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INTRODUCTION

In his paper [12] K. Vala proved that for normed spaces E,, E,,
E,, E, and non-zero linear operators f:E, — K, and ¢:E;—E, the
following statement is true: The mapping which to each linear operator
w: By — E; assigns the composed operator ¢ u f: K, — E, is precompact
if and only if f and ¢ are both precompact operators.

In the present paper the corresponding statement will be proved allowing
the spaces Ki to be arbitrary locally convex Hausdorff topological vector
spaces. Using the concept of an &-precompact operator with respect to
a family & of bounded subsets of the domain space the generalization
appears in the following form: The mapping described above, which will
be called Hom(f,g), maps the equicontinuous subsets of L(H,,E;) into
precompact subsets of L(E,, E,) with respect to an &,-topology, if and
only if f is &j-precompact and g is precompact (theorem 3.3.). An
analogous result for compact instead of precompact operators will be
proved, too (theorem 3.7.).

These theorems are general enough to be applied in several different
ways to give quite a number of results concerning compact or precompact
sets or mappings of locally convex spaces. On one hand the mapping
Hom(f,q) can be regarded as a generalized transpose of f, as the mapping
Hom(f,7d) equals the transpose of f if the mapping id is the identity
transformation of the scalar field. One of the consequences of the general
theorems mentioned is thus what we call the Schauder theorem for locally
convex spaces (theorem 3.11.).

Another application possibility arises from the interpretation of the
bilinear mapping Hom as a tensorproduct mapping. This method, together
with the standard tools of the duality theory, give us, among other things,
the result that the tensorproduct of two precompact operators is precompact
with respect to the e-tensorproduct spaces (theorem 4.5.). (It should be
emphasized that an operator is called precompact if it sends all bounded
sets into precompact sets.)

A third point of view is to consider the mapping Hom(¢dg, idy) which
equals the identity transformation of the space L(E.F) of linear operators.
One of the results obtained this way is a very general form of the theorem
of Alaoglu-Bourbaki (theorem 5.2.).
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1. Preliminaries

All the vector spaces under consideration will be supposed to be defined
over the field K of real or complex numbers. If 4 is a set and F is a
topological vector space, the symbols & (4,F) or F* will be used for
the space of all mappings from A4 into F. If E is a topological vector
space over the same field as F, we denote by L(E,F) the subspace of
J(E,F) = F* consisting of continuous linear mappings from F into F.
The space L(E,K), the dual of E, will be denoted by E’.

The topology of uniform convergence on F(A,F) will be defined by
means of the sets f-+ N(4,V), which form a fundamental system of
neighbourhoods of f€ ¥ (4,F) as V runs through a fundamental system
of neighbourhoods of the origin in F. Here N(4,V) stands for the set
of functions mapping 4 into V. This topology is a uniform topology
but not usually a vector space topology.

The topology of uniform convergence on the sets S of « family & of
subsets of A4 (or briefly, the & — topology) is defined as the initial
topology with respect to the mappings

f—=fS:3AF—-F S F), Se&,

where each § (S,F) is equipped with the topology of uniform convergence.
A subbasis of neighbourhoods of the origin is formed by the sets N(S,V) =
{f1f(Syc V} as S runs through & and V through a fundamental
system of neighbourhoods of the origin in F. If the family & is directed
by set-theoretic inclusion, the sets N(S,V) form a basis. The notation
(4, F) will be used for the space F (4,F) equipped with the E-topology.
The topology induced on a subspace G of Fs (4.F) is a vector space
topology, if and only if f(S) is bounded in F for each f€G and S € E.

If E is a topological vector space and & a family of bounded subsets
of E, the subspace L (E,F) of F.(E,F) is a topological vector space,
which is locally convex if F is. Moreover Lg(E,F) is Hausdorffif F is
Hausdorff and & is a covering of E. In the following table we shall list
the S-topologies of special importance later:

the topology of the set & notation
of space

— pointwise (or simple)

convergence finite subsets of E L, (E,F)
— Pprecompact convergence precompact subsets of £ L. (E,F)
— bounded convergence bounded subsets of E Ly (E, F)
— equicontinuous convergence equicontinuous subsets of £ L. (E', F)
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The topology of pointwise (resp. bounded) convergence will also be
called the weak (resp. strong) topology, especially if ' = K. In the case
of a dual pair (F,G) the first three topologies on F' are denoted by o(F,G),
MF,G) and B(F,G) respectively. For dual pairs we shall also need the
Mackey topology t(F, (@), which is the topology of uniform convergence
on the balanced, convex, o(@ F)-compact subsets of G. It is the finest
topology compatible with the duality between F and G.

Bounded and equicontinuous subsets of L(E,F) are characterized as
follows:

A subset H of Lg(HE,F) is bounded if and only if one of the following
equivalent conditions is valid:

(b1) N » (V) absorbs each S € & for every neighbourhood V in F,

u€H
(b2) U u«(S) is bounded in F for every S€ €.
u€H
A subset H of L(E,F) is equicontinuous, if and only if one of the
following equivalent conditions is valid:
(el) N (V) is a neighbourhood in K for each neighbourhood V in F,

u€eH

(e2) For each neighbourhood V in F there exists a neighbourhood
U in E such that Juw(U)C V.
weH

(The word »neighbourhood» alone without any reference to a point
in a topological vector space is to be understood as a neighbourhood of
the origin.)

An equicontinuous subset of L(#, F) is bounded for any &-topology.
because the neighbourhoods of the origin absorb bounded sets and thus
(el) implies (bl).

If E is a locally convex space and & is a covering of E by bounded
sets, E will be called S-barrelled if every barrel that absorbs all sets
S € & is a neighbourhood of the origin. If £ is &-barrelled with respect
to the family & of finite (resp. bounded) subsets of E, then £ is barrelled
(resp. infrabarrelled) in the terminology of [6]. A characteristic property
of S-barrelled spaces is the following theorem of Banach-Steinhaus type:

Theorem 1.1. If £ is ©-barrelled and F is an arbitrary locally convex
space, then every bounded subset H of L (E,F) is equicontinuous.

Proof. Let V be a balanced, convex and closed neighbourhood in F'.
The set

T =NuY(T)

u€H
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is balanced, convex and closed and absorbs each S € &. Thus 7 is a
neighbourhood in #, which implies that H is equicontinuous. [ ]

A mapping f from a set 4 into a topological vector space F is called
precompact (resp. compact) if the image f(4) is precompact (resp. relatively
compact) in F. If & isa family of subsets of A4, f is called S-precompact
(resp. ©-compact) if f(S) is precompact (resp. relatively compact) in
F for each S in &.

