ANNALES ACADEMIAE SCIENTIARUM FENNICAE

 $S_{\text{eries}} \ A$

I. MATHEMATICA

541

4

MEASURE PROPERTIES OF THE BRANCH SET AND ITS IMAGE OF QUASIREGULAR MAPPINGS

BY

O. MARTIO and S. RICKMAN

HELSINKI 1973 SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.541

Copyright © 1973 by Academia Scientiarum Fennica ISBN 951-41-0109-X

.

.

Communicated 8 January 1973 by Jussi Väisälä

KESKUSKIRJAPAINO HELSINKI 1973

.

1. Introduction

Let m_k denote the Lebesgue measure in the k-dimensional euclidean space R^k , H^{α} the normalized α -dimensional Hausdorff measure in R^n , $\alpha \leq n$, and C^k the k-dimensional cut measure in R^n , i.e. $C^k(S) = \sup m_k(S \cap P)$ over all k-dimensional planes P in R^n . Note that $C^k(S) \leq H^k(S)$ and $C^n = H^n = m_n$ in R^n .

Given a continuous, discrete, and open mapping $f: G \to R^2$ with Ga domain in R^2 , it is well known that the branch set B_f of f is a discrete set of points in G. Indeed, by Stoïlow's theorem f can be represented in the form $f = g \circ h$ where h is a homeomorphism and g an analytic function. Hence $H^1(B_f) = H^1(fB_f) = 0$ and, if $B_f \neq \emptyset$, $H^0(B_f) > 0$ and $H^0(fB_f) > 0$.

If $f: G \to \mathbb{R}^n$, $n \geq 3$, is continuous, discrete, and open with $B_f \neq \emptyset$, then in [7] (cf. also [9]) it was shown that $H^{n-2}(fB_f) > 0$. The argument was topological: If $y \in fB_f$, then $\mathbb{C}fB_f$ has a non-trivial homotopy at y [1].

A natural generalization of complex analytic functions to \mathbb{R}^n seems to be the class of quasiregular mappings. For the theory of these mappings we refer to [4-7]. If $f: G \to \mathbb{R}^n$ is a non-constant quasiregular mapping, then f is discrete and open [11]. One might conjecture that the classes of quasiregular mappings and discrete open mappings are the same from the topological point of view also for $n \geq 3$ as is the case in plane. However, in [7] it was shown that there exists in \mathbb{R}^n , $n \geq 3$, a discrete and open mapping which is not topologically equivalent to any quasiregular mapping. Quasiregularity also imposes metric conditions on B_f and fB_f . In [5] it was proved that $m_n(B_f) = m_n(fB_f) = 0$ for a non-constant quasiregular mapping $f: G \to \mathbb{R}^n$. In [13] Rešetnjak proved that $\mathbb{C}^{n-1}(B_f) = 0$.

In this paper we extend some of the above results. Given a discrete and open mapping $f: G \to \mathbb{R}^3$ with $B_f \neq \emptyset$ we prove in Section 2 that $H^1(B_f) > 0$. For this we use a result of Papakyriakopoulos [8] to show that $\mathbb{C}B_f$ has a non-trivial homotopy at some $x \in B_f$. The fact $H^1(B_f) > 0$ can also be derived from a result of Trohimčuk [15] but our arguments are different. In Section 3 we prove by using the method of Rešetnjak that $C^{n-1}(fB_f) = 0$ if $f: G \to \mathbb{R}^n$ is a quasiregular mapping. In Section 4 we Ann. Acad. Sci. Fennicæ

derive a lower bound for the Hausdorff dimension $\dim_H B_f$ of B_f of a quasiregular mapping $f: G \to \mathbb{R}^n$ with $B_f \neq \emptyset$. This lower bound depends only on n and the dilatation of f.

Our notation is mainly that of [5].

2. On B_f and fB_f of discrete and open mappings

2.1. Normal neighborhoods and covering spaces. For $Y \subset \mathbb{R}^n$ and $y \in Y$ we let $\pi_1(Y, y)$ be the first homotopy group of Y at y. If Y is pathwise connected, these groups for different y's are all isomorphic and will be denoted also by $\pi_1(Y)$. If $\alpha: I \to Y$, I = [0, 1], is a loop with base point $y \in Y$, i.e. $\alpha(0) = \alpha(1) = y$, we let $[\alpha]$ denote its homotopy class in $\pi_1(Y, y)$. The k-times product of a loop α is denoted by α^k , the constant loop with base point y is ε_r , and \sim is the homotopy relation.

Let $f: G \to \mathbb{R}^n$ be discrete and open where we always assume that $n \geq 2$, G is a domain in \mathbb{R}^n , and that f is continuous. Given $x \in G$ we recall that a domain D is called a normal neighborhood of x if (1) \overline{D} is a compact subset of G, (2) $f\partial D = \partial fD$, and (3) $f^{-1}(f(x)) \cap D = \{x\}$ [5, 2.1]. The property (2) means that $f|D: D \to fD$ is a closed mapping and (3) implies that $|i(x, f)| = \operatorname{card} (f^{-1}(y) \cap D)$ for every $y \in fD \setminus f(D \cap B_f)$ [5, 2.12]. Here i(x, f) is the local topological index of f at x [5, p. 6]. By [5, 2.10] there exist arbitrarily small normal neighborhoods for every $x \in G$.

