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1. Introduction

Let mr" clenote the Lebesgue measure in the ft-dimensional euclideau

space Rk , Ho the normalized oc-dimensional Hausdorff measure in
R" , a 1n, and Ch the ä-dimensional cut me&sure in Rn, i.e.

C*(S) : supzzr(§ O P) over all k-dimensional planes P in R". Note
that C*(§) < äh(,S) and C^ : H" : mn it R".

Given a continuous, discrete, and open mapping f : G ->,82 with G

a domain in J?2, it is well known that the branch sel By of / is a discrete

set of points in G. Indeed, by Stoilorv's theorem f can be represented in
the form f :g"h rvhere h is a homeomorphism and g an analytic
Iirnction. Hence H'(Br) : H'(fBi: 0 and, if By * A, Ho(Bi > 0 and
Ho(fBf) > o.

If f : () ---> R", n ) 3, is continuous, discrete, and open wit'h By * b,
therr in [7] (cf. also [91) it rvas shorvn that H"-2(fBi > 0. The argument'

nas topological: lf y e fBt, then C/By has a non-trivial homotopy at

v [I].
A natural generalization of complex analytic functions Lo R" seems to

be the class of quasiregular mappings. For the theory of these mappings
n,e refer to [a-7]. If !: G -->.R" is a non-constant quasiregular mapping,
then / is discrete ancl open [11]. One might conjecture that the classes of
quasiregular mappings and discrete open mappings are the same from the
topological point of view also for n ) 3 as is the case in plane' Hou'ever,
in [7] it u.as shown that there exists in R", % ] 3, a discrete and open

mapping'ivhich is not topologically equivalent, to any quasiregular mapping.

Quasiregularity also imposes metric conditions on fu ar.d fBy. In [5]
it was proved fhat, m,(81) : m"(fB): 0 for a non-constant quasiregular
mapping f : G ---> l?". In l13l Re§etnjak proved lhat C"-l(Bt) : 0.

In this paper rve extend some of the above results. Given a discrete

and open mapping f : G'-- -RB rvith Br + A we proYe in Section 2 thaL
Ht(Br) > 0. F'or this we use a result of PapakyT iakopoulos [8] to shorv

that CBy has a non-trivial homotopy at some z € 87. The fact Ht(Bfl ) 0

can also be rlerived from a result of Trohimöuk [15] but our arguments are

clifferent. In Section 3 we prove by using the method of Re§etnjak that
C"-'(fBr): 0 if f : G --u -8" is a quasiregular mapping. fn Section 4 lve
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derive a lower bound for the Hausdorff dimension dims By of B7 of a
quasiregular mapping f : G --- A" with h + b. This lower bouncl depends

only on m ar,d the dilatation of /.
Our notation is mainly that «rf [5].

2. On Br and fBr of tliscrete anal open mappings

2.1. Normal neighborhood,s and, coueri,ng spaces.For Y c R" and y € )-
r.velet, nr(Y,y) bethefirsthomotopygroupof I at y. If Y ispath'rvise
connected, these groups for different y's are all isomorphic and rvill be

denoted also by nt(Y). If oc: I --->Y, 1: [0,1], is a loop rvith base

poirnt y € I, i.e. cr(0) : "(l) 
: Ut we let lcrl denote its homotopv class

in nr(Y,y). The k-times product of a loop a is denotecl b1' &b, the
constant loop with base point y is ey, and - is the homotop5,'relation.

Lef f : G ---> R" be discrete and open where we always assume that
n)2, G isadomainin R", andthat / iscontinuous.Given re G we

recall that a domain D is callecl a normal neighborhood of r if (l) D
is a compact subset of G, (4 fiD : 7fD, and (3) !-'(f(r)) n D : ir|
[5, 2.L). The property (2) means that flD : D --> fD is a closed

mapping and (3) implies that 1i(r , f)l : card (f-'(y) n D) for e'rer;i'

yefD\714n frl 15, 2.t2f. IIerc i(r,,f) is the local topological index
of f at tr 15, p. 61. By 15,2.L0) there exist arbitrarily small normal neigh-
borhoods for every r € G.

We denote by A(/) the set of points r e G fot u'hich there exists a
normal neighborhood D of ru such that

{2.2} BTfrD-f-r(f(BrnD)) nD

If r eG\ B/, then BJn D : O for everrl- nolrttal neighborhood I)
of x 15, 2.121, hence R(f) ) G \ Br.

