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INTRODUCTION

In his paper [12] K. Vala proved that for norrned spa,ces 81, 82,
Er, En ancl non-zero linear operators f : Er--'>8, ancl g: Er--->En the
follorrying statement is true: The mapping which to each linear operator
u I Ez-+,B, assigns the composed operator g uf : Er-+ En is precompact
if and only if / and g are both precompact operators.

In the present paper the corresponding statement will be proved allowing
tlre spaces Et to be arbitrary locally conrrex Hausdorff topological vector
spaces. Using the concept of an G-precompact operator rvith respect to
a family ö of bounded subsets of the domain space the generalization
appears in the Ibllowing form: The mapping described above, which will
be salled Hom(f,g), maps the equicontinuous subsets of L(Er,Er) into
precompact subsets of L(Er,En) with respect to an 6r-topology, if and
only if / is €r-precompact and g is precompact (theorem 3.3.). An
analogous result' for compact instead of precompact, operators will be
proved, too (theorem 3.7.).

These theorems are general enough to be applied in several different
rvavs to give quite a number of results concerning compact or precompact,
sets or mappings of locally convex spaces. On one hancl the mapping
I{om(/,g) can be regarded. as a generalized. transpose of /, as the mapping
Hom(f ,id) equals the transpose of / if the mapping irZ is the identity
transformation of the scalar field. One of the conseqllences of the general
theorems mentioned is thus rvhat u'e call the Schauder theorem for locally
conYex spaces (theorem 3.11.).

Another application possibility arises from t'he int'erpretation of the
bilinear mapping Hom as a tensorproduct mapping. This rnethod, together
with the standarcl tools of the duality theory, gi're us, among other things,
the result that the tensorproduct of two precompact operators is precompact
rvith respect to the e-tensorproduct spaces (theorem 4.5.). (It should be
emphasized that an operator is called precompact if it sends all bounded
sets into precompact sets.)

A third point of view is to consider themapping Hom(idr,id,p) which
equals the identity transformation of the space L@,n) of linear operators.
One ofthe results obtained this way is a very general form ofthe theorem
of Alaoglu-Bourbaki (theorem 5.2.).
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1. Preliminaries

Atl the vector spaces under consideration rvill be suppose<l to be de,fined

over the field. K of real or complex numbers. If .-4 is a set and -F is a
topological vector space, the symbols $ (1,1) or IA rvill be used for
the space of all mappings from A int'o n - H E is a topological vect'or'

space ol,er the same field as 1, we denote by L(E,I) the subspace of
3@, E) : IIE consisting of continuous linear mappings from E into -F.

The space L(E,K), the dual of E, will be denoted by E'.
The topology of uniform, corlaergence on 8@,I) will be defined b1'

means of the sets / + l{(A,y), which form a fundamental systern of
neighbourhoods of let @,I) as Z runs through a fundamental systetn
of neighbourhoocls of the origin in 1. Here -l[(-4,tr/) st'ands for the set
of functions mapping ,4 into V. This topology is a uniform topologl'
hut not usually a \-ector space topolog)r.

The topology ,f wniform, conaergence o% the sets S ,f u,

subset's of A (o, briefl-v, the g topolog)-) is clefinecl
topologr. with respect to the mappings

f*liS'8'(A,I)--+$(§,-F) , §€ ,

where each $ (S,F) is equipped with the topology of uniform convergence.
A subbasis of neighbourhoods of the origin is formed by the sets -l/(§,7) :
{/ I/(S) c 7} as S runs through g and V through a fundamental
system of neighbourhoods of the origin in 1. If the family 6 is directecl
by set-theoretic inclusion, the sets tr[(§, V) form a basis. The notation
8e(1, -F ) will be used for the space $ (A,I) equipped t'ith the €-topologl-.
The topology induced on a subspace G of fi.= (.4,1') is a vector space
topology, if and onlv if /(§) is bounded in -F for each / € G and S e g.

If ,U is a topological vector space and € a family of bouncled sr"rbsets

of E, thesubspace L6(E,X) of $u(,O,.E) is a topological vector space,
which is locally conr'ex if .E is. Moreover Le(E,n) is Hausclorff if .F is
Ilausdorff and g is a coveringof E. In the follorring table x-e shall ]ist
the G-topologies of special importance later:

fa,mily E rlf
as the initial

notation
of space

L, (fr, F)
L, (8, F)
Lu (8, ?)
Lo (fr' ,f )

the topologv of

pointwise (crt sinrple)
conYergence
precompact corl\'ergence
bounded con\rergerlce
e qrlicontinuot.ls contr/ergence

the set g

finite subsets of E
precompact subsets of ,U

bounded subsets of E
equicontinuous subsets of II'
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The topology of pointwise (resp. bounded) convergence will also be

called the weak (resp. strong) topology, especially if I : K. In the case

of a dual pair (J', G) the first three topologies on -n' are denoted by o(l,G),
l,(F,G) and p(I,G) respectively. X'or dual pairs we shall also needthe
Mackey topology /I,G), which is the topology of uniform conYergence

on the balanced, convex, o(G,I)-compact subsets of G. It is the finest
topology compatible with the duality betrreen -t' and G.

Bound,ed, and, equiaonti,nuous subsets of L(E,I) are characterized as

follows:
A subset H of L,(E,I) is bound,ed if ancl only if one of the follorving

equivalent conditions is valid:

(bl) (\u-(V) absorbs each B€ 6 for ever;'neighbourhood V in F,
u€Il

(b2) U rz(B) is bounded in JI for every § € 9.
ueH

A subset H of L(8,?) is equicontinl.!,o'tls' if and only if one of the
following equivalent conditions is valid:

(el) (}u-'(V) is a neighbourhood in ,U for each neighbourhood V in F,
UGH

(e2) n'or each neighbourhood V in I there exists a neighbourhood
a in E such that Q u(U) c V.

(The word »neighbourhood» alone rvithout any reference to a point
in a topological vector space is to be underst'ood as a neighbourhood of
the origin.)

An equicontinuous subset of L(E,.t') is bounded for any 6-topology.
because the neighbourhoods of the origin absorb bounded sets and thus
(er) implies (bI).

If ,E is a locally conrrex space and e is a covering of E by bounded
sets, ,E will be called i-barrelled if every barrel that absorbs all sets

S e g is a neighbourhood of the origin. If E' is G-barrelled with respect

to the family 6 of finite (resp. bounded) subsets of E, t't'en-E is barrelled
(resp. infrabarrelled) in the terminologl- of [6]. A characteristic property
of G-barrelled spaces is the following theorem of Banach-Steinhaus type:

Theorem 1.1. If E is @-barrel,l,ed, and F is an arbi,trary locally conuet

space, then euery bounded, subset H of L,(E,E) is equ'icontinuo%s.

Proof . Let' Y be a balanced, cortvex ancl closed neighbourhood in ,F.

The set

T -.,f},r-'(I')
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is balanced, conrrex and closed and absorbs each § € 6. Thus 7 is a
neighbourhood in -U, which implies that H is equicontinuous. I

A mapping / from a set, A into a topological vector space .F, is called
precomgtact (resp. compact) if the image /(,a) is precompact (resp. relatively
compact)in -F. ff 6 is a family of subsets of A, f is called @-precompact
(resp. 6-compact) if /(S) is precompact (resp. relatively compact) in
I for each § in g.

