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Extension oi boundary homeomorphisms of discrete groups
of the unit disk

fn this J)irper \\'e consiclc,r diserete groups of the unit disk, i.e. groups
rvhose clernetrts are tlirectlv or inclirectl.l' conformal self-equivalences of
the closed unit clisl< EL : {z € C : E < 1}, acting discontinuously in the
open unit disk ,O: {z €C: i:j < 1}. If -F ancl I' are tryo such groups
and E: F *-> lt'' ir.n isomorphism, it is said to be geometric if there is a
homeomorpirisrn f' of the open tnit disk O such that (l) below is true.

(r) ,l'(T(.,')) '='.= ,t {L')(/(*')) {or: ,r € E ancl T € r
In this crrs(, §() sa1' that / induces q: .

If T is r.u htperbolic trer,n-qfonnation of the unit disk u.e clenote by
Ax(?) tlrc ltr'perbolic line joirring the attractive ancl the repelling fixecl
point ofi ? inclucling tlre endpoints. It ? is parabolic, Ax(?) is also
definecl; it consists of ono point onl5,, of the fixed point of T . Then (2)
belorv is the axis couclitiou for g . It is ahvavs fulfilled if g is geometric.

(z) Ax(f) «nd Ax(§) ilttersect if ancl, only if Ax(p(?)) ancl Ax(q(S))
ilr,tersect, T, 8 e F hyperbolic or parnbolic.

We shall slrorv that condition (2) iruplies the existence of a homeo-
morphism of ,E inducing E if I is a group rvhose limit set contains
more than tl,o points, i.e. if I cotrtains a free subgroup tvith tu,o gener-
tr,tors (cf. p. 15). This is previously knox'n for a large class of groups
(cf. Tukia [4] pp. 32-33) inclutling those not containing reflections.

It ryas also shorvn in [4] (pp. 3l-32) that, if ? and E' €]re groups
of the first kincl and / is a homeomorphism of ,E inducing g, then /
admits a continuous extension to a homeornorphism g of the closed
unit rlisk .81 . The restriction h : (t i §1 of g to the unit circle 19 :
{zeC: i;; : I} is a ltotneotnorphisrn of ,S1 such that the follou,ing is
t,rue.

It(T'(.r)) .,,-= q:(l\)(/e(.r)) fur .r: € §1 a,rlcl T e I(3)

fn genera,l if q' : F -> .F" is an isomorpliisrn of cliscrete groups of the unit
ctisk, not necessarily of the first kincl, a homeomorphism å. : §1 -+ §1 of
tlre nnit circle is callerl a bounclary ltonteomorphism, of .&' ancl ,ä" in-
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ducing E if it fLrlfils (3). We remark thut h is uni<1uel.r' <letermineil b.r

E only if -F ancl F' are of the first kind.
The existence of a bouudary homeomorphism irtclucing q ancl tli<'

axis condition (2) lbr g are equivalent if the groups are of tl"re first liitrrl
but this is not true in general. The axis coudition is l-eaker arr<l is implicd
by the existence of a bounclary homeomorphisrn. Agaiu, as u'e have shox'll
above, with Fuchsian groups of the first kind, a boundarl' homeomorphisrr
can always be extended to a homeomorphism o{'the closecl unit disk Z'1

that induces q . Our second result u,ill bo (cf. theoretn 3 p. I 2 later')

that this is true also for groups of the seconcl kilc"l.

We shall use notation of [a] (cf. especia,llS'section 1.4). All the reibr-
ences, too, &re to fa] except, rvhen otherrvise statecl. \1:e remark that it
is not possible to read this paper r,vithout, the huou'leclge of [a.].

The types of boundary ot
of the unit t{isk" Ilre denote

the set, of linlit points of f

a pointed surfaoo. Lct
by

lim(r)

and. b.v

lle a discrete -^rotii r

L(F)

the union of lirn(/) and the endpoints of the axes of reflections o{ l:' .

In [a] we assumed that a discrete group .P of the unit disk actecl itr

the open unit disk ,E and t'he quotient space ,S v'as Eltr'. As a conse-

quence § hacl a boundary if and only if -F liad reflections. fn the pres-

ent case we allou. for the possibility of -P acting in a slightll- larger spacc

E' where E c E'c,01\I(7,) ancl ,B'n 
^91 

is open in §1 . \\:hen rve

say that I acts in D' rve ahval's meirn that F acts discontinuouslv
ir D' . Thus the quotient space E'f ? has ts-o kirtds of bounclary- points:
those that belong to (-0"\r)/n ancl the quotient sets of points u in
E that are or the axes of reflections of ,F . If n-e have Ito knol'ledgo
about the group .F' , we cannot, as a lule (cf. theorem 2 later'), knorr
whether a boundary point is in the set (Z'\r')/r' or not. It isperfectll'
possible to have homeomorphic pointed surfaces S : EIF and §' : E'lI'
where -ä' has reflections and 1' not'. That is rvhy s'e divide the boundarr-
of § into trvo distinct sets B, and B, rvhere B, originates from the
reflections of -[ and B, is the quotient set (.O'\r')il. We call B, t'he

reflective boundary of ,S and Bz the ordinarl' boundarl' of §. Thus
the group P cletermines a pointed surface clenoted (§ , B, , n) =--

(Su,Bs,nr) (cf. the definition of (So,zr) on pp. 10-11 in [4] ri'hen

? acts in ,E').