Let E be a topological vector space and & a family of bounded
subsets of K. A continuous linear mapping f:E — F is called an
S-precompact operator (resp. S-compact operator) if f is an S-precompact
(resp. S-compact) mapping. If & is the family of all bounded subsets
of K, an &-precompact (resp. S-compact) operator is called precompact
(resp. compact). (The continuity requirement included in the definition
of a precompact (resp. compact) operator does not in general follow from
the property of mapping bounded sets into precompact (resp. compact)
sets unless K is bornological.)

Remark. In the terminology of Grothendieck [4] a precompact
(resp. compact) operator means a linear mapping such that f(U) is pre-
compact (resp. relatively compact) for some neighbourhood U. This type
of f is a precompact (resp. compact) operator in the sense defined above,
as is readily seen. Of course both definitions coincide if £ is a normed space.

We denote by 7' (E,F) the set of S-precompact operators from E
into F. The set of precompact operators will be denoted by 7(E,F).
The symbol A(E,F) stands for the set of operators of finite rank from
E into F. Let us collect some basic properties of &-precompact operators:

Theorem 1.2. If E and F are topological vector spaces and S is a
Sfamily of bounded subsets of E, the following conditions hold:

(i) T(E,E) is an ideadl of L(E,E)
(i) Te(E,F) is closed in Ls(E.F)
(iii) A(E,F)c T.(E,F).

Proof. Parts (i) and (iii) are immediate and the proof of (ii) is similar
to that of [9] ch. III statement 9.3, p. 110. |

From parts (ii) and (iii) it follows that the closure of A(E.F) in Ly (E, F)
is contained in T'g(H,F). Whether this inclusion is in fact an equality
is one form of the »probléme d’ approximation» of A. Grothendieck ([4]
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part I, »proposition» 37, p. 170). A negative answer to this question has
recently been given by Per Enflo, whose counterexample shows that even
in the case of reflexive and separable Banach spaces £ and F the inclusion
may be strict.

2. Compact sets in function spaces

We begin this section with two general results concerning uniform
spaces. We use the terminology and notations of Bourbaki [1], chapter II,
in connection with uniformity. First we give an elementary proof of a
well-known result (c.f. [1], IL. 4. 2 proposition 3, p. 203).

Lemma 2.1. Let X be a set, (Y,)e; « family of uniform spaces,
and for each i €1 let fi be a mapping of X into Y. A set Ac X is
precompact for the initial uniformity with respect to the mappings (f)icr »
if and only if fi(A) is precompact in Y for each i€ 1.

Proof. 1° If A is precompact, then fi(4) is precompact, since f;
is uniformly continuous for all 5 € I.

2° Suppose fi(4) is precompact for all ¢ € I. Let U be an arbitrary
entourage in X. Then there exists a finite subset K € I and for each
k€ K an entourage Vi in Y, such that

Ng'(VyecU,
keK
where gi(x,y) = (fu(®), fi(y)). As the sets fi(4) are precompact, there

is for each k € K a finite covering of A by sets A',?k, t € I, such that

(fel@) , fu(y)) € Vi as soon as x,y € A’,?k, i€ Iy .
We will show that the set of intersections

{N A4 |i€l, for all k€K}
keK
is a finite covering of A by U-small sets.
If x€ 4, then for each k€ K there is an index i; € I, such that
x € A% | hence

lk’

zen 45 .

keK

To prove that each such intersection is U-small, let

x,yEﬂA'f.k, ikEIk.

kEK
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Then gu(x,y) = (fu(@), fu(y)) € Vi for all k€ K, which implies that
@y eENg (Ve U
kEK

and the proof is complete. [ ]
The following definition is due to Vala (c.f. [12], p. 4):

Definition 2.2. A4 set H of mappings from a set A into a uniform
space Y is said to have equal variation if for every entourage V in Y there
is a finite covering (A,).c;r of A such that (f(x), f(y)) €V for all f€H,
whenever x,y € A;, 1 € 1.

We shall now »translate» the form of Ascoli’s theorem proved by K.
Ylinen (c.f. [14], theorem 2.1) into the language of uniform spaces.

Theorem 2.3. Let A and B be arbitrary sets, Y « uniform space
and D a mapping from A x B into Y. Consider the following four con-
ditions:

I The range of the mapping D (-, y) : A — Y is precompact for all y € B.

IT  The range of the mappin.g D (x,): B—Y isprecompact forallx € 4.

III The set {D (- 'y € B} has equal variation.

IV The set {® (x,) v € A} has equal variation.

The following statements hold:

11T implies I, IV implies 11,
11 and III together imply 1V,
1 and IV together imply I11.

Proof. The first two statements are trivial. By symmetry it suffices
to prove one of the remaining two.

Suppose II and IIT are valid. To prove condition IV, choose an
arbitrary entourage ¥V of 1 and a symmetric entourage U such that
UsUoUcV. By condition IIT there exists a finite covering (4,);e;
of 4 such that

u,v €A4;,1 €1 implies
(D (u,y), P (v,y) €U for all y € B.
For each 7 €I choose z; € A;. By condition II and lemma 2.1 the
set B is precompact for the initial uniformity defined by the mappings

@ (x,-), x € A. Thus there is a finite covering (B));c; of B by W-small
sets, where
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W =Ng "), giw,z) = (D (x:,w), Dlr;.z)).

€1
We claim that (B));e; is the required covering corresponding to the
viven entourage V. Solet w,z € B;,j €.J, andlet x € 4. Then (D(xi, w),
Dr;, ) €U for all i €I, and x € A, for some k€ /. Thus we have:
(D(x,w) , Dr,w)) €U,
(D(xk, w) , D, 2)) €U,
(D(xk, 2), P(x,2) €U,
which implies that
(D(x,w), P,z)EU- ULV,
i.c. condition TV holds. [ ]

As a consequence we get the following generalization of theorem 1in [12].

Theorem 2.4. Let A be a set and F « topological vector space. A sel
Il of precompact mappings from A into F is precompact in F (4,F)
for the topology of uniform convergence, if and only if the following con-
ditions are satisfied:

(1) The set H(x) = {f(x) | f € H} is precompact for all v € A,

(2) H has equal variation.

Proof. Define a mapping @ 4 x H—F by @(ef)=fx). If B
is replaced by H and Y by F in theorem 2.3, conditions [—IV take
the following form:

I Fach f€H is precompact.

II  H(x) is precompact for all a € A.

IIT H has equal variation

IV H is precompact in §F (4, F) tor the topology of uniform con-
vergence.