We denote by R(f) the set of points $x \in G$ for which there exists a normal neighborhood D of x such that

$$(2.2) B_f \cap D = f^{-1}(f(B_f \cap D)) \cap D.$$

If $x \in G \setminus B_f$, then $B_f \cap D = \emptyset$ for every normal neighborhood D of x [5, 2.12], hence $R(f) \supset G \setminus B_f$.

2.3. Lemma [1, Theorem 2.2] The set $R(f) \cap B_f$ is dense in B_f . Moreover, the points $x \in B_f$ for which there exists a normal neighborhood D of x such that $f|B_f \cap D : B_f \cap D \to f(B_f \cap D)$ is a homeomorphism are dense in B_f .

2.4. Remark. The condition (2.2) means that

$$f|D \setminus B_f: D \setminus B_f \to f(D \setminus B_f)$$

is a covering mapping. Note that for any domain $U, U \setminus B_f$ and $f(U \setminus B_f)$ are domains in \mathbb{R}^n since dim $B_f \leq n-2$ [16].

2.5. Suppose that $x \in R(f)$ and that D is a normal neighborhood of x with the property (2.2). Set $\tilde{X} = D \setminus B_f$, $X = f\tilde{X}$, and $p = f|\tilde{X}$. Then (\tilde{X}, p) is a covering space of X and the group $\pi_1(X, y)$ operates transitively on the right on the set $p^{-1}(y)$ for every $y \in X$. For $z \in p^{-1}(y)$ and $c \in \pi_1(X, y)$ we denote this action by $z \cdot c$, i.e. $z \cdot c \in p^{-1}(y)$ is the terminal point of the lifts of the representatives of c starting at z [14, p. 71]. Hence especially:

2.6. Lemma. If $\gamma: I \to \tilde{X}$ is a path which joins two distinct points in $p^{-1}(y)$, then $p \circ \gamma \gamma \sim \varepsilon_y$ in X.

We let R(f) denote the set of points $x \in R(f)$ for which there exists a normal neighborhood D with the property (2.2) and such that the projection p is regular, i.e. either every lift of a loop α in X is a loop or no lift of α is a loop. Note that if $D' \subset D$ is a normal neighborhood of x, then also D' satisfies (2.2) and the covering projection $f|D' \setminus B_f : D' \setminus B_f \to f(D' \setminus B_f)$ is regular if p is regular. Clearly $\tilde{R}(f) \supset G \setminus B_f$.

2.7. Lemma. Suppose that $x \in R(f) \setminus \tilde{R}(f)$. Let D be a normal neighborhood of x such that (2.2) holds. If $U \subset D$ is a connected neighborhood of x, then $\pi_1(U \setminus B_f)$ is non-trivial.

Proof. Let $D' \subset U$ be a normal neighborhood of x such that $fD' \subset fU \setminus f\partial U$. Set $\tilde{X}' = D' \setminus B_f$, $p' = f|\tilde{X}', \quad X' = p'\tilde{X}'$. Since $x \in R(f) \setminus \tilde{R}(f)$, p' is not a regular projection of the covering space (\tilde{X}', p') . Hence there exists a loop $a: I \to X'$ which has two lifts α_1 and α_2 such that α_1 is a loop and α_2 is not a loop in \tilde{X}' . If the base point of α_1 is z and if $\alpha_1 \sim \varepsilon_z$ in \tilde{X} , we have $\alpha = f \circ \alpha_1 \sim \varepsilon_{f(z)}$ in X and hence by 2.6 α_2 would be a loop. Thus $\alpha_1 \gamma \sim \varepsilon_z$ in \tilde{X} and also $\alpha_1 \gamma \sim \varepsilon_z$ in $U \setminus B_f$. The lemma follows.

2.8. Lemma. Suppose that $x \in R(f) \cap B_f$. Let D be a normal neighborhood of x such that (2.2) holds. If $\pi_1(U \setminus B_f)$ is trivial for some connected neighborhood $U \subset D$ of x, then there exists a loop α in $f(U \setminus B_f)$ such that α is not homotopic to a constant loop in $f(D \setminus B_f)$ and $\alpha^{|i(x,f)|}$ is homotopic to a constant loop in $f(U \setminus B_f)$.

Proof. Let D', \tilde{X}' , X', and p' be as in the proof of 2.7. Pick $y \in X'$ and let $\gamma: I \to \tilde{X}'$ be a path joining two distinct points of $p'^{-1}(y)$. By

2.6 $\alpha = f \circ \gamma \gamma \sim \varepsilon_y$ in $X = f(D \setminus B_f)$. Set $p'^{-1}(y) = \{x_1, \ldots, x_k\}, k = |i(x, f)|$. Choose a maximal set $\{i_1, \ldots, i_l\} \subset \{1, \ldots, k\}, l \leq k$, inductively as follows: Set $i_1 = 1$, and if i_1, \ldots, i_j are chosen, pick i_{j+1} so that

 $i_{i+1} \notin \{r \mid x_r = x_{i_q} \cdot [\alpha^m] \text{ for some } m = 1, 2, \dots, 1 \le q \le j\}.$