[.'ui<xt '['t-ti t-.\" I']xtt"rrsiorr of' ]:orrntlarv homeornorphisrns of' r[isr:r.et,e groups

Tlrns rve are lecl to consider triples of the form (S , B , n) where s
is a, countable bordered surfaee, B a union of the components of the
boundarv aB of § and z : § -> N a mapping witlt cliscrete support,
2 ; - {.i: : rr.(r:) )' I} clisjoint from B . The surface § rl1ay or may not

hnvei a conformill structure. Given such a triple (S . B , ru) we ask i{'
tlrere exists a tliscrete group -fl of the unit disk acting in E' , E C E' c
B'. 1,(tr) such that (.q, B ,n): (E'iF , (Z'\r)/1. izo) rvhere nr(ct r)
rlepcnrls on thc strrbilizer of r (cf. [+] pp. 10- 1I). This crrn be ansu,erecl
casilv bv consirlerations of l4]. \Ye remark that the analogies of propo-
sition 2.4 tr,ncl corollnries 2.4.1,2.4.2 and 2.4.3 in [a] hold also true for
ltoiirtetl surfaces of the form (§ , B , n). These together r-itir theorem 2.8
sltorv tha,t if B -,f. o , (§, B, ia) has a representation of the desired form.
'l'lris ca,n l-re seen as follorvs. We first consider the triple (ö'\rB , a , n) ,

§ eudow'ecl u'ith sorne conforrntil structure of a bordere«i Riemann sur-
face. The results mentionecl above shou- tirat this triple can be repre-
soirtcrl irr the fbrnr (Sr, o , rzp) 1or some cliscrete group of the unit disk.
,\ltel tlurt rve simplv arltl suitablv intervals of 51 to -E to form the space
P:' srrch that il'lF is conformallv equir.alent to § .

So far rve htrve not considered the set Z1\Z'. It is clear that itmay
tliffer fronr ther set L@) .When starting lvith a giyen cliscrete group F
of the unit rlisk it is rnost natural to consider the triple of the form
(§r., 8", ar.) l.here tr' u,cts in Z1\Z(n) . W" ask norr, given a pointed
srrrfirce (S , B , n) , it it can be represented in this forrn if rve do not cle-
nrantl conformal equivalence of the pointecl surfaces (S , B , n) and
(§p,-Bo,rio) . Sin-rple examples of the form (E' .E'".\E "l) where
D c E'C ,81 antl -D' is open in -El shor- that this is not always possible.
llut later l'e shirll shou' that rre calr clemand that l' ircts in .&' where
cl(.E'nS1) :51 , sqpl-rosilg B;=s.

The techr:ic1ue for proving the follorving tireolerns is basically the same
ir,s that rtsertl in [a'1. ifhus rve first consicler represeutations of pointed sur-
f rrces.

Representations for pointed surfaces. Let (S, B, rr) be a pointed
surfäce such that all boundary contponents of S are included in B , i.e.
B : a§' . Å r'epresentation of (§ , B , rz) is defined as follows. Let A
lre a plane rlomain bounded b5, a Jorclan crlrve J . Let E' be a subset
of ,{ U J trith A C E' . Further, \re suppose that trvo sets of intervals
of ,/ are given; let these be {It},i €-K, ald {Ii\, j eL, (KllL:o).
'['he interyals mav be opeu, half-open or closed (but r-rot points) ancl
their union rvill be E' n J . 1\'e require that:

(;) /ifi li
,i €/iu r,.

rs either entpty or z,s e, colwrto?r, r:ttrlprtitzt, i + j ,i:
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(i,i,) I r, , l; € Ii , its (t, cottlpottettt ,! tli' n ./ )

endpo'itt,ts el'e re'motsecl.

(i,ii) If ;t: is ct,ll enrlpoitrt o,f' I, , i e l-, . ,i' €

fo, aruother Ii,j €1(UL,:re I.i

(t,z:) Ii,Le L,'interse:cts tritlt «t mrsst olt('

The set of yertices i-*

T'- U(1it1 /11 .i ,'.j .i ,i €

Let

i:[-,f l;*-> U l,
ie r, ;e I,

he a ltortret)rilorphisrn s111rh thnt

?'2 ;-:: id ,

i,(I i) -.:- I j firr: atrotlr.er' ,i € l, (./

i,,,T.;:id.

.. -U /, rrlt,r n. fl,r- {qloss'ible)

l;, tltr'tt il r,t tn lttdpoittt

t; ,i

t,

i ,,i e. l,

i) n'lrt''rr i € l, .

