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1. Introduction

l. Let Il be a Riemann surface and P a density, that is, a C1 func-
tion ll.hich depends on the local parameter so that the elliptic partial
rlifferential erluation
(r)

is invariarrtl.y tlefinecl on -E . \Ye suppose that P is accepttable which means
thal there erists a positi,ue P -superelli,yttic fu,nction r.,t on R. This situa-
tion is introcluced and iuvestigated in pl and [2]. Especially the class of
rlensities acceptable b5, I is the class of non-negat'ive clensities.

Noly u'e first forrn in a non-compact region L the (, -measures of the
region, its ideal boundary and its relative boundary. Then we consider
the existence of singular solutions of (l), that is, solutions rvith prescribed
singularities on -rB . The local situation is knolr-n (Cf. t3l). Using the o: -
rneasures in a similar \vay as the harmonic ones in the harmonic case (Cf.

[6]) rve arc able to shorv that the existence of two positive linearly inde-
penclent P - superelliptic functions implies the existence of a singular
solution of (l). Especially the condition is necessary for the existence of
a positive solution of (t) rvith a positive singularity. Consequently the
conclition is ecluivalent to the existence of the Green's frurction of (f ) on -B .

2. X'irst rve state some tenns ancl results frorn [1] anci [2] 'we are going
to use. A density P is called completely ucceptable if it is acceptable ancl
lras the Green's function G, on -E . A function u is saicl to be a P -solu-
tioninaregion K if ue C\(K) anditisasolutionof (1) iu K.By lilf'S
§'e meal1 a P -solution in the parametric disc 7 ryith boundaly values /.

A corrtinuous function a is said to be P -subelli,Tttic in a region 1i
if to any point eo €.K there exists a parametric disc (Vo, zs\, Voc K ,

such that in every disc (V , zo), V CVo, the first bounclary value prob-
lem has a uniclue solution and z'(zo) < Il,(, , zo) , A function o is said to
be P -superelliptic if -u is P -subelliptic. If o and u' &re P -sub-
elliptic, .,r a non-rlegative constant and 7 a parametric clisc, then xu ,
max (u , u') ancl oo , lhe P -rnodification of o in V ,

u in K-V
Il,@) in V ,

Ar€) P -suhelliptic.
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'Ihe usual u'eak and strong forms of
Let P be acceptable b,v ct) on a Riemallll ;

tic function. If

rnaxirnunl princil:le are valirl.
surface fr ancl 'u a .P -subellip-

u0<sup-::lI<x,

then either u < Mo or u :- Mr» in -B . If Ii is a conrpact region,

supu20 and
K

uk\

,*'lä.ö<)t<t'
then either a < Ma or u : ilIo in K .

A non-empt5, family -F(1() cif P -subelliptic functions z, in a region
ff is called a Perron fami,ly if the following two conditious are fulfilled:

(a) If 1)12 'u2eE6), then max (o, , az) e X(I{).
(b) If aeF(K), then its P-modification uu€-E(1i) for every para-

metricdisc V,VcK.
If l(K) is a Perron family, then the fuuctiotr

%o : suP {a t, u e ,f(1()}

is either a P -solution or identicallv * oo .

Let then K be a compact region whose boundarf is t'he union of trvo

disjoint sets k, and k, and let P be acceptable by co . The P -solutrou
r»p(K , är) is said to be the @ -nl,easllre of /c, with respect to Ii if it is
identically o on lt, and zero on k,. If especially k, is emptl', §e sa)-

thab ao(K , AK) : ap(K) is the al -measure of K. If {-8"} is an ex-

haustion of -B , then the non-increasing sequence {c,:p(,R,)} con\rerges

to a P -solution «-rp which is callecl the co -measure of -Il rvith regard
to P . It is uniquely determined by being the greatest P -subelliptic
function o rvith a 4a .