Then for each j, $1 \le j \le l$, there exists an integer m(j), $1 \le m(j) \le k$, such that $m(j) = \inf \{r \mid x_{i_j} = x_{i_j} \cdot [\alpha'], r = 1, 2, \ldots \}$. Set

$$A_{j} = \{x_{r} \mid x_{r} = x_{i_{j}} \cdot [\alpha^{q}], \ 1 \le q \le m(j)\}$$

and let γ_j be the lift of $\alpha^{m(j)}$ starting at x_{ij} . Then (i) $\bigcup A_j = p'^{-1}(y)$, (ii) A'_j 's are disjoint, and (iii) γ_j is a loop in $U \searrow B_f$. If $\pi_1(U \searrow B_f)$ is trivial, $\gamma_j \sim \varepsilon_{x_{ij}}$ in $U \searrow B_f$ and hence $f \circ \gamma_j = \alpha^{m(j)} \sim \varepsilon_y$ in $f(U \searrow B_f)$. Thus $[\alpha]$ is of finite order m in $\pi_1(f(U \searrow B_f), y)$. On the other hand, (i) and (ii) imply

$$\dot{\sum_{j=1}^{\cdot}} m(j) = ext{card } p'^{-1}(y) = k = |i(x, f)|.$$

Because *m* divides each m(j), it also divides |i(x, f)|. Thus $\alpha^{[i(x,f)]} \sim \varepsilon_{y}$ in $f(U \setminus B_{f})$.

2.9. Local homotopy properties of $\mathbf{C}B_f$ and $\mathbf{C}fB_f$. We recall the definition of a trivial homotopy at a point (cf. [1, Definition 6]):

2.10. **Definition.** Suppose that $C \subset \mathbb{R}^n$ and $x \in C$. We say that $\mathbb{C}C$ has a trivial homotopy at x if there exist arbitrarily small neighborhoods U of x such that $U \setminus C$ is pathwise connected and $\pi_1(U \setminus C)$ is trivial.

2.11. Lemma. [1, Lemma 5.8] Suppose that $U \subset \mathbb{R}^n$ is a domain and C closed in U with dim $C \leq n - 2$. If $\pi_1(U \setminus C)$ is trivial, then for any $Z \subset C$ closed in U, $\pi_1(U \setminus Z)$ is trivial.

2.12. Corollary. Suppose that $V \subset \mathbb{R}^n$ is open, C closed in V with dim $C \leq n-2$, and $x \in C$. Then CC has a trivial homotopy at x if and only if there exist arbitrarily small simply connected neighborhoods U of x such that $\pi_1(U \setminus C)$ is trivial.

Proof. The condition is clearly sufficient. The converse follows from 2.11 since if $U \subset V$ is a neighborhood of x such that $U \searrow C$ is pathwise connected and $\pi_1(U \searrow C)$ is trivial, then U is connected and for $Z = \emptyset$ 2.11 implies that $\pi_1(U)$ is trivial.

 $\mathbf{6}$

2.13. **Theorem.** Suppose that $f: G \to \mathbb{R}^n$ is discrete and open. If D is a normal neighborhood of $x \in B_f$ with the property (2.2), then $Cf(D \cap B_f)$ has a non-trivial homotopy at f(x). Moreover, if $U \subset D$ is a connected neighborhood of x, then $\pi_1(f(U \setminus B_f))$ is non-trivial.

Proof. Let D be a normal neighborhood of $x \in B_f \cap R(f)$ such that (2.2) holds. Let $U \subset D$ be a connected neighborhood of x. Pick a normal neighborhood $D' \subset U$ of x such that $fD' \subset fU \setminus f\partial U$. Let $y \in f(D' \setminus B_f)$. By 2.6 there exists a loop α in $f(D' \setminus B_f)$ with base ysuch that $\alpha \sim - \varepsilon_y$ in $f(D \setminus B_f)$, hence $\alpha \sim - \varepsilon_y$ in $f(U \setminus B_f)$. Thus $\pi_1(f(U \setminus B_f), y)$ is non-trivial and the last statement is proved. Let now $V \subset fD$ be a connected neighborhood of f(x). Then $U = f^{-1}V \cap D$ is connected [5, 2.6] and $f(U \setminus B_f) = V \setminus f(D \cap B_f)$, hence $\pi_1(V \setminus f(D \cap B_f))$ is non-trivial. The theorem follows.

2.14. *Remark.* In [1, Theorem 5.9] Church and Hemmingsen proved that $\mathbf{C}_f B_f$ has a non-trivial homotopy at f(x) for every $x \in B_f$.

Next we shall study the homotopy properties of B_f . Lemma 2.7 gives the following result:

2.15. **Theorem.** Suppose that $f: G \to \mathbb{R}^n$ is discrete and open, and that $x \in \mathbb{R}(f) \setminus \widetilde{\mathbb{R}}(f)$. Then $\mathbb{C}B_f$ has a non-trivial homotopy at x.

From Lemma 2.8 we obtain:

2.16. **Theorem.** Suppose that $f: G \to \mathbb{R}^n$ is discrete and open, $x \in B_f \cap \mathbb{R}(f)$, and D is a normal neighborhood of x with the property (2.2). If there exists a connected neighborhood $U' \subset D$ of x such that $\alpha^{|i(x,f)|} \sim \varepsilon_y$ in $f(U' \setminus B_f)$ whenever α is a loop in $f(U' \setminus B_f)$ with base y and $\alpha \sim -\varepsilon_y$ in $f(U' \setminus B_f)$, then $\mathbb{C}B_f$ has a non-trivial homotopy at x.