Let, S' be the surface obtairtc,rl {i'oni -ii' br- itlentif.ling ,r' a.nt1 f(,t:)
for *€U,.r,fi. If there is rr houreouorphisnt /:§'-+§ such that
ini: f@(V)) rvhen ll; i E'--> §' is the cartortical proje«:tion, lt'e sav that
(E' ,i,,f) is a representation for (§,.B,'ii). \\c remrr,rh tJrat the inter-
vals Ir,ie I{UL, as'r,r,ell as t}re sc'ts f/,},igf, n,nrl {Ij),.ieK,
are uniquelv determined b5. (E' , i , f) .

Theorem 7, Let (S , B , n) be «, poinlrrl *urfrrcc .srrch. thu,l B is the

bound,ary of S and, S non-compnct or 13 - o . I'hr:n, tltert: i's a, rp.'presetL-

tati,on (E',i,f) ,f (S,B,n) u:here EcE'ayr,Ii' i.: rtJtan,in E',
and. such tltat any two interuals i,elentifiel (ry i hqra rrltr«l k'tt,gllt. If tlte

pointed, su,rface (§, B, n) is not equ,ir:«lrtnl tr, 1tr. o. 1) trr »t«ll hesides

a,ssrcrrbe that E' (1 ,91 is den,se fri. Å"1 .

We shall suppose that ff -:., s for otherrrisc tht'orcttr I is it c'oltse-

quence of proposition 2.7 in [a'l. \\'er cau illso irssunte that ,§ is trnt com-
pact for in 1,his case theorem l is casilv seen to bt' true bv usin.g- the classi-

fication theorems for compact bolclererl surfaccs. \\'c shrill l'onsicler se-

quences Krc Krc... sat,isfviug thc follou'ins corrrliliotts.

y)

(r) §*-U-Ki.

I(i O a§ ts {-t, finite ilniott o,f ,Jrtrr'{(tir

ltrl rcl" e t'r:r'l ,§ 1{ ås tt t'J'« r: r: (,,1' § $t,Loh tlx t l"

r{ t'C,§ oi' ,l rtrrtln,tt r t( ?'?'{,.\ ,,,1' ArJ .
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(iii) litc iut /i,r,,i > I .

(iu) The support of n d,oes not irutersecd toi,th thebound,«,ry of K,, i > 1 .

(u) Each cunpanent o/ cl(§\I(i) is non-com,puct, i > | .

(ai,) Each cont,ponent o/ cl(§\I{i) thctt doe.s n'ot intersect wi,th B ltas

in comm,on, tttith K; eractly one Jorilan utrt'e.

(uii) IJ (t is a component o/ cl(§\1(i) intersecting u'ith 13 then errclt

contponent of C {1 Kt i,s «, Jord,an an'c tthose endpoints lie on B .

An exlranstion fulfrlhng condrtions (i)-(r,ii) is callecl a, canonical et-
haustion, of (§ , B, z) . We shoulcl verify that such exhaustions exist.
The construction method is that of Ahlfors-Sario [1] ch. I section 29 for
non-compact snrfaces 'u,ithout boundar5 . It is easy to see that there exist
exhaustions satisf;ring (i)-("). The condition (vi) is then added like in
Ahlfors-Sario ch. 1 29 C. (If a component C of cllS\I(i) has t'u,o or
more Jordalr curtr es in common rvith K; their number can be reduced
rrs follorvs. Let Jr ancl Jz be tu'o Jorcla,n curves in C i Kt. Connect
them u.ith :r Jor.lan arc ./ n,ith one endpoint, in ./, and the other in
Jr, all innet yroints of J lJ.ing in §'r,Ii;. Non, .r isslightlyenlargened
to a strip ,4 rrirose boundary in cl(§'1 K;) toget,hel rvith subarcs of "I,
rr,ncl ,.r, for:m a ne*'Jordan curve J'. Norv IitU A has feu'er Jordan
curries in cornnron u,ith cl(§\(I{, U.4)) than Ji;) . Similarly, if an ex-
haustion hr,li:. . . does not satisf;, (vii) we can proceed as follorvs.
Let, C ,C n I) .,, a, be a component, of cl(§\I(r) thich contains a

Jordan curve .J not intersecting u.ith B . lVe conrrect J by a Jordatr
arc to B . Tirel one endpoint of J' lies ou -B , the other lies on ./ ancl

the inner points belong to §\1(; . This arc J' is slightly enlargened
to a strip A u,hose boundary in §'\. Ili together rrith a subarc of ,I
is a Jordan arc t-hose endpoints lie on B . The uumber of Jordan currres

of cl(§\',(Iir U,.{)) in commonlvith -Iir U I is smaller than the number
of Jordan cur'\-es of cl(S ...lii) t,liat are iu cornnlon rvith l(;.

