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1. Introduction

Let mi denote the Lebesgue measure in the k-dimensional euclidean
space Rf, H* the normalized o-dimensional Hausdorff measure in
R, <mn, and C* the k-dimensional cut measure in R", i.e.
C*(S) = sup mix(S N P) over all k-dimensional planes P in R". Note
that C*(S) < H¥S) and C" = H" = m, in R".

Given a continuous, discrete, and open mapping f:G — E?* with &
a domain in R2, it is well known that the branch set By of f is a discrete
set of points in (. Indeed, by Stoilow’s theorem f can be represented in
the form f=goh where % is a homeomorphism and ¢ an analytic
function. Hence HY(By) = HY(fB) = 0 and, if By # O, H%Bs) > 0 and
HY(fBy) > 0.

If f:G — R", » >3, is continuous, discrete, and open with By 0,
then in [7] (cf. also [9) it was shown that H" *(fBy) > 0. The argument
was topological: If y € fB;, then CfB; has a non-trivial homotopy at
y (1]

A natural generalization of complex analytic functions to R" seems to
be the class of quasiregular mappings. For the theory of these mappings
we refer to [4—7]. If f:G — R" is a non-constant quasiregular mapping,
then f is discrete and open [11]. One might conjecture that the classes of
quasiregular mappings and discrete open mappings are the same from the
topological point of view also for n > 3 as is the case in plane. However,
in [7] it was shown that there exists in R", n > 3, a discrete and open
mapping which is not topologically equivalent to any quasiregular mapping.
Quasiregularity also imposes metric conditions on By and fBy. In [5]
it was proved that m.(By) = m.(fB) = 0 for a non-constant quasiregular
mapping f: / — R". In [13] Resetnjak proved that C"~'(B;) = 0.

In this paper we extend some of the above results. Given a discrete
and open mapping f:G — R with By @ we prove in Section 2 that
HY(By) > 0. For this we use a result of Papakyriakopoulos [8] to show
that CB; has a non-trivial homotopy at some x € By. The fact H'(By) > 0
can also be derived from a result of Trohiméuk [15] but our arguments are
different. In Section 3 we prove by using the method of Resetnjak that
C"'(fBy) = 0 if f:G — R" is a quasiregular mapping. In Section 4 we
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derive a lower bound for the Hausdorff dimension dimy By of By of a
quasiregular mapping f: G — R* with B; # @. This lower bound depends
only on n and the dilatation of f.

Our notation is mainly that of [5].

2. On B; and fB; of discrete and open mappings

2.1. Normal neighborhoods and covering spaces. For Y C R* and y € ¥
we let (Y , %) be the first homotopy group of ¥ at y. If Y is pathwise
connected, these groups for different #’s are all isomorphic and will be
denoted also by m,(Y). If o:l—Y, I=7[0,1], is a loop with base
point y € Y, ie. a(0) = a(l) =y, we let [«] denote its homotopy class
in 7,(Y,y). The k-times product of a loop o is denoted by o, the
constant loop with base point y is &, and ~ is the homotopy relation.

Let f:G—R" be discrete and open where we always assume that
n > 2, G is a domain in R*, and that f is continuous. Given 2 € ¢ we
recall that a domain D is called a normal neighborhood of z if (1) D
is a compact subset of G, (2) foD = ofD, and (3) f(f(x))ND = {x}
[5, 2.1]. The property (2) means that fD:D—fD 1is a closed
mapping and (3) implies that [i(z,f)] = card (f(y) N D) for every
y €D\ f(DN By) [5, 2.12]. Here i(x,f) is the local topological index
of f at x [5, p. 6]. By [5, 2.10] there exist arbitrarily small normal neigh-
borhoods for every « € G.

We denote by R(f) the set of points @« € ¢ for which there exists a
normal neighborhood D of x such that

(2.2) BND=fYfBND)ND.

If x€G\ By, then BN D =@ for every normal neighborhood D
of « [5, 2.12], hence R(f) D G\ B;.