2.3. Lemrna I l,
Moreoaer ) the points
D ,f ffi suoh that
ore dense 'in Bf

Theorem 2.2) The .qet R(f)
r e By fo, wltich tlr,ere exi,sts

fiBrn D: Brn D *f(Br n D)

{1 Bt is d ense i n, fu.
0, ltot' tt?ctl neigltborh,oorl

is ({, homeomorpltis?tt,

2"4. Remark. The condition (2.2) means that

flD\ Br: D 
".B/ 

-*f(D \Br)
is å1, covering mapping. Note that for any domain L:

fP \ Br) are domains in []n since dim By { n, 2 [16].

I: \ B/ and
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2.5. Suppose that r e Rff) and that D is a normal neighborhood of
:u rvith_the property (2.2). Set X: D \Br, X:fX, and p :flx.
Therr (X , p) is a covering space of X and the group nr.(X , y) operates
transitively on the right on the set p-t(y) for every y e X. X'or a ep-'(y)
and c€zr(X,y) \,e denotethisactionby ".c, i.e. z.c€p-L(a) isthe
terminal point of the lifts of the representatives of c starting aL z ll4,
p. 711. Hence especially:

2.6. Lemma. If y
,p-l('y), tlten p"y nl-

'is cr, pa,tlt, which joi,ns tao cl'istinct po'ints in,

We let A(/) denote the set of points r e Rff) forw,hich there exists
tr, normal neighborhood. D with the property (2.2) and such that the
projection p is regular, i.e. either every lift of a loop a in X is a loop
or no lift of oc is a loop. Note that if D' c D is a normal neighbor-
hood of cr, then also D' satisfies (2.2) and the covering projection
.lD' \ By: D'\ ,ar--*714' \ Br) is regular if p is regular. Clearly

R(f)=G\B/.

:/-ti
r). itt, X.

2.7 . Lemma. Su,ppose that ,, € R(f )

borlrood ,f :v .\uch, thu,t (2.2) holds. If
,f t:, thett ar({' \ Br) is ylorl-triu'iul.

\ A(/). Let D be n ?Lor?nu,l rte,igh-

tl c D'is a con'n,ecte-cl neighborhood

Proof . Let D' c U be a normal neighborhoocl of ru such that

lD' c/U \ /at'. Set *.' : D' \ Bl, p' : f li', X' : p'fr'. Since

nt€. R(f)\åff), Ir' is not a regular projection of the covering space

(X' , p'). Ifence there exists a loop a : I --> X' rvhich has two lifts o(l

and a, such that a, is a loop and or, is not a loop in i'. ff the base

point of a, is z and if dL - €, in X, we have n: f o n, - eJ1,y in X
ancl hence by 2.6 «, rvould- be a loop. Thus cr, .l- e, in i and also «, ^/- e,

in U \ Br. The lemma follolrs.

2.8. Lemma . Suppose that »€ A(/) fi By. Let D be a normal, neighbor-
hood, of r such that (2.2) hold,s. If zr(U \ B) is tri,ai,al for some corutecteil
nei,ghborhood U c D of r, then there eri,sts a loop a in f(U \ By) szcä
that x is not h,omotogtic to a constant loogt i,n f(D \ Bf) ancl, d.ii("'J)l is
horuotopic to a constant looyt i,n f(U \ rr).

Proof . Let D', fr', X', alnd. 7t' be as in the proof of 2.i. Pick y € X'
and let y: I ---> X' be a path joining two distinct points of ,p'-L(y). B;,
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2.6 ":foy.f.e, in X:l@\Br). Set p'-'(y):{rr,...,.r*),
k: li,(r,f)1. Choose a maximal set {ir,..., ir}c {1 ,...,1t), I <1,:,

inductively as follows: Set d, : 1, and if L, . . . ,'i,i are choselt, pick i;.r
so that

ir*rQ{rlr,:r;o'ld") for some m:1,2, ..,I < q<i)'
Then for each j, L < j < l, there exists an integer zra(j), L {m(i) 1k,
such that tn(j) :inf{r I nij : nij' W\ r : 1,2, . . .}. Set

A1 : {r, lr" : r;,. lor7, I < q < m(j)}

and let y1 be lhe lift of or,*(j) *1uttir1g at ri.. Then (i) U Ai : 1t'-1(y),
(ii) ,ajs are disjoint, and (iii) 1 is a loop iri t- \ Br. If' ;tr(U \ fr; is

trivial, yj-e*;j in U\By andhence f "yi: o-U) -e.' iri/(ti\/].r).
Thus [oc] is of finite order m in nr(f(Lt \ By) , y). On the other hantl,
(i) and (ii) impl5.

