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Introduction

Every Riemann surface with the unit disk D as a universal covering
surläce can be represented as a quotient space DIG , where t'he coaering
grougt G, consisting of conformal self-mappings of D , is discontinuous
and fixed point free. If the fixed points of G are dense in the unit circle
K , the group G is said to be of the first kind.

In this paper we consider isomorphisms j between two covering groups
G and. G' of the first kinrl, 'rvith the following property: There exists
a homeomorphism E: K ---> K sending the attracting fixed point of every
g € G to the at'tracting fixed point of f (g) . We cal! E the bound'arg rnnp-
ping of. y' . lt induces the isomorphism j on K, i.e., q o g : i(g) " V .

Arr isomorphism j has a boundary mapping if and only if there exists
a homeomorphism f :D-->D inducing i in D. This was proved by
Nielsen [7] in the case of compaet surfaces DIG and DIG', and by
Fenchel and Nielsen [9] if G is finitely generated. In the general case,

the simultaneous existence of E and / was recently proved by Tukia

120], and it also follows from earlier unpublished results of Marden p6l.
After some preliminary considerations io §§ I and 2, we summarize

and complement results of Nielsen, ]Iarden and Tukia in §3. Isomor-
phisms not possessing a boundary mapping are analyzed arrd an example
of the situation is given.

In § a we introduce the d,i,latati,on of an isomorphism defined as follows:
If x(g) denotes the multiplier of g e G , then the dilatation ö(i) of i
is the smallest number a ) | for which ,(g)'t" < x(j(g)) ( z(g)" holds
for all gec. We prove thab if ä(l) : I, then the boundary mapping
g of j exists and preserves cross ratios, i."., j is induced by a Möbius
transformation. Secondly, if j is induced by a K -quasiconformal map-
ping ,f , then äU) < K . Our third result connects äU) and the quasi-
symmetry of g: If G and G' act' intheupperhalf-planeand g;R--->R
is 2 -quasisymmetric, then dU) < log2llog (1 + l/,e) . Tne section is
conclud.ed bv an example of an isomorphism possessing g and satisfying
ä(9) : oo .

Section 5 deals wit'h isomorphisms with a special boundary mapping.
We prove that if g and V-\ are locally Lipschitzian, t'hen 7 is induced
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by a Möbius transformation. Bemarks are made on isomorphisms with
quasisymmetric boundary mappings, recently treated by Lehto [f4]'
and some conjectures and open problems are mentioned.

§ 1. The universal eovering surface

1. Let C denote the complex plailo, C the extended plane

/l the set of real numbers and h-_ ,8 U {- oc, m} . Set D

Im z > 0) . The complex conjuga,te of t == n: + iy js clenotetl
i,y

If A is ?, subset of a topological
by Cl A arrd the boundar)r by Bd ,1
of B in A

A uniuersal coaer'ing surjace of a lt'iemanu surface § is a pnir (§, z)
satisfyirrg the foilowing conditions:

( i) § is a simply connected Riemann surfaee.

( ii) , r §--- § is a locally conformal mapping.
(iii) If. y:1-+§ is a path and ,(b: Z(0), there exists a path

i:I---. § such tin.lt iQ):fr ancl zoi:y.
The path I in 1iii1 is referred to as the lifti,ng of 7 from the point fr

over y(0)

By t'he B,iemann mapping theorem. B is conformally equivalent to
oneof thecanonicalregions b,C o, D.The"u,r" 3:Ö i.possible
if and only if § is conformally equivalent fu ö , and §: C occurs if
and only if rS is conformally equivalent to C or C\{0} , or § is a compact
Riemann surface of genus one (i.e. a torrs). The special cases n'ill be ex-

cluded in the follorving: If not otherrvise stated. 'n'e shall always &ssume

that § is conformalh, equivalent to D .

2. Throughout the paper D'
planes includ ecl).

Let G be a group of Möbius
=:D'forall geG.Aset AC
it has the followi*g properties:

(ii) I)' : U g(A) .

gec

By the axiom of choice, G has fundamental sets if and onl}r if G acts

freelgin D' . i.e., the fixed points of G lie in BdD'.

OU{*},
- {z e Cl

- {z e C'i

by2 fr)

space, the closure of A is denoted
. Let .d trB mean the complement

. D" \1-il1 delrote arbitrary disks (half-

transforr-natiotrs a,cli,ng in D' , i.e. , g(l)')
D' is called a fund,arne??,tfi1 set of G if

€ G"'. {irl-}
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If G has fundarrrental sets containing interior points, then G is called

it couering group of D' . It follows immediately that a covering group is

denumerable.
A region B c D' is called a funilamental il,omai,n of G if G has a

firndamental set A such that BCA CCIB. It follows that er''er;r

rovering group has fundamental domains (cf. 3.3).

3. Let \D' , fl) be the universal covering surface of a ll,iemann sur-

fac,e S . A couer'ing transformation of (D' , n) over § is a conformal

rnapping g : D' --> D' (i.e., a Möbius transformation fixing D') satis-

fying z o g : 12. The group of covering transformations of (D' . z) over

§ is a covering group of D' .

On the other hand, if a covering group G of D' is given, therl D'fG
is a Riemann surface and G is the group of covering transformations of
(D' , n) over D'lG , where w : D' --> D'lG is the canonical projection.

Let G and G' be covering groups of D' an:d D', respectively. The

groups G and G' are coniugate if there exists a Möbius transformation
h: D' --> D" such that G' : h G lb-r . The Riemann surfaces D'lG and
I)'lG' are conformally equivalent if and only if G and G' are con-

jugate. (tr'or details, see [3].)

4. For later reference \1-e recall here some basic properties of Möbius

transformations.
Suppose that g is a }Iöbius transforrnatiou fixing a disk or a half-

plane D' . Then, by the reflection principle. the fixed points * and, g

of g either lie on Bd D' or are symmetric points rvith respect to Bd D' .

If intheformercase r*A,g iscalledhyperbolic, andif x:A,g is

parabolic. In the latter case g is ellipti'c. Since a covering group of D'
acts freely irt D' , it contains hyperbolic and parabolic transformations
oniy.

Tor a hyperbolic transformation g, let P(g) and -M(g) denote

attracting and the repelling fixed point of g , i.e., for every z e d\''.{c

P(g):limg"(z) , N(S):lim g-"(z) .

Suppose rhar P@). ;nr(g) .trt"r, trtäis a real number x) L

such that

s(z) - N(s) z - Ir(s)
g(z) - P(g)=- ?( 

z - P(g)

s(z) - Iv(s) - %tz - $(g)) ,

the

,yl

( 1.1)

If P(g) ,-- @ , then

(x.l')
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and if N(S) : oo , then

(1.1") g(z) - P(s) : (z - P(s))lx .

The real number x: x(g) is called the multi,pili,er of g .

Two Möbius transformations g and g* are conjugate if there is a
ilIöbius transformalion h such that g* : h o g o fu-1. Then g* is hyper-
bolic if and only if g is, and it follows that

(r.2) x(g) : x(g*) .

ff a hyperbolic transformation g is given in the fbrm

az*b
g(z): **f , eil,-bc:L,

an elementary calculation shows that

(1.3)

Hence a + d is always real. The number X@) : la * d| is called the
trace of g . By (1.3) we have

x@- r(g)'t' + x(g)-ti'(1.4)

(1.5)

ft follows fhat y@); 2 , and X@) : X,@z) if and only if z(g) : n(gz)
Thus by (1.2)

x@) - /.(g*) .

If g is parabolic, then a * d: f 2 . Therefore it is natural to define
x@) :2 and. x(g) : I . Then formulae (1.2)-(1.5) automatically hold
also in this case. If r is the only fixed point of g, then

r:^!y_t @) .

