BOUNDARY MAPPINGS OF GEOMETRIC ISOMORPHISMS OF FUCHSIAN GROUPS

BY

TAPANI KUUSALO

HELSINKI 1973
SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.545
Communicated 9 April 1973 by Olli Lehto
Boundary mappings of geometric isomorphisms of Fuchsian groups

The object of the present paper is to apply certain ergodic theoretical results of E. Hopf ([2], [3]) to the study of boundary mappings of geometric isomorphisms of Fuchsian groups.

1. An isomorphism \(j : G_1 \rightarrow G_2 \) of two Fuchsian groups acting in the unit disc \(D = \{ z \in \mathbb{C} : |z| < 1 \} \) is said to be geometric if there exists a homeomorphism \(\Phi : D \rightarrow D \) inducing the isomorphism \(j \), i.e. if we have

\[
\Phi \circ g = j(g) \circ \Phi
\]

for all \(g \in G_1 \). If both groups \(G_1, G_2 \) are the first kind, then \(\Phi \) has a unique homeomorphic extension \(\hat{\Phi} : D \rightarrow \bar{D} \), so that also the boundary mapping \(\varphi = \hat{\Phi} |_{\partial D} \) satisfies

\[
\varphi \circ g = j(g) \circ \varphi, \quad g \in G_1.
\]

Unlike \(\Phi \), the homeomorphism \(\varphi : T \rightarrow T \) of the unit circle \(T = BdD \) is uniquely determined by the isomorphism \(j \) ([5] §3, [6] 3.B). In the following, all Fuchsian groups are supposed to be of the first kind.

Occasionally we may study Fuchsian groups which act in the upper half plane \(H \) instead of \(D \). In that case we assume that the boundary mapping \(\psi \) fixes the point \(\infty \), so that \(\psi \) will be a strictly monotone mapping \(\psi : \mathbb{R} \rightarrow \mathbb{R} \).

2. We normalize the Lebesgue measure \(\tau_1 \) on \(T \) by \(\tau_1(T) = 1 \), and the torus \(T \times T \) has the product measure \(\tau_2 = \tau_1 \times \tau_1 \).

As a homeomorphism of the unit circle a boundary mapping \(\varphi : T \rightarrow T \) has a derivative \(\varphi' \in \mathbb{C} \) a.e. on \(T \). Similarly a real-valued boundary mapping \(\psi : \mathbb{R} \rightarrow \mathbb{R} \) which corresponds to Fuchsian groups acting in \(H \) has a finite derivative \(\psi' \in \mathbb{R} \) a.e. on \(\mathbb{R} \). Because \(\psi \) is monotone, the derivative \(\psi' \) cannot change its sign.

Since the cross ratio \([z_1, z_2, z_3, z_4]\) is preserved under Moebius transformations it follows that also the differential

\[
dz_1 \dz_2 (z_1 - z_2)^{-2} = -[z_1, z_2, z_1 + dz_1, z_2 + dz_2].
\]
remains invariant. Let now \(\varphi : T \to T \) be the boundary mapping corresponding to a geometric isomorphism \(j : G_1 \to G_2 \). The invariance of (3) implies that also the expression

\[
\chi_\varphi(z_1, z_2) = \varphi'(z_1) \varphi'(z_2) \left(\frac{\varphi(z_1) - \varphi(z_2)}{z_1 - z_2} \right)^{-2}
\]

is invariant under Moebius transformations. Thus if \(h, k \) are two Moebius transformations, we have

\[
\chi_\xi(k(z_1), k(z_2)) = \chi_\varphi(z_1, z_2)
\]

for \(\xi = h \circ \varphi \circ k^{-1} : kT \to hT \). Since \(G_1 \) and \(G_2 \) have conjugate groups acting in \(H \), we see that \(\chi_\varphi : T \times T \to \mathbb{R} \) is a non-negative measurable function. Further it follows from (2) that \(\chi_\varphi \) is automorphic with respect to \(G_1 \); that is,

\[
\chi_\varphi(gz_1, gz_2) = \chi_\varphi(z_1, z_2)
\]

for all \(g \in G_1 \).

3. The class \(O_{HB} \). Suppose that the Riemann surface \(S = D/G \) corresponding to a Fuchsian group \(G \) is of class \(O_{HB} \), i.e. \(S \) does not have non-constant bounded harmonic functions, or equivalently that there is no non-constant \(G \)-automorphic bounded harmonic function in \(D \). Using the Poisson representation we see that all \(G \)-automorphic bounded harmonic functions are constant if and only if the action of \(G \) on \(T \) is metrically transitive, i.e. if and only if a measurable \(G \)-invariant subset \(E \subset T \) has either measure \(\tau_1(E) = 0 \) or \(\tau_1(E) = 1 \).

Theorem 1. Let \(\varphi \) be the boundary mapping of a geometric isomorphism \(j : G_1 \to G_2 \). If one of the Riemann surfaces \(S_i = D/G_i \), \(i = 1, 2 \), is of class \(O_{HB} \), then the mapping \(\varphi \) is either absolutely continuous or completely singular.

Proof. Suppose that \(S_2 \) is of class \(O_{HB} \). If \(\varphi \) is not absolutely continuous, there exists a Borel set \(E \subset T \) such that \(\tau_1(E) = 0 \), \(\tau_1(\varphi(E)) > 0 \). The set \(F_1 = G_1 E \) is invariant under \(G_1 \), and \(F_2 = \varphi(F_1) = G_2 \varphi(E) \) under \(G_2 \). Now \(\tau_1(F_1) = 0 \), and \(\tau_1(F_2) = 1 \) since \(G_2 \) is metrically transitive. Thus both \(\varphi \) and \(\varphi^{-1} \) are completely singular.