Let E be a topological vector space and g a family of bounded
subsets of E. A continuous linear mapping f : E --> X is called an
i-precomytact operator (resp. i-comgtact operator) if / is an G-precompact
(resp. 6-compact) mapping. If 6 is the family of all bounded subsets
of E, an G-precompact (resp. 6-compact) operator is called precompact
(resp. compact). (The continuity requirement included in the definition
of a precompact (resp. compact) operator does not in general follow from
the property of mapping bounded sets into precompact, (resp. compact)
sets unless -O is bornological.)

Remark. fn the terminology of Grothendieck [4] a precompact
(resp. compact) operator means a linear mapping such that /(U) is pre-
compact (resp. relatively compact) for some neighbourhoocl U. This type
of / is a precompa,ct (resp. compact) operator in the sense defined above,
as is readily seen. Of course both definitions coincide if Z is a normed space.

.We 
denote by T,(E,F) lhe set of G-precompact operatorsfrom ,O

into .F. The set of precompact operators will be denoted by T(E,E).
The symbol A(E,l) stands for the set of operators of finite rank from
E into X. LeL us collect some basic properties of 9-precompact operators:

Theorem 1.2.

family of bounded

(i)

(ii )

(iii)

If E &?Ld F are topologicctl L-ector spaces cL?l,d g zs u
subsets ,f E, the follou'irtg conditiorts hold:

?(8, E) i,s ct?L ideul ,f L(8, E)

T -(E , ?) as closed in, L z@ . F )

A(E,f) c T=(8,?)

Proof . Parts (i) and (iii) are immediate ancl the proof of (ii) is similar
to that of [9] ch. III statement 9.3, p. 110. [l

I'rom parts (ii) and" (iii) it follorvs that the closure of A(8,.F') in Le(E, E)
contained in f e(E,I). Whether this inclusion is in fact an equality
one form of the »problöme d' approximation» of A. Grothendieck ([4]

is
is
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part f, »proposition» 37, p. 170). A negative &nswer to this question has
recently been given by Per Enflo, whose counterexample shows that even
in the case of reflexiye and separable Banach spaces E and I tlne inclusion
may be strict.

2. Compact sets in function spaces

We begin this section with two general results concerning uniform
spaces. We use the terminology and notations of Bourbaki l1l, chapter II,
in connection with uniformity. X'irst 'lr,e give an elementary proof of a
well-known result (c.f. [f ], II. 4. 2 proposition 3, p. 203).

Lemma 2.1. Let X be a set, (I,),., n fami,ly of uni,form spa,ces,
and, for each ie I Let fi be a mappi,ng of X i,nto Yr A set ACX is
precompact for the ini,ti,al uniformity with respect to the maltp,ings (lr),r, ,

if and, only i,f flA) i,s precompact,in 7', for eaclt, ie I.

Proof. 1" If A is precompact, trlnen fi(A) is precompact, since fi
is uniformly continuous for all i e I.

2" Suppose fi(- ) is precompact for all iC,I. Let [/ be an arbitrary
entourage in X. Then there exists a finite subset K c I and for each
h e K an entourage V* in 7r such that

(1s;'(vt") c u ,

where g*(r,y) : (fn(u), fr(AD. As the sets /r(-4) are precompact, there
is for each keK a finite covering of A by sets 1fo, i,*e I* such that

(f*\r),f*(y)) € Zn as soon as n,Ae Akro,'i,1"e11".

We will show that the set of intersections

{l!\-l i,*e Ix for all k e K}

is a finite covering of A by U-small sets.
If re A, ther, for each keK there is an index i,*e I* such that

r e Ako, hence

r € 
ofl 

Ab,n .

To prove that each such intersection is U-small, let

11

fr,y e (1 Aorn, ,ir,e In
,c€ K
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Tlren g*(r, y)

anrl the proof is

The follorvirrg

-'- (fr(*), f r(uD e Y * for all k e K, rvhich implies that

(*,y)._*.n*'(V*) c U

complete tj
definition is clue to \rala (..f. [12], p. 4)'

Definition 2.2. A set ILf m,a,ppilxgs from cL set A
sp&ce Y ,is sa,id to haue equ,al uariation, if for euerA entourcLge

is a fi,ni,te coueri,ng (Ar),r, ,f A such that (f ("), f (y)) e V
u.,heneuer fr,U e Ai,'i e I.

We shall now, »translate» the form of Ascoli's theorem
Ylinen (..f. [14], theorem 2.L] into the language of uniform

irzto (t, uniform
V 'in, Y there

fo, all f e H,

proved" by K.
spaces.

Theorem 2.3. Let A and, B be urbi,trary sets, Y o uniform space

«.nrl, @ a mapping from A x B into T. Consi,der the .follotti,ng four con-

tliti,ons:

T The range of the mapping (D (' , y) : A --> Y 'is precomgtact for all g e B.

II The range of themapping (D (u,'), B --> 7' i,s preeomp«ct for ull re A'

IIT The set {@ (' , A) i y e B) has equal aariation.

IY The set {@ (r , ') i r e A) ha,s equal r:uriation,.

T'he foll,owi,ng statements hold':

III i,mpli,es l, IY impli,es II,
II and, III together i,mply IY,
I and,IY together imply III.

Proof . The first two statements are trivial. By symmetry it suffices

to prove one of the remaining tu'o.
Suppose II and III are valid. To pro\:e conclition I\', choose an

a,rbitrary entourage V of l' and a s1-mmetric entourage [/ such that
U , IJ o (J C V. By condition III there exists a finite covering (At)t.,
of A such that

u,ae At,ie-I impiies

(@(u,y), @(a,gDeU for all Ye B.

For each d €,[ choose r; € At. By condition II ancl lemma 2'1 the
set B is precompact for the initial uniformity defined by the mappings

@ (r,.), r e A. Thus there is a finite covering (B)irt of B by W-small
sets, where
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\\.: fl g,'(U), gi(w,z): ((D (x;,tt), @(.r',,;)).
;CI

\Ye claim that (B)irt is the required covering corresponding to the
si'i'en errtourage V. So let w,z e Bi, j e ./, and let r €'4. Then (@(a,w),
(-t(r';, z)) € U for all i € -[, arrd m e A* for some L'€ 1. Thus we have:

(@(r,u), @(ro,w))€U ,

(@(r*,w), @(rr,z))€U,
(@(ro, z) , @(r, z)) € U ,

n'lrich irnplies that

((D(r,w), (D(r,z)) e U o [/ o f- s [r,
i.c. condition IV holds. I

As a consequerce rve get the foilowing generalization of theoreli t in p 2]-

Theorem 2,4. Let A be a set and, F a topological t'ector spuce. A set

lt of precompact rnappings from A i,nto X 'is precomprrct 'in 3 (A,?)
.for the topologg of unifornt, co?u)ergence, if and, only if tlte followi,ng co'/L-

I itiorts ure satisJiecl,:

(t) The set H(n) : {f(") lf e H} is precompuct fcir all r e A,

(2) H has eclual aari,ation.

?roof. I)efine a rnapping @: A x H -> I b1- @t.r.f) : f("). If B
is replaced. by ä and I by *F' in theorem 2.3, cr"rrtditions I-IV take
the follo'wing fbrm:

I Bach fe H isprecompact'.

II H(") is precompact for all r € ,4.

