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1. Introduection

In structure theory of sequential machines state-information is usually
represented by a partition or cover on the state-set. When discussion is
limited to realizations by one-to-one assignments, the partition model
appears quite satisfactory both intuitively and mathematically. In their
studies summarized in [2], HARTMANIS and STEARNS employ successfully
the lattice of partitions with the substitution property and the notion of
partition pairs to describe decompositions and loop-free realizations as
well as information-flow in networks of machines.

In order to be able to deal with more general forms of realizations, parti-
tions were replaced by covers (called set systems in [2]), where blocks are
allowed to overlap. While many of the central results still hold and some very
general results concerning decomposability have been proved (cf. for ex.
ZEIGER [4]) using this formalism, the interpretation of covers as state-
information pose some serious difficulties. L1u [3] has suggested that cover-
information could equivalently be represented by a symmetric, reflexive
binary relation. However, it is evident that this simplification of the for-
malism must involve some loss of detail because the correspondence is
not one-to-one. This problem gave the original impetus to this paper.
However, it became evident that our questions can be stated and an-
swered in a much more general form. Therefore we first study general
lattice morphisms and their effects on pair algebras. The relationship
between the two information-representations is then easily described ap-
plying the general results.

In the use of terminology we mostly follow BirkHOFF [1]. The discussion
has been limited to finite lattices, and the applications therefore to finite
automata. Also, some of the results have not been stated in their most
general form. Thus, it would sometimes suffice to assume a join or meet
morphism instead of a lattice morphism. On the other hand, the results
apply with trivial modifications to input-state and the other pair algebras
of an automaton not discussed here.

2. Lattice morphisms

In the following K and L, possibly with subscripts, will always denote
finite lattices. The meet and join of two lattice elements 2 and y is
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written as xy and a + y, respectively. Also, inf{x ' P(x)} and sup
{z | P(x)} denote the infimum and supremum of the elements 2 having
property P . The least element is 0 and the greatest element 1. These
notations are used for any lattice, because the lattice will always be known
from the context.

Let h: K — L be a lattice epimorphism. Then 7-'(z) is a sublattice
of K, for every u € L. The greatest element of this sub-lattice is denoted
by 14(u) and the least element by On(u). When % is understood, we omit
the subscripts. The equivalence relation on K induced by 7% is denoted
by E.. We may view 0, and 1, as mappings for which the following
lemma is easily verified.

Lemma 2.1. For any lattice epimorphism % : K — I,

(1) 0y: L — K is a join monomorphism, and

(2) 1,: L — K is a meet monomorphism.

A lattice K is called pseudo-complemented if, for every element x € K |
the set of elements x, € K such that wax; = 0 contains a greatest el-
ement. This element

x*: =sup{z, € K |2xy = 0]

is then called the pseudo-complement of a . In our applications w* will
represent the smallest amount of information which combined with
gives perfect state information.

Proposition 2.2, Let K be a pseudo-complemented lattice and
h: K — L a lattice epimorphism such that 77%(0) = {0}. Then L is
pseudo-complemented and, for any z, y € K,

(1) h(x)* = h(x¥)
(2) z Eyy implies a* E,y*, and
(3) x* = 1(h(x)*) .

Proof: Let w €L and 2 € K such that A(x) = u. Then w Z(a*) =
h(xx*) = 0 . Suppose wuv = 0, for some v = h(y) € L . Then 0 = h(x)h(y)
= l(xy) implies ay = 0. Therefore, y < a*, v < h(x*) and k(z*) =
h(x)* . Statement (2) follows immediately from (1). By the assumption
h71(0) = {0}, A(xl(h(x)*)) = h(x)* h(x) = 0 implies 1(h(x)*) <a*. On
the other hand, A(x*) = h(x)* implies a* = I(h(v*)) = I(k(2)*). Thus
we have verified (3).
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3. Pair algebras

A subset I'C K, K,, where K, and K, are finite latticss is said
to form a pair algebra [2] if
(A) for any w,, v, €K, and y,,y, € K,, (¥, y,), (5, y,) € ' implies
(v + 2y, Yo+ Ya). (@, Yoy €1, and
(B) (0, )€l and (v, 1) €I, for every 2 € K, and y €K,.

We relate pair algebras to the more familiar concept of a subdirect
product. A subset I'C K,x K, is a subdirect product of K, and K,
if it satisfies conditon (A) and

(C) pry(l) = K, and pryl') = K,, where pr; and pr, are the pro-
jections to K, and K,.

Proposition 3.1: A subset I'C K XK, is a pair algebra iff it is
a subdirect product and (0, 1) € I".