Proof. Let U' be a connected neighborhood of x as in the theorem and let $U \subset U'$ be a connected neighborhood of x. If $\pi_1(U \setminus B_f)$ is trivial, then by 2.8 there exists a loop α in $f(U \setminus B_f)$ such that α is not homotopic to a constant loop in $f(D \setminus B_f)$ and $\alpha^{|i(x,f)|}$ is homotopic to a constant loop in $f(U \setminus B_f)$. Let y be the base point of α . Hence $\alpha \sim \sim \varepsilon_y$ in $f(U' \setminus B_f)$ and $\alpha^{|i(x,f)|} \sim \varepsilon_y$ in $f(U' \setminus B_f)$, a contradiction by assumption. Thus $\pi_1(U \setminus B_f)$ is non-trivial and the theorem follows. 2.17. **Theorem.** Suppose that $f: G \to R^3$ is discrete and open. Then $\mathbb{C}B_f$ has a non-trivial homotopy at every point of $B_f \cap R(f)$.

Proof. Let $x \in B_f \cap R(f)$ and let D be a normal neighborhood of x with the property (2.2). Let $U' \subset D$ be a connected neighborhood of x. By 2.13 $\pi_1(f(U' \setminus B_f))$ is non-trivial and by [8, Corollary 31.8] $\pi_1(f(U' \setminus B_f))$ contains no element of finite order, hence by 2.16, $\mathbb{C}B_f$ has a non-trivial homotopy at x.

2.18. Homotopy and measure. Here we study the (n-2)-dimensional Hausdorff measure of B_f and fB_f .

2.19. Lemma. Suppose that $U \subset \mathbb{R}^n$ is open and $C \subset U$ is closed in U. If CC has a non-trivial homotopy at x for some $x \in C$, then $H^{n-2}(C) > 0$.

Proof. If dim $C \ge n - 1$, $H^{n-2}(C) = \infty$ by [3, Theorem VII 2, p. 104] If dim $C \le n - 2$, there exists by 2.12 a simply connected neighborhood $U' \subset U$ of x such that $\pi_1(U' \setminus C)$ is non-trivial. The lemma now follows from [7, 3.3].

2.20. **Theorem.** Suppose that $f: G \to \mathbb{R}^n$ is discrete and open, and $B_f \neq \emptyset$. Then

- (a) $H^{n-2}(fB_f) > 0$ for $n \ge 2$.
- (b) $H^{n-2}(B_f) > 0$ for n = 2, 3.

Proof. (a) and (b) are trivial for n = 2. By 2.3 there exists $x \in B_f \cap R(f)$. Let D be a normal neighborhood of x such that (2.2) holds. Then $C = f(D \cap B_f)$ is closed in fD, and by 2.13 **C**C has a non-trivial homotopy at f(x). Now (a) follows from Lemma 2.19. The same lemma and Theorem 2.17 imply (b) for n = 3.

2.21. Remarks. 1. (a) in 2.20 has been proved in [7, 3.4] (see also [9]). (b) also follows from the result of Trohimčuk [15]: If $f: G \to R^3$ is discrete and open and $B_f \neq \emptyset$, then dim $B_f = 1$.

2. The properties (a) and (b) have turned out to be useful in the theory of quasiregular mappings (see [4; 7; 9]).

3. On the measure of fB_f of a quasiregular mapping

3.1. Theorem. Suppose that $f: G \to \mathbb{R}^n$, $n \geq 2$, is a quasiregular mapping. Then $C^{n-1}(fB_f) = 0$.

For the proof we shall use a modification of the method of Rešetnjak [13]. At first we present some preliminaries.

Suppose that $f: G \to \mathbb{R}^n$ is a non-constant quasiregular mapping. Then f is discrete, open, and sense-preserving [11]. Let $x_0 \in G$. For r > 0 we denote by $U(x_0, f, r)$ the x_0 -component of $f^{-1}B^n(f(x_0), r)$. By [5, 2.9] there exists $\sigma_0 > 0$ such that for $0 < r \leq \sigma_0$ $U(x_0, f, r)$ is a normal neighborhood of x_0 , $fU(x_0, f, r) = B^n(f(x_0), r)$, and

$$\mathrm{card}\;(f^{-1}(y) \mathrel{\sqcap} U(x_0\,,f\,,\,r)) \leq i(x_0\,,f)$$

for every $y \in \mathbb{R}^n$. As in [5, 4.1] we set for r > 0

$$\begin{split} l(r) &= l(x_0, f, r) = \inf_{|x - x_0| = r} |f(x) - f(x_0)|, \\ L(r) &= L(x_0, f, r) = \sup_{|x - x_0| = r} |f(x) - f(x_0)|, \end{split}$$

and for $0 < r < d(f(x_0), \partial fG)$

$$l^{*}(r) = l^{*}(x_{0}, f, r) = \inf_{x \in \partial U(x_{0}, f, r)} |x - x_{0}|,$$

$$L^{*}(r) = L^{*}(x_{0}, f, r) = \sup_{x \in \partial U(x_{0}, f, r)} |x - x_{0}|.$$

We need the following two lemmas.

3.2. Lemma. Suppose that $f_i: G \to \mathbb{R}^n$, $i = 1, 2, \ldots$, is a sequence of discrete and open mappings, $f: G \to \mathbb{R}^n$ is discrete and open or a constant mapping, and $f_i \to f$ uniformly on compact subsets of G. If $x_i \to x \in G$, $x_i \in B_{f_i}$, then $x \in B_f$.