Therefore we set P(S) : Ii(g) : " .

T}ae cross rat'io (zr,zr,z,r,24) of four distinct points zt,...,2n of
ä i. drfirr"d as the image of z, under the }löbius transformation which
carries z22zs2z4 to the points I,0, oo, respectivel;'. It follou-s that
there is a Möbius transformation carry'ing zr,. .,zt to 'u)1 1..,7lD4
if and only if (zr , zz , za , zs,) : (wt , w2 ,,tts, tun) . Consequently the points
?t,...,2n lie on a circle or a straight line if and onlv if (zr,22,zs,24)
is real.

5. 'We conclude this preliminary section with some remarks concerning
quasiconformal mappings.

Lel, qrk--h, be an increasing bijection and. define
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(1.6)

(1.7) -.'' i--.\ l'"

+ty) v@-ty))dt

It is well known that w;C --> C is a homeomorphism with the following
properties (see [8] and l15l):

(i) wlfr,:e,
(ii) w(H) - [1 ,

(iii) w(2) : ut() ,

(iv) wlH is a diffeomorphism.
It, follows from (iv) that w | ä is l,ocally quasiconforntal,, i.e., if .{ is a
16,gion such that ClAc ä is compact, tlr:en wlA is quasiconformal.

Suppose Lhal E is quas,isymmetri,c ol1 an opeir interval -Io c R , i.e.,
there exists a real number ), > l. such that,

V@ + t) ri1:)

+j(v@

Vtr) - V\x t)

holds for all r and t, r *t €. Io.If ILC 1o is a closed interval, then
.I1 has a neighbolhood [/ such that w I U is qLrasicouformal (see [15],
p. 88). If (1.7) holds for all r and ä , then * ,0 --- d is quasiconformal.
Conversely, if a quasiconformal mapping w : E ->ä is given, the:r zo can
be extended to a homeomorphism w:HUfiU{oo}--->HUÄU{o},
and if w(a): q , tlnen w l-E is quasisvrnrneiric.

6. To generalize lhe last remark in 5, consider the foliowing situation:
LaL wo:HU.EU{*}-HURU{*} be a homeomorphism such
Lhat wo(o) : "o and wo I A is increasing. Suppose LlnaL I)' is an opon
disksuchthat Io:D'nR+A and uolD' flä is quasicolformal.
Lel Ir, Cl "f{ C 10, be a,n open interval. \\ie prove that wo l.I, is quasi-
symmetric. First, it follows that the interval zoo(-Io) is a free boundary
arc of wr(D'fi ä) . Thus, if we define woQ) :-wo(4, the mapping wo
is quasiconformal in a region containing Cl 11 . Since Cl -f, is compact,
there exists a quasiconformal mappirg *r,ö ---i such that wrllr:
wol\([I5],II.8.]). If *e Ir, t>0 and rltelr, then (r,a,
fi + t, fi - t) : - I . Therefore, by the quasi-invariance of cross ratios
under a quasiconformal mapping, there exists a ), > I which does not
depend on the choice of r and f, such that
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(This follows from Theorem 3.2 in tI].) If eor(o) : oo, there is nothing

more to proYe. ff not, then

l@t@),wt(q),wt(* * t),w1@ - r))l :
wo @ * t) - wo@) .lwr(a) - u:r(r - t)l
wo @) - wr(n - t)'l*r1*1 - *r1a *1'

By the compactness of CI L,lwr(a) - wr(* - r)l'lu.(oo) * wr(r + 
')l-1is bounded away from 0 and oo , and the proof is complete'

If we define w by (1.6) with the boundary values 9: uo | 'd, then

it follows lhat' w is quasiconformal in a neighborhood of 'It '

7. Applying the considerations in 6, we prove the following lemma

needed in § 2.

Lemma 7.7. Let f : D --> D be a sense-preserving homeomorphism

and. D, a,n open d.isk such that cl D' c D. Then there is a homeomor-

phism f' : D -> D having the following properties:

(i) l':"f in D\D',
( ii) "f is locally quasiconformal in D' ,

(iii) if / is quasiconformal in a neighborhood. of a point of Bd D' ,

then the same holds Lrue of f' ,

(i") if / is quasiconformal in a neighborhood of every point of Bd D' ,

then /' is quasiconformal in a region containing Cl D' '

Proof: Suppose first that f is quasiconformal in
every point of Bd D' . Then f is quasiconformal in
Bd D' and. we can use quasiconformal continuation
fying (i)- (i") (tl51, f I. 8. 1).

In other cases choose zo e Bd D', . Let h : D' --> H
be conformal mappings such that lr(ro) _-- Co : u(f(zo))

by (1.6) wittr the boundary t'alues q - 1.0 o f " h-t 
,

rt lu-towoh it D',

' 
: 

t/ elsewhere in D .

Then (i) and (ii) hold. If / is quasiconformal in a neighborhood of z eBd D"
then the mapping g is quasisymmetric on an interval containing ä(z)

as proved in 6, and (iii) follows.!

§ 2. Homotopie mappings of Riemann surfaees

1. Let S : DIG and §' : DIG' be Riemann surfaces, (D , n) ar,d

a neighborhood of
a region containing
toobtain f'satis-

and Qt : f(D') * H
. Define LU i H -+ H
R arld set
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(D , n') their universal covering surfaces, and /: § -> §' a continuous
mapping. As a generalization of the path lifting, we constrv.ct a li,fti,ng

f :D-->D of f asfollows:Choose l0€,S,ze n-t(p) and z'e (n')'r(p'),p'
:f(p).Let (€D andlet i:I-->D beapathfrom z to 6. Define

,i(6) u* the errd point of the lifting of. f . v oi from z' .It follows that
/ is well defined and continuous. Moreoour, f satisfies the following
equation:

(2.1) fon-n'oi.
If §' is not simply_connected, there exist different liftings of / (i.e.,

continuous mappings f : D -> D satisfying (2.1)). On the other hand,
a connectedness argument shows that two liftings / and 7' ,f f coincide
if there is a point z €D such that i@): j'1"1 . fn"refore, if z' runs
through the set (n')-'(p'), all liftings of / are obtained try the above
construction of f . Especiall;r, this observation yields the following lemma:

Lemma 2.1. H / and f' are liftings of /, there exists a unique cov-
ering transformation g' e G' such that 7' : ,' , i .

By Lemma 2.L, eYerJr lifting
G + G' satisfvirg

i of f induces a homomorphism

i*@"1:i.s.
If / is a homeomorphism, then f. is an isomorphism.

Note that / inherits many properties from /. tr'or instance, i is
homeomorphic, differentiable, quasiconforural or conformal simultane-
ously with /.

2. Let Hom (G, G') be the set of all homomorphisms between G
and G' . We define in Hom (G , G') an equi'ralence relation - by setl,ing
j - j' if there exists an inner automorphism A : G' -> G' such that
i' : A . j . Let Ul denote the equivalence class of j .

By Lemma 2.1, f defines a unique equivalence class tÄl i" Hom
(G,G'). Moreover, if j e;/*1 , ttr"r, there is a Iifting 7' of f such that

J:l*
fn fact, the class [/*] does not change if / is deformed continuously:

Lemma 2,2, ConLinuous mappings /r : § -+ §' , i, : 0, I , are homo-
topic if and only if tio*l : t"ir*t .

;
Jx
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X'or a proof, see [l] and [a]. Note that Lemma 2.2 can be stated also

as follows: /, and. /, are_homotopic if and only if there are liftings /o
and /, such that fo*: fw.

3. Let C(B , §') be the set of continuous mappings /: § -> rS' , and
let - denote the equivalence relation homotopy defines in C(§ , S') .