4. The Hopf classification. Let \(S \) be a hyperbolic Riemann surface, \(T(S) \) the tangent manifold of \(S \), and \(\sigma_d(v, w), x \in S, v, w \in T_d(S) \), the hyperbolic metric of \(S \). Since \(S \) is a complete Riemannian manifold with respect to the hyperbolic metric, the geodesic flow \(\beta \), determined
by the Lagrangian $L(x, \dot{x}) = \sigma(x, \dot{x})$ is globally defined on $T(S)$, i.e. $\beta_t : T(S) \to T(S)$, $t \in \mathbb{R}$, is a one-parameter transformation group. The surfaces $\mathcal{E}_c \subset T(S)$ of constant energy, $L(x, v) = c$, are invariant under the geodesic flow, and since the flow β_t is essentially similar on every \mathcal{E}_c, $c > 0$, we can consider only $\mathcal{E} = \mathcal{E}_1$. The geodesic flow β_t restricted to \mathcal{E} is simply the flow of unit speed along geodesics.

E. Hopf has shown that the geodesic flow β_t of a hyperbolic Riemann surface \mathcal{S} always is either ergodic or dissipative on \mathcal{E} ([2], [3]). The surface \mathcal{S} is said to be of the first class in the ergodic case, and of the second class in the dissipative case. Suppose now that the surface \mathcal{S} is represented by a Fuchsian group G acting in D, $\mathcal{S} = D/G$. It follows then further that \mathcal{S} is of the first class if and only if the action G on the torus $\mathbf{T} \times \mathbf{T}$ is metrically transitive, i.e. if and only if each measurable G-invariant subset $E \subset \mathbf{T} \times \mathbf{T}$ has either measure $\tau(E) = 0$ or $\tau(E) = 1$ ([2], 8.1). It follows immediately that every surface of the first class is always of class O_{HB}.

Theorem 2. Suppose that one of the Riemann surfaces $\mathcal{S}_i = D/G_i$, $i = 1, 2$, is of the first class. Then for each geometric isomorphism $j : G_1 \to G_2$ either the boundary mapping φ is completely singular or the isomorphism is induced by a Moebius transformation on \mathbf{T}.

Proof. Let \mathcal{S}_1 be of the first class, so that the boundary mapping is either absolutely continuous or completely singular by the preceding theorem. Since χ_{φ} is G_1-automorphic by (6), it is equal to a constant a.e. on $\mathbf{T} \times \mathbf{T}$. Obviously we must have $\chi_{\varphi} = 1$ a.e. in the case of absolute continuity, and $\chi_{\varphi} = 0$ a.e. in the singular case.

Suppose now that φ is absolutely continuous. Using appropriate Moebius transformations h, k we can find groups $G_1' = hG_1h^{-1}$, $G_2' = kG_2k^{-1}$ acting in H with a real-valued boundary mapping

$$\psi = k \circ \varphi \circ h^{-1} : \mathbb{R} \to \mathbb{R}.$$

We may further suppose that $\psi(0) = 0, \psi'(0) = 1$, so that ψ satisfies on \mathbb{R} the differential equation

$$\psi'(x) = \psi(x)^2 / x^2$$

because $\chi_{\psi} = 1$ a.e. on $\mathbb{R} \times \mathbb{R}$. But given the initial value $\psi(0) = 0$, $\psi(x) = x$ is the only solution of (8) continuous on all of \mathbb{R}. Thus $\varphi = k^{-1} \circ h$, so that the isomorphism j is induced on \mathbf{T} by a Moebius transformation.
5. A Riemann surface $S = D/G$ can obviously be of the first class only if G is a Fuchsian group of the first kind, but this condition is by far insufficient. If $S \subset \hat{C}$ is a hyperbolic planar surface, the covering group of S is of the first kind if the complement $\hat{C} \setminus S$ is totally disconnected, but S is of class O_{nn} if and only if $\hat{C} \setminus S$ has vanishing logarithmic capacity.

If A is the hyperbolic area of a hyperbolic Riemann surface S, the volume of \mathcal{E} is $2\pi A$ (cf. n:o 4), so that all Riemann surfaces of finite hyperbolic area are of the first class by Poincaré's recurrence theorem ([2] 7.1, [3]). Now the hyperbolic area of a Riemann surface $S = D/G$ is finite if and only if G is a finitely generated group of the first kind ([4], Theorem 5). Thus the Riemann surface $S = D/G$ is of the first class for all finitely generated Fuchsian groups G of the first kind.

Theorem 3. Suppose that the geometric isomorphism $j : G_1 \rightarrow G_2$ of two finitely generated Fuchsian groups of the first kind acting in H has an increasing boundary mapping $\psi : \mathbb{R} \rightarrow \mathbb{R}$. Then ψ is either affine or a completely singular quasisymmetric function.

Proof. If G is a finitely generated Fuchsian group of the first kind, the Riemann surface $S = (S_G, \ n_G) = H/G$ is a pointed surface of finite type, i.e. S is a compact surface S' with finitely many punctures; further, the support of n_G is finite. Thus in the case of finitely generated groups of the first kind there always exists a quasiconformal mapping $\Phi : H \rightarrow H$ inducing the given isomorphism j (cf. [5] Theorem 2.1, [6] 2.B), so that the boundary mapping $\psi : \mathbb{R} \rightarrow \mathbb{R}$ must be quasisymmetric, and the conclusion follows now from theorem 2.

Recently Sorvali has obtained results of a similar kind (cf. [5] Theorem 5.1). For quasisymmetric functions, cf. also Beurling — Ahlfors [1], for singular functions especially §7.

Current address:
Institut Mittag — Leffler
Djursholm, Sweden

University of Jyväskylä
Jyväskylä, Finland
References

Printed August 1973