It is a collre(luence of (r'ii) thtrt each cotnpouent of bd(I(,) ,'i > I ,

iutcrsects rvith E unless it is contair.red in a comporlent of cl(S\.K;)
u'hose intersectioir rvith B is ernptr.. In particular there are arcs of bd(I{.)
that intersect rritlr" -B , since B is assurned to .be 

non-empty.
\Ye have in [4] treatecl the case of (^§ , B , ia) rvith B * a. (Cf. pro-

position 2.7 1t.21). To avoid repeating the argurnentation usecl there we

rlefine a ne\\-exhaustion K'rcK'rc... of (S,B,n) asr'vellasfor-
mulate a lenrtnir that is the form in thich \rre use proposition 2.7.

\Ve set

Ki r-- ./(1

K:-fr,U( U §j)
je/,j
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tyltere
rl,ith

, j e I, , ctre contitonetrts of cl(§ t\ K,) that, do not intersect

Lemma 7. Let C be «, circle arc orthogonal to SL in EL a,nd, let E'
be the closure of a aompon.ent of El\,,C . Let (S , B , n) be a pointed, sur-

facewith B homeomorphicto S1 . Let g:Cl{:v,y'j-rB beohom,eonrorythism

where r and, y are tke end,points of C . Then there is tt. reTtresen'tutio'n

(E',i,,f) ,f (S,B,tt,) wi,th g:f oklC uhen k is the canoniccr,l

'projection k: E" ---> E"fi , cl E" : E' and, cl(E" fi Sr) : ,l/ n $.

The validity of the above lemma follows from proposition 2.7. For,
according to this proposition, (S ,B,n) has a representation (Er,i,f)
u,here cl ,ä7, is homeomorl:hic to a closed disk from which an open disk
has been removed and the boundary of this removed disk corresponds
to B.

After that we begin the construction of the representation for
(§, B, ri) . This is done step by step constructing first a representation
(Ei,ii,fi,$,k) for (K:,aK; ,n1Kj),j>1. s'here \\-e have for
claritv rvritten the triple (Ei,ii,J) u* a cluintuple aucl u-here Si: Eiiii
and k; the canonical projection Z; -+ S; . Ås rre have alreatl3- observecl

I{i fi B * a . Using this resuit, and the classificatiou theorems for com-
pact borderecl surfaces \r'e sL'e that there is a representation (Er,ir,fr,
§, , kr) for (KL, AKt, rt, 

" 
Kr) satisf;'ing the follorving conditions.

(i) E, is a closed, Jordun tlonrnitt, bounded, by S' unil cr, set of clisjoint
cl.osecl circle arcs orthogonctl to §1 .

(ii,) kltflt(Krn B) 'is ct set of dis.jr-,int closecl interz,nls of Sr .

(iii) Ar yil(a/(,\A) is a ilisjoint set of operu or cl"osed circle u.rcs ortho'
gonal to SL uhose endryoints belong to kr'fr'(B) unless it.c endpoints rtre

identifiecl bA i, .

(i,u) ?he'interuals i.clenti.fied, by i, a're either closerl cit'cle «rcs ortlt'ogonal

to S1 whose endpo'ittts belong to krrflt(B) or closed inter"trl.s of S1 at lenst

one endlto,int of which belongs to kr'fr'(B). The otlier enclpoint iJ it does

not belong to kltftl(B) belongs either to tlte set of rcrtices of tlte representu-

tion (to the set V ,p.6) or is an ettdpoi,nt of the circle are orthogortctl to St
whose endpoi,nts are iclentified by iL .

After that lrre extencl (8, , i, , f1 , 51, kr) to a, rellreselltation of
(I{' , AK' , n I K') n'liere K' is Ii, added by a compotrent, K' of
cl(I(i\f,) . We first consicler the case in u-hich this component
is compact. We then coustruct & represent,ation (E' , i'' , f' , S' , k')
of (K' , AK' ,n, I K") satisf-ving conrlitions similar to (i)--(iv). Besicles rve

§;
B.
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may assume that ElnE' is a circle arc orthogonal to S1 and that
frkrl Ern E' : f"k" I Ern E' . I{ow- u,e define the re.presentation (E' ,

i' ,f' , S' ,ll) with D' : EtU E" where we set,

2i' I clomain of ,i, : ;r.
i' 1 domain of i" : i" .

Besides there may be sets of circle arcs IuCE, anrl .IxCE",å€J,
orthogonal to S1 such that flktgk):f"lt"(Jt). Then x'e clefine ,i' or
[-l6ua(.Ir U /r) in such a way that the resulting quotierrt sptrce is homeo-
morphic to I{' bv a horneomorphism /'.

If the component ff" added to K, is not compact, ri-e obtain b1' tlie
above lemma I a representation for 1(" . Other details are similar and
are omitted. There are only a finite number of cornponents to be aclded
to K, to obtain K, , so after a finit'e number of steps rr.e have a, repre-
sentation (ilr,ir,f2,S2,lc2) for 6;,AK;,nilij1 . It should be re-
marked that this representation fulfils conditions sinrilar to (i)-(iv) ex-
cept that we must remember that non-compact components may be added
to Kr. Therefore \4.e add to conditions (i)-(iv) the conclition (v). Let
,I and J be trvo intervals of §1 identified bv i, . liiren 1 may also be
open or half-open.

