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1. Introiluction

fn structure theory of sequential machines state-information is usually
represented by a partition or correr on the state-set. When discussion is
Iimited Lo realizations by one-to-one assignments, the partition model
a,ppears quite satisfactory both intuitively and mathematically. In their
studies summarized in [2], HenrlreNrs and SrnenNs employ successfully
the lattice of partitions u-ith the substitution property and the notion of
partition pairs to describe rlecompositions and loop-free realizations as

rvell as information-florv in networks of machines.
fn order to be able to cleal 'rith more general forms of realizations, parti-

tions were replacecl by covers (called set systems in [2]), rvhere blocks are
allowed to overlap. \Yhile many of the central results still hold and some very
general results concerning decomposability have been proved (cf. for ex.
Zntanr [a]) using this formalism, the interpretation of covers as state-
information pose some serious difficulties. Lru 13] has suggested that coyer-
information coulcl equivalently be represented by a symmetric, reflexive
binary relation. Horvever, it is evident that this simplification of the for-
malism must irrvolve some loss of detail because the correspondence is
not one-to-one. Th.is problem gave the original impetus to this paper.
Horvever, it became eviclent that our questions can be stated and an-
swered in a rnuch. more general form. Therefore we first study general
lattice morphisms ancl their effects on pair algebras. The relationship
between the two information-representations is then easily described ap-
plying the general results.

In the use of terminology rve rnostly follorv Brnxrorr [t]. The discussion
has been limited to finite lattices, and the applications therefore to finite
automata. Also, some of the results have not been stated in their most
general form. Thus, it rvould sometimes suffice to assume a join or meet
morphism instead of a lattice rnorphism. On the other hand, the results
apply with trivial rnodifications to input-state and the other pair algebras
of an automaton not discussed here.

2. Lattice morphisms

In the follorving J( ancl Z , possibly rvith subscripts, rvill always d.enote

finite lattices. The meet antl join of trvo lattice elements r and g is
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rmitten as ny and ?r + y, respectively. Also, inf {r lP(;u)} ancl sup

{rlP(r),\ denote the infirnum and supromum of the elements r having
property P . The least element is 0 and the greatest elcment, l. 'Ihese
notations are used for any lattice, because the latt,ice ryill a,lrra,r's be linou'n
from the context.

Let h: K ---> L be a lattice epimorphism. Illhen h-t(u) is a sublattice
of I{ , for every u e L . The greatest element, of this sub-lattice is clenoted
by lr,(tc) and the least element by Dn(u) . \lrhen ä is understood, v'e omit
the subscripts. The equivalence relation on 1f incluced by ir, is denoted
by E^. We may view 0r, and 16 as mappings for which the following
lemma is easily verified.

Lemma 2.1. For any lattice epimorphism h: K ---> L ,

A lattice K is call ed pseudo-complernerfied
the set of elements nle K such that r rr
ement. This elernent

(r )

(2)

(1)

{2)

(3)

0n : L -+ K is & join morlornorphisrn, &ltcl

LI L_>K is a rneet, tnorlornorphisrn.

if, for ever)- element :t) e K ,

:- {l contains a greatest el-

x* : - sup {*, e Ii : rt:tt -,- 0l

is then called tlre pseud,o-cornplement of r . fn our applications ** rvill
represent the smallest amount of information which combinecl rvith r
gives perfect state information.

Proposition 2.2. Let K be a pseudo-complernented lattice and
h: K ---> L a lattice epimorphism such that ä-1(0) : {0} . Then L is
pseudo-complemented and, for ary r , y e Ii ,

7r(*)* - h,(r*) 
i^

* ilnA implies x* En!/* , ar](l

n* - L(h(r,)*)

Proof: Let u€Z and re K sucht'hat. h(r):z.Then uh,(n*):
h(rr*):0. Suppose ua:0, for some ?r:h(a) €Z.'Ihen 0:h(r)h(y)
: lt(ry) implies nU : 0. Therefore, A < t* , t .<.lt(r*) ancl h(**) :
h(r)* . Statement (2) follows immediately from (1). B;' the assumption
å-1(0): {0} , h(xt(h(r)*)):h(")* h("):0 implies I(å(r)*) { a-*. On
the other hand, h(r*) : h(r)* implies a:* >< l(ä(r:x)) : t (h(e:)x). Thus
we ha'ye verifiecl (3).
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3. Pair algebras