3. Let K be a
By a s'i,ngularity at
tation in terms of

region, zo e K ancl (Y ,

zo we mean a function
the local parameter

:o) allararnetricclisc, f CIi.
S in l' u-hich lias a represen-

(2)

where ao and o,i ätarealnumbersand fu; positiveintegers, i:1,.,.'n.
We speak especially of a positi,ae si,ngulari,ty if all the coefficients ai axe

non-negative, 'i,:0,... )n. It is denoted by §(+). If u'e denote by

- §(-) a singularity rvith non-positive coefficients, then S(-) is also
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----l1lg!-t"lrgrr -o-' E*:-'i:t"ry9-g :-g"g--"1"ti'": "{ 4" : I
å1, positive
form

(3)

sirrgularity and eyery singularity § can be represent'ecl in the

As usual, we mean by a singular P -solution in K , or by a P -solution
with the given singularity §(z , zo) in K, a function tr which is a P -
solution in li - {zo} so t'hat u(z , zo) - S(z , zr) is bouncled in (V , zo) .

Similarly rve speak of a P -solution with a positive singularity.

2. The (,) -measures of non-compact regions

4. Let R be an open Riemann surface and. L a, non-compact region
of -B . We suppose that the boundary of Z in ,E consists at most of a
countable number of analytic curyes Ii so that L f\ fi , i, + j , is
either empty or & common endpoint, and every compact set of -B con-
tains at most points from a finite number of curves. The set AL : U ft
is called the relative boundary of L . The ideal boundary of -L is denoted
by fi or,if necessary, P(L). In the sa,me wa,y we denote the ideal bound-
ary of -E by § of p(A) . If iR") is an exhaustion of -E , we denote
L,": R,,n L , 1,,: fi,, n OL a;nd, l,:: L n AR*. Then OL*: l*U l:.

5. We clefine the r,r -rneasures of Z u'hich are needed in the continu-
ation. The c,r -measures of the exhaustion of tr form a non-increasing
sequence {cop(L")\ rv}rich conyerges Lo a P -solution orr(.L) in Z . It is
trniquely cleterminecl by being the greatest P -subelliptic function u in
tr rvith a { w and iiil u(z) 1o\zo) . By the x-eak maximum principle

r+zn€0L
c,ither ap(L) < co or ar(L) - «i| .t

Next rve form the follolging family:

?oQ)-|zriaP-sr-rbe11ipticinL,U{co,[ilu@)<
zlzs e 0L

easy to see that 0 e ?o@) ancl Fr(L) i= a Perron family. Because
bounrlecl frorn above by o) , the function

otp(L , f) : sup {u lu e Fo@)}

is a P -solution in L . It is called the o -measure of the ideal boundary
of L . Clearly

0 { ap(L , p) < cap(L) .

Ou the relative boundary of L, @p(L, p) : 0. fn fact, let zoe1l and
let g be a eontinuous function on the boundary of L fi (Y , zo) so that

(4)

It is
it is
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g(zo):0,0<g{o on OLfl7 and g:ot on ZO 0l/.The function
uo,

l@ in L-T-
'o:tl;nn(il in Lnr

is P-superellipticin L.If ue Fr(L), then r,{ao on 0L,,.n }lo fora
value zl,o wherefore the same must hold in L . Therefore

, 
=g 

otp(L, 0, z) !§rrrtf , §, z) < on(zr) : 0.

In the same way we can form rap(L , AL) , the r,r -measure of Al, ,

b;, taking a family

(5) l-,,,(L): {, lo P -subelliptic in L, r ! 0, Iir1l r(;) S - ro(en)j

'->zre( 
)L

and defining

@p(L, AL): -sup{a',ae F ,,,(L\).

This is a P -solution in .t and it is equal to r,r orl ä/- , llot'cover

0 l ar(L , AL) < rop(L) .

Because otr(L) - ap(L , äZ) belongs to 1'o(I) ancl r,.,;,(1, , fi) - rtp(L)
to X _,,(L) rve must have

(6) atr(L , AD + atp(L , 0) : op(L) .

If -t, and L, are non-compact regions rvith Z, C L2, then r,rp("I,, , fiQr))
! ar(Lr, §(Lr)) ar.d ap(L, , 1Lr) 2 atp(L, , 1Lr) in L, .

If the relative boundary of Z is compact. theu

(7) cop(L , B) : Iim ror(L,. , li,\

and

(8) op(L , Aq : lim r,r.(2,, . 1,) .