(u) If I is ha,lf-o1ten, the end,gtoint belonging to it i.s r,it'lter u nerticr: of
tlte representation or belong.s to tlt,e set k;'f;'(B).

The above discussiou shot's that we cart form a selies of represeirta-
tions (8.,i^,f.,5.,1t,1 for (K:,AK^,n,Iii1,ir. )' I so that con-
ditions sirnilar to (i)-(v) holcl true and that for ri )' f

E._rc E^,
'i^ | domain of i^-, : in't ,

å i §"-' :,f*; .

Besides \Ye may clemancl:

(ui) The diameter of contponerttt of E*' Eu-t q l.ir. tt ).,'2.

Then the representation (E' , i , f) is defined as folkrrvs.

rloma'imf

öc

il' :-*. u Ej,
.i:1

i:--:-U
J:1

,f i,j --
,*qj - fi

domairu

d,orrt,{ti,tt, ,f ij ,

il
fi
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The triple is not yet the representation u,e have sought. X'irst of all it
may be t}rlat E + E' . This is remedied by substituting for every circle arc

orthogonal to S1 belonging to the boundary of E' the corresponding
arc of §1 and modifying i suitabl5r. We suppose this is clone. After that
cl(E'fi §1) : 51 but, trvo intervals identified by i may not have equal
length. Horvever, by the following lemma 2, tlne representatiot (E , i, , f)
can be replacecl by another that has this property.

Lemma 2. Let (E',i,?), EcE'cUt, be ct represeu'tcttion for son'te

pointed. surfa,ce (B , B , n) . Then there is ct, lrcnteontorplt,isttt, f of Sr such

that if I olzd J are tu:o 'intertals iclentiJi,ecl by i then f(I) artcl f(J)
haae equil, len,,qtlt.

Proof: Let, Y be the set, of vertices of the representation and let Iu , J * '
kek, i(Io):Jn, be the intervals of .E'n§1\I/ iclentified by i. \\'e
clroose a k €,I( ancl define a homeomorphism /* t §t --> §1 as follorvs. Fo
simplicity \r'e assume that the endpoints of ,Ir are eo ancl e"i aud those
of Jr, e'' anrl n{'.-r)i,o<fr<(n-A) {t. Let fn:icl, restrictecltothe
lorver half of y 1o of the crcle. Let /r | (exp o, exp ea) be the linear
stretch to the interval (expo, exp (.u-ly)il2) ,fk i (exp (z-y)f , exp zi)
be the lineal stretch to the interval (exp (z-(rr-f7) 2)i,expni,) and let

.fi restrictecl to (exp ra , exp (n-y)i,) be the rotation to the interval
(exp (rfy)ii2. exp (n-@ly)12)o) . \Ye rema,rk that fr does not change

the lengths of the other intervals It,Jr,li +l,l e K, ancl that, the
differerrce betu'eren arc a- and arc fn(r) is notmorethan 112 ilength of Ir-
length of ./ri .

\\re shall denote this rnapping bf' Å . After that u'e choose another
index I € -[i antl define the mapping Å in t,he same malll]el' t'ith respect
totheintervals Å(1,) antl frQi. \lre continue in tliis rvrrr'. ff ,I( is finitr-'.
Ii: {r1. . . Å';l 

'
g*:f*0...ofr.

rvill be the retluired homeomorphism. Otherrvise thele rvill bc a linrit
Iirnn.--g,. tlrrrt is the required homeornorphism.

Theorem 2, Let (§, B , n) be a poirLted sur.face suclt, tltctt S'r.B is nort,-

conpact. Tlren, it can be, reytresertteil, up to cr, ltomeonorpltisttt, 'in the forrn
(§",B",rtp) by tne.ans of a disuete groLlp F of tlte unit disk «cting in,rt
set E' ,E c E'C 7t\L(1) , Z' open in EL. Jlorer.tt:er, rce co,ll ctss'ttltt(l

that ei,ther E'nff-q or c7(E'fiSr) :§t.,I/linrF contuittsrnorethctn
t'woytoi,nts. lim,F:SL if B:s. In,rdditiott,,/ aS:B,i.e. P doe.s

not conta.in reflc.ctiotts u,e rnall ctss'tutlt; thot I is fornecl u.s « free com'bin«-

t'ion of cyclic grou,,p.s.

Ann. Acad. lSci. Il'ennica:
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In case B : AS , the proof of theorem 2 is quite straightforr.va,rcl.
once \ye have theorem 1. It is a repetition of the arguments used to prove
theorern 2.8 p. 2ö in [4]. We shall not do it here again. Only the case rvith
lim -F' containing at most trvo points requires a comment. But before,

u'e do this rr,e troat the case rrith non-empty reflective boundarr,.
Let ("§ , B , ia) be a pointed surface u,it,h AB + 8. !1'e represent the

triple (.9, ä§, z I int §) b), *"trr" of a discrete group Iu o{ the unit,
disk acting in. E' , E C E' C E' ,,8' open in .81 , where cl(E' fi §1) _-- §1 .

