation, then §(j) =1
by the formula (1.2).

Suppose that 06(j) = 1. Let ¢; and ¢, be two hyperbolic transfor-
mations of ¢ without common fixed points. Set

B(gysg2) = — (N(g1) . N(ga) . Plgn) , Plgs)) + 1.

Since Fix(@) is contained in a circle or in a straight line, (g, , ¢s) is
always veal, and f(g;,¢,) < 0 if and only if Aa(g) N Ax(g,) =0 .

Choose ¢; and g, such that §{g;.9,) < 0. By 06(j)=1, (A) in
3.7 holds. Thus p(j(g1) ,5(gs)) is defined. and we show that

(4.9) B(gr s 92) = BUJ(g1) - J(g2)) -

To prove (4.9), set ¢ =j(g:)) and ki = x(g:) = =lg;). i = 1,2 . Since

the validity of (4.9) does not change if we replace & and G by conjugate

groups G, and G; and j by the isomorphism j, defined by (3.2), we

may assume that @ and G actin H and that N(g,) = N(g:) = 0, P(g,)

= P(g)) = o and P(g) = P(g;) = 1. Then = N(g) = pigy . 95) -
Since 6(j) = 1, it follows from (1.4) that

(4.10) 2910 o) = %(g1° g2) -

On the other hand, we can determine all values 2’ = N(g;) = (g1 , ¢a)
for which (4.10) holds: Since

(ky — w)kyz — (ky — )
(g1°g2)(z) = (kl . 1)/{322 - k]x + 1

we get
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(4.11) Mo gy = 2222
- Vg, 11—
where
Tekey + 1

a=a(91,92)=m>1-

Similarly, we get an expression for #(g; o g;) replacing « in (4.11) by «’.
Then, since z << 0, (4.10) yields

a—zx "a—x’(
11—z }l—x’ ’
and hence
=
(4.12) Y=1a(2 —2) —«a

If we replace ¢, and ¢, in (4.10) by ¢7" and g5, m ,n > 1, the number
x’ obtained by (4.12) does not change. On the other hand, a(g,,g,) <
a(gT , 93) . Consequently, since the function

a2 —x) —x

at>
a+1— 2

is increasing, #' = « is the only possible value for 2’ . Thus (4.9) is proved.

Since 6(j71) = 1, it follows, similarly, that if we choose g¢; and g¢;
such that f(g1,¢9,) <O, then A(jg1),5gs)) < 0. Thus the axis
condition (ii) in Theorem 3.2 holds and the boundary mapping ¢ of j
exists. (We still assume that ¢ and G’ actin H and that ¢(o0) = ©.)

Finally, it follows from (4.9) that ¢ preserves cross ratios. To prove
this, let — o0 < a; <@, < 23 < a4 <oo. By (iii) in Lemma 3.1 we can
construct two sequences {g;.} and {gs.} of transformations of G such
that N(gw) —a: and P(gin) >, as n— o, i=1,2. Then by
the continuity of ¢,

(X1, g5 X3, ) = — lim ﬁ(gln s g2m) + 1=

n—w

— lim §(j(g1n) , j(g2n)) + 1 = (p(21) , 9(xs) , p(25) , P(4)) -

n—>oo

Hence there is a Mobius transformation % such that ¢ = h]lg , and,
as remarked at the end of 4.4, it follows that % induces j in C.[]

6. The results of this section have some applications.
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Let G, be a fixed covering group of the first kind and J(G,) the set
of all isomorphisms j: G, —> G with finite dilatation. (Note that G is
allowed to vary.) We define in J(G,) an equivalence relation by setting
Ji~Jjs if 0(jaojit) = 1. Let E(G,) denote the set of equivalence classes:

E(Gy) = J(Gy)/~

and denote the equivalence class of j by [j].
In E(G,) we can define a natural metric:

Theorem 4.4. Set d([ji], [j2]) = log 0(js - ji ). Then (E(G,),d) is
a metric space.

Proof: Let ji~ji,i=1,2. Since Lj;u(j;)’1~ 7Y e (aogr o
(jpo (j7™) . it follows from (4.2) that o(j; < (j1)™") = o ]e, Jl ) and simi-
larly  8(j, 0 ji") < 0(js 0 (j1)™) . Thus d is well defined.

By definition, d >0 and d([j;].[j.)) =0 if and only if j; ~js.
Since 48(j) = 8(j1) for all isomorphisms. d([j]. [j.]) = d([Js]; [J1]) -

To prove the triangle inequality, let ji € J(Gy).i==1,2,3. Then
Gyodii=(Gs o g e (o ji Y and by (4.2), 8(js = ji™) < 0(js = 7)ol o ji) 01

By Theorem 4.3, all isomorphisms in [id] are induced by Mobius
transformations. Thus d([4], [¢d]) = log 0(j) is a measure for the devia-

tion of j from isomorphisms induced by conformal mappings in C.