I

2*U) : ca,rd P'-t(Y) : k : $@,f)
j =-t

Because za divicles each m(j), it also clivicles iti(.i,,/; 
'. lfhtrs ,.i(''r)i .-.'".'

in /(U \ Br.

2.9. Local hom,otopy proyterties of CBy and, CfBy. \Ye recall the clefinition
of a trivial homotopy at a point (cf. [r, Definition 6]):

2.10. Definition. Suppose that C c R" and r e C. \1'e sav that,

CC has a trivial homotopy at r if there exist arbitraril.r. small neighbor-
hoods [.i of r such that U \ C is pathrvise connectecl ancl zr(tl \ C)

is trivial.

2.11. Lemma. [1, Lemma 5.8] Suppose tlt«t t- c -R" i.s u, dotttcr,in rmcl

C closed, in ti with dimC 4n - 2. ff zr([''.. C') i.s triuir"r,l, then for
any ZcC closed,'in Lr, zr(U\Z) is triaiu,l.

2.12. Corollary. Sugtltose that -[/ c R" is open, C' clo.sed iru I: tt''itlt

dim0 Sn-2, and, re C. Then CC has a triaial ltonotopy ctt :r if
«nd, onl'y if there erist arb'itrarily small sim.ply conttectecl nc:igkborhood,s L'

of r such that nr(U \ C; ;s triui,al.

Proof. The condition is clearly sufficient. The conr-else follorvs fronr
2.11 since if L-c I/ isaneighborhoodof r suchthat [-'..C ispathu'ise
connected and nr([.i \ C; is trivial, then Lr is counectecl and for Z : A
2.11 implies that nt(U) is trivial.

Ann. Acad. Sci. tr'ennicix,
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2.13. Theorem. Suptgtose thut f : G ---> R" 'is d,i,screte and, open. If D is
q, norm,al neighborhood, of r € 81 with the property (2.2), then Cf(D fi Bil
has a non-tri,uial homotogty at f(r). Moreoaer, if U c D is a connectecl

neighborhooil of x, then nr(f(U \ fr)) is non-tri,uial.

Proof . Let D be a normal neighborhood of r e. Byn Rff) such that
(2.2) holds. Let U c D be a connect'ed neighborhood of r. Pick a normal
neighborhood D' c lJ of a such that fD' c /L/ \ /aL'. Let
y e f(D' \rr). By 2.6 there exists a loop x in f(D' r.Br) with base y
such that a.l-ey in f(D \Br), hence x "l-ey tu f(U \Br). Thus
nr(f(U \ ,r) , y) is non-trivial and the last statement is proved. Let nou.
V c fD be a connected neighborhoocl of f(r,). Then U : f-'V n O
is connected 15, 2.6) and 71tr 

\r B) : I/ \/(D ff Bi, hence

zr(I/ \/(D n Br)) is non-trivial. The theorem follows.

2.14. Remark. In [, Theorem 5.9] Church and Hemmingsen prove<l
that C/81 has a non-trivial homotopr. at /(r) for every r e 87.

Next'lr.e shall study the homotopy propert'ies of By. Lemma 2.7 give-"

the following result:

2.15. Theorem. Suyrytose that f , G -, R" is di,screte and ogten, and, thctt

r e R$) \ åffl Then CBy has a non-tria'ia,l homotogty at n.

From Lemma 2.8 we obtain:

2.16. Theorem. Suppose that f : G --> R" is cl,iscrete and, open,
r e Byn R$), and, D ,is a normal neighborh,ood, of n wi,th the property
(2.2). If there exists a aonnecteil, neighborltoocl Ti' c D of r such that
ni;@'f)i n1- r, in f(U'\ ar) wheneuer a. is cr, loop 'in /(U'\ Br) w'ith
base y anil a.f- e, in /(U'\B/), then CBy has a non-triaial homotopy
at x.

