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1. Introduction and terminology

1.1 By a condenser in R" we mean a triple £ = (D; C,, ;) where
D is a domain in R", and C,, C; are disjoint compact sets in D, the
closure of D in R"= R"y{w}. The capacity (namely the conformal
capacity or the n-capacity) is defined by

cap £ = inf | |SJu|"dm,

ucW(E)
D

where W(E) is the set of all non-negative, continuous and ACL functions
w:D—R' such that w(x)—>j as x-—>a; for all zeC;, j=0,1. If
Coy=¢ or O, =¢ we set cap £ = 0. Note that cap (D ;C,, C)) =
cap (D ; €y, Cy).

1.2. Let f:D— R" be a non-constant quasiregular mapping (see [2]
for terminology) and E = (D ; C, C;) a condenser. The cluster set of f
ona set 4 c D is denoted by C(f, A), i.e. C(f, A) is the set of all points
y € R* such that f(x) -y as z —a for acA. We will show that

(@) O(f,Co)NO(f, Cy) == cap B < N(f, D)K,(f) cap fE ,
where fE = (fD ;C(f,C,) ,C(f, ;) ), and that

(b) Cy,CicD and C(f, 8D) c fD = cap fE < K,(f) cap E,
where fE = (fD ; fO,\f(D\C,) , fC,).
Here K (f) and K,(f) are the outer and inner dilatations of f in D,
and N(f, D) = sup cardinality f~(y) over all yeR", see [2].

We conclude with an application of (b) to the boundary behavior of
quasiregular mappings.

1.3. The notation and terminology will usually be as in [2]. Quasi-
conformal is abbreviated by gc, quasiregular by ¢gr. The L*(D) norm of

n 2\ 1/2
|Vu| = (Zl (5;)) will be denoted by |[[\/ullp, or by [/ul.

i=
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2. Preliminary results on the capacity of condensers

2.1. Let E = (D;C,, C,) be a condenser in R". Let W(E) denote
the set of all non-negative, continuous and ACL functions u : D — R!
such that CyNsptu = ¢ and C, Nspt (1 — u) = ¢. Finally, let W5 (E)
= WyE)NC>(D). Clearly WY(E) c W(E) c W(E).

2.2. Lemma. cap E = inf {||Vu|": u e Wy(H)}.

Proof. We may assume that cap E < oo, since otherwise there is
nothing to prove. For u ¢W(E) with ||[Vu| < oo and 0 <6 <3, we
define wu, : D — R' by setting ugs(x) =0 iff 0 <wu(x) <95, uy(x) =1

u(x) — 0

iff 1 — 6 <wu(x) <1 and wuyz) = ERTYE otherwise. It is not hard to
. | Vull e
verify that u, e Wo(£) and that ||S/uy| < I —95 Now take the infimum

of |[\Vul* over all we W(E); then let 6 — 0 and the result follows.
2.3. Lemma. cap E = inf {|[Vu|" uw e W§(E)}.

Proof. We may assume that cap B << . Given ¢ > 0 and ue Wy(£)
with ||Vu|| < oo, let

6 = min {dist (Cy, spt w) , dist (C}, spt (1 — u)}.

We now continue with the techniques of [3]. Define Dy = D_; = ¢ and
1
Di:{xeD: || < ¢ and dist (z, aD)>z—.},i= 1,2,... .

Choose a partition of unity > y;=1 on D such that
i=1

SptwiCDHd\Di_l: 1=1,2,...,

and let ¢i:R"— R, 4 =1,2,..., benon-negative C'* functions such that
S AL
spt ¢i C G+ DG+2) n 5 ,/(;,-(@) Im(z) =1 an
Rn

7 po) — Tlpn)| < 5

spt @i % yauw c D,y \D;_,; hence the series
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v :.Zlqai*y)iu

converges and defines a function in Wg(K). Finally for k=1,2,...
we have:

k+1 k+1

IVu — 7ellp, = H; V(@i #ypiu) — (yi)p, S:ZI |7 (s = piw) — V(pau)|| <e

Letting & — oo, we conclude by Lebesgue monotone convergence theorem
and Minkowski’s inequality that ||<\/2| < ||</ul| + . Now take the infimum
of ||\Vul| over Wy(E), let e— 0 and the result follows by 2.2 and the

inclusion W (E) c Wo(H).