As condition I is valid by assumption, it follows that II and III to-
vether are equivalent to IV. [ ]

As a consequence of the preceding theorem we get the following result:

Theorem 2.5. Let H be a set of &-precompact mappings from A
into F, where & 1is a family of subsets of the given set A. H is precompact
for the S-topology, if and only if the following conditions are satisfied:

(1) H(x) 1is precompact for all x €U G,

(2) The set H S ={f|S|f€H} has equal variation for all S€E.
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Proof. As the E-topology is the initial topology with respect to the
mappings % —uS, S € S, it follows from lemma 2.1 that the set H is
precompact in Fz (4,F), if andonlyif H|S is precompactin § (S, I') for
all S € &, which by theorem 2.4 is equivalent to conditions (1) and (2). [ ]

From now on we shall restrict ourselves to topological vector spaces
and continuous linear mappings between them. For the purpose of
subsequent reference we formulate as a theorem the following fact, which
is a direct consequence of the above theorem.

Theorem 2.6, Let E and F be topological vector spaces and & a
covering of E by bounded sets. A subset HC T (E,F) is precompact
for the S-topology, if and only if:

(1) H(x) is precompact for all z € K, and
(2) H|S has equal variation for all S € &.

Next we examine conditions under which a set of operators is relatively
compact. We assume that £ and F are locally convex Hausdorff spaces
and & is a covering of E by bounded sets. If a set HC L (E,F) is
relatively compact, it is precompact, and thus condition (2) above is valid.
Condition (1) must be replaced by the stronger condition:

(1') H(z) is relatively compact for all x € E ,

which results from the continuity of the mapping: f—f(x) from Lg (E.F)
into F for all a € E. These conditions are also sufficient for the relative
compactness of H if it is equicontinuous, as will presently be proved.

Theorem 2.7. An equicontinuous subset H CT. (EF) is relatively
compact in L (E, F), if (and only if)

(1) H(x) s relatively compact for all x € E,
(2) HIS has equal variation for all S € &.

Proof. Supposing conditions (1’) and (2) it suffices, in view of theorem
2.6, to show that the closure H is a complete subset of L. (E, F).
Let & be a Cauchy filter on H. Then for any x € E the set

& (@) ={P(x) | D € F}

is a basis of a Cauchy filter on H(z) € H(x), hence converges to an element
u,(x) in H(x), as the latter set is complete by condition (1’). In this way
we obtain an element wu; of the function space F¥, which belongs to
the pointwise closure of H. Since H is equicontinuous, its pointwise
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closure is included in L(#,F) (c.f. [2] proposition 4, ch. III, §3, N° 5,
p. 23) and thus u, € L(E, F). To show that § converges to %, for the
S-topology, let S € € and let V be an arbitrary closed balanced neigh-
bourhood in F. As § is a Cauchy filter for the Z-topology, there exists
® € F such that

w(@) —v(x) €V for all u €D, vED, L ES.

Since u,(x) is a cluster point of the filter basis F (¢) for any x, and
V' is closed and balanced, it follows that

u(x) — uy(x) €V for all w€ P and r €S,

in other words, F converges to u, for the &-topology. [ ]

3. Product Hom(f,g) of precompact operators

Let E,, E,, E; and E, be topological vector spaces over the same
field. For f € L(E,, E,) and g € L(E;, E,) denote by Hom(f, g) the mapping:
w—>guf from L(E,, E;) into L(H,, E,). Thus Hom(f.g)(n) is the com-
posed mapping:

U
E, iEz — E iE4.

From now on we shall assume that the spaces E, F, E,, F,, etc..
are locally convex Hausdorff spaces. We shall also make the convention
that whenever an &-topology is considered, & will be assumed to be
a covering of the space in question by bounded sets and directed by in-
clusion. To begin with we shall state some auxiliary results.

Lemma 3.1. Let g € L(E,, E,), f€ L(E, E,) with f(S,) €S, for all
S, €S, where S; is a family defining an Ei-topology for Ei, ¢ =1, 2.
Then
Hom(f,g) : Lzz (By, By) — Lzl (E,. Ey)

is « continuous linear mapping.

Proof. Given a neighbourhood N(S;, V,) in L. (E,, Ey), choose a
neighbourhood V,; in E; such that ¢(V,;)c V,. The set S, = f(S,)
belongs to &, by assumption. Now, if « € N(S,, V,), then Hom(f, ¢)(u)
=guf€N(Sy,V,), and the continuity is established. [ ]

It follows from the above lemma that if the spaces L(E,, E;) and
L(E,, E)) are both equipped with the topology of pointwise, compact,
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precompact or bounded convergence, then Hom(f,¢) is continuous for
continuous f and g¢.

We shall state another lemma whose proof is, if possible, even more
straightforward than that of lemma 3.1, and will therefore be omitted.

Lemma 3.2. If f€ L(E, E,) and g € L(E;. Ey), the mapping Hom(f,y)
maps equicontinuous sets of L(H,, E3) into equicontinuous scts of L(E. E).
We now turn to our main theorem.

Theorem 3.3. Suppose f € L(E, E,), g € L(E,, E,). [ =0, g = 0. Then
the mapping Hom(f,q) maps the equicontinuous subsets of L(E,, E3) into
precompact subsets of Lz (Ey, Ey), if and onlyif f is &i-precompact and
g 18 precompact.

Proof. 1° Suppose first that f is &;-precompact and g is precompact.
Let Bc L(E,, E;) be equicontinuous. We have to show that the set
H = Hom(f,g) (B) is a precompact subset of L. (£, E,). The mappings
guf are &, -precompact for all w in L(¥,, E;), because ¢ and u are
continuous and f is &;-precompact. Thus H € 7, (E,. E;) and it remains
for us to check the validity of conditions (1) and (2) in theorem 2.6.

(1): Let x~ € E,. As B is equicontinuous, it is pointwise bounded.
and thus the set {(« f) () | v € B} is bounded in Ej;. Now, g is supposed
to be precompact, whence

H() = {(gu[) () v €B;

is precompact.

(2): Let S; € £,. We have to show that H ' S; has equal variation.
Let V7, be a neighbourhood in E,. As ¢ is continuous, there is a neigh-
bourhood V,c E, such that ¢(V;)c T',. The equicontinuity of B
implies that the set

Vo= N u(Ty)

u€EB

is a neighbourhood in E,. As f is &;-precompact, there is a finite covering
{4.;};er of 8§; such that

fx) — fly) €V, as soon as v.y €d;,i€1/.
If x,y € A, i €, then, by construction of T,
(uf)(@)— (uf)(y) €V, for all u€D.
which implies that

(guf)y@@)— (guf) (y) €V, for all w€B.
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Thus H|S, has equal variation, and we have completed part 1°.