The conformal structure of iS is clefinecl to be eqtral u.ith t'hat of §"" :
E'17" . This can be done since rve know that ä.S is non-empt.v.Let Br==
p-'(B) u,hen p : E' ---> § is the canonical projection. I)efine

§*: (z'll E')l@' 6§r\..-Br)

i.e. rve take trro copies of E' and identify the bounclary point-< .r' for
which p@)€a§\B. This is a borderecl surface r,vhose boundary con-
sists of trvo copies of B, denotecl B* : B, L[ B, . A rnapping tz* : §* -+ N
is tlefinerl b). setting zx("r:) : n(p(p*("v)) if r e E' fl S1 ancl : I otherl"he
lvherr p* : S* -- E' is the cancnical projection. Since either B* I s o'-

§* is non-cornpact, there is by the first part of tlie proof of theorem 2 a dis-
crete group -F' acting in E" , E C E" a gt '.,tr(I') such that (§",, Br,, tt,r.)
: (61'r ,B*,n*). trIie denote the projection E" -+S* by p' . It may be
that the combined projection pt: p o It* o p' is not, a local conformal
equivalence at points of pt'(lzl U (a§\B)) but the conformal structure
of E" can be reclefined so that it is. Then the horneomorphisms f of E"
for rvhich the trinngle

f
E', --> E"

.1)r - '' P,
§

commutes, fbrrr br- analogv of corolltrrr- 2.4. t iu [1,] fol the borclererl case

a, group -F, of conformal self-equivalences of E" so that (,-§o,, Bp. rrr) is
erluivalent,, up to a homeornorphism, to (§ , .B , rz) .

If .F contains ir, free subgroup n'ith tl-o generators then E' nrinus
its boundar), is conformall.r- equivalent to .E . So \\'e m&v assrtme that
it is Z atlcleci 'r,r,ith il union o{ intervals of §1 . floreover it is seen that
E' n Sr is enrpt.r' jf and oni;' if lim -F is rlense irr §1 , for the emptiness
of E" fl B1 is ecprivtrlent t,o the emptiness of B, ancl thus with the empti-
ness of B* ancl B .If lim -f, is not cleuse in §1 rve see that E' n SL :
p*-'(B*) : pl'(B) is dense in ,-91 .

After that rve treat the case in rvhich .E cloes not, contain a free sub-
group r,yith tu,o generators. If B : ä^9 , then the discussion in theorem
2.8 p. 25 in [a] shol,s that this can happet if and onl;- if lrai : o ancl
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^S\B is a sphere punctured in two points or a projective plane punc-
tured. in one point or of the type (8, a,%) v'here )nl : t ot ?L : 1*,y)
with n(r):n(y):2. Supposethenthat a§\B*a.Tf lrrl:s n'e
see that, (B\B ,a,n) is homeomorphic either to the complex plane
lvith the open unit disk removed or with the strip {a€C o{u <1}.
If lnl *a, (§\B ,a,n) is homeomorphic to the half plane {z €C:
!/>oj with lrrl:{o} or i"i:{i} and n(i):2 or n l:{-1,I}
ivith 'ru (- l) : n (l) : 2. In any case lve see that the terrns of the theorem
can be met.

The boundary homeomorphism. fn this section we discuss the case <-rf

a boundary homeomorphism inclucing an isomorphism E : F ---> 7" be-
tween two discrete groups of the unib disk. First u.e forntulate a lemma
for use in theorem 3.

Lemma 3. Let q , F and, F' be a,s aboue o,ncl su,Ttpose thctt tr' a,cts
,in E' , E c E' c E' , E' open ,i,tr, El' and, that tr" «cts itt, E" , tt-:itll

si,milar progterties. If cl(E' n $) .-- ,Sr : cl(Z" O §1) or botlt g]"ol(ps flre
of the first lcind, and, i,f f : E' *> E" is o korueontorphisttt suclt thctt

(*) fQ@D : E(T)(f(;t:)) for .u e E' ctttd 1' e I
then f can be ertend,ed, to a lrcmeontorphisnt g : Er ---> Er such thctt, (*\ i.s

ualiclforall reEt,TeP if f isreplaced, g.

Proof : If -F and E' are of the second kind, proof is obvious. If ttrev
are of the first kind see l4l pp. 3l--112.

Theorem 3. Let I , F' and g' be n.s «boue and suprytose that there r.rists
a, bound,ary ho'meomorph'ism h : §1 -> §1 .satisfying

(r) h,(T(x)) - V$')tlt(r)) ,for .r' € ^S1 uild T e It

Thetr, there erists a homeomorpltisnt, f : Er -- Et efiencling lt suclt tlt«,t

(l) i,s ualid, for all x e Et and, 1' e tr' , h replucr:rl by f .

