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Extension of boundary homeomorphisms of discrete groups
of the unit disk

In this paper we consider discrete groups of the unit disk, i.e. groups
whose elements are directly or indirectly conformal self-equivalences of
the closed unit disk E' = {z €C:z <1}, acting discontinuously in the
open unit disk K ={z€C: z < 1}. If F and F’ are two such groups
and ¢ :F = F" an isomorphism, it is said to be geometric if there is a
homeomorphism [ of the open unit disk F such that (1) below is true.

(1) J()) = ¢(T)(f(x)) for v€E and TEF .

In this case we say that f induces ¢ .

If 7 is a hyperbolic transformation of the unit disk we denote by
Ax(T) the hyperbolic line joining the attractive and the repelling fixed
point of T including the endpoints. It 7' is parabolic, Ax(T) is also
defined; it consists of one point only, of the fixed point of 7'. Then (2)
below is the axis condition for ¢ . It is always fulfilled if ¢ is geometric.

(2) AX(T) and AX(S) intersect if and only if Ax(¢(T)) and Ax(¢(S))
intersect, T, S € F hyperbolic or parabolic.

We shall show that condition (2) implies the existence of a homeo-
morphism of £ inducing ¢ if F is a group whose limit set contains
more than two points, i.e. if F contains a free subgroup with two gener-
ators (cf. p. 15). This is previously known for a large class of groups
(cf. Tukia [4] pp. 32—33) including those not containing reflections.

It was also shown in [4] (pp. 31—32) that if F and F’ are groups
of the first kind and f is a homeomorphism of E inducing ¢, then f
admits a continuous extension to a homeomorphism ¢ of the closed
unit disk K. The restriction /& =g S of ¢ to the unit circle S! =

{fz€C: z) =1} is a homeomorphism of S! such that the following is
true.
(3) T (x)) == ¢(T)(h(x)) for » €S and T E€F.

In general if ¢ : F — F’ is an isomorphism of discrete groups of the unit
disk, not necessarily of the first kind, a homeomorphism % : St — St of
the unit circle is called a boundary homeomorphism of F and F’ in-
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ducing ¢ if it fulfils (3). We remark that % is uniquely determined by
¢ only if F and F’ are of the first kind.

The existence of a boundary homeomorphism inducing ¢ and the
axis condition (2) for ¢ are equivalent if the groups are of the first kind
but this is not true in general. The axis condition is weaker and is implied
by the existence of a boundary homeomorphism. Again, as we have shown
above, with Fuchsian groups of the first kind, a boundary homeomorphism
can always be extended to a homeomorphism of the closed unit disk £
that induces ¢ . Our second result will be (cf. theorem 3 p. 12 later)
that this is true also for groups of the second kind.

We shall use notation of [4] (cf. especially section 1.A). All the refer-
ences, too, are to [4] except when otherwise stated. We remark that it
is not possible to read this paper without the knowledge of [4].

The types of boundary of a pointed surface.Let [ bea discrete group
of the unit disk. We denote by

lim(F)
the set of limit points of F and by
L(F)

the union of lim(F) and the endpoints of the axes of reflections of F .

In [4] we assumed that a discrete group F of the unit disk acted in
the open unit disk E and the quotient space S was E/F . As a conse-
quence S had a boundary if and only if F had reflections. In the pres-
ent case we allow for the possibility of F acting in a slightly larger space
E’ where EC E'c E* L(F) and E'NS' is open in S'. When we
say that F acts in E’ we always mean that F acts discontinuously
in B’ . Thus the quotient space E’/F has two kinds of boundary points:
those that belong to (£’ E)/F and the quotient sets of points w in
E that are on the axes of reflections of F . If we have no knowledge
about the group F, we cannot, as a rule (cf. theorem 2 later), know
whether a boundary point is in the set (£’ E)/F or not. It is perfectly
possible to have homeomorphic pointed surfaces § = E/F and S" = E'[F
where F has reflections and F’ not. That is why we divide the boundary
of S into two distinct sets B, and B, where B; originates from the
reflections of F and B, is the quotient set (£’ E)/F . We call B; the
reflective boundary of S and B, the ordinary boundary of S. Thus
the group F determines a pointed surface denoted (S, B,,n) =
(Sp, Bp,np) (cf. the definition of (Sy,ny) on pp. 10—11 in [4] when
F acts in E).
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Thus we are led to consider triples of the form (S. B, n) where S
is a countable bordered surface, B a union of the components of the
boundary 98 of § and n:8-— N a mapping with discrete support
no=={xn(r) > 1} disjoint from B . The surface S may or may not
have a conformal structure. Given such a triple (S.B.n) we ask if
there exists a discrete group £ of the unit disk acting in £, EC E'
E> L(F) such that (S, B, n) = (E'|/F, (E'~E)/F.ng) where ng(cl z)
depends on the stabilizer of & (cf. [4] pp. 10—11). This can be answered
casily: by considerations of [4]. We remark that the analogies of propo-
sition 2.4 and corollaries 2.4.1, 2.4.2 and 2.4.3 in [4] hold also true for
pointed surfaces of the form (S, B, «). These together with theorem 2.8
show that if B =0, (S, B,n) has a representation of the desired form.
This can be seen as follows. We first consider the triple (SN B, o, #),
N endowed with some conformal structure of a bordered Riemann sur-
face. The results mentioned above show that this triple can be repre-
sented in the form (Sp. o0, np) tor some discrete group of the unit disk.
After that we simply add suitably intervals of ST to E to form the space
£ such that E'/F is conformally equivalent to S .

