CONFORMAL CAPACITY AND QUASIREGULAR MAPPINGS

BY

URI SREBRO

HELSINKI 1973
SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.529
Communicated 10 November 1972 by Jussi Väisälä
1. Introduction and terminology

1.1 By a condenser in \mathbb{R}^n we mean a triple $E = (D; C_0, C_1)$ where D is a domain in \mathbb{R}^n, and C_0, C_1 are disjoint compact sets in D, the closure of D in $\mathbb{R}^n = \mathbb{R}^n \cup \{ \infty \}$. The capacity (namely the conformal capacity or the n-capacity) is defined by

$$\text{cap } E = \inf_{u \in W(E)} \int_D |\nabla u|^n dm,$$

where $W(E)$ is the set of all non-negative, continuous and ACL functions $u : D \to \mathbb{R}^1$ such that $u(x) \to j$ as $x \to x_j$ for all $x_j \in C_j$, $j = 0, 1$. If $C_0 = \emptyset$ or $C_1 = \emptyset$ we set $\text{cap } E = 0$. Note that $\text{cap } (D ; C_0, C_1) = \text{cap } (D ; C_1, C_0)$.

1.2. Let $f : D \to \mathbb{R}^n$ be a non-constant quasiregular mapping (see [2] for terminology) and $E = (D; C_0, C_1)$ a condenser. The cluster set of f on a set $A \subseteq D$ is denoted by $C(f, A)$, i.e. $C(f, A)$ is the set of all points $y \in \mathbb{R}^n$ such that $f(x) \to y$ as $x \to a$ for $a \in A$. We will show that

(a) $C(f, C_0) \cap C(f, C_1) = \emptyset$ \Rightarrow $\text{cap } E \leq N(f, D)K_0(f) \text{cap } fE$, where $fE = (fD ; C(f, C_0), C(f, C_1))$, and that

(b) $C_0, C_1 \subseteq D$ and $C(f, \partial D) \subseteq \partial fD \Rightarrow \text{cap } fE \leq K_1(f) \text{cap } E$, where $fE = (fD ; fC_0 \setminus f(D \setminus C_0), fC_1)$.

Here $K_0(f)$ and $K_1(f)$ are the outer and inner dilatations of f in D, and $N(f, D) = \sup \text{cardinality } f^{-1}(y)$ over all $y \in \mathbb{R}^n$, see [2].

We conclude with an application of (b) to the boundary behavior of quasiregular mappings.

1.3. The notation and terminology will usually be as in [2]. Quasiconformal is abbreviated by qc, quasiregular by qr. The $L^n(D)$ norm of $|\nabla u| = \left(\sum_{i=1}^n \left(\frac{\partial u}{\partial x_i} \right)^n \right)^{1/n}$ will be denoted by $\|\nabla u\|_D$ or by $\|\nabla u\|$.

Supported by a research grant from the Finnish Government.
2. Preliminary results on the capacity of condensers

2.1. Let \(E = (D; C_0, C_1) \) be a condenser in \(\mathbb{R}^n \). Let \(W_0(E) \) denote the set of all non-negative, continuous and ACL functions \(u : D \to \mathbb{R}^1 \) such that \(C_0 \cap \text{spt} \ u = \phi \) and \(C_1 \cap \text{spt} (1 - u) = \phi \). Finally, let \(W_0^\infty(E) = W_0(E) \cap \mathcal{C}^\infty_0(D) \). Clearly \(W_0^\infty(E) \subseteq W_0(E) \subseteq W(E) \).

2.2. Lemma. \(\text{cap} \ E = \inf \{ \| \nabla u \|^n : u \in W_0(E) \} \).

Proof. We may assume that \(\text{cap} \ E < \infty \), since otherwise there is nothing to prove. For \(u \in W(E) \) with \(\| \nabla u \| < \infty \) and \(0 < \delta < \frac{1}{2} \), we define \(u_\delta : D \to \mathbb{R}^1 \) by setting \(u_\delta(x) = 0 \) iff \(0 \leq u(x) \leq \delta \), \(u_\delta(x) = 1 \) iff \(1 - \delta \leq u(x) \leq 1 \) and \(u_\delta(x) = \frac{u(x) - \delta}{1 - 2\delta} \) otherwise. It is not hard to verify that \(u_\delta \in W_0(E) \) and that \(\| \nabla u_\delta \| \leq \frac{\| \nabla u \|}{1 - 2\delta} \). Now take the infimum of \(\| \nabla u \|^n \) over all \(u \in W(E) \); then let \(\delta \to 0 \) and the result follows.