2.3. Lemma [1, Theorem 2.2] The set R(f)N By is dense in By
Moreover, the points « € By for which there exists « normal neighborhood
D of =z such that f|B;ND:B;ND—f(B;ND) is « homeomorphism
are dense in By

2.4. Remark. The condition (2.2) means that
JID ™\ By : D\ By — f(D \ By)

is a covering mapping. Note that for any domain (', U \ By and
f(U ™ By) are domains in R" since dim By <n — 2 [16].
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2.5. Suppose that » € R(f) and that D is a normal neighborhood of
+ with the property (2.2). Set X=0D N By, X :flz, and p :fi)z.
Then (i , p) is a covering space of X and the group =;(X ,y) operates
transitively on the right on the set p~'(y) for every y € X. For z € p~(y)
and ¢ € (X, y) we denote this action by z-¢, ie. z-¢c € p~i(y) is the
terminal point of the lifts of the representatives of ¢ starting at =z [14,
p- 71]. Hence especially:

2.6. Lemma. [f y:I— X isa path which joins two distinct points in
py), then poy ~~e in X.

We let I-Z( f) denote the set of points a € RB(f) for which there exists
a normal neighborhood D with the property (2.2) and such that the
projection p is regular, i.e. either every lift of a loop « in X is a loop
or no lift of « is a loop. Note that if D’ c D is a normal neighbor-
hood of &, then also D’ satisfies (2.2) and the covering projection
fID" N\ Br: D'\ By —f(D' \ By) is regular if p is regular. Clearly
R(f) D G\ By.

2.7. Lemma. Suppose that a € R(f) \ﬁ(f) Let D be a normal neigh-
borhood of «x such that (2.2) holds. If U C D is a connected neighborhood
of x, then =, (U \_By) is non-trivial.

Proof. Let D'c U be a normal neighborhood of a such that
fD'c fUN foU.  Set X =D By, p :fl:X", X' = p')?/. Since
x GR(f)\é(f), p’ is not a regular projection of the covering space
(X~’ ,p’). Hence there exists a loop «@:I-— X’ which has two lifts o
and o, such that «; is a loop and o, is not a loop in X', If the base
point of oy is z and if o ~e, in f(, we have o= fou ~¢g in X

and hence by 2.6 «, would be a loop. Thus «; ~~& in X and also », ~/~ e
in U B;. The lemma follows.

2.8. Lemma. Suppose that x € R(f) N By. Let D be a normal neighbor-
hood of « such that (2.2) holds. If 7;(U “\ By) s trivial for some connected
netghborhood U € D of w, then there exists a loop o in f(U \ By) such
that « is not homotopic to a constant loop in f(D \ By) and o™ s
homotopic to a constant loop in f(U "\ By).

Proof. Let D', )Z", X', and p’ be as in the proof of 2.7. Pick y € X’
and let y:/— X’ be a path joining two distinet points of p'~(y). By
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26 a=foy~~e in X=fD\B). Set p Ty ={r;,. ..,

k= li(x,f)]. Choose a maximal set {i,...,4}C{l,... k}, [ <k
inductively as follows: Set 7, = 1, andif ¢, ..., are chosen, pick ¢,
so that

i €{r |w =y, - [«"] for some m=1,2, ..., 1=<¢=j}.

Then for each j, 1 <j <, there exists an integer m(j), 1 < m(j) <Fk,
such that m(j) = inf{r ja; = ay-[o], r=1,2,...} Set

Ay =, | = [0, 1 <q <))}

and let y; be the lift of «”V) starting at a;;. Then (i) U 4; = p" (),

(i) As are disjoint, and (iii) y; is aloopin U\ By If 7y(U By s

trivial, y; ~e&. in U \_B; and hence foy; = o"V ~¢, in f(U' N By).
¥

Thus [«] is of finite order m in m(f(U" ™\ By), y). On the other hand,

(i) and (ii) imply

4
> m(j) = card p'Hy) = k = li(x.[) .
j=1

Because m divides each m(j), it also divides 'i(x,f). Thux o™~
in f(U_B)).