Proof. We may assume that f is not constant since otherwise the lemma is trivial. Then $x \in B_f$ if and only if $|i(x, f)| \ge 2$ (cf. [5, 2.12]). Set y = f(x) and $y_i = f(x_i)$. Pick a domain D such that $x \in D$, \overline{D} is a compact subset of $G, y \in fD \setminus f\partial D$, and $\mu(y, f, D) = i(x, f)$ where $\mu(y, f, D)$ denotes the topological index of the triple (y, f, D) ([10], [5, p. 6]). Now $\mu(y, f, D) = \mu(y, f_i, D)$ for $i > i_0$ for some i_0 [10, II.2.3]. Since \overline{D} is compact in G and $y_i \to y$, there exists i'_0 such that $x_i \in D$ and y and y_i belong to the same component of $f_i D \setminus f_i \partial D$ for $i > i'_0$. Then $\mu(y_i, f_i, D) = \mu(y, f_i, D)$ [10, Theorem 1, p. 125]. Hence for $i > \max(i_0, i'_0)$

$$egin{aligned} |i(x\,,f)| &= |\mu(y\,,f\,,\,D)| = |\mu(y\,,f_i\,,D)| = |\mu(y_i\,,f_i\,,\,D)| \ &= |\sum\limits_{z\in f_i^{-1}(y_i)\cap D} i(z\,,f_i)| \geq |i(x_i\,,f_i)| \geq 2 \end{aligned}$$

because each $i(z, f_i)$ has the same sign (see [5, 2.12]). The lemma follows.

3.3. Lemma. Suppose that (f_i) is a sequence of mappings such that $f_i: G_i \to \mathbb{R}^n$ is either discrete and open or a constant mapping. Then dim $\bigcup f_i B_{f_i} \leq n-2$.

Proof. Clearly $f_i B_{f_i}$ is a F_{σ} -set, i.e. a countable union of closed sets. Since dim $f_i B_{f_i} \leq n-2$ and the countable union of at most (n-2)-dimensional F_{σ} -sets is again at most (n-2)-dimensional [3, p. 30], the lemma follows.

Proof of 3.1. We may assume that $f: G \to \mathbb{R}^n$ is a non-constant quasiregular mapping since otherwise the theorem is trivial. Let $x_0 \in G$. Pick $\delta > 0$ so small that for $r \in (0, \delta]$ $U(x_0, f, r)$ is a normal neighborhood of x_0 . Denote $U_0 = U(x_0, f, \delta)$, $g = f|U_0$, and $y_0 = f(x_0)$. It suffices to show that $m_{n-1}(gB_g \cap P) = 0$ for every (n-1)-dimensional hyperplane P in \mathbb{R}^n .

If P is an (n-1)-dimensional hyperplane in \mathbb{R}^n , then for $y \in P$ and r > 0 we let D(y, r, P) denote the disk $B^n(y, r) \cap P$ and set

$$\alpha_g(y, r, P) = \sup \left\{ \varrho/r \, | \, D(z, \varrho, P) \subset D(y, r, P) , \quad D(z, \varrho, P) \cap gB_g = \emptyset \right\}.$$

Note that gB_g is closed in $B^n(y_0, \delta)$. Since dim $gB_g \leq n-2$, gB_g does not contain any (n-1)-dimensional disk. Thus $1 \geq \alpha_g(y, r, P) > 0$ and $\alpha_g(y, r, P) = 1$ if and only if $D(y, r, P) \cap gB_g = \emptyset$.

Let $y \in B^n(y_0, \delta)$. Pick $\eta > 0$ so that $\eta < \delta - |y - y_0|$ and define

$$\beta(y, \eta) = \inf_{\substack{r, P\\r \leq \eta}} \alpha_{g}(y, r, P) .$$

Then $\eta \mapsto \beta(y, \eta)$ is a non-increasing function. We shall show that

(3.4)
$$\beta(y) = \lim_{\eta \to 0} \beta(y, \eta) > 0 .$$

For $x \in g^{-1}(y)$ let l(r) = l(x, g, r) and $l^*(r) = l^*(x, g, r)$. First we show that there exist $M \ge 1$ and r > 0 such that for every $x \in g^{-1}(y)$ and $r' \in (0, r]$ (i) U(x, f, r') is a normal neighborhood of x and (ii) $r'/M \le l(l^*(r'))$. For $x \in g^{-1}(y)$ choose $\sigma_x < \eta$ as in [5, 2.9]. Then U(x, g, r') is a normal neighborhood of x for $r' \in (0, \sigma_x]$. If $l(l^*(r')) < r'$, let Γ be the family of paths joining $\partial U(x, g, r')$ and $\overline{U}(x, g, l(l^*(r')))$ in U(x, g, r'). By [5, 3.2]

(3.5)
$$M(\Gamma) \leq N(g, U_0) K_0(g) M(g\Gamma) \leq i(x_0, f) K_0(f) \omega_{n-1} \left(\ln \frac{r'}{l(l^*(r'))} \right)^{1-n}.$$

Since $S^{n-1}(x, l^*(r'))$ meets both $\mathbf{C}U(x, g, r')$ and $\overline{U}(x, g, l(l^*(r')))$ and $U(x, g, r') \setminus \overline{U}(x, g, l(l^*(r')))$ is a ring [5, 2.9], $M(\Gamma) \geq \delta_x > 0$ [17, 11.7] where δ_n depends only on n. This combined with (3.5) yields (i) and (ii) with $r = \min \{\sigma_x \mid x \in g^{-1}(y)\}$.