Proof . Let U' be a connected neighborhood of r as in the theorem
and let U c Lt' be a connected neighborhood. of r. If nr(U \ 8,,) is
trivial, then by 2.8 there exists a loop a h f\Lt \ Br) such that « is
not homotopic to a constant loop in ,f(D 

tr By) ancl ori'("'/)i is homotopic
to a constant loop in f(U \ fr. Let y be the base point of a. Hence
a nlu % in f(U'\ B, and a i(*'f)i - % in /(t" \ Bl), a contradiction
bv assumption. Thus ,r(U \ 87) is non-trivial and the theorem follorvs.
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2.17. Theorem. Srytpose thq,t f : G -> RB 'is d,iscrete and, open. ?hen
CB1 has a non-triaial homotopty at eaery point of Brn Rff).

Proof.Let re Brn fi(/) and let D be a normal neighborhood of z
rvith the property (2.2). Let U' c D be a connected neighborhood of z.
By 2.13 nr(f(U'\ fr)) is non-trivial and by [8, Corollary 31.S]
ar(f(U'\ Br) contains no element of finite order, hence by 2.16, CB"i has
a non-trivial homotopy at r.

2.L8. Eom,otopy and, nxe(tsure. Here we study the (n - 2)-dimensional
Hausdorff measure of By and fBy.

2.L9. Lemma. Suppose tltat Li c R" ,is ope% e,?Ld C c
itt, {-i. If CC ltcts a no?L-tt"i,aiu,l, homotopy ctt fr fo, sotrue

Urs
;U E. C,

closed

tlten

Proof.If dim C ), n - l, H"-'(C) : .o by13,TheoremVII2,p. 1041

If dim C 1n - 2, there exists by 2.L2 a simply connected neighborhood
U'cU of n such that zr(tr'\C) is non-trivial. The lemma norv
follola,s from [7, 3.3].

2.20. Theorem. Suppose
Br * g. Th,en

thcr,t f : G --> R'' 'is discrete e,nd open, cL?Ld

(see also [9] ) .

RZ is discrete

in the theorv

Proof . (a) and (b) are trivial for ?L : 2. By 2.3 there exists
r e By n A(/). Let D be a normal neighborhood of r such that (2.2)
holds. Then C : f(D O By) is closed in fD, and by 2.13 CC has a non-
trivial homotopy at f(r). Norv (a) follows from Lemma 2.19. The same
lemma and Theorem 2.17 impl5r (b) for n : 3.

2.2L. Reru,arks. 1. (a) in 2.2A Jras been pror,-ed in 17,3.4]
(b) also follows from the result of Trohimöuk [15]: If f : G --->
ancl open and Bf * g, then dim Bf : l.

2. The properties (a) and (b) have turneil out to be useful
of quasiregular mappings (see la; 7 ; 9l ).

3. On the measure ol fBr of a quasiregular mapping

3.1. Theorem. Suppose thq,t f : G -> R", n ) 2, is «, quasi,regular
rna,pgting. Then C"-r(fBi : 0.
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For the proof we shall use a modification of the methocl of Re§etnjak

ll3l. At first we present some preliminaries.
Suppose that f : G -> R" is a non-constant quasiregular mapping.

Then / is discrete, open, and sense-preserving [11]' Let roe G. X'or

r ) 0 we denote by tl(*r,f, r) the rr.-componenl of f-t3"(f@o),r). By

15, 2.97 there exists oo) 0 such that for 0 ( r ( oo U(:ro,f ,r) is a,

normal neighborhood of rs, fU(*r,f ,r) : B"(f@o), r), ancl

card (f-t(y) 11 U (ro , f , ,)) I i(ro , f)

for every y eR". As in [5, 4.f] rve set for r > 0

l(r) : l(r, ,1, ,l : 
,r11t:if@ - f@il| ,

L(r) : L(ro , f , ,) :,,l1f: 
",tf@) 

_ f@il ,

a,nd for 0 I r < d,(f(r,o), afc)

xe )ti(xo,f,,r)

- stlp lfr-t0"
xe 0U(xo,J,r)

lYe need the follos,in g tn,o lemmas.