7. We now restrict ourselves to covering groups acting in D . Let
G, be of the first kind and let J,(Gy) be the set of isomorphisms j : Gy — G
induced by quasiconformal self-mappings of D . Denote the set of quasi-
conformal mappings inducing j by B(j).

We define in Jy(G@,) an equivalence relation < by setting j; = j»
if B(jooji') contains Mobius transformations. The set

T(Gy) = Jo(Go)/=

is the Teichmiiller space of G, . and the Teichmiiller metric o in T(G,)
is defined by

o([j1] , [J=]) = log inf {K(f) [ € B(js=Jji ) -

(By Lemma 2.2, these definitions agree with the definition of the Teich-
miiller space of the Riemann surface D/G,.)

By Theorem 4.1, Jo(Gy) € J(G,) . and it follows from Theorem 4.3
that the relations < and ~ are the same in Jy(Gy):

T(Go) = Jq(Go)/N
By Theorem 4.1, d([j:],[j2]) < o([j] . [72]) holds for all [ji] € T'(Gy) ,i
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= 1,2, but it remains us an open question whether these metrics are
equivalent in 7'(G,) .

8. To conclude this section, we construct two covering groups G and
@' and an isomorphism j:G - @ satisfying the following conditions:

(i) G and G’ act in D and are of the first kind,

(ii) j:G—@ is induced by a sense-preserving homeomorphism
f:D—D,

(iii) 0(j) = oo.

Suppose that j:G — @ satisfying (i)—(iii) is constructed. By Theo-
rem 4.1, there is no quasiconformal self-mapping of D inducing j in D
(cf. Theorem 2.1). Moreover, if ¢ is the boundary mapping of j, there
is no quasiconformal self-mapping of D with boundary values ¢ (Theo-
rem 4.2).

Let g be a hyperbolic transformation fixing D, and I(g) its isometric
circle (see 3.3). Let a(g) and c¢(g) denote the points of I(g) N K such
that Im (c(g)/a(g)) > 0. If we set b(g) = Ax(g9) N I(g) N D . then

(4.13) x(g) = (b(g™) , b(g) , N(g) , P(g)) -

(The formula (4.13) follows directly from formulae (1.1) since b(g') =
9(b(9)) -)

Supposing that Axz(g) contains the origin, ¢ is uniquely determined
by any two of the numbers «a(g),c(g),#(g) or by b(g) alone.

We define a set {g;,¢s, ...} of generators of G iductively as follows:

(i) 0€Ax(gn) , n =1,2,...,
(il) alg) = e~ ofgy) = €.
(i) (@) =clgn),n=1,2,...,
(iv) L 1,2,

iv) ¢(gns1) = c(gn)e

Since ¢(ga) — g5(c(g1)) = a(gr") as n— oo, it follows that {g;,¢,,...}
is a free combination. Therefore, G generated by {¢;,¢,....} is a cov-
ering group (Lemma 3.2). Since the boundary of F(G) contains no arcs
of K, the group @ is of the first kind.

We define a set {g;,¢s,...} of generators of ' in a slightly dif-
ferent way:

o)

(1)

(i1) a( ,

(iii) %(g)) == #(g=)" , m =2,3,...,
(V) @(gnyr) =€) , m=2,3,....
(v) o
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It follows from (4.13) that a(g;) is well defined, i.e., Im (c(g7)/a(g;)) > O,
and that {g;,g;,...} is a free combination. Thus @ is a covering group
of the first kind.

By (ii) in Lemma 3.2, we can define an isomorphism j:G — G by
jlgn) =g.,m=1,2,.... Then obviously &(j)= co. Moreover, it
follows from the construction that there exists a sense-preserving homeo-
morphism  f, : Bd F(G) - Bd F(&) such that fiogs =g.ofy,n =
1,2,.... Let f,:ClF(G@)—ClIF(G') be an arbitrary homeomorphism
with boundary values f; | Bd F(G) = f,, and define a homeomorphism
f:D—=D by f=jg oficgt in gCIFG)ND),g€G. Then f
induces j in D.

§ 5. Isomorphisms with special boundary mappings

1. In this section all covering groups are of the first kind and act in H .

Suppose that j: G — G’ is an isomorphism whose boundary mapping
@ exists and ¢(o0) == oo . We shall first prove that ¢ and ¢! are locally
Lipschitz mappings if and only if j is induced by a Mébius transformation.
We establish this result in a slightly more general form; in fact it suffices
to consider only the local behavior of ¢ at the fixed points of G . To
this end, we give the following definition: ¢ is said to be a Lipschitz map-
ping at a point x, € R if there is a real number L > 1 and a neighbor-
hood UCR of z, such that

(5.1) [z — @] [1L < |gp(ag) — @(@)] < L |xg — 2|

holds for all # € U . (Note that L may depend on z,.) This pointwise
Lipschitz conditon is evidently invariant under Méobius transformations:
if ¢ is a Lipschitz mapping at z, and A; and %, are Mobius transfor-
mations fixing R U {0} such that % (x,) == o and hyoq¢ohi' () = w©,
then hyo@ohi' is a Lipschitz mapping at A,(x,) . Thus it is reasonable
to call ¢ a Lipschitz mapping at oo if 1/g(1/x) is a Lipschitz mapping
at the origin.