Let us suppose $\beta(y) = 0$. Then for i = 1, 2, ... there exists a positive number $r_i \leq \min\{r, 1/i\}$ and a plane P_i such that

(3.6)
$$\alpha_i = \alpha_g(y, r_i/2M, P_i) \to 0$$

as $i \to 0$. Passing to a subsequence we may assume $P_i \to P_0$. Let $A_i: \mathbb{R}^n \to \mathbb{R}^n$ denote the mapping $z \mapsto (z - y)/r_i$ and for $z \in \overline{B}^n$ and $x \in g^{-1}(y)$ define $\overline{g}_i^x(z) = A_i(g(x + l^*(r_i)z))$. Set $g_i^x = \overline{g}_i^x|B^n$. Note that for $z \in \overline{B}^n$, $x + l^*(r_i)z \in \overline{B}^n(x, l^*(r_i)) \subset \overline{B}^n(x, l^*(r)) \subset \overline{U}(x, g, r) \subset U_0$. We have

$$|ar{g}^{x}_{i}(z)| \leq rac{L(x\,,\,g\,,\,l^{*}(r_{i}))}{r_{i}} = 1$$

for $z \in B^n$, hence (g_i^x) is a uniformly bounded sequence of quasiregular mappings. By [6, 3.17] the mappings g_i^x form a normal family and hence, by [12, p. 664], we may choose a subsequence (g_{ij}^x) which converges uniformly on compact subsets of B^n to a quasiregular mapping $g_0^x : B^n \to R^n$. Let $z \in g^{-1}(y), z \neq x$. Arguing as above we may choose a subsequence of (g_{ij}^z) converging uniformly on compact subsets of B^n to a quasiregular mapping $g_0^z : B^n \to R^n$. Since $g^{-1}(y)$ is finite, we obtain by this method a subsequence k_1, k_2, \ldots of $1, 2, \ldots$ such that (g_{kj}^x) converges uniformly on compact subsets of B^n to a quasiregular mapping $g_0^x : B^n \to R^n$ for all $x \in g^{-1}(y)$. We may suppose that this subsequence is $1, 2, \ldots$

Let $Q_i = P_i - y$. Then $Q_i \rightarrow Q_0 = P_0 - y$. Set $D_i = D(0, 1/2M, Q_i)$, $i = 0, 1, \ldots$ Then for $i = 1, 2, \ldots$

(3.7)
$$A_i(gB_g \cap D(y, r_i/2M, P_i)) = \bigcup_{x \in g^{-1}(y)} g_i^x B_{g_i^x} \cap D_i .$$

Let $y' \in D_0$. Now (3.6) and (3.7) imply that there exists a sequence (y'_i) such that for each $i, y'_i \in g_i^* B_{g_i^*} \cap D_i$ with $x = x(i) \in g^{-1}(y)$ and $y'_i \to y'$. Passing to a subsequence, denoted again by (y'_i) , we may assume that $y'_i \in g_i^* B_{g_i^*} \cap D_i$ for a fixed x because $g^{-1}(y)$ is finite. Pick $z'_i \in B_{g_i^*}$ so that $g_i^*(z'_i) = y'_i$. Then there exists $\alpha \in (0, 1)$ such that $z'_i \in \overline{B}^n(\alpha)$ for all i. This can be seen as follows: If not true, then

(3.8)
$$\liminf_{i \to \infty} d(S^{n-1}, \bar{U}(0, g_i^x, 1/2M)) = 0.$$

Let Γ_i be the family of paths joining S^{n-1} and $\overline{U}(0, g_i^x, 1/2M)$ in B^n . Every path in $g_i^x \Gamma_i$ joins $\overline{B}^n(1/2M)$ and $\overline{g}_i^x S^{n-1}$. By (ii)

$$d(ar{g}^{*}_{i}S^{n-1}\,,\,0)\geq rac{l(l^{*}(r_{i}))}{r_{i}}\geq rac{r_{i}}{Mr_{i}}=rac{1}{M}>rac{1}{2M}\,,$$

hence

$$M(g_i^* \Gamma_i) \le \omega_{n-1} \left(\ln \frac{1/M}{1/2M} \right)^{1-n} = \omega_{n-1} (\ln 2)^{1-n}.$$

On the other hand, by [5, 3.2]

$$(3.9) \qquad M(\Gamma_i) \le K_0(g_i^x) N(g_i^x, B^n) M(g_i^x \Gamma_i) \le K_0(f) i(x_0, f) \omega_{n-1} (\ln 2)^{1-n}.$$

Since $\overline{U}(0, g_i^x, 1/2M)$ is connected and contains 0, (3.8) implies $\limsup_{i \to \infty} M(\Gamma_i) = \infty$ which contradicts (3.9).

Since $\bar{B}^n(\alpha)$ is a compact subset of B^n , there exists a cluster point $z' \in \bar{B}^n(\alpha)$ of the sequence (z'_i) which, by Lemma 3.2, belongs to $B_{g_0}^x$. Since $g_0^x(z') = y'$, every point of D_0 belongs to $\bigcup_{x \in g^{-1}(y)} g_0^x B_{g_0}^x$, which is impossible by Lemma 3.3. The inequality (3.4) has been proved.

Suppose now that $m_{n-1}(gB_g \cap P) > 0$. Then $gB_g \cap P$ has a point of density $y \in B^n(y_0, \delta)$, i.e.

(3.10)
$$\lim_{r \to 0} \frac{m_{n-1}(gB_g \cap D(y, r, P))}{m_{n-1}(D(y, r, P))} = 1.$$

By (3.4) $\beta(y) > 0$, hence D(y, r, P) contains a disk

$$D' = D(y' \ , \, r(eta(y) - arepsilon(r)) \ , \, P)$$

such that $D' \cap gB_g = \emptyset$ and $\varepsilon(r) \to 0$ as $r \to 0$. This implies

$$\frac{m_{n-1}(gB_g \cap D(y, r, P))}{m_{n-1}(D(y, r, P))} \le 1 - (\beta(y) - \varepsilon(r))^{n-1} \to 1 - \beta(y)^{n-1} < 1$$

which contradicts (3.10). The theorem follows.