A subset f c KrxKr, where ,I(, and K, are finite lattic:s is said
to form a ,pcLir ulgebr« l2f if
(A) for äny ;r1 , ;r2e Ii, and y, , Uze Kz, (nr, ?/t) , (rz, !/z) € J" implies

(r, * r', , !/r* !z) , (rt, nz, Ur.'Az) e J-, and

(B) (0,37) €1'antl (r,1) €I, for every e€ff, and ye Kr.
\Ve relate pair algebras to the more familiar concept of a subdirect

product. A srrbset, l'C Ktxl(, is a subclirect product of J(. ancl K,
if it satisfies conrliton (A) and

(C) prr(,I-):1(r and prr(I) : Kz, u'here Irrr and pr, are the pro-
jections to 1(, art«l .K, .

Proposition 3.1: ,\ subset f c KrXKz is a pair algebra iff it is
a subdirect prochrct aud (0, 1)€.f .

Proof: Ever.r' pair algebra is a subdirect, procluct because condition (B)
irnplies conclition (C). Suppose J- is a subdirect product and (0 , l) € /',
For any n: € Jf . there exists by (C) a pair (r , y) € -1 . Using (A) we
have (r, l)- (r -f 0 ,y -l- l) €.I'. Dually, (0,9) € I, for a\y y €Kr.

It is often convenient to consider a pair algebra as a lattice rvith the
na,turall.v defined componentrvise operations and partial ordering.

Lemma 3.2. F'or irtrv ltrttice epimorphisms ft,: I{r-->L, ancl hr;
Kr-+ Lr,
(1) h::ht){i,2 is al lattice epimorphism,

(2) h(l) is a pair algebra in ,L, x L, , for any pair algebra f c KtX Jf 2 ,

and

(3) h-(,4) is a pair algebra in 1(, X K, , for any pair algebra il c LtX Lz .

The lernma follorvs from ryell knor,yn properties of direct products ancl
morphisms. We observe that ä(0 , l) : (0 , f ) .

X'or any pair algebra I'cKrXKr, trvo mappings mr: Kr-Kz
andiMr-:Kr-->K, canbeclefineclasfblllows.Forany re K, and ye Kr,
m,,(u):: inf {Ur €1i2 I @,Ar) € J-}, and 11"(y):: sup {rre Krl@r,A)
€ r).

A number of properties of these mappings can be found. in l2]. In the
applications rvhere lattice elernents represent state information in an a,Lr-

tomaton, nt,r.(:r) is the maxinrum next-state information that can be
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computecl frottr the present-state inforrnation
minimum present-state information requiretl
tion y

Proposition 3.3. I-et lt, : -Ir. . *-r f, 1 , h , :

rnorphisms and f cKrXKr, ÅgL1\L,,
h rxlz r(l) - ,--l . Then

m^(u) '--- h,r(rn,"(0(tr))) , for all\' 't( € {, 1 ,

tl^(u) -= h,L(II r,(I(u))) , for ilnr. '11 e L 2 ,

hr{(mr.(rr)) 2 rn,,(lrr(*)) , for &I1\" r: € K, , it,ittl

hl]l,t t,(y)) { tlo(h,r(y)) , for ar}r- ?/ e Ii" ,

Proof: Because the first, tu,o statements ilre dual to etrch other (in
a generalized sense), weprove (I)onlv.\\ieclaimthat (ru , v) e Å iff there
exists a g e I{, such that hr(y): z- a'ncl (O(tr) , A) e I'. Srtpliose g
satisfies these conditions. Theu

(1)

(2)

(3)

{4)

.l' . '\irnilarlr', il,.(y) is the
for tho next-statc informa-

[i , ---> 1,2 I'le lattice' epi-
pair algebrit,s stt ch that

l.

, ?l) € J' such th.u,t

irrrrl ({)(ir) , y) e .f .

I'"

rttrrl hoth h., attd
(2).