6. The extremum property of the']rlrrr"o.u.* of aL irnplies the maxi-
mum principle for Z.

Lemma l. Let P beacceptableby (,) on (,ttlopen, Ilie»tttnnsu,rfcr,ce R , L

tt, tLon-co?tlpact region and, u ct P -su,belliptic ,functiott itt, L u:ith a {
Mtop(L , 1Ll for a constant n[ . If

ilm I =,, ,
z-;selL 0)\i)

tlten ei,ther u <nlar(L, 0L) or u:mop(L, aL).

Ann. Acad. Sci. l.ennicit,
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Proof: We suppose that, m < M . The function

ar: (M - m)-r(a - ,tV r'tr(L , AL))

is P -subelliptic and non-positive. Moreover

iim ar(z) { - o(zr) ,

z+zoE0L

wherefore u, e ? -.,(L) in (5). So Dr a - r,tp(L , 0L) rvhich implies

a{mor(L,0L).

If there exists a point zo with a(zo): mor(L, 0L , zo), then in a para-
metric disc (V , zo)

mar(L, OL, zo): I'r(*@p(L, OL), z):':Il,@, zo)2a(zo).

Therefore I!,(m otr(L, AL) - a, zo) : 0 for every disc (V, zo) rvhich
gives the statement.

From this result we get a uniqueness propertv.
Lemma 2. Let P be accegttable by (t) otl, tt?L open Riemann surfo,ce R

«nd tt, a P -solution in a non,-cotnpact region L . If u aani,shes on 0L cm,cl

'irt, L fu a co?Lstct.ilt II , th,en It - 0

Proof: Bv lemtna 1 both LL and -u

7. By }larnack's inequalities (Cf. [1])
identicall;r zero. In the former case

are non-positive in L .

eitlrer (Dp(L , {3) is positive or

(e)

fn
SO

is

Iim- 
@P(z ' 0) 

- ,

13 0)

fact, if it 'were smaller than one v'e could choose a const,ant a , a 2 I .

that the function xop(L, B) belongs to the family Io(L) in (a). This
a contradiction with the definition of op(L , B) .

If in the latter case the non-compact region Z is of the form R - E ,

K a compact region, then its ideal boundarf is for everv 1( the same

as the one of A. It would be natural to expect that the vanishing of
ap(R - K , P) s.ould not depend on the particular region K. We can.

in fact, proYe eYen little rnore.

Theorem 3. Let P be acceptable by (!) on un open, Riemann surfuce R .

Then the following statements are equ'iaalent'.

(a) Ior eaerA conxp&ct regi,on K, c,tp(R-K,0) :0.
(b) Ior som.e cornpa,ct regi,on K , otp(R - K , 0\ :0 .
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(c) Let L be a non-cornpact regi,on and, c a non-negatiae constant. Then
eaery P -solution u in L for which ula is bound,ed, from aboae

in L and, which satisfies u ! ca om 0L must also sati,sfy u ! co
i,n L.

Proof: (a) +.(c): Let I{ beacompactregion, RcR-Z.Then
(10) 0{ap(L, p)<ap(R-K, p):0.
lf ulr» '< M in L , we have bv the definition of ar(L) and by (6)

u < f,I atp(L): M ap(L , AL) .

Therefore by lemma I
tr.!cotp(L,0L)!ca.

(c) >(b): R-R is a non-compact region and rop(.B- I{, il:A
on AK.

(b)+(a): Leb K beacompactregionwith,r,rp(-B-K, p) :0 and
let Kl be another compact region. There exists a compact region Kz
containing both 1{ anci Ii, . For R - K, rre have

(ll) 0 <o:r(fi - Kr, §)Sa+(R- K,0) : O.

If now ap(R - K, , §) 7 0 , then we could by (9) find a constant ;v ,

| < a 4 2, so that the P -subelliptic function uo : xap(R - Kr, fr) - ot

is positive at some point eo € -E - R, brld, is non-positive on OK, . Nlore-
over zr, ( a.r . So zo belongs by (+) to the Perron family ?o(R - Iiz)
and is positive at some point ao eR -.K, which is impossible b1' (11).
Therefore we must have cor(-B - Kr, f) - 0 .

The theorem is thus proved.
Notice that if ro is not a P -solution then the statements of theorem

3 can be shorvn to be equivalent to the vanishing of ru"(-R) (Cf. 1211.