3.11. Remark. Theorem 3.1 and the result of Rešetnjak [13] are not true for $n \geq 3$ if C^{n-1} is replaced by H^{n-1} . In fact for every $n \geq 3$ there exist by [2] quasiregular mappings f for which $\dim_H B_f$ and $\dim_H fB_f$ are arbitrarily close to n.

3.12. An application. Theorem 3.1 or the result of Rešetnjak in [13] gives the following result on the metric structure of a quasiconformal k-ball, $1 \le k \le n-2$. We recall that a set $A \subset \mathbb{R}^n$ is called a quasi-

conformal k-ball if there exists a domain $G \supset A$ and a quasiconformal mapping $f: G \rightarrow fG$ such that

$$fA = R^k \cap B^n = \{(x_1, \ldots, x_n) \mid x_n = x_{n-1} = \ldots = x_{k+1} = 0\} \cap B^n$$

3.13. Theorem. Suppose that $A \subset \mathbb{R}^n$ is a quasiconformal k-ball, $1 < k \leq n-2$. Then $C^{n-1}(A) = 0$.

Proof. Let $f: G \to fG$ be the corresponding quasiconformal mapping. Define $g_1: \mathbb{R}^n \to \mathbb{R}^n$ as the winding mapping $(r, \varphi, z) \mapsto (r, 2\varphi, z), z \in \mathbb{R}^{n-2} \supset \mathbb{R}^k$, in cylindrical coordinates of \mathbb{R}^n . Set $g = f^{-1} \circ (g_1|g_1^{-1}(fG))$. Then g is quasiregular and $gB_g \supset A$. Hence, by Theorem 3.1, $C^{n-1}(A) = 0$.

4. A lower bound of the Hausdorff dimension of B_{f}

4.1. Theorem. Suppose that $f: G \to \mathbb{R}^n$, $n \geq 3$, is quasiregular and $B_f \neq \emptyset$. Then $H^{\alpha}(B_f) > 0$ where $\alpha = (n-2)(2/K_I(f))^{1/(n-2)}$.

Proof. We may assume that f is not constant. By Lemma 2.3 there exist $x_0 \in B_f$ and $r_0 > 0$ such that for $r \in (0, r_0]$ $U(r) = U(x_0, f, r)$ is a normal neighborhood of x_0 and if $U_0 = U(r_0)$, then $f|B_f \cap U_0$ defines a homeomorphism $B_f \cap U_0 \to f(B_f \cap U_0)$ and $i(x, f) = i(x_0, f)$ for all $x \in B_f \cap U_0$. Fix r' > 0 such that $B^n(x_0, 3r') \subset U_0$ and then $r'_0 > 0$ so that $\overline{U}'_0 = \overline{U}(r'_0) \subset B^n(x_0, r')$.

Let $F = B_f \cap \overline{U}'_0$. We shall show that there exists $\delta > 0$ such that for all $x \in F$ and $r \in (0, \delta]$

(4.2)
$$L^*(x, f, L(x, f, r)) \le Cr$$

where C does not depend on x or on r.

Pick $\delta > 0$ so that for all $x \in F$ and all $r \in (0, \delta]$ $L(x, f, r) < d(fF, fS^{n-1}(x_0, r'))$. Fix $x \in F$ and $r \in (0, \delta]$. Let L = L(x, f, r), $L^* = L^*(x, f, L)$, $U = U(x, f, L(x, f, L^*))$, and U' = U(x, f, L). Then $U' \subset U \subset U_0$ and, since $i(x, f) = i(x_0, f)$, U and U' are normal neighborhoods of x. If $L^* > r$, $E = (U, \overline{U}')$ is a normal condenser in U_0 [5, 5.1-6.1] and $E' = (B^n(x, L^*), \overline{B}^n(x, r))$ is a condenser in U_0 . Since E is ringlike and ∂U and \overline{U}' both meet $S^{n-1}(x, L^*)$ [5, 2.9, 4.3], cap $E \geq \delta_n > 0$ where δ_n depends only on n. Hence by [5, 6.2]

(4.3)
$$\operatorname{cap}(fU, f\overline{U}') = \operatorname{cap} fE \ge \frac{1}{K_o(f)i(x, f)} \operatorname{cap} E \ge \frac{\delta_n}{K_o(f)i(x_0, f)}$$

Since $f\bar{B}^n(x, r)$ is connected, contains f(x), and meets $S^{n-1}(f(x), L)$, (4.3) implies

(4.4)
$$\operatorname{cap}\left(fU, f\bar{B}^n(x, r)\right) \ge C'$$

where C' > 0 does not depend on x or on r. On the other hand,

$$egin{aligned} & ext{cap} \; (fU \;, far{B}^n(x \;, r)) \leq K_I(f) \; ext{cap} \; (U \;, ar{B}^n(x \;, r)) \ & ext{ } \leq K_I(f) \; ext{cap} \; (B^n(x \;, L^*) \;, ar{B}^n(x \;, r)) \end{aligned}$$

which together with (4.4) yields (4.2).