III H has equal variation
I\i I/ is precompact in 3 (/, f) lol the topologl- of uniform con-

\-el'ger1ce.

As condition I is valid. by assumption, it, follorr-s that II and III to-

.sether are equivalent to IV. E
As a consequence of the preceding theorem we get tlte ftrllou'ing result:

Theorem 2.5. Let H be a set of G-precomp«ct »ta.pptings from A
into X, where G i,s a fami,ly of subsets of the gi,uen set Å. H is precompact

for the ö-topology, i,f and, only i,f the followi'ng condition's nre .sr-t'ti,sfieil,:

(t) ä(r) 'is precomltact for all u€U @,

(2) The set fl i,S: {/l^Sl/€I/} has equal variation for all §€g-
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Proof . As the €-topology is the initial topology with respect to the
mappings u ---> ul§, S € g, it follows from lemma 2.L that the set ä is
precompact in 8s (A,I), if andonlyif ,[r']§ isprecompact,in $ (,S,7,) for
all § € 6, which b.v theorem 2.4 is equivalent to conditions (1) and (2). I

X'rom now ol). \r-e shall restrict ourselves to topological vector spaces
and continuous linear mappings between them. X'or the purpose of
subsequent reference r.r.e formulate as a theorem the follou,ing fact, rvhiclr
is a direct consequence of the above theorem.

Theorem 2.6" Let E anrl X be topological oector spaces and, g e,

coaering of E by bounded, sets. A subset H cT.(E,I) ,is precompact

Jor the 6-topologg, if and only i,f:

(L) II(r) ,i,s precompact for all, x€8, ani,

(2) f/l§ has equal uar,iation for all, /S € g.

Next we examine conditions under which a set of operators is relativelr'
compact. We assume that E and. I are locally convex Hausdorff spaces
and 6 is a covering of E by bounded sets. If a set ä c L,(E,-E) is
relatively compact, it is precompact, and thus condition (2) aboveisvalicl.
Condition (I) must be replaced by the stronger condition:

(I') ä(r) is relatively compact for all r e E ,

-which results from the continuity of the mapping: f *f (r) fron Lu (E,n)
into -F for all rc € E. These conditions are also sufficient for the relative
compactness of ä if it is equicontinuous, as v'ill present'l;, 1r" provecl.

Theorem 2.7, Ån equicontinuous subset H c
compa,ct 'in L, tE.I'), if (and, only ,f)

(1') H(") t,s relutit)ely compact for all n e E,
(2) f/l§ ltas equal uariation ,for all /S € g.

(E,F ) is relat'iuely

Proof. Supposing conditions (1') and (2) it suffices, in vierv of theorem
2.6,to show that the closure ,E is a complete subset of L=(E,I).

Let S be a Cauchy filter on E. Then for an)' x' € -E' the set

8(r):{o(")l@€8}
is a basis of a Cauch-v filter on E1r1 cE@), h"rr"e converges to an element

ur(r) in H14, u, the latter set is complete b5, condition (l'). In this way
we obtain an element z, of the function space 7E, which belongs to
the pointwise clos'rre of E. Since fr is equicontinuous, its pointwise

T=

14
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closure is included in L(8,.[') (c.f. [2] proposition 4, ch. III, § 3, No 5,

p.23) and thus ure L(E,-E'). To show that $ converges to tt, forthe
9-topology, let § € 6 and let V be an arbitrary closed balanced neigh-
bourhood in -F. As $ is a Cauchy filter for the e-topology, there exists
@€8 suchthat

u(r)-u@)e V for all u€(D,ue @,c€S.
Since zrr(r) is a cluster point of the filter basis $ (.u) for any r, and

7 is closecl and balanced, it follows that

u(r)-ur@)e T for all ue @ and .r€§,
in other rvords, $ converges to z, for the 6-topologv. f]

3. Proiluct Hom(f,g) of precompact operators

Let Er, Er, E, an.d En be topological vector spaces over the same
field.n'or f eL(Er,Er) and ge L(Er,-On) denoteby Hom(/,9) themapping:
u--->guf fuom L(Ez,Es) into L(Er,Z'o). Thus Hom(f,g)(u) isthe com-
posed mapping:

.fusEr3Er+Er->Eu.
From now on lve shall assume that the spaces D,?,EyIy etc..

are locally conrrex Hausdorff spaces. \\re shall also make the convention
that rvhenever an 9-topology is considered, g 'rvill be assumed to be
a, covering of the space in question by bounded sets and directed by in-
clusion. To begin rvith rve shall state some auxiliarl results.

Lemma 3.1. Let g e L(Er, frn), I e L(Eb E) uith f(8) e @2 for alt
§1 € 91, tohere Ci i,s a famil,y d,efining an @rto'pology for Ei, i : l, 2-

Then

}Jom(f ,g) : Lg" (Ee, Er) * Lz, (EL, Ea)

'is u, cotttinuou,s linear magtping.

Proof. Given a neighbourhood N(§r, %) in L.,(EbE4), choose a
rreighbourhood yB in Es such that, g(Yr) c Vn. The set S, : "f(§.)
belongs to 6, by assumption. Now, if u € N(§r, 7r), then Eom(f , g)(u)
: S 1.tf € -Ar(/S1, 7^), ancl the continuity is establishetl. f

It follows from the above lemma that if the spaces L(E,,E,) and
L(E',EL) are both equipped v'ith the topology of pointwise, compact,



16 Ann, Acad. Sci. F enniciirr Å" I. it14

precompact or l.rouncled convergence, then Hom(f,g) is contiuuous fol
continuous f ancl g.

We shall state another lemma whose proof is, if possible, e\:el] Iror('
straightforwarcl than that of lemma 3.1, ancl rvill therefore be oruitterl.

Lemma 3.2. If I e L(81, Er) and, g e L@r, Et), the m«1rytitr,g }Iorn(/, y)

maps equi,contirt.uott.* sets of L(Dz, Es) into equicotttittuorts scts oJ L(8r, fit).
We now turu to our main theorem.

Theorem 3.3, ,Strppose f €

the mr,pping }lorn {f , {j) maps
precompeat sttbset,s 0.f' L", (E r,
g as precompctct.

L(Er, Er), g e L(Er, Er), J' + 0, g 14 t). T'ltrn
the equicorttittl.tous subset.s ,f L(E,, Er) i,rttc,

Eu), if cmd onlgl if f r,s C;precomp(tet «rtl

Proof . lo Suppose first that / is Gr-precompact' and gr is precompact.
Let BC L(Ez,Eil be equicontinuous. We have to shou' that the set

II :]J'om(f,g) (B) is a precompact subset of L=,(Er,En). The mappings

Suf are Gr-precornpact, forall u it L(Er,.Er), because g ancl ?, al'('

continuous and / is er-precompact. Thus ä c T z, (Er, Er) ancl it,remaitrs
for us to check the validity of conditions (I) and (2) in theorem 2.6.

(1): Let n e Er. As B is equicontinuous, it is pointl'ise borutcletl.
and thus the set t(uf) (r) lu e B\ is bounded in Er. Nox', g is supposetl
to be precompact, rvhence

H(x) : {@ u f) (r) ', u. e Bl

is precompact.
(2): Leb B1 € 91. \Ve have to show that H Sr has eqttal variatiou.