Proof. Every pair algebra is a subdirect product because condition (B)
implies condition (C). Suppose [ is a subdirect product and (0, 1) € I".
For any «» € K, there exists by (C) a pair (v, y) € I'. Using (A) we
have (v, 1) == (¢ -0,y 1) € I'. Dually, (0,y) €I, forany y € K, .

1t is often convenient to consider a pair algebra as a lattice with the
naturally defined componentwise operations and partial ordering.

Lemma 3.2. For any lattice epimorphisms 7;:K;—L; and #7,:
Ky—L,,

(1)  h:=h;>h, is a lattice epimorphism,

2 A(I") is a pair algebra in L, x L, , for any pair algebra I'C K, < K, .
I 1 2 VT g 1 2
and

(3) A7) is a pairalgebrain K,;x K, , for any pair algebra 4 € L, <L, .

The lemma follows from well known properties of direct products and
morphisms. We observe that 20, 1) = (0, 1).

For any pair algebra ['C K;xK,, two mappings m,: K; - K,
andi M, : K, — K, can be defined as folllows. For any * € K, and y €K,
mp(x) = inf{y, €K, | (v,y,) €I}, and M (y): =sup{z; €K, | (x;.9)
€r}.

A number of properties of these mappings can be found in [2]. In the
applications where lattice elements represent state information in an au-
tomaton, m(r) is the maximum next-state information that can be
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computed from the present-state information .. Similarly, M (y) is the
minimum present-state information required for the next-state informa-
tion .

Proposition 3.3. Let hAy:AK,—L;, hy: N,— 1L, be lattice epi-
morphisms and I'€ K;xK,, ACSL,;xL, pair algebras such that
hixhy(I') = A . Then

(1) ma(w) = hoyfm (0()) , for any w €L,
2) M y(0) = hy(M,(1@)) , for any € L,,
3) ho((mp(@) = my(hy(2)) , for any € K, . and
(4) ha(M () = My(ho(y)) , for any y €K, .

Proof: Because the first two statements are dual to each other (in
a generalized sense), we prove (1) only. We claim that (w, ») € A iff there
exists a y € K, such that h,(y) = and (0(u), y) € I'. Suppose y
satisfies these conditions. Then

(u,v) = (hy(0(w)) , hy(y)) €y -ho(l) = 1.

Conversely, let (u,v) € 4. Then there exists a pair (v, ) € /" such that
hyXho(x ,y) = (w,v).But hy(x) = w implies O(u) < . and (0(n),y) € I".
Also hy(y) = v . Using this result we have
ha(m(0(u)) = inf {hy(y) | (O() , ) € I'}

= inf{v | (n, ) € 1}

= m,(u) .
Statement (3) follows from (1) because a > 0(h,(x)) and both 7, and
m; are isotone mappings. Similarly, (4) follows from (2).

Corollary 3.3.1. With the assumptions of Proposition 3.3, we have
(1) O(my(w)) = mp(0(w)) , for any w € L. and
(2) WM 4(v)) = M (1(v)), for any v € L,.

We shall now show that these results can be strengthened when we
make some additional assumptions concerning £, and /,. In particular,
we can compute m, and M, in the pair algebra ' using any element
from the corresponding E, -or F, - class.

Proposition 3.4. Let 7h,:K,—~L,. h,: Ko— L, be lattice epi-
morphisms and [I'C K, xK,, A4S L, xL, pair algebras such that
hixho(I') = A and, for any x €K, »€L,,
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(a) (x, 1)) € ' if (hy(x),v) €A.

Then

(1) my(hy(x)) = hy(m,(x)), for any x € K,

(2) (M, (v)) = M (1(v)), for any v € L,,

(3) Lm () = mp(1(w)) , for any u € L,, and

(4) 2B, v, implies mx) B, mp(x,), for any x;, v, € K.

Proof: Statement (1) can be proved using (a) as follows. If (z,y) € I,
then (h;(x), hy(y)) € 4. Conversely, let (hy(x),r) €A . Then v = hy(y)
and (x,y) € I' if we choose y = 1(v). Hence,

ho(mp(x)) = inf {hy(y) | (v, y) € I'}
= inf{v | (h (), v) € 4}

= my(hy(r)) .

Consider now any v € L, andlet o = 1(J(v)). Then (My(v),v) €
implies (1(M4(v)), 1(v)) € I' by condition (a). Therefore, 1(M,(v)) <
M, (1(v)) . Combining this with Corollary 3.3.1 we get (2). Let v €L, .
Writing « = 1(u) in (1), we get m(u) = hy(m(1(u))) . Therefore, m(1(u))
< 1(m4(w)) . Statement (4) follows easily from (1).