2.9. Local homotopy properties of CB; and CfB;. Werecall the definition
of a trivial homotopy at a point (cf. [1, Definition 6]):

2.10. Definition. Suppose that C c R" and a €(C. We say that
CC has a trivial homotopy at x if there exist arbitrarily small neighbor-
hoods U of 2 such that U . C is pathwise connected and (U . (')
is trivial.

2.11. Lemma. [1, Lemma 5.8] Suppose that U C R" is a domain and
C closed in U with dim C <n — 2. If = (U () is trivial, then for
any Z < C closed in U, w (U Z) is trivial.

2.12. Corollary. Suppose that V C R" is open. (' closed in 1 with
dimC <n — 2, and x €C. Then CC has a trivial homotopy at v if
and only if there exist arbitrarily small simply connected neighborhoods U
of a such that 7, (U \ C) is trivial.

Proof. The condition is clearly sufficient. The converse follows from
2.11 since if U C V is a neighborhood of x such that [ (' is pathwise
connected and 7,(U "\ C) is trivial, then U is connected and for Z = O
2,11 implies that m=;(U) is trivial.
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2.13. Theorem. Suppose that f: G — R" is discrete and open. If D is
a normal neighborhood of x € By with the property (2.2), then Cf(D N By)
has @ non-trivial homotopy at f(x). Moreover, if U C D is a connected
neighborhood of wx, then m(f(U “\ By)) is non-trivial.

Proof. Let D be a normal neighborhood of x € B;N R(f) such that
(2.2) holds. Let U € D be a connected neighborhood of a. Pick a normal
neighborhood D' c U of =« such that fD'c fU \ foU. Let
y €f(D' ™ By). By 2.6 there exists a loop « in f(D’ \ By) with base y
such that « ~~e, in f(D N\ By), hence « ~~e in f(U \ Bf). Thus
7,(f(U . By),y) is non-trivial and the last statement is proved. Let now
VcfD be a connected neighborhood of f(x). Then U =f1VnNJD
is connected [5, 2.6] and f(U By =V “f(DN B, hence
7, (V> f(D N By)) is non-trivial. The theorem follows.

2.14. Remark. In [1, Theorem 5.9] Church and Hemmingsen proved
that CfB; has a non-trivial homotopy at f(v) for every x € B;.

Next we shall study the homotopy properties of By. Lemma 2.7 gives
the following result:

2.15. Theorem. Suppose that f:G — R" is discrete and open, and that
@ € R(f) \ R(f). Then CB; has a non-trivial homotopy at .

From Lemma 2.8 we obtain:

2.16. Theorem. Suppose that f:G —R" is discrete and open,
x € BN R(f), and D is a normal neighborhood of x with the property
(2.2). If there exists a connected neighborhood U’ C D of x such that
@ ale in f(U N By) whenever o is a loop in f(U' \_By) with
base y and o ~~e, in f(U' "\ By), then CB: has a non-trivial homotopy
at x.

Proof. Let U’ be a connected neighborhood of x as in the theorem
and let U c U’ be a connected neighborhood of . If (U By) is
trivial, then by 2.8 there exists a loop o in f(U \ Bj) such that o is
not homotopic to a constant loop in f(D . B;) and o™/ is homotopic
to a constant loop in f(U \ Bf). Let y be the base point of «. Hence
arfve, in (U By) and «®) ~e& in f(U"\_By), a contradiction
by assumption. Thus 7,(U . Byf) is non-trivial and the theorem follows.
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2.17. Theorem. Suppose that f:G — R3 is discrete and open. Then
CBy has a non-trivial homotopy at every point of By N R(f).

Proof. Let x € BN R(f) and let D be a normal neighborhood of
with the property (2.2). Let " c D be a connected neighborhood of .
By 213 m(f(U’ \.B;) is non-trivial and by [8, Corollary 31.8]
7, (f(U" "\ By)) contains no element of finite order, hence by 2.16, CB; has
a non-trivial homotopy at .