I,et Vn be a neighbourhood in En. As g is continuous, there is a neigh-
bourhood VrC E, such that g(Vr) c 1". The equicoutiuuitv of It
implies that the set

V, : l)ute-l(l:r)

is a neighbourhoocl it Er. As / is er-precorllltrct, thele is a finite coreriug

{4,}r., of §, such that

f(*)-f@)eVr, as soon as r.y€Å;,ie I.
If r,y e A;, i € I, then, by constructiou of l'r,

' (ttf) (r) - (uf) @) e Y, for all u € IJ .

rvhich implies that

{{J u .f) (r) (g ,t f) (y) € V 4 for all u, e Il
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Thus äl§, has equal variation, and u'e have completed part l'.
2o Suppose conversely that Hom(/,g) maps equicontinuous sets into

precompact sets. To proYe the precompactness of g, lela Bu be a boundecl

subset of Eu. We have to establish the precompactness of the image 9(Br).
As -8, is Hausdorff and f +0, there is an element rr€8, and a

continuous serninorm pz of .8, such that for y : f(x) we have pr(y) :
* ) 0. According to the Hahn-Banach theorem (i8], p. 29, corollary 2),

we can define h e E; as follows:

lr(v)

lh(r)", pz@z) for all t:z e E z

X'or each z e B, define a linear mapping u,e L(Er,Er) by u,(m):
h(rr)2. Next we prove that the set

K:{u,lz€Br}CL(E*Ez)
is equicontinuous. Therefore let 7s be a neighbourhood it Er. As B,
is bounded, there is )" > 0 such that p BsC V, fot ipl < 1. The set

Y, : {r, e Erl pr@r) < o"L)

is a neighbourhood in Er. For each rre Y2 and e €8, we have:

STNCE

\h(*r)i Pz@z) < )'

Having thus proved the equicontinuit;' of 1( n-e knorv by assumption
that the set 11 : Hom(/, s) @) is precompact in Lr,(Er,En). Moreover
its elements, having one-dimensional ranges, are e ,-precompact. Bytheorem
2.6 we conclude that the set

H(nr): {(s u,f) (rr) lz € B'}: {(g u,) (A)',2 € Br}: {s@)1"€Br): g(Br)

is precompact, and thus g is precompact.
Next we have to prove the Gr-precompactness of /. Choose z e E,

and continuous seminorms ?s of E, and po of En such that ps@) > ()

ar-d, pn@@)) > 0. Denote

§ : p+@(z)) lpr@) '

Let B, € G, and let, V2 be an arbitrarv neighbourhood in Zr. Then

17
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Tl z includes a set of the
seminorm pz and some r

For each pair (*, y) € §,

{

i h"'(f(")
t
)
I

I lh"y(rr)i

form {*, I pr(*r)

x §1 define fuxr

- f(y)) -
Pr(f (r)

e E; as follovr.s:

- f(v))
k@)

=* 
for all nz e E,

Pslz)

(This definition is again justified by the Hahn-Banach theorem.) Then
clefine u", e L(Dr,Er) by

u,*r(rr) : h"r(rr)z .

The set K: {u,, lr,A e §r} is directly seen to be an equicontinuous
subset of L(Dr,.Er), which implies by assumption that ä : Hom(f ,g) (K)
is precompact. Moreover the elements of H, being operators of finite
rank, are 61-precompact. By condition (2) of theorem 2.6 the set äl§,
has equal variation. Thus there is a finite covering of §, bv sets .4;,
iel such that

pq((s ,u f) (*) (s u f ) (y)) < p e for all
i e I.

Now let n,UEA;, ieI. Ås

% e K, rvheneYer fr, U E Ai,

u"y(f(r) - ,f(v)) -
pzff@) - f(y)) z

k@)

rYe have:

p e > pt(e u*y (f(*) - f@))) : ?r(f(t) - fty)l W :
: §prff(") - f(y)).

Hence pr(l@) - l@)) < ,, rvhich implies that f(r) - I@) e Vr.
We have thus been able to construct for each neighbourhood V, in E,
a finite covering {Ar]r,,., of §, such that l@) - f@) e Vz as soon as
r,y e A;, i e I. Since ,S1 was an arbitrary elernent of er, the gL-
precompactness of / has been established. f

Remark. ft suffices for the »only if» part of the above theorem to
assume that the restriction of Hom(/, g) to operators of finite rank maps
equicontinuous sets into precompact sets. This is the case because the
equicontinuous sets, both denoted by K in part 2o of the proof, consist
of operators with one-dimensional ranges.
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In the above theorem the topology of L(Er,En) and the condition
for / are in a simple relationship with each other. fn the next two theorems
we consider the »strongest» and the »weakest» condition for /, and the
corresponding topologies. The proof of the follorving theorem is immediate.

Theorem 3.4. Let f and, g beas'intheoremS.S.Them«,ppi'ng Hom(f,g)
m,aps the equi,conti,nuous sets of L(Er,Er) into precompactsets of L{81,8),
i,f and, onl,y if f and, g (we precompact operators.

If the topology of bounded conyergence is replacecl by that of pre-
compact conyergence, the »weakest» condition for ,f, u'hich in fact mean§

no condition at all, is obtained.
Theorem 3.5. Let f anil g beas'i,ntheoremS.S.Themappi'ng Hom(f,g)

maps equ'icontinuous sets of L(E,,E) dzto precomgtact sets of L"(E1,Et),
if and onl,y i,f g 'is a precompact operator.

Proof . Since / is supposed to be continuous, it is Gr-precompact
with respect to the family G1 of all precompact subsets of -Or. I

Next we study conditions under which Hom(/, g) is a precompact
operator from Le"(Ez,E) into Le,(EL,EL). Necessary conditions are,

according to theorem 3.3, that / be Gr-precompact ar,.d g be precompact,

since the equicontinuous sets are bounded in Ls,(E2,Er) for an5, gz.

X'or these conditions to be sufficient, an extra assumption on ,O, will
be needed. As we have included continuity in the definition of a precompact

operator, we also have to add some assumptions about the family gz

(unless the Gr-topology is that of pointwise convergence).

Theorem 3.6, Let f e L(Er,Er), geL(Es,En), f +0, g 10. Suppose

further that E, is an er-barrellecl spa,ce, uhere Q2 is u fami,ly of bound'ecl

subsets of D, contu,i,ni,ng all precomgtact sets. Then

Hom(/, g): L="(Er,Er) "* Lz,(Er,Er)

is a gtrecomgtact operator, i,f (ancl only if) f is er-precom'pact and, g is
precompact.

Proof . First of all, Hom(/, g) is continuous by lemma 3.1, as /(S1) € g,
for all §1 € 91. The bounded subsets of Lu"(Er,Er) are equicontinuous
in view of the 9r-barrelledness of E, (c.f. theorem l.l), and by theorem
3.3 are thus mapped into precompact subsets of Lr,(Er,En).2

If in the above theorem rve take for ei t'he familv of all bounded

19
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subsets of Ei. i : L,2 and assume E, to be ilfrabarrelled, \4,e see that
for non-zero / ancl g

Hom(/, 9) : h (Er, Er) ---> L6 (81, Ea)

is a precompact operator, if and only if the sarne is true of / and g. The
corresponding result for normed spaces proyecl b1- Vala in [12] follov's
as a special case from this observation, because normed spaces are infra-
barrelled.