3. Capacity inequalities

3.1. Theorem. Let f: D — R* be non-constant and qr, and let B =
(D; C,, C;) be a condenser. If C(f, Cp) N C(f,Cy) = ¢, then

cap E < N(f, D)K(f) cap fE,
where fE = (fD; C(f, Cy), C(f, Cy))-

Proof. We may assume that N(f, D) < co and that cap fE < co.
(Actually, the capacity of acondenserisalways finite.) Given v e W( fE)
with ||/ofp < o, we define u =wvof. Clearly = is non-negative and
continuous in D. Let U’ = fD\spt v and U = fY(U’). Then spt u
— D\U; and since O(f, C,) N spt v = ¢ it follows, by the definition
of a cluster set and the nature of U and U’, that C; N spt u = ¢. In the
same way C; Nspt (1 — u) = ¢. Finally f is ACL and differentiable a.e.
in D, cf. [2, 2.26], and ve C*(fD), hence u is ACL and

|Zult < (V) o fMIf T < Ko(f) (Vv) o f7I(f) ae in D,
where J(f) denotes the Jacobian of f in D. Consequently u e Wo(E) and

cap B <|[\Vul" < Ko(f)f1(Vv) o frJ (frdm < Ko(f)N(f, D)\l -

Now take the infimum of |\/¢|[fp over all we W (fD) and the result
follows by virtue of 2.3.

3.2. Theorem. Let f: D — R" be qr and E = (D; Cy, Cy) a condenser
with Cy, Cic D and C(f, 9D) c 9 fD. Then
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cap fE < K,(f) cap E,
where fE = (fD; fCNFDN\Cy), £Cy).

Proof. We may assume that cap B < oo. Given wue WP (E) with
|IVu|| < o we define v : fD — R' by v(y) = sup {u(z): z€f*(y)}. Clearly
v(y) = 0 for all yeD'= fD, v(y) = 0 for all y & fO, \f(D\C,) and v(y) = 1
for all y e fC,. f is qr, hence f is open and discrete and since C(f, 9D)
c ofD, it follows that f is closed. Thus, by [1, 3.3], N(f, D) < oo.
Consequently v is continuous in D’. Indeed, given ¢ >0 and yeD’
with f(y) = {«y, . . . ,@x}, choose neighborhoods U;c D of i, ¢ =1,

..k, such that |u(x) — u(x)| < e for all xeU;, 1=1,...,k. Then

k

A= nfU is open in D', B = f(D\ U U)) is closed rel. D', and

S0 V A\B is a neighborhood of y and Iv( Yy —o(y) <e forally eV.
Applying the arguments of [2, 7.8—7.13] we conclude that » is ACL in

D’. Thus ve W(}’E’). Then the arguments and computations of [2, 7.15—
7.17] yield |[[Volp < Ki(f)||Vul*. Take the infimum of |T/u" over
all we WD) and the result follows by 2.3.

4. An application

4.1. A domain D c R" is said to be quasiconformally accessible at
a point be oD iff for every neighborhood U of b and for every con-
tinuum C, c D\ U, there is a positive number ¢, and a neighborhood
V of b with V < U such that cap (D; C,, C;) > ¢ for every continuum
C; in D which meets both 9V and oU. cf. [4, 1.7].

4.2. Theorem. Let f:D—R" be qr with C(f oD)c ofD. If D
18 locally connected at a point be 0D and D'= fD is qc accessible at some
point yeC(f,b), then C(f,b) = {y}.

Proof. For gc mappings see [4, 2.4]. Suppose that C(f, b) contains
more than one point Then there are sequences {x;}) and {z;} in D
with x;, —b, z; —b, f(x —>y and f(r)) —y with y#y'. Let C
be any continuum in D' C(f, oD)c afD implies that C, = f1C"; is
compact in D. Choose a neighborhood U of y such that y' ¢ U and
CoNU=4¢. yedD' and D’ is gc accessible at y; hence there is
6 > 0 and a neighborhood V of y with the properties stated in 4.1.
D is locally connected at b, therefore z; and xz; may be joined by
an arc y; in D whose diameter tends to 0 as i— oo. f(z;)e V and
fx;)e D'\NU for all i sufficiently large, hence cap (D’; Cy, fy;) > 0
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while cap (D; Oy, y;) >0 as ©— oo, violating Theorem 3.1. Thus

4.3. Corollary Let D be a Jordan domain in R" and f:D — R"

qr with fD c B* and O(f, 0D) c 0B™. Then f has a continuous ex-
tension on D.
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