2.18. Homotopy and measure. Here we study the (n — 2)-dimensional
Hausdorff measure of By and fB,.

2.19. Lemma. Suppose that U C R* is open and C C U 1is closed
in U. If CC has a non-trivial homotopy at x for some x €C, then
H'¥(0) > 0.

Proof If dim C > n — 1, H"*(C) = o by [3, Theorem VII 2, p. 104]
If dim ¢ <n — 2, there exists by 2.12 a simply connected neighborhood
U'cU of « such that = (U’ C) is non-trivial. The lemma now
follows from [7, 3.3].

2.20. Theorem. Suppose that f:G — R* s discrele and open, and
By~ . Then

(@) H"*(fBf) >0 for n>2

(b)y H"*B;) >0 for n=2,3.

Proof. (a) and (b) are trivial for n = 2. By 2.3 there exists
v € BN R(f). Let D be a normal neighborhood of » such that (2.2)
holds. Then C = f(D N By) is closed in fD, and by 2.13 CC has a non-
trivial homotopy at f(z). Now (a) follows from Lemma 2.19. The same
lemma and Theorem 2.17 imply (b) for »n = 3.

2.21. Remarks. 1. (a) in 2.20 has been proved in [7, 3.4] (see also [9]).
(b) also follows from the result of Trohim¢uk [15]: If f: G — R? is discrete
and open and By (, then dim By= 1.

2. The properties (a) and (b) have turned out to be useful in the theory
of quasiregular mappings (see [4; 7; 9]).

3. On the measure of fB; of a quasiregular mapping

3.1. Theorem. Suppose that f:G —R", n >2, is a quasireqular
mapping. Then C"~'(fBf) = 0.
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For the proof we shall use a modification of the method of Resetnjak
[13]. At first we present some preliminaries.

Suppose that f:G— R* is a non-constant quasiregular mapping.
Then f is discrete, open, and sense-preserving [11]. Let x, € (f. For
r > 0 we denote by Ul(x,,f,r) the xy-component of f=1B"(f(x,),r). By
[5, 2.9] there exists ¢,> 0 such that for 0 <r <o, Ulx,,f,7) is a
normal neighborhood of g, fU(x,f,7) = B"(f(x,),7), and

card (f7(y) N Ulo, f5 7)) < i(%o, f)
for every y € R*. As in [5, 4.1] we set for » >0

Ur) = Uy, for) = inf [f(2) = flx)],

1x—2x,l =r

L(7) = L(xo :f: r) = sup f f TO) s

lw—x, =T

and for 0 <<r << d(f(x,) , ofG)
Pe(r) = I¥(wy, f,r) = inf v — g,

x€0U (%0, fo7)
L¥*(r) = L*ay, f.r) = sup @ —x, .

x€0U(xy, f,7)

We need the following two lemmas.

3.2. Lemma. Suppose that fi:G —R", i =1,2,.... is a sequence
of discrete and open mappings, f:G — R" is discr ete and open or @ constant
mapping, and fi—f wuniformly on compact subsets of G. If xi—>ax €0,
2 € By, then x € By.

Proof. We may assume that f is not constant since otherwise the lemma
is trivial. Then x € B; if and only if |i(x,f) =2 (cf. [5, 2.12]). Set
y =f(x) and y; = f(x:). Pick a domain D such that « €D, D is a
compact subset of G,y €fD\ foD, and pu(y,f.D)=i(x,f) where
u(y ,f, D) denotes the topological index of the triple (y.f,D) ([10],
[5, p. 6]). Now u(y,f,D)=uly,fi,D) for i>4i for some 74, [10,
11.2.3]. Since D is compact in G and y,—y, there exists 7, such that
€D and y and y belong to the same component of fiD ™\ fioD
for > 4,. Then u(y:,fi, D)= uly,fi,D) [10, Theorem 1, p. 125].
Hence for i > max (i, , i)

life )l = lply . f, D) = wly, fi, D)l =y fi. D)

=1 2 il.f)] =i, f)] =2
s€f7(yIn D
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because each i(z,f) has the same sign (see [5, 2.12]). The lemma follows.