2.3. Lemma. \(\text{cap} \ E = \inf \{ \| \nabla u \|^n : u \in W_0^\infty(E) \} \).

Proof. We may assume that \(\text{cap} \ E < \infty \). Given \(\epsilon > 0 \) and \(u \in W_0(E) \) with \(\| \nabla u \| < \infty \), let
\[
\delta = \min \{ \text{dist} (C_0, \text{spt} u), \text{dist} (C_1, \text{spt} (1 - u)) \}.
\]
We now continue with the techniques of [3]. Define \(D_0 = D_{-1} = \phi \) and
\[
D_i = \left\{ x \in D : |x| < i \quad \text{and} \quad \text{dist} (x, \partial D) > \frac{1}{i} \right\}, \quad i = 1, 2, \ldots .
\]
Choose a partition of unity \(\sum_{i=1}^\infty \psi_i \equiv 1 \) on \(D \) such that
\[
\text{spt} \ \psi_i \subseteq D_{i+1} \setminus D_{i-1}, \quad i = 1, 2, \ldots ,
\]
and let \(\varphi_i : \mathbb{R}^n \to \mathbb{R}^1, \ i = 1, 2, \ldots , \) be non-negative \(C^\infty \) functions such that
\[
\text{spt} \ \varphi_i \subseteq B_n \left(\frac{1}{(i + 1)(i + 2)} \right) \cap B_n \left(\frac{\delta}{2} \right) \text{ and } \int \varphi_i(x) dm(x) = 1 \quad \text{and}
\]
\[
\| \nabla (\varphi_i \ast \psi_i u) - \nabla (\psi_i u) \| < \frac{\epsilon}{2i}.
\]
\[
\text{spt} \ \varphi_i \ast \psi_i u \subseteq D_{i+2} \setminus D_{i-2}; \quad \text{hence the series}
\]
$v = \sum_{i=1}^{\infty} q_i \ast \psi_i u$

converges and defines a function in $W_0^\omega(E)$. Finally for $k = 1, 2, \ldots$ we have:

$$
\|\nabla u - \nabla v\|_{D_k} = \sum_{i=1}^{k+1} \|\nabla (q_i \ast \psi_i u) - \nabla (\psi_i u)\|_{D_k} \leq \sum_{i=1}^{k+1} \|\nabla (q_i \ast \psi_i u) - \nabla (\psi_i u)\| < \varepsilon
$$

Letting $k \to \infty$, we conclude by Lebesgue monotone convergence theorem and Minkowski's inequality that $\|\nabla v\| \leq \|\nabla u\| + \varepsilon$. Now take the infimum of $\|\nabla u\|$ over $W_0(E)$, let $\varepsilon \to 0$ and the result follows by 2.2 and the inclusion $W_0^\omega(E) \subset W_0(E)$.

3. Capacity inequalities

3.1. Theorem. Let $f : D \to R^n$ be non-constant and qr, and let $E = (D; C_0, C_1)$ be a condenser. If $C(f, C_0) \cap C(f, C_1) = \phi$, then

$$
\text{cap } E \leq N(f, D)K_0(f) \text{ cap } f E,
$$

where $f E = (fD; C(f, C_0), C(f, C_1))$.

Proof. We may assume that $N(f, D) < \infty$ and that $\text{cap } f E < \infty$. (Actually, the capacity of a condenser is always finite.) Given $v \in W_0^\omega(fE)$ with $\|\nabla v\|_{fD} < \infty$, we define $u = v \circ f$. Clearly u is non-negative and continuous in D. Let $U' = fD \setminus \text{spt } v$ and $U = f^{-1}(U')$. Then $\text{spt } u = D \setminus U$; and since $C(f, C_0) \cap \text{spt } v = \phi$ it follows, by the definition of a cluster set and the nature of U and U', that $C_0 \cap \text{spt } u = \phi$. In the same way $C_1 \cap \text{spt } (1 - u) = \phi$. Finally f is ACL and differentiable a.e. in D, cf. [2, 2.26], and $v \in C^\infty(fD)$, hence u is ACL and

$$
|\nabla u|^n \leq |(\nabla u) \circ f|^n |f'|^n \leq K_0(f)(\nabla v) \circ f,^n J(f) \text{ a.e. in } D,
$$

where $J(f)$ denotes the Jacobian of f in D. Consequently $u \in W_0(E)$ and

$$
\text{cap } E \leq \|\nabla u\|^n \leq K_0(f) \int_{D} |(\nabla v) \circ f, ^n J(f) |d m \leq K_0(f) N(f, D)\|\nabla v\|_D^n.
$$

Now take the infimum of $\|\nabla v\|_D$ over all $v \in W_0^\omega(fD)$ and the result follows by virtue of 2.3.

3.2. Theorem. Let $f : D \to R^n$ be qr and $E = (D; C_0, C_1)$ a condenser with $C_0, C_1 \subset D$ and $C(f, \partial D) \subset \partial f D$. Then
cap \(\tilde{f}E \leq K_1(f) \) cap \(E \),

where \(fE = (\tilde{f}D; fC_0 \setminus f(D \setminus C_0), fC_1) \).