Remark. If the space L(Er,E4) is equipped rvith the topology of
pointwise convergence, no barrelledness assumption rrill be needed for
the precompactness of Hom(/, g) provided that g is precompact. fndeed,
condition (I) in the proof of the first part of theorem 3.3 makes use only
of the pointr;rise boundedness of the given set B C L(82,8), and con-
dition (2) is trivialh- satisfiecl for the family- e , of finite subsets of -Er. Thus

tlom(/, g) : L"(Er, Er) * L"(Et, E4)

is precompact. if and only if g is precompact. (The condition concer-
ning gz in theorem 3.6 is immaterial here, since the continuity of
Hom(/,g) in this case follorys immediatel}. from lemma 3.1.)

Instead of precompactness we can also study the relative compactness
of a set of functions using theorem 2.7 instead of 2.6 in the proof of theorem
3.3. Suppose first that the product, Hom(f .g) of two non-zero operators

f and g maps the equicontinuous subsets of L{Er.Er) into compact
subsets of Lr, (Er,Eo). In part, 2o of the proof of theorem 3.8 we first,
show that g is precompact by proving that the set ä : Hom(/, g) (K)
is precompact, .lrh.ere K is an equicontinuous set constructed in the proof.
This time our assumption tells us that ä is relatively compact, which,
according to the remark preceding theorem 2.7, implies that H(rr) is
relatively compact. Nolr, H(rr) - g(B), where Bs is a preassignecl
bounded set in -Er, hence g is a compact operator. As for 7f, rve cannot
conclude more than in theorem 3.3. In fact the compactness of g together
with the G1-precompactness of / suffice to make Hom(f,g) map equi-
continuous sets into compact sets.

TheoremS.T.Let feL(DL,Ezl, g€L(Er.Er), f +0, g+0. Then
Hom(f,g) maps the equicont'inuous subsets of L(E2,E') onto relati,ael,g
compact subsets of Le,(Er,Er), if and, only if f is er-,precomgtact and, g
,is corrupact.

Proof . Suppose / is Gr-preeompact and g is compact.If B c L(Ez,Es)
is equicontinuous, the set, ä : Hom(f ,S) @) is also equicontinuous b;'

Ånn. Acad. Sci. Fennicir
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lemrna 3.2. The eompactness of g implies that the set ,t/(z) in conditio[
(l)of the first part of the proof of theorem 3.3 is relatively compact. Thus

condition (1') of theorem 2.7 is valid. since condition (2) remains unaltered,

the conclusion follows from theorem 2.i. The proof is thus complete, the
»only if» part being treated. before the statement of the theorem. !

Remafk 3.8. Theorent's 3.'1, 3.5 Gttd 3.6 remcd,?L aaldil ,

CornpaCttt i,s replaced, by »>compa,Ct»>, u)here it refers to edther

Let us sta,te explicitlr,, one result of this type:

Theorem 3.9. Let f e L@r,Er),{l € LtEr,Eil,f + 0- g

thrrt E, is 'infrubarrellerl'. Then

Hom(/, g) : Lo (ilr, Ei --> L6 (81, Et)

'is a comgtact operator, if anil only if f is precompact and, g 'is compact.

The above theorem is especiallv valicl for normecl §paces, because they
are infrabarrelled.

Next we turn our attention to a situation, in u'hich the spaces Es

and Eo above equal the scalar fielcl K and g is the identity transfor-
mation of K. If /€ L(E,X), the mapping Hom(f,id,)(u) for u€E'
is then the composed mapping:

a LriL^'!*.
Thus Hom(/,id) isthemapping'. n-->uf frotn I' irrto E', inother

words: Hom(/, id) :'f: the transpose of /' Consequently we get theorems

of »Schauder-t5'pe», i.e. theorems on the compactness of the transpose

of a compact operator, as special cases of the theory presented above'

Theorem 3.10. Let leL@,E) r;trtd equi,lt the d,ual E' with an g-
topology. Then f is @-precomltact, if and, onl,y if the transptose 'f maps

the equi,cont'i,nuous sets of I' dnto (pre)compa,ct sets of E'..

Proof . As the identity of K is cornpact,, it follorvs from theorem 3.7

fhat, tf maps the equicontinuous sets of -ä" into compact sets of E 
",provided. that / is 6-precompact' As for the conYerse, it suffices, by

theorem 3.3, for the G-precompactness of f to as§ume that f maps

the equicontinuous sets of I' into precompact sets of EL. A

For another proof of the above theorem see [8] ch. VIII, lemma 6, p. 152.

2L

if the lr:,ord ,»pre-

g or Hom {f , g}.

+ 0 a%d s'uppose
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The following theorem, which is a direct consequence of theorem ii.10,
could be called the Schauder theorem for locally convex spa,ces.

Theorem 3.11. An operator f €L(E,I) is precomptact, if and onlg
if its transgtose rnaps the egu,icontinuous subsets of F' into compact subsets

"f E;.

Corollary. If in, the aboae theorem F i,s supposed to be infrabarrelled,,
then f is precompact, if and, on,ly if its transpose is contpact wi,th respect
to the strong toptologi,es.

The classical Schauder theorem for normed spaces immediately follorvs
from this corollary.

Remark 3.72. It follows from the remark after theorem 3.6 that the
transpose of an operator / € L(8, I) is precompact if the duals are equippecl
with the weak topologies o(I',.F') and o(E',8).

To show that the extra assumption made about lI in the above corollarl'
and about E, in theorem 3.6 cannot in general be avoided, rve give a
simple example of a precompact operator rvhose transpose is not pre-
compact for the strong topologies.

Example 3.13. Let E be an infinite-dimensional normed space ancl
l' the same space equipped with the weak topology o(8, E'). The mapping
id: -8" -+ Z" is precompact, as follou,s from the above remark if we interpret
this mapping a,s the transpose of id, : D'" * E'". Thus i,d, : E ---> F is
precompact.

On the other hand

,id, : id : I'6 ---> E|

is not precompact, for otherrvise there 'ivould exist a precompact tieigh-
bourhood in the normed space .Ej - X;, rvhich rrould contradict the
assumption on the infinite-dimensionality of E (c.f. [6] theorem 2.10.3,
p. l 7). (This also proves that -E' cannot be infrabarrellect.)

4. Tensorproiluct of precompact operators

The mapping Hom, rvhich to each pair (/, g) in L(Dr,Er)xL(Er,En)
assigns the element Hom(/,9) in L(Lt(Ez,E"), Lu(Dr,EnD defined in
the previous section, is a bilinear mapping. It is not difficult to see that
the subspace of L(L6(E2,Ez,), Lu(E1,En)) spanned by the image of the
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bilinear mapping IIom can be interpreted as atensorproduct of L(Er,tr)
and L(Er,.E'n). However, it is perhaps more natural to interpret the mapping

ff,g)-Hom(rf,g) as a tensorproduct of / and g, because this inter-
pretation ooincides with the conventional concept of the tensorproduct

of tv.o linear mappings / and g, as will be shown in the proof of theorem

4.5. This interpretation makes it possible to use the techniques developed

in the preceding section for solving the problem of the precompactness

of the tensorproduct of precompact operators.

First we need some auxiliary results. The symbols E, X,81, 11, atrc.,

stand for locally conrrex Hausdorff spaces as before.