By Lemma 2.2, we can define an injective mapping f': C(§, §')/- *
Hom (G , G')l- by fntl fi.l .

In the classical surface theory, S and §' are supposed to be compact.
Then, by a theorem of Hopf [1f]. l is a bijection. N{oreover, given an
isomorphism j:G-->G',Lhere exists a homeomorphism /:§+§' such

thal f*: j. This result is due to Nielsen [17] and is referred to as Ni'el,-

sen's theorem in tll.e following.
In the general cese, Nielsen's theorem is trivially false: choosc § : C

and §' : C . If D is required to be the urriversal corering surface of §
and §' , a counter example is ohtainecl as fbllorv.": let S be a clisli punc-
tured t'wice and S' a torus punctured once. 'fhen § ancl S' hare iso-

morphic fund"amental groups (free grorqrs generated b1- trvo elements),
and thus G and G' are isomorphic ([3] I 19 A). On tire other hand, S
and §' are not topologically equir.alent because there are Jordau curl'es
y : I --> S' such that §'\7(1) is connected.

4. We conclude this section by presenting a ne\rrr proof to the following
well-knou,n theorem (Teichmiiller [8], [19] and Bers [al, [5]):

Theorem 2.1. Let § and /S' be compact Riemann surfaces. Then
the homotopy class of a sense-preserving houieomorphism /: § -+ §'
contains quasiconformai mappings.

Proof: Suppose first that D is the universal covering surface of B

and §' . Then, by the compactness of § . there exists a fundamental
set A of G containedinadisk {"lirl < 1-e} forsorle €,0(e( 1.
Lei {Dr, . . . , Dn) be an open covering of ,1 rrith dislis such that z I Cl D*

is injective, k: l_,...,%, and let / be a lifting of /. D:fin" fo:j
and inductively /e, k : 1,...,tu, as follows:

; l.i.til "ii-r" g-L in s(D*) for all g eG ,
Jh:1 -tå-, elsewhere in D ,

where the homeomorphism f;-r satisfies

$,'ith respect to io-r and Dr, . One verifies
quasiconformal in the open set

the conditions of Lemma 1.1

by inducbion that i* is locally
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U
e€.9

s(D')

Hence /, is a quasiconformal-self-mapping of D.
Ontheotherhand, l*@)of*:/6.9 holds for all lc:0,L,...,%

and g € G . Consequently there is a unique continuous mapping /, : § -+ §'
such that f" is a lifting of /, . By Lemm a 2.2, f - fo , ar'Ld. by the quasi-

conformality of f", the mapping f" is quasiconformal.
If, finally, § and §' are tori, we can apply the above proof replacing

D by C.l
The preceding proof is modified from one Bers gives in [5]. It can be

interpreted also as follows: Col,er § with finitely many parametric disks
Ur, . . . , Un , i.e., the images of the disks D* under the projection map-
ping z . Set fo: f and define inductively fo: fo-, in §\ U/, and

f* | U* to be the locally quasiconformal mapping with the boundary
values g : fx-t I Bd U,, constructed in Lemma I.l. Then /" is a quasi-
conformal mapping homotopic to f .

Slightly modifying the above proof rve obtain the following result:
If § is arr arbitrarv Riernann surface, / : § -> §' a, sense-preserving
homeomor"phism, and U c § a region r.vith a compact closure, then the
homotopy class of / contains homeomorphisms quasiconformal in U .

'Iheorem 2.1 does not hold for arbitrary Riemann surfaces, since e.g.
C and D are topologically but not quasiconformally equivalent. An
example constructed in 4.8 shorvs tirat 'Iheorem 2.L does not hold even
if D is the universal covering surface of § and §' .

§ 3. The boundary mapping associated with an isomorphism

1. We begin this section br- summarizing soure properties of the covaring
groups.

Let G be a covering group acting in a clisk or a half-plane D' . If
y € G is a hyperbolic transformation. the crcis of g is clefined to be the
circle or the straight line through the fixed points P(g) and -l[(g) orthog-
orral to Bd D' . If g is paraboiic. the point P(g) : N(g) is called the
axis of g. We denote by Ar(gl the axis of g € G\{id}.

The set of the fixcd points of all non-identity transformations of G
is denoted by Fi*(G) . If fir(G) is dense in Bd D' , the group G is
said. to be of the first kind,.

k

U
i:1

Let G and G' ?rt covering grorlps. 1\'e

j , G -> G' is 'indr{cetl by u continuous mapping
if the foJlor,r.ing con(-litrions hold:

say that en isornorphisrn

f ,A-->ö ina set Ac A
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(i) g(A):A for all g€G,
(ii) "f.s:j(g)"f.
2. In the following lemma, we list propert'ies of covering groups.

Lemma 3.1. A covering group G of D' has the following properties:
( i) If z€Ii,*(G), then the set {geGlg(z):z} is a maximal

cyclic subgroup of G.
( ii) Lei h, and h, be non-identity transformations of G such that

tr(Dr) * P(h) , and !": hi " h\ . Then -l/(9") + .l[(år) and, P(9") -->
P(hr) as za -> oo .

(iii) If G is of the first kind and A, and A, are disjoint open sub-
setsof BdD',thenthereis a ge G suchthat P@)eA, and.N@)e Ar.

The first assertion is proved in [13] I 2 H, (ii) in [20] 1.4, and (iii) follows
from (ii).

3. We next introduce a method to construct special corering groups'
Let' g be a hyperbolic or a parabolic transformation fixing the unit

disk D . The isometric circle .I(9) of g is defined b1'

I(s) : {z I l@)'(")l : 1} ,

{g)' denoting the derivative of g . As proved e.g. in [0], /(g) is a circle
orthogonal to K and to Ar(g), g(I(g)): I(g-'), and .I(g) and "I(g-1)
have the same radius. If g is parabolic, then ,I(g) and 1(g-1) are tangent
to each ot'her at P(g) , otherwise "I(g) A I(g-') - A . The inside of I(g)
is mapped by g onto the outside of. I(g-t), and rre have l@)'(z)i> L

inside I(g) and l@)'@)l < L outside I(S) .

LeL X(g) denote the part of D outside both ,I(g) and I(g-L) , i.e.,

X(s) : {z e D i l@)'(z)i < I &'(s-')'(z) < 1}.

Tor the identity transformation rve define l(id): D. The region -F(g)

is a fundamental domain of the group generatecl bl' g . lloreover, if G

is a covering group of D, then

x(G) : fl I(s)

is a fundamental domain of G. The boundary of .E(G) contains lro arcs

of K if and only if G is of the first kind.
'We call a set {g, ,g2,...} consisting of parabolic or hyperbolic trans-

formations fixing D a free comb'i,nat'i,on if D\Cl I(g) c I(g) x'hen-
ever i, !;j .
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Lemma 3.2. Let G be the group generated by a free combination

{s, 92r...). Then
i) G is a coYering group of D ,

ii) G is free in the generators {1 , 92 , . . . ,

(iii) r(G) : (1I(s') .
i

Lemma 3.2 is proved in [10], section 25.Tt also follows from Theorem

2.6 in [20].

4. Let G and G' be covering group§ of the first kind acting in D'
and D" , respectively. A homeomorphism E : Bd D' -->Bd' D" is called

the bound,ary mappi,ng of an isomorphism i : G --> G' if

ve@) - P(j(s))

hold.s for all g e G\{id} . Since Iix(G) and Ii,r(G') are dense in Bd D'
and Bd .D", respectively, (3.r) defines g uniquely. On the other hand",

there are isomorphisms which do not have boundary mapprngs; an example

is constructed in 3.10.