8. The existence of a P -solution in a non-compact region L rvith
given, suitable bounded, continuous bounclarv values on AL carl llo\y
be shown in the usual rvav.

Lemma 4. Let P be uccepitable by @ o?L an open. Rien«,rr,ru surfuce R
«ncl L q, non-conxpact regicttr,. Let f be a contirtuous ftuzctioll o?L aL so

that lfi l. < M < a . Tlten there erists eructly one P -solution u in, L
uith u, : f on 0L antl

',tr,i ! .ll[ ar(L , 0L)

itt, L.
Proof: By lemma 2 there exists at most one such P -solution. Let us

consider a family X/L) of such P -subelliptic functions u in L for u,hich
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u { M ar(L , OL) , lim a(z) { f@o) .

FÅL) is a Perron family, -rr ,.r*rl"uä,"r,y(Z) . So

u:sup{ulaelf&)}
is a P -solution.

In order to see bhat u has the right boundary values rve take a point
zo e 0L and a continuous function g on the boundarl' of L fl (V , zo)

so that g(zo):f(zo),-M@p(L,AD<S<f on ALnV- and g:
-M ap(L , 0L) in .L O äZ. Then the functio\ us t

". _ I -XI op(L, 0L) in L - tr/

"o- | rornr(il in LfiY
belongs to Fy@). Therefore

lim tr.(.2) }lim uo@) : f(zr) .
a+i, z+zo

As in verifying the boundan- r.alues of op(L , fi) in 5 u-e see that

*"0' <fzo)'

So a has the right bounclary values on 0L . By constrrrction

-nI op(L, AL) < u { XI c,tp(L, 0L)

s,hich proYes the result.
Notice fhat fla is bouncled if AL is cornpact anci / is bounclecl. If

/ is non-negative, then 0 e Ff@) ancl lc , too, is non-r-regative.

3. On singular P -solutions

9. Let R be an open Riernann surftrce. \Ye exrrnrine if there exists
on -E a P -solution rrith a given behaviour on the icleal boundary. This
problem can then be usecl in the stucl;. of our maiu problem.

TheOrem 5. Let P be ctccept«.ble by (t) oil e,1L open Riemann surface R .

Let R be d,io"ided by cr, contptctct nnctlyt,ic cu,r'L*e l into ttL'o parts R, and, R,
so that

(12) op(Rr, T) < o
,in Rr. Let moreoaer the furctions ui be P -solutiotr,s ort, Ri und, continu-
ouso?L f ,,i:I,2.?henthereeristsotr, R eractlyone P-solution u,
ui,th
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(13) :,uo-uij{Mop(Ri, f), i:I,2
for a constant II .

Proof: In the following the index i alu-a;''s takes values I and 2. Let
K be a regular region containing l- so that 0K: lcrU k2, lt; c A;.

We first sholr. the uniqueness. If t.' and u" are trvo such functions
and z:16'-td"rtt,etl

lui { 2M atp(R, , f) .

\\'e denote ii? : slrp 1 . Th"r, m { 2M and bv lemrna I
t'' (''

1(.{mop(Ri, f)

If 'm> 0.

{m on k.,

'Iherefore xL < tni,o in K and especialll on .f , rrhich is impossible. So

u { 0 on l- aucl by lemma I on -B , too. Bv replacing tr rvith -?, 11'e

see that, also -u { 0 on -rB. This gives the uniqueness.
Now we tnrn to the existence of u,r. First rve change the situation so

that the given functions vanish on f.
By lemma 4 there exists a P -solution zi on ,8, rvith a,l : u, on

J- and

(11) i"',1 < a otp(Rr, l)

in -B; for a constant a. The function ai:ui-ul; is a P-solution
in Ri which r.anishes on f .

Let then t: be a P -solution in Ä, rvith bounclar-v values r,;p(Rru K, k2)

on -f so that z' is non-negative and bounclecl from above b1- r,rp(-R, , l') .