We note that statement (4) in Proposition 3.4 means that the m,. -
operator can be computed in the image algebra »modulo E,» assuming
that the argument is known »modulo E, ». Assumption (a) is equivalent
to the condition that (1(w), 1(v)) € I' whenever (u,v)€4.

The following results can be obtained similarly as Proposition 3.4.

Proposition 3.5. Let h,:K,—~L,, h,: K,— L, be lattice epi-
morphisms and ['€ K{xK,, A4S L;>» L, pair algebras such that
hy>ho(I')y = A and, for any w €L; and y € K,,

(b) (O(u) , y) € I" if (u, hy(y)) € 1.

Then

(1) M y(hsy)) = hy(M (y)) , for any y € K,

(2) 0(m4(u)) = mp(O(u)) , for any u €L,

(3) 0(M,(v)) < M, (0(v)), for any v € L,, and

(4) Y1E,y. implies M (y,) By M (y,), for any y;,y, € K,.
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Again, we note that under condition (b) M, can be computed in A
»modulo E,». The condition (b) means that (0(u), 0(v)) € I' whenever
(w,v) €4.

We conclude this section by the following result which can easily be
proved.

Proposition 3.6. With the notations and combined assumptions of
Propositions 3.4. and 3.5., I'N (ky (u) x hy '(v)) is a pair algebra in hy'(w) %
ki'(w), for any w€L,, v€L,.

4. Covers and relations

Let @ be a finite set. A collection x of subsets of @ is called a cover (or
set system in [2]) if U{4 |4 €a} =@ and 4,2 4, implies 4, = 4,,
for any A,;, A, €x. The set of all covers of @ is denoted by C,. For
any «,p€0,, we write

x<p iff (VAEX)IBEP)ACRH.
Then €, becomes a distributive lattice, cf. [2], where

v-f=max{ANB|A€x, BEP}
and

o+ p =max{x Upg}.

The least cover 0 consists of singletons only, and the greatest cover is
1 ={Q}.

Let R, denote the set of all symmetric, reflexive relations on @ .
If we order the relations by the usual inclusion relation, R, becomes
a Boolean lattice, where oUo and oMo are the join and meet of
0,0 €R,.

The greatest element is @< @ and the least element the equality re-
lation ¢.

Following Liu [3] we assign to every ~ in (', the relation r(x): =
W,q) | (LA€n)g,q €4}.
Clearly, we get a mapping from C, to R, , but it is not one-to-one, if @
has more than two elements.

Proposition 4.1. For any set @ .r:C,— R, is a lattice epimorphism.
For any ¢ € R, the sublattice r~'(o) has the least element

0,(0) = max{{q,q'} [ (q,9) €9},
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and the greatest element
1,(0) = max {C | O xC € o}
In particular, r~'(e) = {0}.

We omit the straightforward proof.

Proposition 4.2. For any set @,
(1) 0,: Ry— C, is a lattice monomorphism, and
(2) 1.(o No) = 1(0) - 1,(0), for any ¢,0 €R,.

This proposition is a special case of Lemma 2.1. except for the claim
that 0, is a meet morphism. This again follows from the following obser-
vation. Let Cy, be the set of all covers of @ with no blocks containing
more than two elements. Clearly, 'y, is a sublattice of C, and r restric-
ted to Cy, is an isomorphism with 0, as its inverse.

Because C, and R, are finite distributive lattices, they certainly are
pseudo-complemented. Using Proposition 2.2. and the last part of Pro-
position 4.1., we get the following result.

Proposition 4.3. For any «,3 €C,,

(1) ap=0iffrx) N r(p) = ¢,
(2) r(a¥, = r(x)*, and
(3) A= 1(r(a)*) .

In order to interprete these results, we assume that ¢ is the state set
of an automaton (@, X ,7T), where X is the set of input symbols and
T:QxX —Q the transition function. We will call this automaton sim-
ply 7. For any ¢ €Q and x € X, we use the notation ga’:=1T(¢, ).

Every cover « € C, represents now some information about the state
of T . Similarly, each relation ¢ € R, can be viewed as some state-infor-
mation (cf. [3]). It follows from Proposition 4.1. that the relation repre-
sentation of some state-information determines its cover representation
with the accuracy of a sublattice of C, only. On the other hand, this
correspondence between the two representations is preserved in the com-
bination of information (meet) and the combination of ignorance (join).
The pseudo-complement «* represents the minimum information which
combined with « gives perfect state information. Proposition 4.3 tells
us that this can essentially be computed in R, using r(x). Also, the
question whether the cover information x and g jointly give perfect
state information can be resolved considering the relational equivalents.
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(We have ignored here the difficulties involved in the interpretation of
xf as the combined information, cf. [2]). In general, the combined infor-
mation «ff can be computed in R, »modulo E, only.