{rr, , a) =- (hr(O('u)) , hr(y}} e lt r.,. /t =(/') 
-:-

Conversely, let (u , a) e Å . Then there exists a pair (,,,

Also hr(y)--- L'\ . IJsing this result we have

-__ inf {u | (tr., t.) € ",1 }

:- mo@)

*ft r, are isotone rnappings. Similarll , (1) follo\\-s fronr

Corollary 3.3.1. With the assumptiotrs of Plopositiott li.ll, r'e haver

(l) O(mo@)) < mr.(0(u)), for anr- ,il € /., . arrrl

(2) r(M o@)) > il ,.(r(u)) , for an1- z, e L t .

We shall no'iv show that these lesults cau be strengthenerl x'hen rve

make some additional assumptions concerning å. ancl /r " . fn particular,
wo can compute m, and. M, in the pair algebra, ./' rrsing åiny elelnent
from the corresponding 8,,,- ot Do,- class.

Proposition3.4. Let hr:Kr-,Lr, hr:Ii,---L, bo la,ttice epi-
morphisms ancl f C KLXK2, Å C LrXLz pair algebras such that
hrXlt,r(f):A and, for any tr€Iir, re L2,

Ann. Acacl. Sci. I'ennicic
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Proof: Statement (1) can be provecl using (a) as follows. If (n,y) € f ,

then (hr(*) , hr(AD ezi . Conversely, let (hr(*) ,r') e A. Then a : hr(Y)

ancl (r , g) € J- if x.e choose y : l(a) . Hence,

hr(m"(x)) - inf {hr(y) i (.t , y) e fJ
: inf [z i (h,,(") , u) e Å]

: mÅh{t)) .

Consider rlory &1\: a e. L, and let y : L(lllu)) . Then (Mo(u) , a) € Å

implies (t(Mo@fi, t(o)) € -l' by condition (a). Therefore, l(Mo(u)) <
llr(t(a)). Combining this with Corollary 3.3.1 rve get (2). Let a €Lr.
Writing s:l(te) in (1), we get me(u) -hr(mr(I(w))). Therefore, mr(l(u))
<L(mo(u)). Staternent (4) follows easily from (1).

We note that statement (4) in Proposition 3.4 me&ns t'hai the mr,-
operator can be computed in the image algebra »modulo Zo,» assuming
that the argument is known »modulo Er,,». Assumption (a) is equivalent
to the condition that (1(z) , l(u)) € J- u'henever (u , a) e Å .

The following results can be obtained sirnilarly'- as Proposition 3.4.

(a)

Then

(1)

(2)

(3)

(1) *ril^,:u,

Proposition 3.5.
rnorphisms an{t l-
hrYh,r(l) =. /1 and.

(1, )

llhen

(1)

(2)

(3)

(1) u til t ,,u z

{r ,l(z')) € I' if {h,r(a:) , b-) e tl .

??LÅth L@)) - h r(nt r,(r)) , for a,n]- ft: € K 1 ,

L(rno(d) 2 *r(l(u)) , for arl\- u e Lr, ancl

implies mrlrrr)En.,nxr{a:z), for altr, nL,frze KL

Let ht : K t * L, , h, : K, -> L, be lattice epi-
CK:XK,, ÅCLrliL, pair algebras such thtrt
for any 'ue LL and ye I{r,

(0(ru) ,y) € J' if (u , hr{y)) € ;1 .

tr{r\tr(y)) - hr(M,,(y)) , for an\- ?J e lir,

O{wtr(u)) - ?nr(g(u)), for anY u, e Lr,

0{fl1Å(u)) ! Mr(0(u)) , for eny a e Lr, alld

irnplies fuI ,(yt) En,f,I ,.(yr) , for &ny !/t,yze Iiz
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Again, we note that under condition (b) M, can be computed in /
»modulo Eo,». Tho condition (b) means that (0(z) , 0(o)) € I' whenever

fu,a) e/ .

We conclude this section by the following restrlt which can easily be
proved.

Proposition 3.6. With the notations and combined assumptions of
Propositions 3.4. and 3.5., f fi @lt(u)xk;t(u)) is a pair algebra in hyt(u)x
k.;t(r), for any u e Lr, a € L, .