2° Suppose conversely that Hom(f,g) maps equicontinuous sets into
precompact sets. To prove the precompactness of g, let B; be a bounded
subset of E;. We have to establish the precompactness of the image ¢(Bj).

As E, is Hausdorff and f s 0, there is an element x, € £, and a
continuous seminorm p, of E, such that for y = f(x;) we have p,(y) =
x > 0. According to the Hahn-Banach theorem ([8], p. 29, corollary 2).
we can define h € E; as follows:

1
] [h(xy) < X po(a,) for all a, €E, .

For each z € B; define a linear mapping wu. € L(E,, E;) by wu:(x,) =
h(xy)z. Next we prove that the set

K = {u, |z € By} C L(E,, Ej)

is equicontinuous. Therefore let ¥V, be a neighbourhood in Ej;. As By
is bounded, there is 1 > 0 such that wB;c V; for ju| < A. The set

Vo = {2y € By | paly) < x4
is a neighbourhood in E,. For each x, €V, and z € B; we have:
u(25) = h(xy) 2 € h(2y) BsC V3,

since

Having thus proved the equicontinuity of K we know by assumption
that the set H = Hom(f,g) (K) is precompactin L; (K, E,). Moreover
its elements, having one-dimensional ranges, are &,-precompact. By theorem
2.6 we conclude that the set

H(@) = {(g . f) (x1) | 2 € By} = {(g w:) () | = € By} = {g(2) | z € By} = g(Bs)

is precompact, and thus ¢ is precompact.

Next we have to prove the &;-precompactness of f. Choose z € K,
and continuous seminorms p, of E; and p, of E; such that ps(z) >0
and p,(g(z)) > 0. Denote

B = p4(9(2)) | ps(2) -

Let S, € @, and let V, be an arbitrary neighbourhood in £,. Then

M
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V, includes a set of the form {z,|p,(x,) < e} for some continuous
seminorm p, and some & > 0.
For each pair (x,y) €S, x S; define %., € E; as follows:

pa(f(x) — fy))

kx x) — - —

Pa2(,)

P3(?)

(This definition is again justified by the Hahn-Banach theorem.) Then
define wu., € L(E,,E,;) by

l ey ()] < for all z, € K,

Usy () = hay(23)7 .

The set K = {u., | x,y €S,} is directly seen to be an equicontinuous
subset of L(E,, Ej3), which implies by assumption that H = Hom(f, ¢) (K)
is precompact. Moreover the elements of H, being operators of finite
rank, are &,-precompact. By condition (2) of theorem 2.6 the set H|S,
has equal variation. Thus there is a finite covering of S; by sets A,
¢t €1 such that

pillguf) (@) — (guf) (y)) <pPe for all u € K, whenever z,y € 4;,
i €1.

Now let z,y€ A;, 1 €1. As

po(f(®) — f(y)) =
Ps(2)

Uy (f(x) — f(y)) =

3

we have:

1 (9(2))
B e > py (g sy (2) — Jl)) = 22 (Fl2) — flg)) 222 —

Ps(z)
= Bpy (flx) — f(¥)-

Hence p, (f(x) — f(y)) < e, which implies that f(z) — f(y) € V,.
We have thus been able to construct for each neighbourhood V, in E,
a finite covering {4.};c; of S; such that f(x) — f(y) € V, as soon as
v,y € 4i, 1 €1. Since §; was an arbitrary element of &, the &,-
precompactness of f has been established. [ ]

Remark. It suffices for the »only ify part of the above theorem to
assume that the restriction of Hom(f,g) to operators of finite rank maps
equicontinuous sets into precompact sets. This is the case because the
equicontinuous sets, both denoted by K in part 2° of the proof, consist
of operators with one-dimensional ranges.



Heikki Apiora, On the tensorproduct and product Hom(f, g) 19

In the above theorem the topology of L(E,, E;) and the condition
for f are in a simple relationship with each other. In the next two theorems
we consider the »strongest» and the »weakest» condition for f, and the
corresponding topologies. The proof of the following theorem is immediate.

Theorem 3.4. Let f and g be as in theorem 3.3. The mapping Hom(f, g)
maps the equicontinuous sets of L(E,, Eg) into precompact sets of Ly(E, B,),
if and only if f and g are precompact operators.

If the topology of bounded convergence is replaced by that of pre-
compact convergence, the »weakest» condition for f, which in fact means
no condition at all, is obtained.

Theorem 38.5. Let f and g be as intheorem 3.3. The mapping Hom(f,g)
maps equicontinuous sets of L(E,, E3) into precompact sets of L.(E,, E,),
if and only if g is a precompact operator.

Proof. Since f is supposed to be continuous, it is &;-precompact
with respect to the family &, of all precompact subsets of H;.[ ]

Next we study conditions under which Hom(f,g) is a precompact
operator from Lg (E,,Es) into Ls (E,, E,). Necessary conditions are,
according to theorem 3.3, that f be &;-precompact and g be precompact,
since the equicontinuous sets are bounded in Lg (E,, E;) for any &,.
For these conditions to be sufficient, an extra assumption on K, will
be needed. As we have included continuity in the definition of a precompact
operator, we also have to add some assumptions about the family &,
(unless the &;-topology is that of pointwise convergence).

Theorem 3.6. Let f € L(E,, E,), g € L(E; E,), f=0.g # 0. Suppose
further that E, is an Sy-barrelled space, where &, is a family of bounded
subsets of E, containing all precompact sets. Then

Hom(f,g) : Lzz (Ey, E) ‘*L;. (Ey, E))
is a precompact operator, if (and only if) f is &,-precompact and g s

precompact.

Proof. First of all, Hom(f,g) is continuous by lemma 3.1, as f(S;) € &,
for all S; € ;. The bounded subsets of L (H,, E;) are equicontinuous
in view of the S,-barrelledness of K, (c.f. theorem 1.1), and by theorem
3.3 are thus mapped into precompact subsets of Lz (E,, E,). [ ]

If in the above theorem we take for &; the family of all bounded
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subsets of E:; i = 1,2 and assume E, to be infrabarrelled, we see that
for non-zero f and ¢

Hom(f,g): Ly (B,, E;) — Ly (E1, Ey)

is a precompact operator, if and only if the same is true of f and g¢. The
corresponding result for normed spaces proved by Vala in [12] follows
as a special case from this observation, because normed spaces are infra-
barrelled.