3.3. Lemma. Suppose that (f:) is a sequence of mappings such that
Ji:Gi— R" s either discrete and open or a constant mapping. Then
dim U fiB;, <n — 2.

Proof. Clearly fiB; is a F, -set, ie. a countable union of closed sets.
Since dim fiB; <7 — 2 and the countable union of at most (n — 2)-
dimensional I -sets is again at most (n — 2)-dimensional [3, p. 30], the
lemma follows.

Proof of 3.1. We may assume that f:G — R" is a non-constant quasi-
regular mapping since otherwise the theorem is trivial. Let z, € G. Pick
0> 0 so small that for » € (0,06] U(a,,f,r) is a normal neighborhood
of 2, Denote U, = Ulxy,f,9), g=fU, and y,= f(x,). It suffices
to show that m, ,(¢B,N P) = 0 for every (n — 1)-dimensional hyper-
plane P in R".

If P is an (n — 1)-dimensional hyperplane in R", then for y € P
and r > 0 we let D(y,r,P) denote the disk B"(y,r)N P and set

ag(y 7, P)=supio/r|Dz,o,P)CDy,r,P), Dz,o,P)NgB,=0}.

Note that ¢B, is closed in B"(y,, d). Since dim gB, <n — 2, gB, does
not contain any (n — 1)-dimensional disk. Thus 1 > a,(y,r, P) > 0 and
og(y , v, P) =1 if and only if D(y,r,P)NgB, = 0.
Let y € B"(y,,0). Pick > 0 so that » <6 — |y — y, and define
Bly,n) =infoly,r.P).

r,P
r<y

Then #+ f(y.#) is a non-increasing function. We shall show that

(3.4) ply) = lirrol ply,n) > 0.
B

For x€g-l(y) let I(r) =1l(x,g,r) and [*(r) = [*(@x,¢g,r). First we
show that there exist M > 1 and r > 0 such that for every z € g7(y)
and »" € (0,r] (i) U(x,f,r") is a normal neighborhood of x and (ii)
r'[M < I(I*(r")). For x€gly) choose o.,<<#n as in [5, 2.9]. Then
Uz, g,r") is a normal neighborhood of x for »" € (0, ¢.]. If 1(I*(r")) < 7/,
let " be the family of paths joining oU(x,¢,s") and C(x, g, lI*()))
in Ux,g,») By [5, 3.2]

(35) M) = N(g, U)Ko(g) M(g ") < i(xy . f)Ko(flo,_ (111 m> :
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Since S""'(x, I*(r')) meets both CU(x,g,r') and U(x, g, (%)) and
U@, g,r) N O,g,I*¢)) is a ring [5, 2.9], M(I) =6 >0 [I7,
11.7] where 0n depends only on #. This combined with (3.5) yields (i)
and (i) with » = min {o. |x € g7 (¥)}.

Let us suppose f(y) = 0. Then for ¢ = 1, 2, ... there exists a positive
number 7 < min {7, 1/¢} and a plane P; such that

(3.6) wi = oy , r:/2M , Pi) — 0

as 1->0. Passing to a subsequence we may assume P;— P, Let
A;: R*— R" denote the mapping 2> (z — y)/r: and for z € B" and
v €gl(y) define §i(z) = Ai(g(x + I*(ri)2)). Set g = gi|B". Note that
for z € B", a 4 I*(r)z € B*x, I*(r)) € Bz, I*(n) € U(x,g,r) c U, We
have

L. g, 1%(r))

G = e =

for z € B", hence (g) is a uniformly bounded sequence of quasiregular
mappings. By [6, 3.17] the mappings g; form a normal family and hence,

[12, p. 664], we may choose a subsequence (gj.‘j) which converges
uniformly on compact subsets of B" to a quasiregular mapping
g5 B"— R". Let z €g'(y), z# x. Arguing as above we may choose a
subsequence of (gjj) converging uniformly on compact subsets of B" to
a quasiregular mapping ¢ : B" — R". Since g~Y(y) is finite, we obtain by
this method a subsequence k;,k,,... of 1,2,... such that (g’,“j) con-
verges uniformly on compact subsets of B" to a quasiregular mapping
gs: B"— R" for all » € ¢g'(y). We may suppose that this subsequence is

.‘.,...