The existence of the boundary mapping of an isomorphism i : G -> G'

is, in the following sense, invariant under Möbius l,ransformations: Let
tL and h' be Möbius transformations, Gr: h,Gh-L , Gi: h'G' th'1-t
and. jr:Gr->Gi the isomorphism defined. by

jr(gr) - fu' " j(h-' " 9t" h) " (h')-t

Then the boundary mappings g and % of i and 7, exist simultaneously

and
gr:h'"Voh-t.

This possibility to transform the gir-e[ corering group will be used

repeatedly in the follorring. For instance, in the rest of this section rve

shall develop the general properties of the ltounclar)' mapping of an jso-

morphism considering only covering grollps acting in D .

5. By the following theorem, the boundary mapping E is the only
homeomorphism, if any, whichinduces i : G -->G' in the closure of Ein(G) .

Theorem 3.1. Let G and G' be covering groups of the first kind
acting in D and j:G-->G' an isomorphism.

( i) If the boundary mapping E of i exists, then g induces i in K .

(ii) Tf g:K-rö is a continuous injection inducing i in K, then
g is the boundary mapping of j .

(iii) Tf. f :DUK-->DUK is a homeomorphism such that /lD
induces j in D,then f lK istheboundarymappingof y.
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Proof: To prove (i),let g atd ä be non-identity transformations of G .

Then (9 " g)(P(h)) : s(P(g " h " g-r) : p(j(g 
" h , g-L)) : P(j(g) 

" 
j(h) 

" 
j(g\-,)

: j(s\P(j(h))) : (j(g) " dg(h)). Therefore

s. s I ni,r(G) : j(s). s I Iir(G) .

Because g is continuous, (i) holds.
fn (ii), choose 9 e G\{id} and z e .I( \.{If(g)} such that q@) +

Jffi(g)) . Then V@"@)) : j(g)@(z)) and letting rb --> @ , Ee@» --
P(j(g)) follorvs.

By continuiry, f | .I{ induces j in K. Thus (iii) follorvs from (ii). 5
Suppose Lhaf DIG and DIG' are compact. Applying (iii), the exist-

ence of the boundary mapping of an isomorphism j : G ---> G' then fbllorvs
from Nielsen's theorem and Theorem 2.1.

In (iii), / has a natural extension to ö .If we define

f*(*)
if l*l s= 1

a homeomorplr"ism inducing j in

(3.3)

ö

Ift"l
[/(e*)*

ö -*ö isl\,here ä* : Llz , then f* :

6. The rest of this section deals rvith different characterizations for
the existence of a boundary mapping. In the follou'ing theorem, 1\,e sum-
marize resr"rlts recenl,ly published by Tukia [20].

Theorem 3.2. Let G and (]' be corering groups of the first kind
acting in D and j : G --> G' an isomorphism. Then the followirg eoncli-
tions are equivalent:

( i) The boundary mapping E of j exists.
( ii) If h trnd gz are non-identity transforrnatious of G . then

A*(sr) n Ar@r) { A if and only if Ar(j(gr)) n ArU@r)) + @ .

(ii,) Thereisahomeomorphisrn f:D--->D inclucing j it D.
(ir') There i-s a homeolrorphislr f*,0 ---d ilclqcirrg j in i.

The equivalence of (ii) and (iii) is pro'i-ed by Tukia [20] (Lemma 3.4
and Theorem 3.6); see also X'enchel and Nielsen [9] and Marden p6].

By Corollary 3.5.I in [20], every homeomorphism f : D --> D inducing
j in D admits a homeomorphic extension to K. Consequently (iii) im-
plies (iv) by formula (3.3). On the other hand, if /* in (iv) maps D onto

{z I lrl > l}, bhen t//* maps D onto itself and induces , in D . Tlurs
(iv) implies (iii).

By Proposition 3.5 in [20], (ii) implies (i). Conversely, (i) implies (ii)
b;' formula (3.I).
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7. Let us make sonte complementary reinarhs to Theorem 3.2. Re-
taining the assumptions o.n G and G' , suppose that, an isomorphism
j : G --., G' has the follorving propertv:

(A) j(g) is parabolic if antl only if g is parabolic.

Therr it follows from (i) in ljemrna 3.1 that there is a bijection @: IirlG)
-> ?i,r(G') clefirred by

(3.4) o(P(s)) - P(j(s», s € G\{id}

In order to extend @ to the boundary rnapping E of j, lve consider
the following condition:

(B) If :r, . . ., z4 are distinct points h .!i,x(G), then (zr, :r, zs . --.r)
> 1 if and orrl), if 1O(z) , @tzr) , @(rr) , @(zn)) > I .

Geometrically. (zr.:2 , zu .;;:n) > L if and only if e, and an lie in clii'-

ferent components of 1f '\ {r, , *r'} , i.e., z, and z, separate z, *td z, .

We call g € G \Ud) a botntdctt'y transform,ati,on if ii has the follorvir:ig
property: A*:(g) fi Anlh) n 0 lbr an ll, € G\{id} oni3r if Ar(g) - Ar(h) .

(This defirritio:r a.qlees rritll the corresponding one giveri 1:r. Marcleir in
[t6].) 81" Lemnra 3.]. t'r'ert" par:a'l-rolic transformation g € G is a bouirclary
transformation. ancl if ij j., oithe first kind. all -boundary transfblinations
arc parabolic.

Theorern 3.3. Lei G tr.utl G' be covering gi'oups of the first kincl
acting in J) anrl .j : (,1 -+ (.1' an isonor'1ihisrn. Therr the 'oorindarJr inap-
ping ? of j exisls if at least o:ic of the follol'jng conclitions is sa.tisfiecl:

( i) DIG j- qnmp rcr.

( ji) G is finiteh, gelieraterl an.L (Ä) }io1Cs.

(iij) (-{) r:.rir1 iB) froiri.
Conrrersreh , ii ri e.tists. thcn 1.\) arril (B) irolcl.

Proof:.llile srifficiericy oi'ii) is aii'cady stirtr:ii. irr 3.5. Second11,-, suppose
tirat (ii) holds. Tl-;en .i(g) is a boundarv tralsforuirtion if'anc1 on11- if g

is one, ancl il fol lo.,r's frcu rr. theorerir. of Fenchel-Nir,ls'.:l [9] aricl Marden

116] that j is inchrcerl 
'li.v 

ir hcmec,morphi-.rn ju D . Ti-Lu-u b1- Theoi'cIn 3.2,
(p of .i exists.

The necessitv of i-ire c,rnclition-< (A) aricl (B) is c1ear. Converse.l)-, sup-
pose tha| (A) holcls. Then @ defj.iecl b3, (3.a) exists, and silce Iir(G)
ancl li,r(G') are dense irr Ii , the exisience of q foiiorvs fi'om (B) Iry
standard topological trrgturrents. ltol the .qirke of completeness, §'e repeat
the con.qtructioo of p .
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Let z e K and {2"} c ?i,r (G) such that zn --> z &s m --> @. We
shorr that there is a w e K such lhat' @(2") --> ID . ff not, then there are
two different points w, and w, and two subsequences {216} and {24}
of {2"} such that (D(z;1") -> wi as k ---> a , i, : l, 2 . Since Gl' is of
the first kind and @ is a bijection, we carl choose (1 and (, in Xi,r (G)

and.a k, > 0 suchthat (, * z # l, an'd (@(Ct), @(zro), @(Cr), @(22*)) > t
for all k) kr. On the other hand, since z;u-->z * er,d:1,2, Ct and
Cz cannot, separate the points zp afid zzu from some k : är onwards.
This contradicts (B). ft follows similarly thaf @@!") ->zo whenever z|-*z
and {z'"} c Ti,r (G) .