Because

(15) ap(Rru I{ , kz) { op(Rr. f) < t't

in -8, , a { tr) on l- . Therefore

(16) O<u<r,tr(R,. f)

in -8, ancl especiall-v

(17) ulop(RruÄ. Ä',)

in Rzn R b1' the strong maximum 1:rinciple.
Using c and the o -me&sures u'e cortstruct tl-o P -superelliptic func-

tions on ,R . Let g be the following function

Ånn. Acacl. Sci. Fe'nnicr't'
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I ,'ro(R, ,

Clearly g is positive and
Let then b be a positive

b(,

f) { r,tp{Rru K , kr) in Ar U f
f)+u in Rz.

continuous in R aucl a P -solution irl
constant, so that

)n RiR, ancl

b(or(Rru I{ , k) - u) 2 luri

in -K O,E, . This is possible by (I2), (17) and because o; is a P-solution
in -E; vanishing on l' . Now the functions h, : bg I ui and hr: bg - a,

are P -superelliptic on -B . This is obvious at every point z e Ri . If
z € l- ancl (V , z) is a parametric disc, V c K, then

(18) hi {b(o f or(Rru K , kz))

in 7 lrf, the construction of g and the choice of b . The upper bountl
in (I8) is P -supereiliptic in 7 . Therefore

It;(z) : b(r»(z) { r'tp(Rru Ii , k, , z)

> I!,1b1a f co.(-B, U K, kr)), z)

> l!,1ht , z1

u.hich shou,s the P -superellipticr'.
Let us now consider the family ? of

R which are bounded from above b-v hl
F is a Perron famih,. So

%o:suP{uiueI}
is a P -solution in Ii. It has the requirecl behaviour because bv (14),

(15) and (16) u.e have on one hancl

xto-'tti thr.- t', - n', 4 (2b t o)rtr(R,, 1-)

and on the other hancl

%o- %i2 -hr- l)i - ul > -1zU - «) rop(R;, l).

This proves the theorem.
Notice that theorem 5 is also valid if ,8, is a compact region, 1Rr: 1' ,

provided that arp(1i, , J-) is replaced b-v orp(-Br) .

10. Let .E be a Riemanu surface and let a positi'r,'e singularity §(+)(z , zo)

be given at a point zo € R. Using theorem 5 'tl'e can nou' form a Irecessary

and sufficient condition for the existence of a positive P -solution on -l?

P -subelliptic functions I.L irr
We notice that -hz e F arlcl
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with the singularity 6(+) ,1 zo . This condition is related to the assump-
tion (f2). We are also able to present two formulations to this condition.

Theorem 6. Let R be a R'i,em,ann surface an,cl, P an acteptable d,ensi,ty.

The following statements are equiaalent:
(a) There erists on R a posi,tiae P -solutiom u,ith a giaen posi,tiae singu-

larity.
{b) There euist on R two ytosit'i,ue li,nearly i,nd,epend,ent P -sugterelli'7tti,c

functions.
(c) There erists ott R a positi,ue P -superellipti,c functi,on which is not

a P -solution.
Proof: (a) > (b): Let P be acceptable by ro and. u(2, zo) be the

positive P -solution with the given positive singularity at zo. We choose

a constant c so that on the boundary of a parametric disc (V , zo)

The function

u,(z , za) I cco(z) .

n.t n\ | rnin (u(, , uo) , c@(e)) if z * zo
u\4) I

I cco(zo) if z : zo

is positive and P -superelliptic on -E . In a neighbourhood of zs e 'u :
c@<u andon 0Vra:ulcro.Therefore u and o arelinearlyinde-
pendent.

(b) + (c): If ru, and uz are positive linearly independent P -super-
elliptic functions on "8, then there exists a positive constant c so that
czc, has both greater and smaller values than z, . The function

o : min (cur, ur)

is positive and P -superelliptic on -B . If o rvere a P -solution, the func-
tion lt: u -'uz would be P -subelliptic. Because u is non-positive,
u(zr):0 and u(zr) 10 at some points 21 2 z2 € -R, this is a contra-
diction with the maximum principle. So o is not a P -solution.

(c) > (a): We first suppose that .B is open. Leb a be the positive
P -superelliptic function which is not a P -solution. By lemma 3.3.2 in

lll ar cannot fail to be a P -solution only at one point. So, if the positive
singularity §(+) is given at zo e R, there exists a parametric disc Z so

that zo € 7 and a; fails to be a P -solution outsicle tr-' . Therefore

(19) op(R - V , AV) < cop(-E - I'') .1 ,, .