2. We can now establish our proposition.

Theorem 5.1. Let G and G’ be covering groups of the first kind
acting in H . An isomorphism j: G — G’ is induced by a Mobius trans-
formation fixing cc if and only if the boundary mapping ¢ of j is a
Lipschitz mapping at the points of Fix (G) .

Proof: If j is induced by a Mobius transformation %, then ¢ =
h|RU{cc}. Thus ¢ isa Lipschitz mapping at every point of R U {c}.
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Conversely, suppose that ¢ is a Lipschitz mapping at the points of
Fiz (G) . By Theorem 4.3, it suffices to show that d(j) = 1 or, since ¢
exists, that x(g) = #(j(g)) holds for all hyperbolic transformations g € G .
To do this, set g’ = j(g) . Since the pointwise Lipschitz property is in-
variant under Mobius transformations, we may assume that P(g) = P(g’)
= . and N(g9) = N(9') = 0. Choose x, € R\ {0} and set x, = g~"(x,)
and ¥, = @(@.) = (¢')™™(p(x,)) ,» =0,1,... . Then

YnZn = (Yo/%o) ((9)/(g"))" -
Since @(0) = 0,
lp(@a) — @(0)] = lwnyo/wo| ((g)/2(g9))" -
As % — ©, & — 0; thus by (5.1), there is an Ly, >1 such that
1Ly < (=(g)/=(g"))" < Lo
holds for all n»=1,2,... . This implies that x(g) = x(¢’) .

3. Suppose that the boundary mapping go:ﬁ-»l% of an isomor-
phism j:G— G is quasisymmetric. Then there are quasiconformal
self-mappings of H with boundary values ¢ . Therefore it is natural
to ask whether j is induced by a quasiconformal mapping in H . We
conclude this paper summarizing recent results of Lehto [14] giving a
partial answer to this question.

Iun the following, @, is a fixed covering group of the first kind acting
in H, and G denotes a similar group that is allowed to vary.

Let 2 be the set of conformal mappings of the lower half-plane H*
onto plane domains. Define 4 as the set of all f € Q with the follow-
ing property: there is a quasiconformal mapping f* : C—C such that
J*H* = f.If f* can be chosen so that f*ogo (f*)=! is a Mobius trans-
formation for all g € Gy, then f€A(G,) . Let Q(G, be the set of all
f €8 such that fogof- is the restriction of a Mobius transformation
for all g €G,. Then A(G,) € 4N QG,) .

Let Ju(Gy) be the set of all isomorphisms j:G,— G with an in-
creasing boundary mapping ¢ : R—R » J4s(Gy) the set of all j:G)— @G
with a quasisymmetric ¢ ‘R — RA, and Jg(Gy) the set of all j:G,— @G
induced by quasiconformal self-mappings of H fixing oo. Then J,(G,)
C Jgs(Go) © Ju(Gy) -

Theorem 5.2. Let G, be a covering group of the first kind acting in H .
Then J,(Gy) == Jy(Gy) if and only if

(5.2) A(@y) =40 Q(G,) .
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Tor a proof, see [14]. Kra [12] has proved that (5.2) holds if G, is
finitely generated. Thus Theorem 5.2 has the following corollary:

Corollary. Suppose that G, is finitely generated. Then J4(Gy) = Jo(Go)
i.e., an isomorphism j:G,->@ has a quasisymmetric boundary map-
ping if and only if j is induced by a quasiconformal self-mapping of H
fixing oo .

4. Suppose that H|@, is compact (or, more generally, G, is finitely
generated, cf. 4.3). Then by Theorem 2.1, Jo(Gy) = J4s(Go) = Ju(Go) -
Conversely, if one proves directly that

(5.3) ']"(Go) = Jqs(Go) s

then the above Corollary implies Theorem 2.1.

It can be proved without Nielsen’s theorem that ¢ of j:G,—@
exists whenever H|G, is compact (see [17] p.240 and Lemma 3.6.2 in
[20]). Thus Corollary and (5.3) together imply Nielsen’s theorem. On the
other hand, the proof of (5.2) in [12] involves Nielsen’s theorem.

5. To our knowledge, it is an open question whether (5.2) always holds
if G, is not finitely generated (cf. [6]).

Suppose that there is a covering group of the first kind not satisfying
(5.2). Then there is an 15011101phlsnw j:G,— G with a quasisymmetric
boundary mapping ¢ : R R such that j € Jg(G,) . However, by the
following theorem of Lehto [14], the quasisymmetry of ¢ is in this case
bounded away from 1.

Theorem 5.8. If the boundary mapping ¢ of j € Ju(Gy) satisfies
(1.7) with a 2 < V2, then j€J (G, , ie., j is induced by a quasicon-
formal self-mapping of H .

We remark that the proots for Theorems 5.2 and 5.3 in [14] do not

involve Theorem 3.2.

Department of Mathematics,
University of Helsinki
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