Define g: K'--> K by E@) : w . Then (3.I) automatically holds.
The above construction of g is symmetric with respect to j and j-1.
Therefore, if @(2") --> w as n ---> @, then we have a unique a € /( such
that' z^ -+ z . This proves the bijectivity of V .To prove that E and g-1
are continuous, we show that for any points z!,.,.,2oe K we have
(V@r),g@z),V@al ,g@4» > I if and only 7f (zr,zz,zs,za,)> l. Suppose
that (zr,zz,zs,zt)) l,andlet, znendr@) bepoints such that zi"-->zi
as n-> @, ,i,:1,2,3,4. Then by (B) ,(@(zr"),@(zr"),@(zr,),@(zn))
> I from some 7L : ,tlo on.w-ards. Since @(z;") --> E@;) &s n --> @ ,

@(q,), g@z), E@s), V@4» > I follows. Similarly, (zr, z.r, z,, zn)2 | if
(E@r),q(zz),q@s),9@il)>I. Therefore,if ze K arrd {2"}cK such
f}aat z*-> z as n -> @, it follows as above that, E@") -, g@). Thus g
is continuous. The continuity of o-L can be proved similarly. E

Since a covering group G corresponding to a compact ll,iemann sur-
face DIG contains no parabolic elements (see l4l), the condition (i) is
a special case of (ii).

8. X'rom Theorems 3.2 and 3.3 it follorrys that the axis condition (ii)
in Theorem 3.2 holcls if and only if (A) and (B) are r-alid, This can also
be proved directly as follorvs:

It is clear that (A) and (B) together iurpll' (ii). It follows from Lemma
3.1 that (ii) implies (A). Hence, it is suffjcient to shov' that (A) and (ii)
together imply (B).

Let 2r,...,?4 bepointsin ?ir (G) rvith (zr,"r,zs,24) > l.Choose
heG such that zt: N(hr),zz: N(kz),zr: P(hr),24:P(/an), and
set, gr, -h!"hi and 92.:hioåä. The1, by (ii) irr Lemma 3.1, .l[(g;")
-->zt and P(ga)-->zr*, as m---> @,i:1,2. Thus there is a no) 0

such that A*(gr") 11 Ar(92") { Q for n } no. 81- (Ä), @ defined b;r
(3.4) exists, and -l[(j(ga)) --> @(zr) and P(j(gt")) -+ @(2,*r) as n, --> @ t
,d - l, 2 . tr'rom Ar(l@r")) n Ar(j(gr")) * A, n ) ?Lo, it then follows
that (@(zr), @(zr), @("r), @@n)) ) I . Similarly, if (@(zr), @("r), @("r),
@@nD> l, then (zr.,zr,zr,zn) > l .
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9. The following theorem tells more about the groups G and G' if
the boundary mapping does not exist.

Theorem 3.t[. Let G and G' be covering groups of the first kind.

acting in D and j : G --> G' an isomorphism. The boundary mapping
of j does not, exist if and only if there is a subgroup G, of G such that
one of the Riemann surfaces DlG, and Dlj(Gt) is homeomorphic to a

disk punctured twice and the other to a torus punctured once.

Proot: Suppose first that there exists a subgroup GLc G such that
one of the Riemann surfaces DlG, and Db(Gr) is homeomorphic to a

disk punctured twice and the other to a torus punctured once. Then D/G,
and Db(Gr) are not topologically equivalent. Therefore y cannot be

ind.uced by a homeomorphism in D . By Theorem 3.2, Lhe boundary
mapping of 7 does not, exist.

Suppose that the boundary mapping of j does not exist. Then the
axis condition (ii) in Theorem 3.2 does not hold. Since we can replace
j lry j-', we may &ssume that there are h;4perbolic transformations 91

and 92 in G such that Ax(gr) n Ar@r) $ fr and A"(j(gr)) n ArU@))

- A . Moreover, we ma,y assume that tgr,gr) and {j(gr),i@r)) are

free combinations. (By (i) in Lemma 3.I, this is achieved by replacing gt

alad gz by gT and gi, where m arlLd n are sufficiently large.) Let G,

bethegroupgenerated by {Sr ,g*.By (iii) in Lemma 3.2, we know the
fundamental domains F(Gr) and I(j(GrD, and it follows that DlG,
is homeomorphic to a torus punctured once and Db(Gr) to a disk punc-
tured twice. n

10. We conclude this section with an example of an isomorphism whose
boundary mapping does not exist,.

Define four Möbius transformations h, gz , gl , g', fixing D hy the
following requirements:

I(sr) -I(si) -{z
I (gl') - r (g'r) _: {z
I(sr) - I((si)-',) -{zI(s;') - I(@L)-',) - {z

19

lz (1 +
lz - (- I
lz (- I
lz, - (1

,)l =: 1)

+ r)l-_

i,)l - 1)

i1 ,

1) ,

Then 91 and. g, are parabolic whereas gi and g', are hyperbolic. Let G

and. G' be the groups generated by {gr,gr) and" {sr,gi}, respectively.
Since {g, , gr} and {gi , gL} evidently are free combinal,ions, G and

G' are covering groups by (i) in Lemma 3.2. Since the boundary of .F(G)
: I(G') contains no arcs of K , the groups G and G' are of the first
kind. By (ii) in Lemma 3.2, we can define an isomorphism j : G -> G'
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lry j@t): g'r,i:1,2. Since (A) does not hold, y has no boundary
mapping.

Considering the fundamental domains of G and G' , we see that D/G
is homeomorphic to a disk punctured twice and DIG' to a torus punc-
tured once. Thus by Theorem 3.4, the example constructed is the simplest
possible.

§ 4. The dilatation of an isomorphism

1. In this section we define & measure d(j) for the distortion of an
isomorphism j : G -- G' . We shall see that ä(j) has some formal analogy
with the maximal dilatation of a homeomorphism.

Let G and G' be covering groups of the first kind and j : G -> (]'
an isomorphism. If z(g) is the multiplier of g e G (see 1.4), let A(j)
be the set of real rrumbers a ) I for rvhich

*{s)'i" sx(j(s)) < x(s)"(1.1)

t1.2)

holds for all g €G. If {a"}c,4(j) such that u,*+&o &s ,tL---> @ ancl if
0oCG is fixed, then ( .I) holds for go aud all numbers a". Therefore (4.I)
is valid also for go and ao , and it follol.s that no e A(j), i.e., ,4(j) is a
closed set. trVe cail ä(l) : mina, , a e A(j), the d,il,atcr,ti,otz r-rf :j .

(Tlius ä(j) : co if :r,nd only if A(j) : g .) Note that the condilion (A)
in 3.7 holds 'vyhenever A(j) + A .

Let j' : (1' -- (1" be another isomorphism with a finite dilatation.
'l'hen it follorys Irom (4.1) that

I'rom (1.2) l'e see that ö(l) : I if j is induced by a l\(öbius trans-
formation. Thris li.r' ({.2), ö(j) is invariant under }Iöbius transforma-
tions: if .i. is defilerl lry (3.2). then d(jr) : dU) . Also analogouslv rvith
the maxirrral clilata'rion of a homeonrorphisrn. it follorrs from (4.1) that
d(l) : äU-') '

2. By tlie follou'ing theorem, the clilatatioir of an isomorphisrn iuchicecl
by a quasiconformal mapping is finite.

Theorem 4.1. Let G and G' be covering groups of the first, kind
acting in D' and .I)' , respectir,"ely. If an isomorphism j : G -> G' is
induced by a quasiconformal mapping f : D' --> D" . then ä(j) < K(f) ,

where 1{(/) is the maximal dilatation of /.
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Proof: By (iii) in Theorem 3.1 (or by Theorem 3.2), the boundary map-
ping of j exists. Therefore (A) in 3.7 holds, i.e., x(j(g)): 1 if and only
if x(g):\.