Let Q; = Pi — y. Then Q:— Q, = P, — y. Set D; = D(0, 1/2M , Q).
i =0,1,... Then for 1 =1,2,...
(3.7) 44,'(ng N Dy, ri2M , Pi)) = U g?Bg-_“ nD;.

xegi(y)

Let y € D,. Now (3.6) and (3.7) imply that there exists a sequence (J,')
such that for each i, ¥, € giBg N D; with v = a(i) € g-Yy) and y, —y'.
Pd@Siné to a subsequence, denoted again by (y;). we may assume that

Gng N D; for a fixed a because g-l(y) is finite. Pick z € By so

thdt’ gi( /) = y/. Then there exists « € (0,1) such that z € B(%) for
all 7. This can be seen as follows: If not true, then

(3.8) lim infd(S*~"', U(0, g7, 1/2M)) =

>
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Let I be the family of paths joining S8*~' and U(0,g¢7,1/2M) in B"
Every path in ¢fI'; joins B*(1/2M) and §8"~'. By (ii)

1

AgEsm, 0) =

hence

1/_3’ 1—n
Mgl <ow, <ln m) =0, ,(In2)'7".

On the other hand, by [5, 3.2]
(3.9)  M(I) < Ko(g)N (g7, BYM(giT) < Ko(f)i(xy , fleo,_1(In 2)'~".

Since  U(0,¢7,1/2M) is connected and contains 0, (3.8) implies
lim sup M (I3) = oo which contradicts (3.9).

Since B"(x) is a compact subset of B", there exists a cluster point
2 € B*(a) of the sequence (z;) which, by Lemma 3.2, belongs to Byx.
Since ¢5(2') = y’, every point of D, belongs to U 9oBgz, which is

*€g7(y)

impossible by Lemma 3.3. The inequality (3.4) has been proved.

Suppose now that m,_,(gB, N P) > 0. Then ¢B,N P has a point
of density y € B™(y,, d), i.e.

m, (9B, N D(y , r, P))

(3.10) lim m (D, r.P) =1.

r—>0
By (3.4) f(y) > 0, hence D(y,r,P) contains a disk
D = D(?/'  1(Bly) — &(r)) , P)
such that D'NgB, = @ and ¢(r) — 0 as i — 0. This implies

m,_1(gB; N D(y ,r, P)) . .
m Dy, Py =L B ) 1 =y <

which contradicts (3.10). The theorem follows.

3.11. Remark. Theorem 3.1 and the result of ReSetnjak [13] are not
- true for » >3 if C"' is replaced by H"~'. In fact for every = > 3
there exist by [2] quasiregular mappings f for which dimy B, and
dimy fB; are arbitrarily close to =.

3.12. An application. Theorem 3.1 or the result of Reletnjak in [13]
gives the following result on the metric structure of a quasiconformal
k-ball, 1 <k <n— 2. We recall that a set 4 C R" is called a quasi-
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conformal k-ball if there exists a domain ¢ D 4 and a quasiconformal
mapping f: G — fG such that
fA=R:NB" ={(a),...,0,) ¥,=a,_ ;=...=2u,;,=0NB".

3.13. Theorem. Suppose that A C R is a quasiconformal k-ball,
I <k <n—2 Then C"'A)=0.

Proof. Let f: G - fG be the corresponding quasiconformal mapping.
Define ¢, : R"— R* as the winding mapping (r,¢,z2) (1, 2¢,2).
2 € R""*D R, in cylindrical coordinates of R". Set g = f~1o (g,|97 " (f&)).
Then ¢ is quasiregular and ¢B, D A. Hence, by Theorem 3.1,
(" A) = 0.