3.2. Lemma. Suppose tliat f , : G --> R" ,

of discrete ctnd open wla,pp'i'rlgs, f , G --> R" 'is

?rLapping, and f,*f wr,iforn?ly o?t comp(tct

:f,ie Btt then xe By.

d iscr ete a?LCl o p e tL o?' cL constct '/t,t

subsets,f G. If ni-->xeG,

Proof . We may assume t/nat f is not constant since ot'herrvise the lemma
is trivial. Then re By if aud only if li(t:,f)1>- 2 (cf. [5, 2.I2]). Set'

y : f(r) and" yi: l@). Pick a domain D such that r e D, D is a
compact, subset of G,yefD\,far, and p(y,f ,D):i(*,f) u'here

t @ ,f, D) denotes the topological index of the triple (y ,f, D) ([10],

[5, p.6]). Now p(y,f ,D):p(y,f,,D) for i]i, for some 'io [10,
II.2.3]. Since D is compact in G and A.-'>y, there exists z:i such that
rie D and. y and yi belong to the same component of ID\Ia,
for i> i;. Then p(yr,f,, D) : p(y ,ft, D) [10, Theorem l, p. 1257-

Hence for i, ) rnax (io , i[)

ti(x ,f)t: 
:r,, 

,r;nr, 
,l ,,l,rrr,,!,,,0::t ;,tlr,r, 

f, , r))',

l/-
,e fi-'b';) n .D
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because each rl(2,fi) has the same sign (see L5,2.L2)). The lemma follows.

3.3. Lemma. Suppose that (f) is a sequence of mapTtings such that

fi: G;---> R" 'is ei,ther d,iscrete and, open or a constant maltpi,ng. Then
dim [,] f,4,3 n - 2.

Proof. Clearlv fiBy, is a Po-set, i.e. a countable union of closed sets.

Since dim.f 81 I n, - 2 and the countable union of at most (n - 2)-

dimensional .F,-sets is again at most (n - 2)-dimensional [3, p. 30], the
lemma follolvs.

Proof of 3.1. Itr-e may assume that f :G--> -8" is a non-constant quasi-
regular mapping since otherwise the theorem is trivial. Let, *o € G. Pick
d > 0 so small that for r € (0, öl Lt(*o,f , r) is a normal neighborhood
of a,o. Denote Lo: U(ro,f , ö), g:flUo, and yo:f@). It suffices
to show that m^-r(gBr n P) : 0 for every (z - f )-dimensional hyper-
plane P in "r?".

If P is an (n - l)-dimensional hyperplane in R", then for y € P
and r)0 rvelet D(y,r,P) denotethedisk B"(A,r)OP andset

dr(y , r , P) : sup { g/r I D(z , e , P) c D(y , r , P) , D(z , Q , P) fi gBr: ff}
I§ote that gB, is closed in B"(Uo, ö). Since dim gBr <,rL
not contain arl\- (n I)-dimensional disk. Thurs I 2 es(y , r ,

:{,
?"t * §U ,ry) is a norl-increasirg function. \\-e shall shol,r' that

11->0

For r €g-L(y) leb l(r) : l(x ,g ,r) and l*(r) : l*(r ,9 , r). X'irst 1ve

show that there exist M > I and r ) 0 such that for eyery tr e g-r(y)
and r'€ (0, rl (i) U(r,f ,r') is a normal neighborhood of r and (ii)
r'f M 1 l(l*(r')). For r e g-L(y) choose o, I T as in [5, 2.9]. Then
U(*,9, r') isanormalneighborhoodof r for r' e (0, o,]. If l,(l*(r')) <r',
let l' be the faniil5. of paths joining 7Lt(r,g,r') a1d t(*,g,1(l*(r')))
in U(r , g , r'). By [5, 3.2]

, ,, \,-,(3.5) M(n < X@ , tlo)K6@)nI@r) ( f(.r'o ,f)Ko(f)to,,-, (h z1l*1r,y17

2, gB, does

ancl clefine

Then

(3.4)
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Since §"-1(r,l*(r')) meets both CIl(r ,g,r') and e@,g,1(1,*(r'))) and

tJ(*,g,r') \e@,g,t(l*(r'))) is a ring 15,2.9), MQ)> d">0 ll7,
tt.7l where ä, depends only on ra. This combined with (3.5) yields (i)

a,nd (ii) with ir : min {o"lx e S-t(y)).
Let,us suppose §(y) : 0. Then for i : l, 2, .. . t'here exists a positive

ntrmber r; { min {r,lli} and a plane P; such that

a.i---:- a"s(Y , r,lzYl , Pr) -> 0(3. 6)

as 'ii -+ 0. Passing to a subsequence rre may assume Pi ---> Po. Let
A;: Ro ---> R" clenote the mapping z* (z - y)ln and for z e B" and

t e.g-t(y) clefine Ai@: At(g(r + l*(r)z)). Set g! : A:W". Note that
for a€ 8", *ll*(r)zeB"(r,lx(r;)) cB"1x,l*(r))ct1»,9,r)c tro. \\re
have