Lemma 4.1. The sgtace A(E|I) of contimuous li,mear rnappi,ngs af

Jinite rank from E' equi,pgted, wi,th the Mackey topology r(E', E) i'nto I
'is a temsorgtrod,uct of E and, X with respect to the bi'l,inear mapp'i,ng: (r,Y) -
(x' --> <fi, fr' > y).

Proof . The bilinear mapping mentioned above induces a linear mapping

from -E 8 -F into A(E:,I), which to each n I U eE 8I assigns

the continuous linear mapping: fr'-'> <fr,t' )U. To prove that the
range of this mapping is all of A(E|,-F ) we have to be able to represent

every element u e A@:,I) in the form

u(r') - ,,r'>?1i,fi'eE'

Given 'u e A@:, F), choose a basis {Ur,
I'hen Lc has the representation

, U*\ of the range of u,.

u(*:) - f o,p')y,, n'eE'
i:1

exist elements Ai,. c . , U'o in

1 a:' ,'u(y'i) ) )

where the transpose 'u is a mapping frorn I' into the dual of D',, which
can be identified willt E, since r(E',E) is compatible withtheduality
between E' and' E' Setting frj :'u(y') € z we have the desired repre-

sentation.
The proof of the injectiveness of the linear mapping from E & I

into A(Ei, -F,) is quite straightforward, the only non-trivial argument being

the fact lhat E, separates the points of .8. The details are omitted. I

> (rjj:L

By the Hahn-Banach theorem there
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Remark 4.2. Instead of A(E',,F') lve could have taken A(E',, E)
and the bilinear mapping (r,U)--- (y' -- 1U,A' ) r).

Remark 4.3. Any topology compatible with the duality betr,r'een -nl'

and -E could have been used instead of t(E' ,,8), r'hich is the finest of them.
The following fact from the theor-v of dualitS. rvill be needed:

Lemma 4.4. If T i,s a barrel i,tt, E' for thetopology r(E',8), it'is u,

neighbourhood, for the strong topology 1)(E' , E).

Proof . Let T be a barrel in Ei. As 7 is a convex set, closed for
the topology 'r(E',8), it is also closed for theweaktopology o(E',8).
Thus ? is a balanced, convex, o(E' , E)-closed subset of Et , which implies
by the theorem of bipolars ([6] theorem 3.3.1, p. L92) that, f equals
its bipolar 7oo. Since ? is absorbing, its polar 7o is rveakly bounclecl,
thus 7 : (7o)o is a neighbourhoocl for p(E',E).l

trVe are now going to prove that the tensorproduct' of tu'o norr-zero
operators / and g is precompact, for the e-topologies of the tensorprocluct
spaces in question, if and onl}, if f' ancl g are both precompact. We recall
that the e-topology for the tensorprocluct E I 7' is the topology induced
by L"(E:,E) on E S 7 regardecl as a subspace of the former (c.f. [t0]
exposd no 7, II or [I1] p.434 and 429). Recall that the subscript e denotes
the topology of uniform conyergence on the equicontinuous subsets of E'.

Theorem 4.5. The tensorproduct

f, 8 f, i Er, €.,. Ez- F, ii r Ft

of operator§ /;€ L(Ei,Ei), fi *0, i:7,2 is precomp«ct, if cntd only if
f, and, f2 are both precomltact.

Proof . 1o In view of lemma 4.1 u'e are allou-ecl to mahe the identifications:
Er 8 

" 
E, : A"(D'r,, Er) and n, 8. I, : A"(Ii,, F,), x-here the tensor

nL & nz e E, & E, isto be identifiecl *'ith the mapping: r' --> < rr, el > r,
arad y, @ y, with: A'-- lUt,U' 2 Az. Thus rve har.'e

(frq3^ fr) (rr8 rr):ft@) I fr(r): (y'--> <f,,(rr),y' )fr("r))
: (y' *fz(< nt,'ft@') > r)) : fz" @t I r) o'ft,

v,hich implies by linearity that

(f, 8 f) (u) - Hom ('f* fr) (ta), u e A@;,, E r)
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The mapping ,fr: Hom(Å,irl") maps the equicontinttous sets of -Fi

into equicontinuous sets of E| by lemma 3.2, rvhich b}- lernma 3.1 implies

thab fr B å i. continuous for the e-topologies.

Now, /, is a precompact operator, hence its transpose '/, maps the
equicontinuous sets of Ii into precompact sets of El6 according to
theorem 3.I1. Moreover, 'fr:Iiu*Ei,u is continuous by lemma 3.1'

A* f, is assumed to be precompact, it follou's fror]r theorem 3.3 that'

Hom('fr,fr) maps the equicontinuous subsets of L@;b,E) into pre-

compact subsets of L"(F|"nr).
Next we prorre that the bounded subsets of L"(Ei,.Er) ate equicon-

tinuous in L(Ei6,,Er). So tet B be a bounded subset of L"(E'r,,Er) and

leb v be a balanced, convex and closed neighbourhoocl iu J?r. Then the set

lr' : n u-L(V)

is balanced, conrrex and closed. I{oreover it absorbs each equicontinuous

set of E', (c.f. section l, condition (b1)); hence it is in particularabsorbing.
Thus V, is a barrel in Ei,, rrhich implies bv lemma 4.4 that it is a neigh-

bourhoocl in E'ro. This in turn implies that B is an equicontinuous

subset of L(D;b,Ez) (section 1, condition (eI)).

We have thus proved that llom('fr,fr) i, a precompactoperatorfrom
L"(Ei,,Er) irrto L"(Ii,u,-F'r), rvhichimpliesthatitsrestriction to A"(Ei",E),
i.e. the operator fr 8 fr, is precompact.

2o As we saw above, the mapping (1r8il@) for ue A(E'r,,Er)
is composed according to the diagram

t'; f-i E',. \ r, f3 r, .

ft follows frorn 16l, propositions 3.12.3 ancl3.I2'5. tlitrt 'he L(Fl,,E'r,).
The mapping f t I f ,: Hom('Å, å) rnaps tlie bounded' sets of

A"(ti.,Ez) into precompact sets of L"(F|,.F; b1- assumption. Thus in
particular the equicontinuous subsets of the former are urapped into pre-

compact subsets of the latter. Hence it follo'rs from the remark after
theorem 3.3 that f, is PrecomPact.

To prove tlreprecompactnessof /, identif:* E,8'rE, t.ith A"(E'r,,Er)

and ?LE)"lz with A"(lL,,Fr) (c.f. remark 4.2.), *-hish means that

fr}f, is to be identified $'ith Hom('/r,/r). Theu proceed exactly as

above. I

using theorem 3.7 instead of 3.3 in the latter pal.t of the proof of the

foregoing theorem, it is seen that the compactness of both /r and /, is

necessary fot fr B å to be compact for the e-topologies.
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If -E ancl -F are complete, lhen L(E'",.F,) is also complete according
to [11], prop. 42.3, p. 430. Thus the completecl e-tensorproduct Z §, -F

can be identified rvith the closure of A(E',,-E) in L(E:,I). Making use
of this identification we get the following result:

Theorem 4.6. If

'is compclct.

The conclusion of theorem 4.7 can also
E r) the spaces E L and E z are assumed
The proof of the followirg lemma is quite
depend at all on the previous theorems.