So far we have not considered the set EU\ E’. Tt is clear that it may
differ from the set L(F). When starting with a given discrete group F
of the unit disk it is most natural to consider the triple of the form
(Sp. Bp.np) where Foacts in EVN\ L(F) . We ask now, given a pointed
surface (8, B, n), if it can be represented in this form if we do not de-
mand conformal equivalence of the pointed surfaces (S, B,%) and
(Np, Bp.np) . Simple examples of the form (E'.E" E,1) where
fFc B cE' and E' is open in E' show that this is not always possible.
But later we shall show that we can demand that F acts in £’ where
cl{E' N8 = 8T, supposing B =

The technique for proving the following theorems is basically the same
as that used in [4]. Thus we first consider representations of pointed sur-
faces.

Representations for pointed surfaces. Let (S, B,#x) be a pointed
surface such that all boundary components of S arve included in B, i.e.
I3 =085 . A representation of (S.B,n) is defined as follows. Let A
be a plane domain bounded by a Jordan curve J . Let E’ be a subset
of AUJ with 4 c E’. Further, we suppose that two sets of intervals
of J are given; let these be {I.},i €K, and {[;},j€L. (KN L=o0).
The intervals may be open, half-open or closed (but not points) and
their union will be E'N.J. We require that:

(i) L0 1; is cither empty or is a common endpoint, i #j,
JEKUL.
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(1) I,k €K, is a component of (E'N.J) U i when its (possible)
endpoints are removed. el

(@i1) If » is an endpoint of I, i € L v €. then il is an endpoint
or another I; ,j€EKUL v €1;.
j:J ]

(iv) Ii,i € L, antersects with at most one 1p,j = i,j€/L.
The set of vertices is
V=Uinly.i-=j.i.j€L.
Let
i hi—= Uy /L

iel i€l
be a homeomorphism such that

1% = 1id,

i(l;) = I; for another j€L (j ~4) when 7€/
iV =1id.

Let S’ be the surface obtained from £° by identifyving o and i(x)
for x € Uiep Ii . If there is a homeomorphism f:8"-— N such that
= f(k(V)) when k:E" —-S" is the canonical projection, we say that
(E',1,f) is a representation for (S, D, n). We remark that the inter-
vals I;,i € KUL, as well as the sets (/). (€L and {I;;.j€EN,
are uniquely determined by (E".7.f).

Theorem 1. Let (S, B,n) be a pointed surface such that B is the
boundary of S and S mnon-compact or B = o. Then there is a represen-
tatton (E',1,f) of (S,B,n) where ECE' CE'V.E" s open in E,
and such that any two intervals identified by { have cqual length. If the
pointed swrface (S, B, n) is not equivalent to (K .o 1) we may besides
assume that E' N SY is dense in S'.

We shall suppose that B -~ ¢ for otherwise theorem 1 is a conse-
quence of proposition 2.7 in [4]. We can also assume that S is not com-
pact for in this case theorem 1 is casily seen to be true by using the classi-
fication theorems for compact bordered surfaces. We shall consider se-
quences K, C K, C ... satisfving the following conditions.

o
(f)y S=UAN:.
i=1
(1) Bach Ki.,1 > 1. 1is « compuct bordered subsurfuce of S such that
Ki0 a8 s a finite union of Jordan arcs or Jordan cuyrres of 08 .



Prkka Tukia, Extension of boundary homeomorphisms of discrete groups 7

(i7) N, cint K, ,7i>1.

(tv) The support of n does wot intersect with the boundary of Ki:,i > 1.