LeL g € G be hyperbolic. By (3.3) we may assume that f is defined
in the whole plane d, and by the invariance of K(/) and d(7) under
a Mötrius transformation, we ma,y a,ssume that P(g) : P(j(g)) - oo &nd
N(s): tr(r(g)) : o.

Set g' : j@), and k: x(g), k' : x(g').'Ihen I @):kz and g'(z)

- k'z , and since / induces j , we have

(4.3) f(k"z): (k')l@)

for n:0, tl ,*2,... . Let B^ be tlre annulus bouncled by the cir-
cles lzl :1 and lzl:\c",'IL:L,2,... We a1:proximate the ring
domairr B:: f@") bv an annulus Bi as follou's: Let f, : min lf@")l

and. §z : max lf(r'u)|. Then §r ) 0 atrd €z I r . ancl u'e set

"' u'l: {", fr < izi < G')^€r}.

It follows from (a.3) that B'^c B':.lloreover', Bj sep,rrates the compo-
nents of the complement, of Bi. Thus ([15],I.6.6)

M@:) < M(B:): los 
gP : nrosk' f log (€,1€,) .

s1

On the other hand, since / is K(/)-quasiconformal

tuI(B:) > xl(B")lK(f) : (ntogk)lK(f) .

So we have

toglc 1r(/)log k' a Q{$)irz) log (§rlfr) ,

and letting m--> @, we conclude that log tr; ( K(f)log ä'. Simile,r'ly,
loglc' 1 K(f)log ft . Thus K$) e AU) .l

If we assume that h, and h' in (3.2) are quasiconformal mappings
such that GL and Gi are corering group-q, then it follows that ö(j)l
(K(h)K(h')) S äUr) < ö(j)I{(h)Ii(h') . In this sense, the dilatation of
an isomorphism is quasi-invariant under quasiconformal mappings.

3. Theorem 4.1 combined with Njelserr's theorem and Theorem 2.1

implies that äU) < o whenever D'lG is compact. More generally,
applying the theorem of X'enchel and Nielsen [9] referred to in Theorem
3.3 we obtain the following corollary for Theorem 4.1.

Corollary. Suppose that G is finitely generated. Then öU) < .o if
and only if the condition (A) in 3.7 holds.
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Proof: If å(f) < oo , then (A) holds. ff, conversely, (A) holds,
then by Theorem 3.3, the isomorphism j is induced by a homeomorphism

f : D' --> D" . B,epresenting D'lG and D" fG' as compact, Riemann sur-
faces with finitely many punctures (see [2]) and applying Theorem 2.1

we see that there are quasiconformal mappings inducing j h D' (for
details, see [7] p. 7l). Then by Theorem 4.L, ö(j) ( oo . E

4. Suppose LLal j:G--> G' is an isomorphism whose boundary map-
ping g exists. By the following theorem, ö(j) < oo if there is a quasi-

conformalmapping f :ö---d such fhat f -g intheclosure of. Iir(G).

Theorem 4.2. Let G and G' be covering groups of the first kind
acting rn the upper half plane ä. Suppose that the boundary mapping
g of an isomorphism j:G--->G'existsand g(o): o.If g is 7.-quasi-
symmetric, then

(1.4) äU) ( log zltog (L + LIA)

Proqf: The quasisymmetry of an increasing horneomorphism g : R ---> R
is defined in 1.5. As in the proof of Theorem 4.L, it, suffices to consider
hyperbolic transformations ge G only.

Suppose first that co is not a fixed point of g. Since we can replace
g by g-1, we may &ssume L}raf P@) <X(g) . Then there are Möbius
transformations ä, and. h, fixing oo such t}l:af Ue@)) : hze$@))) : 0

and hr(N(g)):hr(N(j(g))) : 1. Since hrlfr and hrlfr, arc l-quasi-
symmetric, hro g on;' 1-ä is .l -quasisymmetric. Therefore, nre may
assume rhar P(g) : P(j(g)) : 0 and .l/(g) : ffU(g)) : I .

Set g' : :i@) , k : x(g) and k' : x(g'). Then

and

s(Llz) - r/(1 + k).

By å-quasisymmetryof V, forea,ch nL:1,2,...,

Let p be the natural number for which

(1.6)

Then by (4.5)

1/(1 + 1)o
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Set ra : I in (4.5). Then by (i) in Theorem 3.1

I/(r + ),k'): s'Ol\ + l)) < E@0!2)) {s'Q|$ * i)) : Xl(k' + X).

By (a.6), p)1og (1 f k)/Iog 2> 7t - l, and thus

(t/(1 + 2))roc(2+2e)n'c'< 1l@' + )')

and

(Xl$ + l))1oc[t2+kt2)ttog2 2 tl1 + k'1) .

Since ylos" : jo+! for r ,g > O, we get,

(1/'7,X(1 + k)12)t"s(r+ut)ttos2 - rl)" <k' <
1(2 + 2k)Lc[+'')lt"c2 - 1 .

This double inequality holds for all h5rperbolic transformations of G not
fixing oo . Bspecially, we may replace g b;r g", 1L : I, 2,' . ., and
since z(9") : fun ,

h, < U.e + 2 k")loc[+;),'rog2 - ),f,1" <
)rrl"(2 + Zkn)ros(t+i')lbtos2\ ,

and letting 'tL -> @ t

(4.7) Pt < ilos(t+^)ltos2

On the other hand, from some /t, - no orr

k'> l(rl1)((L + k")12)t"cF{ttt'\ttog2 - ll)'1tt" 
'

(l I 1Z l\1tt" (lc" I z)t'cF + t t )) 

" 

(n1og2),

and letting fi,'--> e t

(4'8) 1tr 2 P'rog(r+ 
1'l')'log2 

'

If oo is a fixed point of a hyperbolic transformation g € G, we may
assume that P(g): P(g'):O,itr(g) :.Y(g') : oo ard E(1) : I. Then
g(z) : zllc anLd g'(z) : zfk' , and we get as above the following double
inequality:

l/(1 + )) il'sF+ril")ltog2 a tc' < ).(2tilt"s(r+'')/ros2 .

Thus, replacing g by g" and letting n'-> Q , (4.7) and (a'8) are obtained
also in this case. Consequently

max (log (I f .1)/1og 2 ,log2llog (t + rlj')) e AU) .

Finally, one verifies by calculation that log(1 f l/,1) log (1 + ,1) <
(1og 2)z , i.e., log 2/log (1 + I/,4) e AU) .a
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Suppose that g is I-quasisymmetric. Then there is a Möbius trans-
formation h, fixing ä suchthat hlk: E.Since j(illR-h,og oh-71R,
it follows thaL h induces j Ä ö. Consequently ä(j) : I . On the other
hand. setting ).: I in Theorem 4.2. one obtains å(j) < I . Thus the
inequality (1.4) is strarp if )u - 1

It follows from (4.4) that ö(j) I i. stays hounclecl &*(

öU) == Otil
i-> @ , i.e.,

(see 2.3) u,hich5. \\'e Fro\re next a special case of Nielselr's theorern
holds also for open surfaces.

Theorem 4.3. Let G and G' be covering groups of the first kind.
An isomorphism j ; G --> G' is induced by a Möbius transformation in
ä it arrd only if dU) : I .

Proof: Tf j is inrluced by a }töbius transl'ormation. then ä(j) : 1

bv the fbrmuia (1.2).