Lemma 4.8. The terusorprod,uct f, I f,
f , e L(E t, E i), 'i :.-- L,2 'is precom,pact for tlt e

Er, Ez, FL and lz a,re com,plete and i,f f, e L(E;, ?t),
operators , tluen tlt e exten ded, tensorproduct

il, *> F,

Proof . ff we make the above identifications, the mapping fr 6 f,
equals the restriction of Hom('fr,fr) to the closure of A"1Ei,,Er1 in
L"(E;",E). Proceeding exactly as in part, 1o of the proof of theorem
4.5 we conclude that the restriction of Hom('/r,/r) to Er§, ^U, -r,p*
the bounded sets into precompact sets of /, 6" nr, andthus into compact
sets because of the completeness of the latter space. fi

Next we study conditions under which the tensorproduct of two linear
mappings is precompact when the tensorproduct spaces are equipped
with the proiective or z-topology, i.e. the finest locally convex topology
for which the canonical bilinear mapping: (r,y) -- r E y is continuous.
Recall that the e-topology is always coarser than the z-topology, but
if ,0 is nuclear (c.f. [+] part, II § 2, no 1, p. 34) these topologies coincide
ot E @ I for an5, locally con1;ex space l|. These observations, together
with theorem 4.5 and the well-known fact that the tensorproduct of con-
tinuous linear mappings is continuous for the z-topologies, give us the
following result.

Theorem 4.7. If the operators fie L(E;I;), i:1,2 are precomltact
and, X, or I, is nuclear, the temsorproduct

fr8 fri Et8,Er--> ?r@,I,
,is a precom,Ttact operator.

E.. F,frörr:Et&'

be macle if instead of E L (or
to satisfy suitable conditions.
straightforli-ard and does not

,f touo preconlpact opercltors
n-topolog'ies ,f eaery bound,eil
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subset of E, I * E, is contained, in, the balanced cotlaen hull of a set A, @ A,
: {rr 8 xzl rte Ar, rr€ Ar}, where At is bounded in E;,'i, : 1,2.

Proof . If Ai is bounded in Ei, the set 3,: ft(A;) C Xi, 'i : 1,2
is precompact by assumption. Now

ff, A f) (1, I A,) : f', (Ar) I fr@r) : Br & Bz.

The mapping (At,Uz)*UrE Uz is contiuuous frorn I,x E, into
/'L$,I,, hence in particular hypocontinuous, 'which implies that its
restriction to B, x B, is uniformly continuous (16l proposition 4.7.3,
p. 360). Thus B, @ B, is precompact and the conclusion follows from
the assumption on the boundecl sets of Er 8, Er. E

The condition on bounded sets of Er&,E, in the above lemma is
called the »Probläme des Topologies» by A. Grothendieck (c.f. [4] part I,
p. 33). It is not in general satisfied, as can be seen by taking for ,8, the
product -BN and for E, the locally conyex direct sum l?(N) (c.f. f+l
part I, p. 34). On the other hand it follows from [4] part f, proposition
5, p. 43, that the condition is satisfied for spaces of type (D.F), rvhich
means a locally convex space with a countable fundamental system of
bounded sets and with the property that every strongly bounded subset
of the dual, which is a countable union of equicontinuous sets, is equi-
continuous (c.f. [3] definition l, p. 63). It follows that every infrabarrelled
space with a fundamental sequence of bounded sets is of type (DI). Normed
spaces in particular are of type (DF). n'urther, it follows from l3l th6oröme
l, p. 6l that the strong dual of a metrisable space is a (Dl)-space. It
should also be noted that there are no metrisable (DI)-spaces other than
normed spaces, for every metrisable space rvith a fundamental sequence
of bounded sets is normable (t7l § 29.1.(2), p. 396).

As a consequence of lemma 4.8 'we get the follorring:
Theorem 4.9. If E, and Ez are of type (DI), the tensorprod,uct

fr& f, : ErE*Ez - FrE-F,
of precomptact operators f;: Ei , !i,i,: I.2 is a ,precompact ogterator.

In fact every bounded set of the completecl z-tensorproduct of two
(D-F')-spaces E, ar,:d .8, is contained in the balanced closed convex hull
of a set AL$ Az, where "4r is bounded in E*, lc:1,2, according to
14] part I, proposition 5, p. 43. Thus we have the follor,r.ing:

Corollary 4.10. Il E, ancl E, are of type (DP), the e:rtend,ed, tensor-
prod,uct
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fröfr, Er6,E, -> ä,, F,

n compact operator.

Next we are going to prove that the conlrerse of theorem 4.9 holds
without any extra assumptions on the spaces. For normed spaces it follows
directlyfrom a result, of J.R. Holub (c.f, [S] proposition 3.I, p.4). We are
going to present the proof of Holub modified to locally convex spaces.

Theorem 4.11. If fi e L(E;,Ii), fi * 0, 'i : L,2 and' if

hSfz: E1 8.,82- F1'-.Ft

is precompact, tlten f, and, f, are both preconpcrct oper«tors.

Proof . Choose ro € E, and a continuous setniuorm q, in F, such that

qzff,@d): r,

and an ereme,t 

")i,tåi,ir\*: q,(f,(ro)): t.
Define a continuous linear mapping

P:Er--Et@,8, by Pc:-r 8ro.

The mapping (yt, y) ---> I !2, yL > n is a continuous bilinear mapping
from 1, X .F, into -Er. The corresponding linear mapping

Q : Fr@,Xr- Fr;h8 Uz--> lUz,Ai > y,

is continuous according to the definition of the z-topologS'. No'w',

Y" !,3 J;'," nl',o1,,1,: [i]i' 
,i"l 

|':';
i.".Å:Q"ffr?iloP, rvhere Q ancl P arecontinuousand åEå
is precompact. Thus /, is precompact. The precompactness of /, follows
from reasons of svmmet"y.[]

It is also readily seen from the above 1:roof that the compactness of
fr,@ f, for the z-topologies implies the compactness of f, and fr.

Remark 4.12. Tf lve compare the above proof with that of the first
half of part 2" of theorem 3.3, we see that the method. is basically the
same in both eases. fndeed, if rve denote the mapping z ---> u, by P and

FL

,i.s
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the mapping ,tt, ---> u(x) b.r- A in the proof of theorem

be composed accordirg to the diagram
3.3, then g rvill

P Hom (.f , q)
EB-->L\Er,E*) -> Lz,(Er,ilu)

In fact, in the proof of theorem 3. 3 u'e have shou'n that P sends bounded

scts into equicontinuous sets and used this together with the continuity
of Q to prorre the precompactness of g.

5. Applications to Montel-type spaces

In this section we shall consider some classes of locally convex spaces

rvith the following property in common: eYery bounded subset is precom-

pact. we shall study §ome permanence properties of these spaces using

the results of sections 3 ancl 4.

A locally conrrex Hausdorff space rvill be calledpre -Schwartzifitsbounded

subsets are precompact. This class of spaces includes the following im-
portant, subclasses: semi,-Montel, Momtel, Schwartz and nuclear space§.

B,ecall that a semi-Montel space is one whose bounded subsets are relatively
compact and that a Montel space is an infrabarrelled semi-Montel space.

In fact a Montel space, being quasicomplete and infrabarrelled, is barrelled.

we make the convention that in this section all the spaces under con-

sid.eration will contain non-zero vectors. The results concerning the spaces

of linear operators are consequences ofthe follos'ing special case oftheorems
3.3 and 3.7.