Remark. If the space L(Z,,E,) is equipped with the topology of
pointwise convergence, no barrelledness assumption will be needed for
the precompactness of Hom(f.g) provided that ¢ is precompact. Indeed,
condition (1) in the proof of the first part of theorem 3.3 makes use only
of the pointwise boundedness of the given set B c L(E,, E;), and con-
dition (2)is trivially satisfied for the family &, of finite subsets of E,. Thus

Hom(f, g) : Ly(Ey, E3) — L(E,, E,)

is precompact, if and only if ¢ is precompact. (The condition concer-
ning &, in theorem 3.6 is immaterial here, since the continuity of
Hom(f,¢) in this case follows immediately from lemma 3.1.)

Instead of precompactness we can also study the relative compactness
of a set of functions using theorem 2.7 instead of 2.6 in the proof of theorem
3.3. Suppose first that the product Hom(f.g) of two non-zero operators
f and g maps the equicontinuous subsets of L(E,.E,) into compact
subsets of L (K, Ey). In part 2° of the proof of theorem 3.3 we first
show that ¢ is precompact by proving that the set H = Hom(f,g) (K)
is precompact, where K is an equicontinuous set constructed in the proof.
This time our assumption tells us that H is relatively compact, which,
according to the remark preceding theorem 2.7, implies that H(x;) is
relatively compact. Now, H(x,) = g(B;), where B, is a preassigned
bounded set in E,, hence g is a compact operator. As for f, we cannot
conclude more than in theorem 3.3. In fact the compactness of g together
with the &,-precompactness of f suffice to make Hom(f,g) map equi-
continuous sets into compact sets.

Theorem 3.7. Let f€ L(E,E,), g€ L(E;. E,), f=0, g=+#0. Then
Hom(f,g) maps the equicontinuous subsets of L(E,. E,) onto relatively
compact subsets of Lg (K, E,), if and only if f is &,-precompact and ¢
s compact.

Proof. Suppose f is &,-precompact and ¢ is compact. If B C L(E,, E;)
is equicontinuous, the set H = Hom(f,g) (B) is also equicontinuous by
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lemma 3.2. The compactness of g implies that the set H(xz) in condition
(1) of the first part of the proof of theorem 3.3 is relatively compact. Thus
condition (1’) of theorem 2.7 is valid. Since condition (2) remains unaltered,
the conclusion follows from theorem 2.7. The proof is thus complete, the
vonly ify part being treated before the statement of the theorem. []

Remark 3.8. Theorems 3.4, 3.5 and 3.6 remain valid, if the word »pre-
compacty is replaced by »compacty, where it refers to either g or Hom(f,g).
Let us state explicitly one result of this type:

Theorem 3.9. Let f € L(E, E,), g € L(E3, Ey).f # 0.9 # 0 and suppose
that E, 1is infrabarrelled. Then

Hom(f,g) : Lo (Ey, Ey) — Ly (Ey, Ey)

is @ compact operator, if and only if f is precompact and g is compact.

The above theorem is especially valid for normed spaces, because they
are infrabarrelled.

Next we turn our attention to a situation, in which the spaces Ej
and E, above equal the scalar field K and ¢ is the identity transfor-
mation of K. If f€ L(E,F), the mapping Hom(fsid) (u) for u € F’
is then the composed mapping:

I U id
E —-F —-K —K.

Thus Hom(f, id) is the mapping: u—u f from F’ into E’, in other
words: Hom(f, id) = 'f = the transpose of f. Consequently we get theorems
of »Schauder-type», i.e. theorems on the compactness of the transpose
of a compact operator, as special cases of the theory presented above.

Theorem 3.10. Let f € L(E,F) and equip the dual E' with an -
topology. Then f is G-precompact, if and only if the transpose 'f maps
the equicontinuous sets of F' into (pre)compact sets of Eg.

Proof. As the identity of K is compact, it follows from theorem 3.7
that f maps the equicontinuous sets of F’ into compact sets of E,
provided that f is &-precompact. As for the converse, it suffices, by
theorem 3.3, for the &-precompactness of f to assume that ‘f maps
the equicontinuous sets of F’ into precompact sets of B []

For another proof of the above theorem see [8] ch. VIII, lemma 6, p. 152.
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The following theorem, which is a direct consequence of theorem 3.10,
could be called the Schauder theorem for locally convex spaces.

Theorem 3.11. An operator f€ L(E,F) is precompact, if and only
if its transpose maps the equicontinuous subsets of F' into compact subsets
of Ey.

Corollary. If in the above theorem F is supposed to be infrabarrelled,
then f is precompact, if and only if its transpose is compact with respect
to the strong topologies.

The classical Schauder theorem for normed spaces immediately follows
from this corollary.

Remark 3.12. It follows from the remark after theorem 3.6 that the
transpose of an operator f € L(E, F') is precompact if the duals are equipped
with the weak topologies o(F’,F) and o(E', E).

To show that the extra assumption made about F in the above corollary
and about E, in theorem 3.6 cannot in general be avoided, we give a
simple example of a precompact operator whose transpose is not pre-
compact for the strong topologies.

Example 38.13. Let Z be an infinite-dimensional normed space and
F the same space equipped with the weak topology o(E, E’). The mapping
id: B, — E, is precompact, as follows from the above remark if we interpret
this mapping as the transpose of id: K. —E. Thus id:E—F is
precompact.

On the other hand

id = id : F, — E,

is not precompact, for otherwise there would exist a precompact neigh-
bourhood in the normed space E, = F;, which would contradict the
assumption on the infinite-dimensionality of E (c.f. [6] theorem 2.10.3,
p. 147). (This also proves that F cannot be infrabarrelled.)

4. Tensorproduct of precompact operators

The mapping Hom, which to each pair (f,g) in L(E,, E,) X L(E,, E,)
assigns the element Hom(f,g) in L(Ly (E,, E;), Ly (E,, E,)) defined in
the previous section, is a bilinear mapping. It is not difficult to see that
the subspace of L(Ly (K, Es), Ly (E,, E;)) spanned by the image of the
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bilinear mapping Hom can be interpreted as a tensorproduct of L(E, E,)
and L(Es, E,). However, it is perhaps more natural to interpret the mapping
(f,g) — Hom(f,g) as a tensorproduct of f and g, because this inter-
pretation coincides with the conventional concept of the tensorproduct
of two linear mappings f and g, as will be shown in the proof of theorem
4.5. This interpretation makes it possible to use the techniques developed
in the preceding section for solving the problem of the precompactness
of the tensorproduct of precompact operators.

First we need some auxiliary results. The symbols E, F, E,, F,, etc.,
stand for locally convex Hausdorff spaces as before.

Lemma 4.1. The space A(E., F) of continuous linear mappings of
finite rank from E' equipped with the Mackey topology v(E',E) into F
is a tensorproduct of E and F with respect to the bilinear mapping: (2,y) —
(@ — <z >y).