Suppose $H^{\alpha}(F) = 0$. Let $\varepsilon > 0$. There exist $x_i \in F$ and

$$r_i \in (0, \min \{\delta, r'/C\}), i = 1, 2, \dots$$

such that $\bigcup B^n(x_i, r_i) \supset F$ and

(4.5)
$$\sum_{i} r_i^{\alpha} < \varepsilon \; .$$

Let $L_i = L(x_i, f, r_i)$, $L_i^* = L^*(x_i, f, L_i)$, and $E_i = (U_0, \overline{U}(x_i, f, L_i))$. Then E_i is a normal condenser in G and by [4, 5.14 and 3.7]

(4.6)
$$\frac{\omega_{n-1}}{\left(\ln\frac{2r_0}{L_i}\right)^{n-1}} \le \operatorname{cap} fE_i \le \frac{K_I(f)}{i(x_0, f)} \operatorname{cap} E_i \le \frac{K_I(f)}{2} \frac{\omega_{n-1}}{\left(\ln\frac{r'}{L_i^*}\right)^{n-1}}$$

where the last inequality is true because $i(x_0, f) \ge 2$ and $L_i^* \le Cr_i < r'$. Now (4.6) implies

(4.7)
$$L_i \leq C'' L_i^{*}^{(2|K_I(f)|^{1/(n-1)})}$$

where C'' does not depend on *i*. Since $\bigcup B^n(f(x_i), L_i)$ covers fF and (4.7), (4.2), and (4.5) yield

$$\sum_{i} L_{i}^{n-2} \leq C''^{n-2} \sum_{i} L_{i}^{*\alpha} \leq C^{\alpha} C''^{n-2} \sum_{i} r_{i}^{\alpha} < C^{\alpha} C''^{n-2} \varepsilon,$$

 $H^{n-2}(fF) = 0$. On the other hand, by Theorem 2.20,

$$H^{n-2}(fF) \ge H^{n-2}(gB_g) > 0$$

where $g = f | U'_0$. The theorem follows.

4.8. Remark. The number α in Theorem 4.1 is in the case $K_I(f) = 2$ the best possible. The mapping $f: \mathbb{R}^n \to \mathbb{R}^n$, $(r, \varphi, z) \mapsto (r, 2\varphi, z)$ in cylindrical coordinates of \mathbb{R}^n gives an example since $K_I(f) = 2$ and the Hausdorff dimension of B_f is $\dim_H B_f = \dim_H \{(0, 0, z) \mid z \in \mathbb{R}^{n-2}\} =$

References

- 1. CHURCH, P. T. and HEMMINGSEN, E.: Light open maps on *n*-manifolds. Duke Math. J. 27 (1960), 527-536.
- 2. GEHRING, F. W. and VÄISÄLÄ, J.: Hausdorff dimension and quasiconformal mappings. To appear in J. London Math. Soc.
- 3. HUREWICZ, W. and WALLMAN, H.: Dimension theory. Princeton University Press, 1948.
- 4. MARTIO, O.: A capacity inequality for quasiregular mappings. Ann. Acad. Sci. Fenn. A I 474 (1970), 1-18.
- 5. MARTIO, O., RICKMAN, S., and VÄISÄLÄ, J.: Definitions for quasiregular mappings. -Ann. Acad. Sci. Fenn. A I 448 (1969), 1-40.
- 6. -»
- -»- -»- Distortion and singularities of quasiregular mappings. Ann. Acad. Sci. Fenn. A I 465 (1970), 1–13.
- 7. ---- --- --- Topological and metric properties of quasiregular mappings. Ann. Acad. Sci. Fenn. A I 488 (1971), 1-31.
- 8. PAPAKYRIAKOPOULOS, C. D.: On Dehn's lemma and the asphericity of knots. Ann. of Math. 66 (1957), 1-25.
- 9. Роlески, Е. А. (Полечкий, Е. А.): Метод модулей для негомеоморфных квазиконформных отображений. Mat. Sbornik 83 (1970), 261-272.
- RADO, T. and REICHELDERFER, P. V.: Continuous transformations in analysis. -Springer-Verlag, 1955.
- REŠETNJAK, J. G. (Решетняк, Ю. Г.): Об условии ограниченности индекса для отображений с ограниченным искажением. - Sibirsk. Mat. Ž. 9 (1968), 368—374.
- 12. —»— Отображения с ограниченным искажением как экстремали интегралов типа Дирихле. Sibirsk. Mat. Ž. 9 (1968), 652-666.
- 13. -»- О множестве точек ветвления отображений с ограниченным искажением.
 Sibirsk. Mat. Ž. 11 (1970), 1333-1339.
- 14. SPANIER, E. H.: Algebraic Topology. McGraw-Hill, 1966.
- 15. Твонимčик, Ј. J. (Трохимчук, Ю. Ю.): О непрерывных отображениях областей звклидова пространства. Ukrain. Mat. Ž. 16 (1964), 196-211.
- 16. VÄISÄLÄ, J.: Discrete open mappings on manifolds. Ann. Acad. Sci. Fenn. A I 392 (1966), 1-10.
- --»- Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229, Springer-Verlag, 1971.

Printed April 1973

n-2. It has been conjectured that for $n \geq 3$, $B_f \neq \emptyset$ implies $K_I(f) \geq 2$. Furthermore, it has been conjectured that $B_f \neq \emptyset$ implies dim $B_f = n-2$. This would imply $H^{n-2}(B_f) > 0$, which for $K_I(f) > 2$ would be a stronger result than 4.1.

University of Helsinki

University of Helsinki University of Michigan