4. Covers and relations

Let Q be a finite set. A collection * of subsets of Q is called a cover (or
setsystemin[2])if U{.4 lAex):Q and Ar)A, implies A1:A2,
for any Ar, Ar€a. The set of all covers of Q is clenoted by Cp. For
&ny a,Be Cq, we write

oc I p iff (YJ €r)(tr B e fr) A c B.
rrren cp becomes: 

;:t::'ä'ffi;r":ji'; J,
antl

o-t fr:m&x{"Uf}.
The least cover 0 consists of singletons only, and the greatest cover is
I : {0}.

Let Ro denote the set of all svmmetric, reflexive relations on 0 .

If 'we ord.er the relatious by the usual inclusion relation, Ra becomes
a Boolean lattice, v'here g U o and ? n o' are the join and meet of
g,o€Rq.

The greatest element is Q x 0 and the least elernent the equalit5. re-
lation e.

Following Lru [3] we assign to every -r in Cq tlie relation r(rv) : :
{(l,q') l([-4 e o)q,q'<A].
Clearly, we get a mapping from Cp to -rBn , but it is not one-to-one, if Q
has more than two elements.

Proposition 4.1. X'or any set Q . r : Cn-> -Ro is a lattice epirnorphism.
1'or any g € fio , the sublattice r-'(S) has the least element

o"(e) : max t{q, q'} i @, q') € Qs\,
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(r )

(2)

(1)

(2)

(3)

ancl the greatest element

t,(q) -rnax{OiCxCcA}
In particular, r-1(e) - {0} .

\Ve orn it the straightforw,arcl proof'.

Proposition 4.2. For any set 8,
a lattice monomorphisrn, tr,rid0,: .^Eg *Oq is

l,(g O o) :1,(g) ' l,(o') , for an} Q, o € Aa

This proposition is a special case of Lemma 2.1' except for the clair.n

that 0" is a meet morphism. This again follows from the follos'ing obser-

vation. Lel Cqz be the set, of all covers of Q with no blocks containing
more than two elements. Clearly, Cqr is a sublattice of Cp and r restrie-
ted to Cqz is an isomorphism rvith 0, as its inverse.

Because Cq and Rq ate finite distributive lattices, they certainlv are

pseudo-complemented. Using Proposition 2.2. ancl tlie last part of Pro-
position 4.1., we get the follov'ing result.

Proposition 4.3. For an-y x,fre Oq,

In orcler to interprete these results, we assume that Q is the state set

of an automaton (Q , X, 7) , t'here X is the set of input svmbols antl
T:QxX--->Q the transition fttnction. lYe'will call this automaton sim-

tly ?. For any qe Q and' r €f(, \Ye use the notation qt.'::T(r7,.v) -

Every cover cv € Cg represents norv some iuforrnation abont the state
of T . Similarly, each relation g € -Bn can be vierved as some state-infor-
mation (cf. t3]). It follows from Proposition 4.1. that the relation repre-
sentation of some state-information determines its cover representation
rvith the accuracy of a sublattice of Cq onl). On the other hancl, this
correspondence between the t'no representations is preserved in the com-

bination of information (meet) and the combination of ignorance (join).
The pseudo-complement, a* represents the minimutn information l'hich
combined with or gives perfect state information. Proposition 4.3 tells
us that this can essentially be computed in Ro using r(or) . Also, the
cluestion whether the cover information * and p jointly give perfecrt

state information can be resolvecl considering the relational equivalents.
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(\\'e have ignored here the difficulties involved in the interpretation of
*p as the combined information, cf. [2]). In general, the combined infor-
mation aB can be computed in -Bg »moclulo .E,» only.

From here ., , ::'"ffi" ;:.,:-.:':: ,," auromaton r
TIre pair (o, §) eCrxO, is called a couer par'r (svstem pair in f2l)if, for
every /.€cr and n€X thereexistsablock B€B suchthat, Arl'::
[q i(g q'eA)q'*':il98. The set of cover pairs CP7 of ? forms
a pair algebra, cf. l2l.

\tr'e call (g, o) € RrX.Ro a relation pair if, for any l,Q' €Q anrl
r€X,(q,q')€Q implies (q*',q'rr1eo. The set of all relationpairs
of T is denotecl br: RPr.