Proof. We may assume that \(\text{cap } E < \infty \). Given \(u \in W_\infty^\alpha(E) \) with \(\| \nabla u \| < \infty \) we define \(v : fD \to R^n \) by \(v(y) = \sup \{ u(x) : x \in f^{-1}(y) \} \). Clearly \(v(y) \geq 0 \) for all \(y \in fD \), \(v(y) = 0 \) for all \(y \in fC_0 \setminus f(D \setminus C_0) \) and \(v(y) = 1 \) for all \(y \in fC_1 \). \(f \) is \(qr \), hence \(f \) is open and discrete and since \(C(f, \partial D) \subset \partial fD \), it follows that \(f \) is closed. Thus, by [1, 3.3], \(N(f, D) < \infty \). Consequently \(v \) is continuous in \(D' \). Indeed, given \(\varepsilon > 0 \) and \(y \in D' \) with \(f^{-1}(y) = \{ x_1, \ldots, x_k \} \), choose neighborhoods \(U_i \subset D \) of \(x_i \), \(i = 1, \ldots, k \), such that \(|u(x) - u(x_i)| < \varepsilon \) for all \(x \in U_i, i = 1, \ldots, k \). Then \(A = \bigcap_{i=1}^k fU_i \) is open in \(D' \), \(B = f(D \setminus \bigcup_{i=1}^k U_i) \) is closed rel. \(D' \), and so \(V = A \setminus B \) is a neighborhood of \(y \) and \(|v(y') - v(y)| < \varepsilon \) for all \(y' \in V \).

Applying the arguments of [2, 7.8—7.13] we conclude that \(v \) is ACL in \(D' \). Thus \(v \in W(\tilde{f}E) \). Then the arguments and computations of [2, 7.15—7.17] yield \(\| \nabla v \|_{C^0} \leq K_1(f) \| \nabla u \|^{\alpha} \). Take the infimum of \(\| \nabla u \|^{\alpha} \) over all \(u \in W_\infty^\alpha(D) \) and the result follows by 2.3.

4. An application

4.1. A domain \(D \subset R^n \) is said to be quasiconformally accessible at a point \(b \in \partial D \) iff for every neighborhood \(U \) of \(b \) and for every continuum \(C_0 \subset D \setminus U \), there is a positive number \(\delta \), and a neighborhood \(V \) of \(b \) with \(\tilde{V} \subset U \) such that \(\text{cap } (D; C_0, C_1) > \delta \) for every continuum \(C_1 \) in \(D \) which meets both \(\partial V \) and \(\partial U \). cf. [4, 1.7].

4.2. **Theorem.** Let \(f : D \to R^n \) be \(qr \) with \(C(f, \partial D) \subset \partial fD \). If \(D \) is locally connected at a point \(b \in \partial D \) and \(D' = fD \) is qc accessible at all point \(y \in C(f, b) \), then \(C(f, b) = \{ y \} \).

Proof. For qc mappings see [4, 2.4]. Suppose that \(C(f, b) \) contains more than one point. Then there are sequences \(\{ x_i \} \) and \(\{ x'_i \} \) in \(D \) with \(x_i \to b, x'_i \to b, f(x_i) \to y \) and \(f(x'_i) \to y' \) with \(y \neq y' \). Let \(C'_0 \) be any continuum in \(D' \). \(C(f, \partial D) \subset \partial fD \) implies that \(C'_0 = f^{-1}C'_0 \) is compact in \(D \). Choose a neighborhood \(U \) of \(y \) such that \(y' \notin \tilde{U} \) and \(C'_0 \cap \tilde{U} = \phi, y \in \partial D' \) and \(D' \) is qc accessible at \(y; \) hence there is \(\delta > 0 \) and a neighborhood \(V \) of \(y \) with the properties stated in 4.1. \(D \) is locally connected at \(b \), therefore \(x_i \) and \(x'_i \) may be joined by an arc \(\gamma_i \) in \(D \) whose diameter tends to 0 as \(i \to \infty \). \(f(x'_i) \in V \) and \(f(x'_i) \in D' \setminus U \) for all \(i \) sufficiently large, hence \(\text{cap } (D'; C'_0, f\gamma_i) > \delta \).
while $\text{cap}(D; C_0, \gamma_i) \to 0$ as $i \to \infty$, violating Theorem 3.1. Thus $C(f, b) = \{y\}$.

4.3. **Corollary** Let D be a Jordan domain in \mathbb{R}^n and $f: D \to \mathbb{R}^n$ qr with $fD \subset B^n$ and $C(f, \partial D) \subset \partial B^n$. Then f has a continuous extension on D.
References

Technion, Haifa, Israel
and
University of Helsinki, Helsinki, Finland

Printed February 1973