Suppose that ö(j) : I . Let g, a;rd gz lte t1-o hyperbolic transfor-
mations of G without cominon fixecl points. Set

fi(gr,gr): - (Ä(gr) ,f-(gr) ,P(gr),P(gr)) * t.
Since .Fur(G) is contained in a circle or in a straight line, §(g, , gr) is
always re,al, ancl §(9, , gr) < 0 if and onlv if Ar(gr) n Ar@.) * A .

Choose h and gz such that §(gr, gr) ( 0 . By äU) -- I , (A) in
3.7 lrolds. Thus p(y(gr), j@r)) is defined, and rve shor. tirat

§(sr, Qz) - 7U@r) , j(Jz))

To prove (4.9), set S',:j@r) and k;:z(gi):r(g',) , r:1,2. Since
the validity of (a.9) does not change if rr'elcplace G ancl G'bl'conjugate
groups G, and Gi and j by the isomorpliism j, clefiued b1- (3.2), u,e

mayassnillethat G and G' aclin ä andthat f(g,1 :f'tgl) :O,P(gz)
:P(gi): q and P(gr) :P(gi): t. Then r:J(g.) :flrh,gz).

Since öU) : I , it fbllows from (1.4) that

x?t"gz)- x@i"g;)

(4.e)

(4.10)

On the other hand, we carl determine all values n': ){@i): §@i,SL)
for which (a.fO) holds: Since

(h o gz)(z): 
(!l - r)kzz - (k' - L)r

(kr- L)ltrz. - kfi * 1 )

we get
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(4. I 1)

where

Similar1yr, we get

and. hence

(4.12)
fr,

a(2-r)-n

x@t.ez):Wl=.|,

a,-o(gt,gz):%rl .
n1 f ru2

an expression for X@i " g;) replacing n in (4.11) by n'
0 , (4.10) yields

a-fr I,e-r'l
r_l

1-n lt -*'l)

,': 
{ a! I 2n

If we replace g, and g, in (a.10) by gT and gi ,ln,n 2 I , the number
fr' obtained by (4.12) does not change. On the other ha,rrd, a(gr,{tz) I
a(fr , gZ) . Consequently, since the function

o r-ro(' ,*) - *
a*l-2r

is increasing, fr' : r is the only possible value for r' . Thus (a.9) is proved.
Since d(r-') : I , it follows, similarly, that if "vre choose g', and g',

such that §(gi,g'r)40, then §(j-r@i),j-r(g;))<o.Thus the axis
condition (ii) in Theorem 3.2 holds and the boundary mapping E of j
exists. (We still assume lhat G and G' act in fl and that g(oo) : oo.)

Finally, it follows from (4.9) that cp preserr-es cross ratios. To prove
this, let - oo( tr<-rz<n.<nn(@. By(iii)in Lemma 3.1 we can
construct two sequences {gr"} and {gz"} of transformations of G such
that N(gi")-->r; and P(gi")--rr*, as lL---> @, ,i,: L,2. Then by
the continuity of E ,

(rr., rz, ns,, na): - l*B(gu , {tz^) * I :

*' tu §(i(gr"), i(gr")) + I : (v@r), 9(*r), v@r), v@oD'

Hence there is a Möbius transformation tL such that E : hlå, and,

as remarked at the end of 4.4, it follows Lhat h ind"uces j in ö . a

6. The results of this section have some applications.
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Let Go be a fixed covering group of the first kind and .f(Go) the set

of aII isornorphisms j : Go-> G with finite dilatation. (Note that G is
allowed to vary.) We define in "/(Go) an equivalence relation by setting

.it- jz if öUr"rr t) : I . Let E(Go) denote the set of equivalence classes:

E(Go): J(Go)l-.

and denote the equivalence class of j b"" ifl .

Tn E(G) we can define a natural metrie:

Theorem 4.4. Set d(Lil,tfJ) --- log ö(j2 ,.li') . 'I'heIr (E(Cli ,d,) is

a metric space.

Proof: Let jt -j'r,'i,: l, 2 . Sinc"^ il" tiif' : \ir. i;'), (ir".ir') "
(fr. Ui)-,) . itfollowsfrom (4.2)that ö(jj " (ii)-') < ö(ir,il'), and simi-

larly äUr.li') < ö(j;" Ui)-') . Thus d is well clefinecl.

By definition, d > 0 and d(lirl, [fr]) : tt ;f ancl onll- if i, -ie.
Since äU) : ö(J-') for aII isomorphisms, d([7r] ,Url) .: d([fJ , [fJ) .

To prove the triangle inequality, let fieJ(G),i--l,2,3.Then
jr"jl,:(jr" jr').(jz" jt')andby (4.2), ö(jt"Jr') < ö(r, "lt')ö(jr" jr') .Z

By Theorem 4.3, all isomorphisms in lidl are induced by Möbius
transformations. Thus d(ljl ,lidl) : log d(j) is a measlre for the devia-

tion of 7 from isomorphisms induced, b1' confoltnal mappings in i .

7. We now restrict ourselves to covering groups acting in D . Let
Go be of the first kind and let Jr(Go) be t'he set of isomorphisms i : Go --> G

induced by quasiconformal self-mappings of D . Denote the set of quasi-

conformal mappings inducing i AV BU).
We define in Jr(Go) an equivalence relation = by setting ir= i,

if B(j, " jl') contains Möbius transforrnations. llhe set

T'(Gi : fiG)l=
is the Teichmtilier space of G, . anrt the Teichmiiller rnetric 2 in T(Go)

is defined by

Q(tJll , ljrl) : Iog inf {1i(/) I e B(jr" j, ')} .

(By Lemma 2.2, these definitions aglee rvith the definition of the Teich-
miiller space of the Riemann surfäce DlGo')

By Theorem 4.1, Jr(Go)cJ(Go), and it follorvs from Theorem 4.3

that the relations - and ru &re the sanre in Jr(G):

T(Go) : Js(Go)l- .

By Theorem 4.1, il(ljrT,llrl) < a(UJ , ffrl) holcls for all litT e?(G) ,i
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: I , 2, but it remains us an open question whether these metrics are

equivalent in T(Gd .

8. To conclude this section, we construct two covering groups G and
G' and an isomorphism j : G'-> G' satisfying the following conditions:

( i) G ancl G' act in D and are of the first kind,
( ii) j : G --> G' is induced by a sense-preserving homeomorphism

,f:D-->D,
(iii) ä(r) : *.
Suppose fhat j:G--> G' satisfying (i)-(iii) is constructed. By Theo-

rem 4.1, there is no quasiconformal self-mapping of D inducing i in D
(cf. Theorem 2.1). Moreover, if g is the boundary mappirrg of i, there
is no quasiconforrnal self-mapping of D with bounclarY values g (Theo-

rcn 4.2),

Let g be a hyperbolic transformation fixing D , and /(g) its isometric
circle (see 3.3). Let a(g) and c(g) denote the point.r of I(g) O ff such

that Im (c(g)la(g)) > 0. If we set' b(g): Ar@)n lkt)n D ' then

x(g) : (b(g-') ,b(s), Jt(g) , P(g))(4.13)

(The formuh (a.13) follows directly from formulae (l't) since Ö(9-1) :
s(b(s)) .)

Supposing llnaf Au(g) contairrs the origin, g is uniquely determined
by any two of the numbers a(g) , o(g) , x(g) or by å(g) alone.

We define a set {gr, !12, . ..} of generators o{ G icluetively as follows:

( i) 0e Ar@"),rL:I,2,...,
( ii) a(gt) : e-intL , c(gt) : e"tn ,

(iii) a(9^+): c(9") ,'tt : | ,2,... ,

(iv) c(g,*,) : c(g,)ei=t2"*',n : L,2,.. .