In V we can form a P -solution IL'o rvith the singularity §(+) at, zo

(Cf. t3]). NowweusetheoremSinthecase I: A\r, Rt: R - tr, Rz:
V - {"r}, %L:0 and u,r:1110. By (t9) rve get a P -solution uo(2, zo)

in -B - {zo} so that in V
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The function uo :
R-{ro}.

Let f be the
rvhich are bounded
and ? is seen to

and. in

( 20)

luo - %;i < lt atp(Ti - [ro] , AY) - JVI op(V)

R-V
iuol=lto:p{R V, AY)

uo * Mu is a positive P -superelliptic function in

family of those P -subelliptic functions in R - {ro}
from above b5r ns . The function max (uo , 0) e Il

be a Perron familr,. Therefore

u__supfu lue?j
isa P-solutionin -B-{zo} with max(20,0) 

=uluo.So 
z isposi-

tive by Harnack's inequalities and has the singularity §(+) at zo.

If -B is closed. the proof is the same except that atp(R - V , 0V) is
replaced by ap(R - Y) .

The proof is thus complete.
Corollary 7, Let P be acceptable by @ om cen open R'i,emann surface R .

If ap(R - K, p) > 0 for some compact regiom K, then the statemenfs (a),

(b) ancl, (c) of theorem 6 are aalid, on R .

Proof: By (6) and theorem 3

ep(R - V, An 1 oso{R - Y) I at

for every parametric clisc Z . Nou' v'e get the statement (a) quite as in
the last part of the previous proof b), replacing (tg) by (21). This implies
then (b) and (c) by theorem 6.

It is to be noticed that the condition of corollary 7 is not a necessary

one.

ll. In the preceding paragra,ph we considered only positive singular'-
ities. The situation is easily generalised.

Theorem 8. Let R be a Ri,emann surface and, P an acoeptable ilensi,ty'

Let there be gi,uen at m points zi s'ingularities Si(z , z;) of the form (2).

If one of the statements (a)-(c) of theorem 6 or the conditions of corol,lary 7

are ual,id, then there erists a P -solut'iott uith these si,ngulari,t'i'es on R .

Proof: We express each singularit;' in the form S,(z , zr): §!+)12 , zr) -
Sl-)@ , zr) where §[+) and §!-) ur" positive singularities. The assump-
tions guarantee, by theorem 6 and corollary 7, the existence of P -solu-

tions z(+) and. u\-) with singularities §l*) and S1-) 
""sp""tively 

at the
point 2,,'i, : 1,...,m. The P -solution

u:i1u\+)-u\)1
has the required properties.

(21)
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12. We now treat the existence of the Green's functiott on l? for an

acceptable density P. L. Myrberg has proved in [a] that all non-negative
clensities P,P f 0, are completely acceptable. All acceptable den-

sities, however, are not completely acceptable (Cf. [5]). It rvas shou'n
in [1] and pl fhaf a density P is completely acceptable if either there
exists an acceptable density 8, Q=P,QfP, or if R is open and

P is acceptable by ro so that the a -measure of the ideal boundary of -B

is positive. Now we get directly from theorem 6 a necessary and sufficient
condition, even in two formulations, for a densify P to be completely
acceptable.

Theorem 9. Let P be a d,ensi,ty on a Riemann surface R . Thett, the

following staternents ure equ'iualent:
(a) P i,s completely acceptable.

(b) There erist on R two Ttos'itiae l'ineurly i,ndepenclent P -superellipttic

functions.
(c) There erists on R cr, Ttositiae P -sttperelliptic fitnction dtich is not

a P -solution.
Proof: We have only to shou- that (c) implies (a). 81- theorem 6, (c)

implies the existence of a positive P -solution l-ith a logarithmic sin-

gularity. On the other hancl the Green's function can be clefined as a mini-
mum of such functions (Cf. pl and l2l). This proYes the theorem.

This result, implies those mentioned earlier &s one easily notices.
Finally we remark that the situation now is not the same as for har-

monic functions even if theorems 3 and 9 together with corollary 7 seem

to indicate it. In fact, Royden has shown in [7] that a non-negative density
P , P f 0 , u'hich is always completelv acceptable, may have a vanishing
l-measure of the ideal bounclary evell ou a hyperbolic surface.

University of Helsinki
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