L(»,g,rx(ri))
o!(z\t4 - -lfi

for z e 8,", hence (Si) is a uniformly bounried sequeltce of quasiregular

nrappings. Bl'[6, 3.I7] the mappings gi fotm a normal family and hence,

bv ll2, p. 664], we ma.v choose a subsequence (frj) which converges

rrniformly on compact subsets of Bn to a quasiregular mapping

96: B" ---> R". Lel z e g-'(y), z + ?:. Arguing as above .we may choose a

strlrsequence of (glr) converging uniformly on compact' subsets of B" Lo

a qtrasiregular mapping g'o: B" --> .B". Since g-i(y) is finite, we obtain bv
this methocl a subsequence k1 ,kr,.., of l, 2,... such that (f[r1 con-

verges uniforml.v on compact subsets of B" to a quasiregular mapping

gä: B" -->-B" for all rr € g-'(y). \1:e mav suppose that this subsequence is

'L,2 r."
LeLQi:Pi-y. Then Q,-Qo:Po-y. Set Dt :D(0,LlzM,Qt),

i:0,1,... Then for'i :L,2,...

(3.7) A,(gBun D(a , rif2M , P)) : u giBs fi D; .

"er'U\ |

Let y'€ Do. Now (3.6) and (3.7) imply that there exists a sequence (y!)

such that for each i, yi e dBri n D; with r, : r(i) e S-'(y) ar,d y', --- y'.

Passing to a subsequence, denoted again by (yi), \1-e maJr assume that
y: e S:Bsi O Dr for a fixed r because g-'(y) is finite. Pick z', €Br: so

that gi@): y!. Then there exists or € (0, t) such that z! e B"p-1 for
all rl. This can be seen as follows: If not, true, then

(3.8)
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Let li be the family of paths joining §"-r and 0$,fi,tlzMl) in 8,,.
Every pabh in g!1, joins B"gpA1 and gl§"-r. By (ii)

d'(frs*-', o) > 'YI» '- *: l , I .'-t- ri -![ri--lI'2M'
hence

M(frr,)( c,.-1 (^#)'-" :,,-,(,, 2),-, .

On the other hand, by 15, 3.21

(3.9) M(1,) < Ko@i)N(gi , B")M(gf l,) < Koff)i,(ro , f)a,_r(ln 2)1-".

Since e(O,g?,llzM) is connectecl and contaius 0, (3.8) implies
lim sup M(lt) : a which contradicts (3.9).

i+q

Since -B"(oc) is a compact subset of B'", there exists a cluster point
z' e B"(x) of the sequence (r) which, by Lemma 3.2, belongs to Bri
Since fr(z') : A', every point of Do belongs to U StBrt, v,hich is

impossible by Lemma 3.3. The inequality (8.4) hr* i:ä3 proved.
§uppose now that m^-r(gBe n P) > 0. Then gBs fl P has a poiut

of clensity g Q B"(yo , ö), i.e.

ffin_JgBen D(y ,r , P))
(3.10)

By (3.4) §(y) > 0,

slrch that D' n gBs

,t?Ln_tuBs n D(a

nln_r(D(y , r , P))

rvhich contratlicts (3. I 0) .

lrln_{f)(y,r,P))
1
I

a, disk

P)

0. This irnplies

of Re§etnjuk I I 3] are r]ot

for rvhich climro By trn(l

lim
r->0

hence D(y, r, P) contains

:*- fr and" e(r) -> 0 as ?' --+-

,'f ,P))

The theorem follou.s.

3. 1 I . Remu,rk Theorem 3.I and the result

there exist by l2l quasiregular Inappings f
clim, fBf are arbitrarily close to n.

3.L2. An aptpli,cation. Theorem 3.1 or the result of Re§etnjak in [13]
gives the following result on the metric structure of a quasiconformal
fr-ball, l<k{n-2. We recall that a set, AC,B" is called a quasi-
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conformal /c-ball if there exists a domain G ) A and a quasiconformal
rnappirrg f : G ---> fG such that

fA : Rr(1f" :{(a:1,. ..,rn) .x:n:rn-r :fr*+r:0}08".

3.13. Theorem. Suppose that A c R" is a quas'i,conformal k-bctll,

| <k <n - 2. Then. C"-t(A):0.