Proof. The bilinear mapping mentioned above induces a linear mapping
from E ® F into A(E!,F), which to each @ y €E @ F assigns
the continuous linear mapping: 2’ — < x,2’ >y. To prove that the
range of this mapping is all of A(E,, F) we have to be able to represent
every element u € A(E,,F) in the form

w@') = > <aj,a’ >y, ' €E.
i1

Given u € A(E., F), choose a basis {y;,...,y.} of the range of u.
Then w has the representation

u(@') = > wi@)yi, ' €E.
i=1

By the Hahn-Banach theorem there exist elements ¥j,...,y, in

F’ such that <y, yj' > = d;. Thus
N@) = <u@),y;>= <auly)>,

where the transpose ‘u is a mapping from F’ into the dual of E’, which
can be identified with E, since 7(E’,E) is compatible with the duality
between E’' and K. Setting z; = ‘u(y;) € E we have the desired repre-
sentation.

The proof of the injectiveness of the linear mapping from E @ F
into A(E., F) is quite straightforward, the only non-trivial argument being
the fact that B’ separates the points of E. The details are omitted. []
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Remark 4.2. Instead of A(E/,F) we could have taken A(F E)
and the bilinear mapping (z,y) — (¥ — <y, y" > ).

Remark 4.3. Any topology compatible with the duality between £’
and ¥ could have been used instead of 7(E’, K), which is the finest of them.
The following fact from the theory of duality will be needed:

Lemma 4.4. If T is a barrel in E' for the topology T(E', E), it is «
netghbourhood for the strong topology p(E', E).

Proof. Let T be a barrel in E.. As T is a convex set, closed for
the topology =(E’,E), it is also closed for the weak topology o(&’, £).
Thus T is a balanced, convex, o(E’, E)-closed subset of E’, which implies
by the theorem of bipolars ([6] theorem 3.3.1, p. 192) that 7 equals
its bipolar 7'°°. Since 7' is absorbing, its polar 7'° is weakly bounded,
thus 7' = (7°)° is a neighbourhood for f(&'.E). [ ]

We are now going to prove that the tensorproduct of two non-zero
operators f and ¢ is precompact for the e-topologies of the tensorproduct
spaces in question, if and only if f and ¢ are both precompact. We recall
that the e-topology for the tensorproduct £ & F is the topology induced
by LJE.,F) on EQ F regarded as a subspace of the former (c.f. [10]
exposé n° 7, IT or [11] p. 434 and 429). Recall that the subscript e denotes
the topology of uniform convergence on the equicontinuous subsets of £’

Theorem 4.5. The tensorproduct
H&@fe By Ey—F, - F,
of operators fi € L(Ei, Fy), fi # 0. i = 1,2 is precompact, if and only if

i and f, are both precompact.

Proof. 1° In view of lemma 4.1 we are allowed to make the identifications:
E,® E,= A(E,,,E,) and F,<_ F,= A/(F;.F,), where the tensor
v, @ xy, € B, @ B, is to be identified with the mapping: 2’ — <2y, 2" > @,
and y, @ y, with: ¥y — <y, ¥ >y, Thus we have

(1 ® [2) (@1 @ wp) = fi(x1) © folws) = (v — < f1(¥1) , ¥ > fo ()
= (Y = fo(<2, 1Y) >a) = foo (11 @ ) oYy,
which implies by linearity that

(f1 @ fo) (w) = Hom(fy , f,) (), u € A(E,,, E,) .
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The mapping ‘f, = Hom(f,, idg) maps the equicontinuous sets of F .
into equicontinuous sets of K; by lemma 3.2, which by lemma 3.1 implies
that f; ® f, is continuous for the e-topologies.

Now, f, is a precompact operator, hence its transpose !f; maps the
equicontinuous sets of F) into precompact sets of E1, according to
theorem 3.11. Moreover, f;: F;,— Ej, is continuous by lemma 3.1.
As f, is assumed to be precompact, it follows from theorem 3.3 that
Hom(f,,f,) maps the equicontinuous subsets of L( E.. E,) into pre-
compact subsets of L, (Fy,, Fy).

Next we prove that the bounded subsets of L,(E;,. E,) are equicon-
tinuous in L(E}, E,). So let B be a bounded subset of L,(;,, E;) and
let V be a balanced, convex and closed neichbourhood in £,. Then the set

V=nNuXV
u€B
is balanced, convex and closed. Moreover it absorbs each equicontinuous
set of B, (c.f. section 1. condition (bl)); hence it is in particular absorbing.
Thus V'’ is a barrel in E;, which implies by lemma 4.4 that it is a neigh-
bourhood in E,. This in turn implies that B is an equicontinuous
subset of L(Ey, E,) (section 1, condition (el)).

We have thus proved that Hom(f,,f,) is a precompact operator from
LB, E,) into L, (F},, F,), which implies that its restriction to A.(Hy,, Es).
i.e. the operator f; ® f,, is precompact.

2° As we saw above, the mapping (f, © fo) (u) for u € A(E;,, E,)
is composed according to the diagram

! fa
hoi ‘fLEl E, > F,

Tt follows from [6], propositions 3.12.3 and 3.12.5. that 'f; € L(Fy,, E},).

The mapping f, & fo = Hom(f}.f,) maps the bounded sets of
A(E;,E,) into precompact sets of L/(F;.F,) by assumption. Thus in
particular the equicontinuous subsets of the former are mapped into pre-
compact subsets of the latter. Hence it follows from the remark after
theorem 3.3 that f, is precompact.

To prove the precompactness of f; identify E; © £, with A/(E,,, E,)
and F,®,F, with A/(F;.F,) (cf. remark 4.2.), which means that
f, @ fo is to be identified with Hom(f,,f,). Then proceed exactly as
above. [_]

Using theorem 3.7 instead of 3.3 in the latter part of the proof of the
foregoing theorem, it is seen that the compactness of both f; and fo is
necessary for f; @ f, to be compact for the e-topologies.



26 Ann. Acad. Sci. Fennice A. 1. 544

If B and F are complete, then L(E/, F) is also complete according
to [11], prop. 42.3, p. 430. Thus the completed e-tensorproduct E @8 F
can be identified with the closure of A(E/, F) in L(E.,F). Making use
of this identification we get the following result:

Theorem 4.6. If E,, E, F, and F, are complete and if f; € L(E;, F;),
t = 1,2 are compact operators, then the extended tensorproduct

fléf2:E1®eE2~'>FlA®eF2

18 compact.