4. A lower bound of the Hausdorff dimension of B;

4.1. Theorem. Suppose that f:G — R", n >3, is quasiregular and
Bp# @. Then HXBy) >0 where o= (n — 2)(2[K(f))"".

Proof. We may assume that f is not constant. By Lemma 2.3 there
exist x, € By and 7, > 0 such that for r € (0,7)] U(r) = Uz, f,7) 1s
a normal neighborhood of z, and if U, = U(r,), then f|B;N U, defines
a homeomorphism B;N U, — f(B;N Uy) and i(x,[f) =i(z,,f) for all
v €B;NU, Fix 2" >0 such that B"(x,,3")C U, and then 79> 0
so that Uy = U(ry) € Bz, , 1').

Let F = B;N U,. We shall show that there exists ¢ > 0 such that
for all x € F and € (0, 0]

(4.2) L¥x,f, Lz, f.r) <Cr

where C does not depend on x or on 7.
Pick 6> 0 so that for all x € F and all »€(0,0] L(x,f,r) <
dA(fF ,fS" Y(xy,r")). Fix x€F and r€(0,0]. Let L= L(x,f,n),
L"‘—L* f, L), U=U(,f,Lx,f,L*), and U = Uz, f, L). Then
"'cUc U, and, since i(x,f)=1(x,,f), U and U’ are normal
neighborhoods of . If L* >r, B = (U, U’) is a normal condenser in
U, [5, 51—6.1] and E’ = (B"(x, L*), B*(x,r)) is a condenser in U,
Since B is ringlike and 2U and U’ both meet S '(x, L¥) [5, 2.9, 4.3].
cap B > 6, > 0 where 9, depends only on n. Hence by [5, 6.2]

On

P E = Kot )

1
(4.3) cap (fU , fU’) = cap fE > Wf
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Since fB"(x,r) is connected, contains f(x), and meets S"'(f(z), L).
(4.3) implies
(4.4) cap (fU , [B'(x , 1)) = C'
where €’ > 0 does not depend on « or on #. On the other hand,
cap (fU , fB"(x , 7)) < Ky(f) cap (U, B"(x . 7))

S Kl(f) Cap (B"(:L' H Lx) ’ B"(‘E ’ 7))

which together with (4.4) yields (4.2).
Suppose H*(F) = 0. Let &> 0. There exist a; € F and

1 €0, min{d,+/C}), i=1,2,...
such that U B"(xi, ) D F and
(4.5) > <e.

Let Li= L(x:i,f,r), Lf=L*a:i.,f,L), and E; = (U, U(x:i,f, Li)).
Then E; is a normal condenser in ¢ and by [4, 5.14 and 3.7]

w,_ K K D
e < cap fE; < - 1) cap E; < i) Pn-1

(1 E@>n—l > m > 2 (1 —i>n—l
n L n Ll,

where the last inequality is true because i(x,,f) > 2 and L} < Cr, < 7.
Now (4.6) implies

(4.6)

1(n—1
NEE STl R

where C” does not depend on 7. Since [ B*(f(x:), L) covers fF and
4.7), (4.2), and (4.5) yield

Z L?_Q é C,,n—i’z Li*[x S Cmc’"n—i Z 7‘?‘ < OQC”"W?‘S ,

H"7*(fF) = 0. On the other hand, by Theorem 2.20,
H(fF) = H™(gB) > 0

where ¢ = f|U;. The theorem follows.

4.8. Remark. The number « in Theorem 4.1 is in the case K, (f) = 2
the best possible. The mapping f:R*— R", (r,¢,z)—(r,2¢,z) in
cylindrical coordinates of R" gives an example since K,;(f) = 2 and the
Hausdorff dimension of By is dimy By = dimg {(0,0,z2) z € R =
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n — 2. It has been conjectured that for n > 3, By O implies K,(f) = 2.
Furthermore, it has been conjectured that By @ implies dim By =
n — 2. This would imply H"‘Z(Bf) > 0, which for K, (f) > 2 would be
a stronger result than 4.1.
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