Since c(g")'--sL@@)): a@r\ as ?a--> oc, it follou'sthat' {gr,9r,...}
is a free combination. Therefore, G generated b1- {h,g't,...} i" a cov-
ering group (Lemma 3.2). Since the boundarl' of -t'(G) eontains no a,rcs

of K , the group G is of the first kind.
We define a set {gi , g; , . . .} of generators of fJ' in a slighbly dif-

ferent way:

( i) 0 EAr(g'^),% : 1,2,...,
( ii) a(sl) : 

"(sl) 
: u"t^ ,

(iii) x(g',) - x(g.),n : 2, 3,'.,
(iv) a(g.+r) : c(g,), n : 2, 3, .,
( v) ct(g'rl :lim c((g;)-l) .
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ft follows from (4.13) rhat a(gl) is well defined, i.e., Im (c(gi)la,(gi)) > 0 ,

and that {g', , g'r, . . .} i. a free combination. Thus G' is a covering group
of the first kind.

By (ii) in Lemma 3.2, we can define an isomorphism y : G --> G' by
j(g") : g'., tL : L,2, . . . . Then obviously ö(r) : .o . Moreover, it
follows from the construction that there exists a sense-preserving homeo-
morphism /. : Bd I(G) -->Bd n(G') such that foo g, : g'," fo, n :
1 ,2 , .. . Let /, : Cl E(G) --> Cl I(G') be an arbitrary homeomorphism
with boundary values å I Bd n(G) :/r, and define a homeomorphism
f:D-->D by f:j(s)"ft"{t-t in g(ClX(G)nD) ,gee.Then f
induces j in D.

§ 5. Isomorphisms with special bounilary mappings

1. In this section all covering groups are ofthe first kind and act in H .

Suppose thaf j:G---> G' is an isomorphism whose boundary mapping
g exists and g( @) : oo . We shall first prove that g and g-r are locally
Lipschitz mappings if and only if j is induced b;r a }Iöbius translbrmation.
We establish this result in a slightly more general form; in fact it suffices
to consider only the local behavior of g at tlne fixed points of G . To
this end, we give the following definition: E is said to be a LiTtschitz map-
pingataTtoi,nt roe R if thereisarealnumber L>l andaneighbor-
hood U C R of ro such that

(5. 1)

holds for all r € U . (Note that L may depend on ro.) This pointrvise
Lipschitz conditon is evidently invariant under lföbius transformations:
if g is a Lipschitz mapping al uo arrd h, and h, are llöbius transfor-
mationsfixirig "EU{oo} suchthat hr(*o)+ oo aud h2ogoåi'(.o) - @,
lhen hr"g"hlr is a Lipschitz mapping at hr(:,-o). Thus it is reasonable
to call g a Lipschitz mapping at a if LlEgir) is a Liirschitz mapping
aL the origin.

2. We carr now establish our proposition.

Theorem 5.1. Let G and G' be covering groups of the first kind
acting n H. Anisomorphism j:G--> G' is induced bya Möbius trans-
formation fixing oc if and only if the boundary mapping E of j is a
Lipschitz mapping at the points of ?i,x (G) .

Proof: If j is induced by a Möbius transformation h , tlnen V -hl RU {oo}. Thus g isalipschitzmappingatevery point of .EU{oo}.
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Conversely, suppose that g is a Lipschitz mapping at the points of
Fi,r(G). By Theorem 4.3, it suffices to show that d(l) : I or, since g
exists, that x(g) : x(j(g)) holds for all hyperbolic transformations g e G .

To do this, set g' : j(g). Since the pointwise Lipschitz property is in-
variant under Möbius transforurations, we ma}z ag.o-e that P(il : P(S')
- oo. aud" .l[(g) : N(g'): 0. Choose zo € n\{0} and set r^: g-"(ro)
and y,: g(n") : (g')-"(V@oD,n :0, 1,... Then

U.ln* : @olxi@@) lx(g')) .

Since p(0) :0,
lE@i - p(0)l : lx"yofrrl (%@)lr@,)) .

As za-> @, na->0; thus by (5.1), there is an Lo ) I such that

t llo < O<,@) I'a(g'))" < Lo

holds for all t?,:1,2,... . This implies that x(g): x(g,).f7

3. Suppose that the boundary mapping g , å -* fr, of an isomor-
phism j : G --> G' is quasisymmetric. Then there are quasiconformal
seif-mappings of ä with boundary values g . Therefore it is natural
to ask whether j is induced by a quasiconformal mapping in ä. We
conclude this paper summarizing recent results of Lehto [14] giving a
partial &nswer to this question.

Iu the following, Go is a fixed covering group of the first kind acting
in H , and G denotes a similar group that is allowed 1,o vary.

Let Q be the set of conformal mappilgs of the lower half-plane ä*
onto plane domains. Define / as the set of all / € O with the follow-
ing property: there is a quasiconformal mapping f* , d --+- ö such that
f*lH*:f .If f* canbechosensothat f*ogo ("f*)-, isaMöbiustrans-
formation for all g e Go, then f e /@) . Let QGo) be the set of all
/€J2 such t'har f "g"f-t is the restriction of a llöbius transformation
for all 9 € Go. Then A(G; c / O QGo) .

Let J^(Gd be the set of all isomorphisms j:Go->G with an in-
creasing boundary mapping g:fr-->k,Jr"1Go1 the set of all j:Go->G
with a quasisymmetric A,6---d, and Jr(Go) the set of all j:Go->G
induced by quasiconformal self-mappings of l/ fixing oo . Then Jr(Go)
c Js"(Go) c Jh(eo) .

Theorem 5.2. Let Go b" a covering group of the first kind acting in If
Then ./r(Go) : Jo"(Go) if and only if
(5.2) A(G;:An?(Gl .
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For a proof, see [14]. Kra [12] has proved that (5'2) holds if Go is

finitely generated. Thus Theorem 5.2 has the following corollary:

Corollary. Suppose that Gs is finitely generated. Then "fs(%) : Jq"((]s) ,

i.e., an isomorphism i:Go->G has a quasisymmetric boundary map-

ping if and only if j is induced by a quasiconformal self-mapping of H
fixing co.

4. Suppose that HlGo is compact (or, more generally, G, is finitely
generated, cf. 4.3). Then by Theorem 2.1, Jr{Go) : Jq,(Gs) : JilGd '

Conversely, if one proYes directly that

(5.3) Jn(G) : Jq"(Gr) ,

then the above Corollary implies Theorem 2'1.

It can be proved without Nielsen's theorem that E of j: Go->G

exists whenever HlGo is compact (see [17] p.240 and Lemma 3.6.2 in

[20]). Thus Corollary and (5.3) together imply Nielsen's theorem. on the

other hand, the proof of (5'2) in [12] invoh'es Nielsen's theorem'

5. To our knowledge, it is an open question rvhether (5.2) alwa;rs holds

if Go is not finitely generated (cf. [6]).
Suppose that there is a coYering group of the first kind not satisfying

(5.2). Then there is arr isomorptrism j : Go -+ G with a quasisyrnmetric

boundary mapping q:R=-R such that iA'Jq(Go). Iforvever, by the

lbllowing theorem of Lehto [14], the quasisymmetry of g is in this case

boundecl away from 1.

Theorem 5.3. If the boundtr,ry rnapping I of j e Jr"(Gd satisfies

(I.7) with a )" 1\/i, th"r', i eJq(Go), i.e., , is itrduced by a quasicon-

formal self-mapping of H .

We remark that the pr.oofs {br Theo|eurs 5.2 tilrcl 5.3 in [14] tlo not

involve Theorem 3.2.

Department of Mathematics,
University of Helsinki
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