Proof. If we make the above identifications, the mapping f, é fo
equals the restriction of Hom(f,,f,) to the closure of A,(E;,E,) in
LB, B,). Proceeding exactly as in part 1° of the proof of theorem

4.5 we conclude that the restriction of Hom(f,,f,) to E; ésEz maps
the bounded sets into precompact sets of F; @ . Iy, and thus into compact
sets because of the completeness of the latter space. [ |

Next we study conditions under which the tensorproduct of two linear
mappings is precompact when the tensorproduct spaces are equipped
with the projective or s-topology, i.e. the finest locally convex topology
for which the canonical bilinear mapping: (2,9) —x @ y is continuous.
Recall that the e-topology is always coarser than the m-topology, but
if B is nuclear (c.f. [4] part I § 2, n° 1, p. 34) these topologies coincide
on B @ F for any locally convex space F. These observations, together
with theorem 4.5 and the well-known fact that the tensorproduct of con-
tinuous linear mappings is continuous for the =z-topologies, give us the
following result.

Theorem 4.7. If the operators f; € L(E:, F;), 1 = 1,2 are precompact
and Fy or F, is nuclear, the tensorproduct

1t By, R,E,—F, R F,

18 a precompact operator.

The conclusion of theorem 4.7 can also be made if instead of F; (or
F,) the spaces E, and E, are assumed to satisfy suitable conditions.
The proof of the following lemma is quite straightforward and does not
depend at all on the previous theorems.

Lemma 4.8. The tensorproduct f, ® f, of two precompact operators
fi € L(E, Fy), i = 1,2 is precompact for the m-topologies if every bounded
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subset of Hy @, K, s contained in the balanced convex hull of a set A; ® A,
={r; D, |2, €Ay, x5 € A,}, where A; is bounded in Eii=12.

Proof. If A; is bounded in FE;, the set Bi= fi(4d)C F;, i = 1,2
is precompact by assumption. Now

(fl ®f2) (Al & Az) :fl (Al) ®f2 (Az) = B1 3y Bz .

The mapping (v, ¥s) = ¥, @ ¥, is continuous from F,; X F, into
F, ®,F, hence in particular hypocontinuous, which implies that its
restriction to B; X B, is uniformly continuous ([6] proposition 4.7.3,
p- 360). Thus B; ® B, is precompact and the conclusion follows from
the assumption on the bounded sets of E, @, E,. [ ]

The condition on bounded sets of £, &, K, in the above lemma is
called the »Probléme des Topologies» by A. Grothendieck (c.f. [4] part I,
p. 33). It is not in general satisfied, as can be seen by taking for E,; the
product RN and for E, the locally convex direct sum R™ (c.f. [4]
part I, p. 34). On the other hand it follows from [4] part I, proposition
5, p. 43, that the condition is satisfied for spaces of type (DF), which
means a locally convex space with a countable fundamental system of
bounded sets and with the property that every strongly bounded subset
of the dual, which is a countable union of equicontinuous sets, is equi-
continuous (c.f. [3] definition 1, p. 63). It follows that every infrabarrelled
space with a fundamental sequence of bounded sets is of type (DF). Normed
spaces in particular are of type (DF). Further, it follows from [3] théoréme
1, p. 61 that the strong dual of a metrisable space is a (DF)-space. It
should also be noted that there are no metrisable (DF)-spaces other than
normed spaces, for every metrisable space with a fundamental sequence
of bounded sets is normable ([7] §29.1.(2), p. 396).

As a consequence of lemma 4.8 we get the following:

Theorem 4.9. If E, and E, are of type (DF), the tensorproduct

Hh@®ft By Q,E, — F, 2, F,

1 Ya

of precompact operators fi: Ei—Fi, 1 =12 1is a precompact operator.

In fact every bounded set of the completed =-tensorproduct of two
(DF)-spaces K, and E, is contained in the balanced closed convex hull
of a set 4; ® 4,, where A is bounded in E, k= 1,2, according to

[4] part I, proposition 5, p. 43. Thus we have the following:

Corollary 4.10. If E, and E, are of type (DF), the cxtended tensor-
product
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A A A
H®f: B,Q, B, — F, & F,
of precompact operators fi: Ei— Fi, 1 = 1,2 1s a compact operator.

Next we are going to prove that the converse of theorem 4.9 holds
without any extra assumptions on the spaces. For normed spaces it follows
directly from a result of J. R. Holub (c.f. [5] proposition 3.1, p. 4). We are
going to present the proof of Holub modified to locally convex spaces.

Theorem 4.11. If fi € L(E., Fy), fi #0, i = 1,2 and if

®f: E,Q@, B, — F, 2 F,

is precompact, then f; and f, are both precompact operators.

Proof. Choose 2, € E, and a continuous seminorm ¢, in F, such that

75 (fa(g)) = 1.

and an element y, € F, such that

<fa (@), 42 > = g2 (fa(xe) = 1.
Define a continuous linear mapping
P:E,—-E ®,.E, by Pr=0@ 2.
The mapping (¥, ¥») — < ¥», ¥» > ¥, is a continuous bilinear mapping
from F, X F, into F;. The corresponding linear mapping
Q:F @, Fy—F 9 @Y~ < Yo s >
is continuous according to the definition of the =-topology. Now,
(@ (f1®@[f) o P) (x) = Q (f1 () Z [z (%)) =
= <[y (@) yh > file) = fule) for @ €E,

ie. fi=0Q¢(f; & fs)oP, where ¢ and P are continuous and f; & f,
is precompact. Thus f; is precompact. The precompactness of f, follows
from reasons of symmetry. | ]

It is also readily seen from the above proof that the compactness of
f1 ® fo for the m-topologies implies the compactness of f; and f,.

Remark 4.12. If we compare the above proof with that of the first
half of part 2° of theorem 3.3, we see that the method is basically the
same in both cases. Indeed, if we denote the mapping z —u. by P and
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the mapping u —>u(z;) by @ in the proof of theorem 3.3, then g will
be composed according to the diagram

P Hom(f, g)
_—

@
E; — L(E,, Ey) L. (E\, E,) —E,

In fact, in the proof of theorem 3.3 we have shown that P sendsbounded
scts into equicontinuous sets and used this together with the continuity
of @ to prove the precompactness of g.

5. Applications to Montel-type spaces

Tn this section we shall consider some classes of locally convex spaces
with the following property in common: every bounded subset is precom-
pact. We shall study some permanence properties of these spaces using
the results of sections 3 and 4.

Alocally convex Hausdorff space will be called pre-Schwartzifits bounded
subsets are precompact. This class of spaces includes the following im-
portant subclasses: semi-Montel, Montel, Schwartz and nuclear spaces.
Recall that a semi-Montel space is one whose bounded subsets are relatively
compact and that a Montel space is an infrabarrelled semi-Montel space.
In fact a Montel space, being quasicomplete and infrabarrelled, is barrelled.