Proof. Let f : G'->fG be the corresponding quasiconformal mapping.
Define gr: R" --> R" &s the wintling mapping (r , V , z) r-> (r , 2E , 2),

z€R-2 f -Ei, in cylindrical coordinates of R". Set g: f-'. @rlgl'(fG)).
Tlren g is quasiregular and gBr) A. Hence, by Theorem 3.1,

c'-1(.4) : 0.

4. A lower bound of the Hausdorft dimension of Br

4.1. Theorem. Suppose that f :G-+Ro, n)3, 'i,s quas'iregular and

ry + A. Then H"(By) > 0 where *: (n - 2)(zlKrl|yrt("-z) .

Proof. We may assulne lhat f is not constant' By Lemma 2.3 there
exist ro€87 and ro)0 such thatfor r€(0,rol U(r):U(xo,f,r) is

a, normal neighborhood of ro and if Uo: U(ro), then flByfi [/o defines

a homeomorphism BfnU0--'>f(BfnUo) and. d(",f):i,(ro,f) for all
t, € BJO [Jo. Fix r' > 0 such that B"(rs,}r') c Uo and then r'o> 0

so that D'o : Ag'01 c B"(ro, r').
Let E : Bt f't Di. We shall sho.w that there exists ä ) 0 such that

for all re? and r€(0,öl

13

(4.2)

rvhere C does not depend on r or on r.
Pick ä>0 so that for all *e I and all r€(0,ål L(*,f ,r)<

d(.fI ,fl-L(ro,r')). Fix ren and r€(0,ö1. Let L:L(u,f ,r),
trtr : [,x(r,f , L), U : U(r,1, L(*,f , L*)), and' U' : U(r,/, -L). Then
[i' c (J c Uo and, since d(*,f): i,(ro,f), U and U' &re normal
neiglrborhoods of r. If L* ) r, E : (U , U'; is a normal condenser in
Lfo [5, 5.1-6.I] and fi' : (8"(r, L*), B"(r,r)) is a condenser in Llo

Since .E is ringlike and ä[/ and A' both meet §"-'(, , L*) 15,2.9,1.3f,
cayt E > ä, > 0 where ä, depencls only on n. }{ence by [5, 6.2]

I ön

Koff)i,(*o, f)



l4 Ann. Acacl. Sci. Fennica:

Since /B"(r, r) is connected, contains /(r), and meets S"-l(f(n) , L).
(4.3) implies

(4.4) cap (fU , fB"@ , r)) ) C'

rvhere C' > 0 does not depend on ,r or on r. On the other hancl,

cap (f u , fB"@ , r)) < Kr(f) cap (U , B"@ , r))

< K,(l) cap (.B"(* , L*) , B"@ , r))

rvhich together with (a.a) yields (4.2).

Suppose H"(?) : 0. Let e > 0. There exist ri € .E' ancl

r; € (0, min{ö ,r'lc}), i:1,2,...
such that U B"(r;, ri) ) E and

(4.5) Irl<u.

Let L;:L(ri,f ,rr), L!:L*(r,,f ,L,), and Ei:(Lio,(-'(ri,f ,Li)).
Then ,0; is a normal condenser in G and b-v [,1, 5.14 and 3.7]

(4 t') 
(-,rfl 

I cap rE'l = #I, cap Ei 
= 

Ly(,,';j'-'

rvhere the last inequality is true because i(r, , f) ) 2 and L! I Cr, < r'.
i\ow (4.6) implies

(4.7) L; I c" Lf(: 
r1171;1r("-t)

nhere C" does not depend on f. Since ll B"(fQ:t), Z;) cor-ers fl an<l
/4.7), (4.2), and (4.5) yield

Z t?-, < C,"-,2 q" a C"Cu"-' Zr? < CoC,,""2t ,
iii

H"-'(fl): 0. On the other hand, b1' Theorem 2.20,

H"-'(fF)>H"-2@B-")>O

where S : flu;. The theorem follou.s.

4.8. Remarlc. The number ct in Theorem 4.I is in the case l{ilf):2
the best possible. The mapping f : R" -> R", (, , g , z) r-> (r ,2E , z) in
cylindrical coordinates of -8" gives an example since 1(r(/) : 2 and the
Hausdorff dimension of .B7 is dimrBl: dimn{(O,0 ,z) z e P"-'}:

A. I. 54I
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Furthermore, it has been conjectured that B! *

a stronger result t,han 4.L .
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