Series A

I. MATHEMATICA

529

CONFORMAL CAPACITY AND QUASIREGULAR MAPPINGS

BY

URI SREBRO

HELSINKI 1973 SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.529

Copyright © 1973 by Academia Scientiarum Fennica ISBN 951-41-0070-0

Communicated 10 November 1972 by Jussi Väisälä

KESKUSKIRJAPAINO HELSINKI 1973

1. Introduction and terminology

1.1 By a condenser in R^n we mean a triple $E=(D; C_0, C_1)$ where D is a domain in R^n , and C_0, C_1 are disjoint compact sets in \overline{D} , the closure of D in $\overline{R}^n=R^n\cup\{\infty\}$. The capacity (namely the conformal capacity or the n-capacity) is defined by

$$\operatorname{cap} \ E = \inf_{u \in W(E)} \int\limits_{D} |\nabla u|^n dm,$$

where W(E) is the set of all non-negative, continuous and ACL functions $u:D\to R^1$ such that $u(x)\to j$ as $x\to x_j$ for all $x_j\varepsilon C_j$, j=0,1. If $C_0=\phi$ or $C_1=\phi$ we set cap E=0. Note that cap $(D;C_0,C_1)=$ cap $(D;C_1,C_0)$.

- 1.2. Let $f:D\to R^n$ be a non-constant quasiregular mapping (see [2] for terminology) and $E=(D\;;C_0,C_1)$ a condenser. The cluster set of f on a set $A\subset \bar D$ is denoted by C(f,A), i.e. C(f,A) is the set of all points $y\in \bar R^n$ such that $f(x)\to y$ as $x\to a$ for $a\varepsilon A$. We will show that
- (a) $C(f,C_0)\cap C(f,C_1)=\phi\Rightarrow \mathrm{cap}\ E\leq N(f,D)K_0(f)\ \mathrm{cap}\, fE$, where $fE=(fD\;;C(f,C_0)\;,C(f,C_1)\;)$, and that
- (b) C_0 , $C_1 \subset D$ and $C(f, \partial D) \subset \partial fD \Rightarrow \operatorname{cap} \tilde{f}E \leq K_I(f) \operatorname{cap} E$, where $\tilde{f}E = (fD; fC_0 \setminus f(D \setminus C_0), fC_1)$.

Here $K_0(f)$ and $K_I(f)$ are the outer and inner dilatations of f in D, and $N(f, D) = \sup$ cardinality $f^{-1}(y)$ over all $y \in \mathbb{R}^n$, see [2].

We conclude with an application of (b) to the boundary behavior of quasiregular mappings.

1.3. The notation and terminology will usually be as in [2]. Quasi-conformal is abbreviated by qc, quasiregular by qr. The $L^n(D)$ norm of $|\nabla u| = \left(\sum_{i=1}^n \left(\frac{\partial u}{\partial x_i}\right)^2\right)^{1/2}$ will be denoted by $||\nabla u||_D$ or by $||\nabla u||$.

Supported by a research grant from the Finnish Government.

2. Preliminary results on the capacity of condensers

2.1. Let $E=(D;C_0,C_1)$ be a condenser in R^n . Let $W_0(E)$ denote the set of all non-negative, continuous and ACL functions $u:D\to R^1$ such that $C_0\cap \operatorname{spt} u=\phi$ and $C_1\cap \operatorname{spt} (1-u)=\phi$. Finally, let $W_0^\infty(E)=W_0(E)\cap C^\infty(D)$. Clearly $W_0^\infty(E)\subset W_0(E)\subset W(E)$.

2.2. Lemma. cap $E = \inf \{ ||\nabla u||^n : u \in W_0(E) \}.$

Proof. We may assume that cap $E<\infty$, since otherwise there is nothing to prove. For $u\ \varepsilon W(E)$ with $\|\bigtriangledown u\|<\infty$ and $0<\delta<\frac{1}{2}$, we define $u_\delta:D\to R^1$ by setting $u_\delta(x)=0$ iff $0\le u(x)\le\delta$, $u_\delta(x)=1$ iff $1-\delta\le u(x)\le 1$ and $u_\delta(x)=\frac{u(x)-\delta}{1-2\delta}$ otherwise. It is not hard to verify that $u_\delta\ \varepsilon\ W_0(E)$ and that $\|\bigtriangledown u_\delta\|\le\frac{\|\bigtriangledown u\|}{1-2\delta}$. Now take the infimum of $\|\bigtriangledown u\|^n$ over all $u\ \varepsilon\ W(E)$; then let $\delta\to 0$ and the result follows.