Proposition 5.1. For anv automaton T , RPr is a pair algebra in
Rr'xRr.

lVe omit the simple proof. The rz - and ,11 -operators c&n now be
introdtrcecl as usual. They are denotedby rn" ar,d Ms in CPr, andby
'rro and Mo in,EP,. Forany g€,I?q,1\:ecanevidentlvcompute m.o(g)
ancl ,i}Io(q) as follows:

alld

Proposition 5.2. For &n), antomaton T arld g , o € Re ,

(2) (g , o) e RPr iff (0(q) , 0(")) e.CPr. alld

(s , o) e RPr iff (l(s) , 1(")) e CPr

Proof: We first prove that (a , P) e CP, implies (r(*) ,r(fi) e EPr .

This gives one half of all of the statements. Thus, let (q. , q') € r(a) and
r€X. Then g,e'e A, for some,4€* suchthat AnrCB ryhere Be P.
This implie* (q*' , q'rr) € r(B) as required. To prove the second part of (2),
ne have to show that (g,o)e RP, implies (0(g) ,0(o)) eCPr. Non'
ever;r block of 0(g) is of the form {q ,('} , u.here (q , q') € g (q : q' poss-
ible). For a,ny n€X, (qrr,q'r1') €o, and hence {q &r,Q'*'}gB, for
some B € 0(o) . Statement (2) implies RPrsrxr (CPr), ancl thus

(3)

I"{t
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we har,e the second half of (l). Finall.r,*, let (g ,o)e RPr, and ,4 € 1(g) ,

re X. Then AxACQ, and lArr)xlArrlco.Ilence, ArrcB
for some B e t(q) . This proyes statement (3).

It follows from Proposition 5.2. tliat all results of Section 3 are appli-
cable here.

A relation p e Ro is called an SP relation (SP for substitution propert.v)

if (s , { e RPr. Similarlv, SP covers are clefined'

COrOllary 5.2.1. X'or any automaton f and S € Re, the follorving

three conditions are equivalent,:

(1) g is an SP relation,

(2) 0(p) is an SP cover. ancl

(3) 1(p) is an SP coYer.

This result cannot be extendecl to apply to anl' x eh-L(q) .

The next corollary follows from statements (l) and (3) of Proposition
3.4, and statement (2) of Proposition 3.5.

Corollary 5.2.2. I'or alry automaton T , x, P e Cq ancl p €frq,

(1) mp(r(ot\) : r(mc(x)) ,

(2) l(ra"(s)) 2 m"(t(e)) .

(3) O(tnn(P)) : nrc(0(9)) , and

(4) r.E,B implies m"(t)E,1nc(fr) .

Similarly, lve get the follou'ing results.

Corollary 5.2.3. For any atttomaton T , a ; fr eCs and g €As,

(1) Maf@)): r(^11c(:r)) ,

(2) 0(rt4"(e)) < :U"(0(q)) ,

(3) l(Jt"(P)): llc(I(s)), and

(4) N.E,fr implies lls(t) E,lIcU3) .

6. Concluding remarks

As a conclusion rve comment on sollle aspects of the previous results
which may be of significance to the structure theorS, of sequential ma-

chines.
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\Yo have seen that the algebra of symmetric, reflexive relations is an
epirnorphic image of the algebra of covers. Thus relation information
provides a representation of cover information, although not a faithful
one. Ilsing Corollaries 5.2.2 and 5.2.3 we can compute mak) anci ,4/^(p)
in the cover algebra using any ,r € r-r(p) as the argument:

mak): r(m"(a))

ancl

Mnk) : r(M5@\ .

On the other hand, m" and l[ s can be computed »modulo E » using the
relation representation even if the cover is known »modulo -8,» only. Thus
the possible loss of information resulting when rve transfer from the cover
representation to the relation representation will not spread during com-
putations.

Frorn Corollary 5.2.1 we see that, for any serial decomposition rvhich
could be found using covers, there exists a serial decomposition rvhich
can be detected from the lattice of SP relations. Using Pr.oposition 4.8
too, we get the same result for parallel decompositions.

These observations suggest that the cover representation could some-
tirnes be replaced by a narrorver formalism based on svrnmetric, reflexive
relations lvithout any essential loss pou.er.
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