5. Relation pairs and cover pairs

From here on @ will always be the state set of the automaton 7' .
The pair (x,f) € CyxC, is called a cover pair (system pair in [2]) if, for
every A €x and v € X there exists a block B € such that Adz”: =
fq (Aq €A)q 2" = q} € B. The set of cover pairs CP; of T forms
a pair algebra, cf. [2].

We call (0,0) €ERy< R, a relation pair if, for any ¢,q €Q and
v€X,(q,q) €0 implies (g2”,q x") €o. The set of all relation pairs
of 7' is denoted by RP;.

Proposition 5.1. For any automaton 7', RP, is a pair algebra in
Ry xRy .

We omit the simple proof. The m - and M -operators can now be
introduced as usual. They are denoted by m. and M, in CP;, and by
mp and My in RPp. Forany p € Ry, we can evidently compute mg(0)
and Mg(o) as follows:

mule) = {(g" . ' 2") | (. 4) €0, v €X}Ue
and

Mp(o) =1{(qg.q)  (gx", ¢ 2") €0, 2 €X}.

Proposition 5.2. For any automaton 7' and ¢,0€R,,

(1) rxr(CPg) = RP;,
(2) (0,0) €ERP, iff (0(0), 0(s)) €CP4, and
(3) (0,0) € RP, iff (1(0), 1(c)) € CP.

Proof: We first prove that (x,p) € CP; implies (r(x),r(p)) € RP, .
This gives one half of all of the statements. Thus, let (¢, ¢’) €7(x) and
v+ €X . Then ¢,q € A. for some A € x such that 4x" € B where BES.
This implies (g7, ¢'2") € 7(f) as required. To prove the second part of (2),
we have to show that (o,0) € RP; implies (0(0), 0(s)) € CP;. Now
every block of 0(g) is of the form {q,s'}, where (¢,¢') €0 (¢ = ¢’ poss-
ible). For any x € X, (ga", ¢ 2") €0, and hence {g2",q 2T} C B, for
some B €0(c). Statement (2) implies RP;CSrxr (CP;), and thus
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we have the second half of (1). Finally, let (0, 0) € RP;, and 4 € 1(9g),
x€X. Then AxACyp, and (427)»(42")Co. Hence, Ax"CB
for some B € 1(p). This proves statement (3).

It follows from Proposition 5.2. that all results of Section 3 are appli-
cable here.

A relation ¢ € R, is called an SP relation (SP for substitution property)
if (0, 0) € RP;. Similarly, SP covers are defined.

Corollary 5.2.1. For any automaton 7 and o € R,, the following
three conditions are equivalent:

(1) o is an SP relation,
(2) 0(o) is an SP cover, and
(3) 1(p) is an SP cover.

This result cannot be extended to apply to any x € h7(o) .
The next corollary follows from statements (1) and (3) of Proposition
3.4, and statement (2) of Proposition 3.5.

Corollary 5.2.2. For any automaton 7T, ~x,f€C, and o €KR,,

(1) ma(r(&)) = r(mg(x) .
(2) L(mg(0)) = mc(1(0)) .
(3) 0(mz(0)) = me(0(0)) , and
4) BB implies mc(x)E,m(f) -
Similarly, we get the following results.
Corollary 5.2.3. For any automaton T . x,f€C, and o€R,,
(1) Mg(r(x)) = r(Mc(x)),
) 0(Mx(g)) = M(0(0)) ,
(3) 1(Mx(0)) = M(1(0)) , and
(4) ~xE p implies M(v) EMc(p) .

6. Concluding remarks

As a conclusion we comment on some aspects of the previous results
which may be of significance to the structure theory of sequential ma-
chines.



12 Ann. Acad. Sci. Fennicae AL I 542

We have seen that the algebra of symmetric, reflexive relations is an
epimorphic image of the algebra of covers. Thus relation information
provides a representation of cover information, although not a faithful
one. Using Corollaries 5.2.2 and 5.2.3 we can compute mg(p) and My(o)
in the cover algebra using any x €r1(p) as the argument:

mg(0) = r(me(x))
and
M (o) = r(Mc(x)) -

On the other hand, m¢ and J; can be computed smodulo E,» using the
relation representation even if the cover is known »modulo E» only. Thus
the possible loss of information resulting when we transfer from the cover
representation to the relation representation will not spread during com-
putations.

From Corollary 5.2.1 we see that, for any serial decomposition which
could be found using covers, there exists a serial decomposition which
can be detected from the lattice of SP relations. Using Proposition 4.3
too, we get the same result for parallel decompositions.

These observations suggest that the cover representation could some-
times be replaced by a narrower formalism based on symmetric, reflexive
relations without any essential loss power.
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