2.3. Lemma. cap $E = \inf \{ ||\nabla u||^n : u \in W_0^{\infty}(E) \}.$

Proof. We may assume that cap $E<\infty.$ Given $\varepsilon>0$ and u ε $W_0(E)$ with $\|\bigtriangledown u\|<\infty,$ let

$$\delta = \min \left\{ \text{dist} \left(C_0, \text{spt } u \right), \text{ dist} \left(C_1, \text{spt} \left(1 - u \right) \right\} \right\}.$$

We now continue with the techniques of [3]. Define $D_0 = D_{-1} = \phi$ and

$$D_i = \left\{ \! x arepsilon D : |x| < i \;\; ext{ and } \;\; ext{dist } (x \;,\; \partial D) > rac{1}{i} \!
ight\}, \, i = 1, \, 2, \, \ldots \; .$$

Choose a partition of unity $\sum_{i=1}^{\infty} \psi_i \equiv 1$ on D such that

spt
$$\psi_i \subset D_{i+1} \setminus D_{i-1}$$
, $i = 1, 2, \ldots$,

and let $\varphi_i: \mathbb{R}^n \to \mathbb{R}^1$, $i = 1, 2, \ldots$, be non-negative C^{∞} functions such that

spt
$$\varphi_i \subset B^n\left(\frac{1}{(i+1)(i+2)}\right) \cap B^n\left(\frac{\delta}{2}\right), \int_{\mathbb{R}^n} \varphi_i(x) dm(x) = 1$$
 and

$$\|igtriangledown(arphi_i * \psi_i u) - igtriangledown(arphi_i u)\| < rac{arepsilon}{2^i}$$
 .

spt $\varphi_i * \psi_i u \subset D_{i+2} \setminus D_{i-2}$; hence the series

$$v = \sum_{i=1}^{\infty} \varphi_i * \psi_i u$$

converges and defines a function in $W_0^{\infty}(E)$. Finally for $k=1, 2, \ldots$ we have:

$$\|\bigtriangledown u - \bigtriangledown v\|_{\boldsymbol{D_k}} = \|\sum_{i=1}^{k+1} \bigtriangledown (\varphi_i * \psi_i u) - \bigtriangledown (\psi_i u)\|_{\boldsymbol{D_k}} \leq \sum_{i=1}^{k+1} \|\bigtriangledown (\varphi_i * \psi_i u) - \bigtriangledown (\psi_i u)\| < \varepsilon$$

Letting $k\to\infty$, we conclude by Lebesgue monotone convergence theorem and Minkowski's inequality that $\|\bigtriangledown v\|\leq \|\bigtriangledown u\|+\varepsilon$. Now take the infimum of $\|\bigtriangledown u\|$ over $W_0(E)$, let $\varepsilon\to 0$ and the result follows by 2.2 and the inclusion $W_0^\infty(E)\subset W_0(E)$.

3. Capacity inequalities

3.1. Theorem. Let $f: D \to R^n$ be non-constant and qr, and let $E = (D; C_0, C_1)$ be a condenser. If $C(f, C_0) \cap C(f, C_1) = \phi$, then

$$\operatorname{cap} E \leq N(f, D)K_0(f) \operatorname{cap} fE,$$

where $fE = (fD; C(f, C_0), C(f, C_1))$.

Proof. We may assume that $N(f,D)<\infty$ and that cap $fE<\infty$. (Actually, the capacity of a condenser is always finite.) Given $v \in W_0^\infty(fE)$ with $\|\nabla v\|_{fD}<\infty$, we define $u=v\circ f$. Clearly u is non-negative and continuous in D. Let U'=fD spt v and $U=f^{-1}(U')$. Then spt $u=\overline{D\setminus U}$; and since $C(f,C_0)\cap \operatorname{spt} v=\phi$ it follows, by the definition of a cluster set and the nature of U and U', that $C_0\cap \operatorname{spt} u=\phi$. In the same way $C_1\cap \operatorname{spt} (1-u)=\phi$. Finally f is ACL and differentiable a.e. in D, cf. [2, 2.26], and $v\in C^\infty(fD)$, hence u is ACL and

$$|\bigtriangledown u|^n \leq |(\bigtriangledown u) \circ f_{|}^n |f'|^n \leq K_0(f) |(\bigtriangledown v) \circ f_{|}^n J(f) \quad \text{a.e. in} \quad D,$$

where J(f) denotes the Jacobian of f in D. Consequently $u \in W_0(E)$ and

$$\operatorname{cap} \ E \leq \|\bigtriangledown u\|^{\mathbf{n}} \leq K_0(f) \int\limits_{\mathbf{D}} |(\bigtriangledown v) \circ f|^{\mathbf{n}} J(f) dm \leq K_0(f) N(f,D) \|\bigtriangledown v\|_{f\!\mathcal{D}}^{\mathbf{n}} \,.$$

Now take the infimum of $\|\nabla v\|_{fD}^n$ over all $v \in W_0^{\infty}(fD)$ and the result follows by virtue of 2.3.

3.2. Theorem. Let $f: D \to R^n$ be qr and $E = (D; C_0, C_1)$ a condenser with $C_0, C_1 \subset D$ and $C(f, \partial D) \subset \partial fD$. Then

 $\operatorname{cap} \ \tilde{f}E \le K_I(f) \operatorname{cap} E,$

where $fE = (\tilde{f}D; fC_0 \setminus f(D \setminus C_0), fC_1)$.