We make the convention that in this section all the spaces under con-
sideration will contain non-zero vectors. The results concerning the spaces
of linear operators are consequences of the following special case of theorems
3.3 and 3.7.

Theorem 5.1. If E and F are locally convex Hausdorff spaces and
© is a covering of E by bounded sets, then the identity

id: L(E,F) — L (E,F)

maps equicontinuous sets into precompact (resp. compact) sets, if and only
if idg:B-—~E is &-precompact and idg:F —F 1is precompact (resp.
compact).

Proof. Set E, =E,=E, E; = E = F , f=1idg g = idp in theorem

3.3 (vesp. 3.7). [ ]
An immediate consequence is the following generalization of the Alaoglu-

Bourbaki theorem (c.f. [6] theorem 3.4.1, p. 201).

Theorem 5.2. The equicontinuous subsets of L(E.F) are relatively com-
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pact for an S-topology, if and only if S is a family of precompact subsets
of E and F is a semi-Montel space.

The »strengthened» version of the Alaoglu-Bourbaki theorem (c.f. [6]
ex. 3.10.7 (a), p. 242), which states that the equicontinuous subsets of
the dual of a locally convex Hausdorff space are relatively compact for
the topology of precompact convergence, follows immediately from this
theorem, since the scalar field is a semi-Montel space.

Remark. The »if» part of theorem 5.2. can also be deduced by means
of [2] ch. I1I, § 3, corollary to proposition 4 and proposition 3, p. 23. Indeed,
if F is semi-Montel and H is an equicontinuous subset of L(Z, F'), then
H is pointwise bounded in particular. Thus the set H(z) is bounded
and hence relatively compact in F for each « € E. This implies, by the
corollary mentioned above, that H is relatively compact in L&, F).
The rest follows from proposition 5, which states that on the equicon-
tinuous subsets of L(#, F) the topology of pointwise convergence coincides

with that of precompact convergence.

It should be noted that we have not made use of Tihonov's theorem
in the proof of theorem 5.2, nor have we used proposition 5 mentioned
above.

If the space E in the preceding theorem is assumed to be pre-Schwartz,
then the topology of precompact convergence coincides with that of bounded
convergence. Thus we have the following result:

Corollary 5.3. If E is a pre-Schwartz space, then the equicontinuous
subsets of Ly(E, F) are relatively compact, if and only if F is a semi-Montel
space.

Next we shall study conditions under which L (K, F) is a semi-Montel
space. Necessary conditions are, in view of theorem 5.2, that F is semi-
Montel and & is a family of precompact subsets of E. In particular,
for Ly(E,F) to be semi-Montel it is necessary for £ to be pre-Schwartz
and F to be semi-Montel. These conditions are also sufficient in the
presence of a suitable barrelledness assumption on E, as will be shown
in the following theorem (see also [4] part I, § 4, n° 1, corollaire 1, p. 99).

Theorem 5.4. If F is semi-Montel and E is S-barrelled with respect
to a family & of precompact subsets of E, then L (E,F) is semi-Montel.
In particular, if E is Montel and F is semi-Montel, then Ly (E,F) s

semi-Montel.
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Proof. The bounded subsets of L_(Z,F) are equicontinuous because
of the &-barrelledness of E (c.f. theorem 1.1), hence the conclusion
follows from theorem 5.2. [ ]

Remark. The condition for E to ensure that LyX,F) is semi-
Montel can of course be weakened into the form: E is pre-Schwartz and
infrabarrelled.

Remark. The space L (#,F) is pre-Schwartz for arbitrary E if
F is pre-Schwartz (see the remark after theorem 3.6).

To show that in general the necessary conditions mentioned before
theorem 5.4 are not alone sufficient for L,(E, F) to be semi-Montel, we
can again use example 3.13. Thus, if E is an infinite-dimensional normed
space, the space E, is a pre-Schwartz space, as its identity transformation
is precompact. If we choose F = K, then F is certainly a Montel space,
but L, (E, F) = E, is not even a pre-Schwartz space, as id : B, — E,
is not precompact.

From theorem 5.4 it follows that the dual of a barrelled space equipped
with the topology of precompact convergence (or any coarser S-topology)
is semi-Montel and the dual of a Montel space equipped with any ©-
topology is semi-Montel. In fact the strong dual E, of a Montel space
E is even a Montel space, because Montel spaces are reflexive, which
implies that the Mackey topology and the strong topology of the dual
coincide, and thus E, is barrelled by lemma 4.4. Thus we get the following
theorem, the first part of which is the content of proposition 3.9.9. in [6].

Theorem 5.5. If E is a Montel space, its strong dual is a Montel space.
Conversely, if the strong dual of a locally convex Hausdorff space B is semi-
Montel, then E is pre-Schwartz.

Finally we turn our attention to tensorproducts. Since the identity
d:EQF —-EQF

equals idg; @ tdy, we have the following results:

Theorem 5.6. The tensorproduct E @,F 1is a pre-Schwartz space,
if and only if the same is true of both E and F.

Proof. Theorem 4.5. [ ]

Theorem 5.7. If E and F are complete semi-Montel spaces, their
completed e-tensorproduct E égF 18 semi-Montel.
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Proof. Theorem 4.6. ]

Remark. If we add the extra assumption that £ should be quasi-
normable (c.f. [3] III.1. définition 4, p. 106), then the preceding theorem
can also be deduced by means of [4] part I, § 4, n° 2, corollaire, p. 118,
which states that L, (K, F) is semi-Montel if £ is a quasicomplete
Schwartz space and F is a semi-Montel space. (For the definition of
Schwartz spaces see [3] III.4. définition 5, p. 117.) Thus £ ég F, being
a closed subspace of L (E’, F), is semi-Montel.

Theorem 5.8. If E and F are pre-Schwartz spaces of type (DF),
then E @, F 1is pre-Schwartz and its completion E @7 F is a Montel space.

Proof. Tt follows from theorem 4.9 and corollary 4.10 that £ @, F
is pre-Schwartz and its completion is semi-Montel. As E and F are
supposed to be of type (DF), the space E @71" is of type (DF) ac-
cording to [4] part I, § 1, n° 3, proposition 3, p. 43. Thus £ é7 F, being
a semi-Montel space of type (DF), is Montel according to [13] teorema 2.

Theorem 5.9. If the =-tensorproduct of two locally convex spaces F
and F s pre-Schwartz, then E and F are pre-Schwartz spaces.

Proof. Theorem 4.11. [ ]
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