Proof : lVe assume that, EIF is non-comptrct. For fl I compact see

references t2]-t5]. In this case any isomorphisrn 7 is inchrcecl b;- a ho-
meomorphism /: E --> E that can be extenclecl to Et ([+] p. 3Z).

We first assume that n and consequentlv -F' cloes uot contain re-
flections. Let (§.,Br,nr) be the pointecl sulfaceclefineclb-v .E. acting
in ,'\Z(n') . By theorem 2 (Sr,,Br,nr) is up to tr homeornorphism
equivalent to a pointed surface (5" , B" , n"\ n-here G is either of the
first kind or it acts in t' , E c E' c EL , E' open in -D1 , and that
cl(E'fi §1) : §r and that it is formecl as a free cornbination of cyclic

Ann. Acarl. §ci. l'ennicir:
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groups. In both cases by corolla,ry 2.4.3 in [a] for bordered surfaces there
exists a homeomorphism g: E' --> .El\r(1') such that

g(T(*)) _-- ,r'(T)(g(r,) for :r: e H' and T €, G(2)

(3)

(if -F is of the first kind E' : il) u'here q' ; G --> -F is an isomorphism.
By lemma 3 g car, be extended to a iromeomorphism Et -'> E7 so that
(2) is satisfied. by all r € EL and f e G. Thus if rve replace F by G ,

E by VoE' and the boundary homeomorphism h by h og l,S1 we ma.r,

assume that the group in question is formed as a free combination of
cyclic groups. \Ye suppose this is done.

Let Ir, Dr ,7, , i e I , form .F as a free combination of cyclic groups
where these notations are used as it p. 16 of [4]. Then 'ive define l; , D: ,

T: , i eI , b5, means of the boundarv homeomorphism ä as was done
on pp. 34-35 of fal. The proof is complete if we can shorv that ?: , D: ,

T:,ie1, form indeed -F' as a free combination of cyclic groups. (The
details of defining the homeomorphism inducing E can then be found.
on p. 35 of [4] and can be readily modified to the present case.) Accord-
ing to the proof of theorem 2.6 in [a] this is equivalent x,ith the fact thnt
D' belorv is the fundamental domain for -F'. Let

f)' =- n D;
iel

TCF'

By theorem 2.6, D' is the fundanental domain for F' if and onlf if
D" is the whole open unit disk. Assume the contrarv and let z be an
elementof ,O\D". Thendefineachain {Di,},n }o, b;'(i) and(ii) p. t8
in [a]. Let {D"} ,n } o, be the chain defineil b5 D^: T.(D) it D::
g(T")(D') and D : l'1,., Di, n ) o . Since D is a fundamental domain
for -8' this chain con\rerges torviuds a point y of §1 . But then {Dj}
converges torvalcls the point h(u) it contracliction with the ciefinition of
{D:} .

After that we assume that there are leflections in the groups -E and
I' . Let, Eo be the closure of a component of p-'1S\aS; where 10 : U1\
Z(1) + § is the canonical projection. Clearly Eo is a hyperbolicall5,
convex, closed Jordan domain. \Ye may assume that there is a point
U € Eo O §1 since otherryise B woulcl be compact and this c&se was treated
in [a].

Next we define ,Ei which is a closure of a component of p'-l(S'\a8')
when p' : .41\r(1')-> §' is the canonical projection. Let L be a (closed)
hyperbolic line rvith the endpoint y such that a neighbourhood of y in
Z is contained in int EoU {y) . Lel L' be L tuansformed by ä . Then
-Ei shall be the closure of a component of _p'-'(,S'\ä,S') for rvhich a neigh-
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bourlrood of h(y) in Z' is contained in int E'rU {h(y)}. It is clear that
Z'i is uniquely determined regardless of the choice of y or L .

Suppose then that T e F is a reflection for rvhich Ax(?) \ Zo is
a line segment. We claim that Ax@Q\ n D', is also a line segment,.

This is obvious if there isapoint ye Ax(T) nU'on§l. If Ax(") nZ6
c .E rve choose a point U e Eo O §i and denote by L the h5'perbolic
line (closed) that joins the points y and T(y) . Then if ,t is not the
axis of a reflection of F , a neighbourhoocl of y in L is contained in
int, Eo U {y} and. Z does not intersecL in E with other axes of reflec-
tions of -ä' than 7. This proves our claim in this case. And it is not
clifficult to modify the argument if L is the axis of a reflection of -F' .