Proof. We may assume that cap $E < \infty$. Given $u \in W_0^{\infty}(E)$ with $\| \nabla u \| < \infty$ we define $v : fD \to R^1$ by $v(y) = \sup \{ u(x) : x \in f^{-1}(y) \}$. Clearly $v(y) \ge 0$ for all $y \in D' = fD$, v(y) = 0 for all $y \in fC_0 \setminus f(D \setminus C_0)$ and v(y) = 1 for all $y \in fC_1$. f is qr, hence f is open and discrete and since $C(f, \partial D) \subset \partial fD$, it follows that f is closed. Thus, by [1, 3.3], $N(f, D) < \infty$. Consequently v is continuous in D'. Indeed, given $\varepsilon > 0$ and $y \in D'$ with $f^{-1}(y) = \{x_1, \ldots, x_k\}$, choose neighborhoods $U_i \subset D$ of x_i , i = 1, ..., k, such that $|u(x) - u(x_i)| < \varepsilon$ for all $x \in U_i$, $i = 1, \ldots, k$. Then $A = \bigcap_{i=1}^k fU_i$ is open in D', $B = f(D \setminus \bigcup_{i=1}^k U_i)$ is closed rel. D', and so $V = A \setminus B$ is a neighborhood of y and $|v(y) - v(y')| < \varepsilon$ for all $y' \in V$. Applying the arguments of [2, 7.8 - 7.13] we conclude that v is ACL in D'. Thus $v \in W(\widetilde{f}E)$. Then the arguments and computations of [2, 7.15 - 7.17] yield $\| \nabla v \|_{D'}^p \le K_I(f) \| \nabla u \|^n$. Take the infimum of $\| \nabla u \|^n$ over all $u \in W_0^{\infty}(D)$ and the result follows by 2.3.

4. An application

- 4.1. A domain $D \subset \mathbb{R}^n$ is said to be *quasiconformally accessible* at a point $b \in \partial D$ iff for every neighborhood U of b and for every continuum $C_0 \subset D \setminus U$, there is a positive number δ , and a neighborhood V of b with $\overline{V} \subset U$ such that cap $(D; C_0, C_1) > \delta$ for every continuum C_1 in D which meets both ∂V and ∂U . cf. [4, 1.7].
- **4.2. Theorem.** Let $f: D \to \mathbb{R}^n$ be qr with $C(f, \partial D) \subset \partial fD$. If D is locally connected at a point $b \in \partial D$ and D' = fD is qc accessible at some point $y \in C(f, b)$, then $C(f, b) = \{y\}$.

Proof. For qc mappings see [4, 2.4]. Suppose that C(f,b) contains more than one point. Then there are sequences $\{x_i\}$ and $\{x_i'\}$ in D with $x_i \to b$, $x_i' \to b$, $f(x_i) \to y$ and $f(x_i') \to y'$ with $y \neq y'$. Let C_0' be any continuum in D'. $C(f, \partial D) \subset \partial fD$ implies that $C_0 = f^{-1}C'_0$ is compact in D. Choose a neighborhood U of y such that $y' \notin \overline{U}$ and $C_0' \cap \overline{U} = \phi$. $y \in \partial D'$ and D' is qc accessible at y; hence there is $\delta > 0$ and a neighborhood V of y with the properties stated in 4.1. D is locally connected at b, therefore x_i and x_i' may be joined by an arc γ_i in D whose diameter tends to 0 as $i \to \infty$. $f(x_i) \in V$ and $f(x_i') \in D' \setminus \overline{U}$ for all i sufficiently large, hence $cap(D'; C_0', f\gamma_i) > \delta$

while cap $(D; C_0, \gamma_i) \to 0$ as $i \to \infty$, violating Theorem 3.1. Thus $C(f, b) = \{y\}$.

4.3. Corollary Let D be a Jordan domain in R^n and $f: D \to R^n$ qr with $fD \subset B^n$ and $C(f, \partial D) \subset \partial B^n$. Then f has a continuous extension on \overline{D} .

References

- 1. Martio, O. and U. Srebro: Periodic quasimeromorphic mappings. J. d'Analyse Math. (to appear).
- 2. —»— RICKMAN, S. and J. VÄISÄLÄ: Definitions for quasiregular mappings. Ann. Acad. Sci. Fenn. AI 448 (1969) 1—40.
- 3. MEYERS, N. and J. SERRIN: H=W. Proc. Nat. Acad. of Sci. 51 (1964) 1055—1056.
- 4. Näkki, R.: Boundary behavior of quasiconformal mappings in n-space. Ann. Acad. Sci. Fenn. AI 484 (1970) 1-50.

Technion, Haifa, Israel and University of Helsinki, Helsinki, Finland