Theorem 5.1. If E anil I are locally conuen Hausdorff spaces and,

@ is a couerimg of E bg boundnd, sets, then the iclenti'ty

id, : L(E,I) ---> L= (8, F)

ruaps equi,cont'imuous sets into precompact (resp, comptact) sets, i,f and, onl,y

,f id,s: E --> E is G-precompact and idp F --* I is precomTtant (resp.

compact).

Proof. Set Z, - Ez: E, Er: E+: F , f : ida, g: i,d,r intheorem
3.3 (resp. 3.7).8

An immediate consequence is the follorring generalization of the Alaoglu-
Bourbaki theorem (c.f. [6] theorem 3.4.I, p. 201).

Theorem 5.2. The equ,i.continuous subsets of L(E,I) are relatiaely com-

a*E+
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pact for an 6-togtolrgy, dl and, only if 6 i,s a family of precompact subsets

of E anil n i,s a semi,-Montel, space.

The »strengthened» version of the Alaoglu-Bourbaki theorem (c.f. [6]
ex. 3.10.7 (a), p. 242), whic}r states that the equicontinuous subsets of
the dual of a locally conyex Hausdorff space are relatively compact for
the topology of precompact convergence, follows immediately from this
theorem, since the scalar field is a semi-Ilontel space.

Remark. The »if» part of theorem 5.2. can also be deduced by means
of [2] ch. fII, § 3, corollary to proposition 4 and proposition ö, p.23. fndeed,
if .F is semi-Montel and ä is an equicontinuous subset of L(8,7), then
E is pointwise bounded. in particular. Thus the set H(r) is bounded
and hence relatively compact in .E, for eaeh r €.8. This implies, by the
corollary mentioned above, that E is relatively compact in L"(E,I).
The rest follows from proposition 5, which states that on the equicon-
tinuous subsets of L(E,l') the topology of pointr,r,-ise convergence coincicles

with that of precompact convergence.

ft should be noted that we have not made use of Tihonov's theorern
in the proof of theorem 5.2, nor have we used proposition 5 mentioned
above.

If the space Z in the preceding theorem is assumed to be pre-Schwartz,
then the topology of precompact convergence coincides with that of bouncled
conyergerlce. Thus we have the following result:

Corollary 5.3. If E 'i,s a pre-Schwartz space, then the equicont'i,nuous
subsets of LI(E,X) are relatiaely compact, if and only if F i.s asemi-Montel
space.

Next we shall study conditions under rrhich L.(E,-F) is asemi-Montel
spa,ce. Necessary conditions are, in view of theorem ö.2, that -F is semi-
Montel and 6 is a family of precompact subsets of E. In particular,
for L6(E,X) to be semi-Montel it is necessary for E to bepre-Schu.artz
and F to be semi-Montel. These conditions are also sufficient in the
presence of a suitable barrelledness assumption on .8, as will be shorvn
in the following theorem (see also [a] part I, § 4, no 1, corollaire l, p. 99).

Theorem 5.4. If I 'is senx'i-fufontel

to a, family g of precon?,pect subsets of
In particular, if E is Montel and F
semi-Montel.

a,nd E is e-bam'elled w'ith re"\peot

il, tlr,en Le(E , F) is sem'i,-Montel.
'is se?ni-J[ontel, then, Lo (fr , F) ts
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Proof. The bounded. subsets of L.(E,I) are equicontinuous because

of the G-barrelledness of -E (c.f. theorem I.l), hence the conclusion
follows from theorem 5.2. I

Remark. The condition for E to ensure that Lu(E, X) is semi-
Montel can of course be weakened into the form: .U is pre-Schwartz and
infrabarrelled.

Remark. The space L"(E,l) is pre-Schwartz for arbituary E if
Jr' is pre-Schwartz (see the remark after theorem 3.6).

To show that in general the necessary conditions mentioned before
theorem 5.4 are not alone sufficient for L6(t,I) to be semi-Montel, we
can again use example 3.13. Thus, if -E is an infinite-dimensional normed
space, the space .8, is a pre-Schwartz space, as its identity transformation
is precompact. If we choose F : K, then .E' is certainly a Montel space,

but Lr(D",n): E'b is not even a pre-Schwartz space, as id,:E'6---Ei
is not precompact.

X'rom theorem 5.4 it follows that the dual of a barrelled. space equipped
lvith the topology of precompact convergence (or any coarser 6-topology)
is semi-Montel and the dual of a Montel space equipped with any g-
topology is semi-Montel. fn fact the strong drtal E'u of a Montel space

E is even a Montel space, because Montel spaces are reflexive, which
implies that the Mackey topologl' and the strong topology of the dual
coincide, and thus .Ei is barrelled by lemma 4.4. Thus we get the following
theorem, the first part of u,hich is the content of proposition 3.9.9. in [6].

Theorem 5.5, If E i,s a Montel spa,ce, its strong d'ual i,s a Montel space.

Conaersely,i,f thestrongd,ual,of alocallyconaetHausd,orff sltace E i,ssemi-
Montel,, then E 'ts pre-Schwartz.

X'inally we turn our attention to tensorproducts. Since the identity

id,:EBX-E8X
eqrlals idu & idr,

Theorem 5.6.
i,f und only i,f the

we have the follorvirg results:

Tlte tensorproduct fr E, 7' 'is ct, pre-Schusartz spe,ce,

sa,nxe 'is true of both E e%d E .

Proof. Theorem 4.5. I
Theorem 5.7. If E a,nd F

on?Tlpleted, e-ten.sxrproduct .E' 6 , ?
u,re complete serni-Montel spaces, the'ir

is senxd-lvl ontel .
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Proof- Theorem 4.6. I

Remark. If rve add the extra assumption that E should be quasi-

normable (c.f. t3l III.1. d6finition 4, p. 106), then the preceding theorem
can also be deduced by means of [a] part I, § 4, n" 2, corollaire, p. 118,

which states that L"(E:, n) is semi-MonLel if E is a quasicomplete

Schwartz space and X is a semi-Montel space. (tr'or the definition of

Schwartz spaces see [3] III.4. cl6finition 5, p. 117.) Thus -& $"-F, b"irg
a closed subspace of L"(Di,I), is semi-Montel.

Theorem 5.8. If E cr,nrJ F are pre-Sahwartz spaces of type (DF),

then E 8, n i,s Ttre-Schwartz and, i,ts aomytleti,on E A, X i,s a Montel str)ace.

Proof. It follows from theorem 4.g and corollary 4.10 t'hat E 8,7'
is pre-Schwartz and. its completion is semi-Ilontel. As E and I are

supposed to be of type (DF), lhe space Z $.,.E' i. of type (DI) ac-

cording to [a] part f, § l, no 3, proposition 5, p. -13. Thus E A,F, being
a semi-Montel space of type (Dn), is Montel according to l13l teorema 2'

Theorem 5.9. If tlr,e t-tettsorproduct ,f
o,?Ld E 'is pre-Schw(trtzi, then E urtd f cLt'e

Proo,f. Theorenl 4. t I I

fnstitute of }fathematics
Ilelsinki l-Iniversity of Technolos^)-

SF-02150 Otanieffii, Finlancl

tt('o locally conae?) sp{rces Il
pre-Schu:urtz spaces.
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