\Ire need the following fact. If 7 and § are reflections of .F' such
that tlre intersection of Ax(7) n Eon E with Ax(§) n nlon E is

a point then the same is true of Ax(E(")) nBnnE and Ax(q(§)) O

E[n E and conversely. For if this is not the case we coukl find three
reflections of -F such that their axes bound a hyperbolic triangle in ,O

ancl this is impossible since § rvas assumed to be non-compact.
Thtrs we have the Jordan domains -Eo and Er. Let, .Fo b" the sub-

group of -F leaviug Eo fixecl. This is equivalent rvith the fact that 7'o

leaves bd äo invariant. So .F''i : E@t) is tire subgroup leaving E| in-
variant,. Next, we define ahorneomorphism h':bdZo+bdZi suchthat

h'(T(r)) - {,(T)(h'(*)) for T e Fa arrtl tu € bd E0(4)

We set, h'l0on$:hlilonsr. Let f be a reflection of -E suoh

that Eo ll Ax(?) consists of more than one point. Then Eo O Ax(?) is

a (closed) hyperbolic segment if there are tu.o reflections Tr and Tz
such that Ax(?;) fl Z'6 is homeomorphic to a line segment and that,
Ax(") O Ax(?;) is an endpoint of Ax(?) n Eo , i - I ,2, that lies in
E . If there is only one such reflection Ax(?) O Z'o is a h5-perbolic ra5r

(closed) and if there are not such reflections of -F at all Zs n Ax(?)
is a hyperbolic line (closed). Thus we can alu'ays clefine a homeomorphism

friiloOAx(?) --E'ofiAx(E(?)) in such & §:a)'that auy tlvo mappings
coincide on common points and rvith h' ', Eo O §1 . Besides it is clear
that we may suppose

/r(S(")): E(§)(/r-,rr(o)) for r e Ax(§-r?§)|rEo,§ €.F'0.

llhus together these mappings /, and lz I Z'0 n S1 define a homeomor-
phism satisfying (4). Then we cån by the first part of this proof extencl

it to a homeomorphism /':Eo-->.0'i such that (a) holcls for all T e Fo

and r€-Eo.
By proposibion 2.4 (or by its corollary 2..1.1 rrhich, hou'ever, does not,

take account of the boundary la-'(aS\.4)) (§r , B, ,nr) is equi'valent 'with
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(6)
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((%\r(.Fr))lFo , (@o n §1)\r(n'.DlPo , %) where za(r) is determined br.
the stabilizer of y,p@): r, and a similar resultisvalitlfor (§p,,8p,,
ra",) . Thus we c&n by corollary 2.4.3 find a lifting / of the homeomor-
phism "f" , (§" , Bp,nr) * (Br, , Br,,nr,) defined by f' jn the quotient
set (,Oo\Z(FrDlIo. Then / is a homeomorphism .Oi\ L(F) ---> 7t\I(n")
and it can be chosen so that

fg(rr)) _- g,'(T)(f(")) for all ,1, € Z'1 '... L(F) ar1([ T e l' ,

f i äo'\.. L(?) - f' ) E r".,.I(r)

rvhere g' is an isomorphism F -> F' . Bv lemma 3 it can be extendecl
to the whole closed unit disk so that (5) holds for all r e Et and 7 e 7' .

It is clear that I ifr: V' lPo and that E(T): rp'(T) for such reflec-
tions 7 € -F' for lr.hich Ax(?) 6 Zo is a line segment. Since these generate
.I, , we have E : qt . This proves the theorem. fn proving it rve have also

proved the fact that a group u-hose fundamental domain is uon-compact
and does not contain reflections can be formecl as a free combination of
cyclic groups. This is perhaps 'w,orth uoting as a proposition.

Proposition. Let I be a di,suete groltp of the u,nit disk such. that EIF
is non-compact ancl that F does not contai,n, reflecti,ons. Then F has a fun-
d,amental domain D bounded, by hyperbolic li,nes equiualent in, p«,irs and, by

hyperboli,c rays equiuulent i,n, pairs so that i,f P 'i,s such e, ray, P: T(Q)
where Q is another ray bound,i,ng D anil, T 'is an elli.yttic tra.nsformat'ion
of X with a fired, point that 'i,s the comm,on end,point of P anrl Q . Let Pt
and, Qi , i e I , be the hyperboli,c li,nes or rays bou,nd,i%g D so tho,t Pi :
T;(Q) where Tie X. Let ni be the cycli,c groLtp genetrrted by Ti. Thett
I is the free product of the groups Fi , i, e I .

A corollary of theorem 3 is the following.

Corollary. Let F ancl I' be disuete grou.,ps of the u,nit dtsk such that
lv conta,ins u free su,bgrou,p tuitlt t'too generalors, i,.e. the li,mi,t set of X
conta,i,ns more than tuo ,poi,nts. Let E: X --> I' be an isom.orphi,sm. Then
i,t is geometri,c i,f and, only if it scttisfies tlte o,ttis cond,'i.tiott, (s) p. 3.

Proof: By lemrna 3.4 in t4l (2) is necessary. It is also sufficient. For
by lemma 3.4 and theorem 2 above $re can &ssume that -E and ?' are
groups of the first kind. The conclusion follows no$' by theorem 3, since

the boundary homeomorphism exists by proposition 3.5.
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