(v) Each component of cl(S\ K;) is non-compact, i > 1.

(vi) Bach component of cl(S™\ K;) that does not intersect with B has
in common with K; exactly one Jordan curve.

(vir) If C' is a component of cl(S \ Ki) intersecting with B then each
component of C N K; is a Jordan arc whose endpoints lie on B .

An exhaustion fulfillmg conditions (i)—(vii) is called a canonical ex-
haustion of (S, B,n). We should verify that such exhaustions exist.
The construction method is that of Ahlfors-Sario [1] ch. 1 section 29 for
non-compact surfaces without boundary. It is easy to see that there exist
exhaustions satisfying (i)—(v). The condition (vi) is then added like in
Ahlfors-Sario c¢h. 1 29 C. (If a component C of cl(S\ K,) has two or
more Jordan curves in common with A, their number can be reduced
as follows. Let .J; and J, be two Jordan curves in C N K;. Connect
them with a Jordan are J with one endpoint in J; and the other in
J, , all inner points of J lying in S\ K;. Now .J is slightly enlargened
to a strip 4 whose boundary in cl(S " A;) together with subarcs of J;
and J, form a new Jordan curve J'. Now K;U .4 has fewer Jordan
curves in common with cl(S\ (K;U 4)) than K;) . Similarly, if an ex-
haustion A, , I,... does not satisfy (vii) we can proceed as follows.
Let C,CNB =0, be a component of cl(S  K;) which contains a
Jordan curve .J not intersecting with B . We connect J by a Jordan
arc to B . Then one endpoint of J’ lies on B, the other lies on J and
the inner points belong to S\ K;. This arc J’' is slightly enlargened
to a strip A whose boundary in S K: together with a subarc of .J
is a Jordan arc whose endpoints lic on B . The number of Jordan curves
of el(S ™ (K;U d)) in common with A; U 4 is smaller than the number
of Jordan curves of cl(S > AK;) that are in common with K;.

It is a consequence of (vii) that each component of bd(K:),7>1.
intersects with B unless it is contained in a component of cl(S ™\ KA;)
whose intersection with B is empty. In particular there are arcs of bd(A))
that intersect with B, since B is assumed to be non-empty.

We have in [4] treated the case of (S, B,n) with B =£¢. (Cf. pro-
position 2.7 p. 21). To avoid repeating the argumentation used there we
define a new exhaustion K, c K.c ... of (S,B,n) as well as for-
mulate a lemuna that is the form in which we use proposition 2.7.

We set

K, =K,

K =KU(US),i>1.

Jel;
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where S;,j €1;, are components of cl(S\ K;) that do not intersect
with B.

Lemma 1. Let C be « circle arc orthogonal to S* in E' and let E’
be the closure of a component of EX\C . Let (S, B,n) be a pointed sur-
Jace with B homeomorphic to S*. Let g : Cl[{x, y}— B be « homeomorphism
where x and y are the endpoints of C . Then there is a representation
(B",i,f) of (S,B,n) with g=fok|C when k s the canonical
projection k:E"—E")i .l E" = E and cl(B"NSY) = E NS,

The validity of the above lemma follows from proposition 2.7. For,
according to this proposition, (S, B,n) has a representation (El 1L f)
where cl B, is homeomorphic to a closed disk from which an open disk
has been removed and the boundary of this removed disk corresponds
to B.

After that we begin the construction of the representation for
(S, B.n). This is done step by step constructing first a representation
(Ej, i, [, S, k) for (K; K' , N iK]') ,j>1, where we have for
clarity written the triple (£;., 4 ,f;) as a quintuple and where S; = E/4;
and k; the canonical projection Z; — ;. As we have already observed
K, N B # ¢. Using this result and the classification themems for com-
pact bordered surfaces we sce that there is a representation (E,, 7, f,
S, . ky) for (K, 0K,,n  K;) satisfving the following conditions.

(1) E, is a closed Jordan domain bounded by S and a sel of disjoint
closed circle arcs orthogonal o St.

(i7) kYT K N B) ds a set of disjoint closed intervals of S*.

(iii) k7UTUOK, O B) is a disjoint set of open or closed circle ares ortho-
gonal to S whose endpoints belong to ky'fy'(B) wunless its endpoints are
identified by 1, .

(iv) The intervals identified by i, are either closed circle arcs orthogonal
to S whose endpoints belong to ky'fy(B) or closed intervals of St at least
one endpoint of which belongs to ky'‘fr(B). The other endpoint if it does
not belong to ky'fy'(B) belongs either to the set of vertices of the representa-
tion (to the set V p. 6) or is an endpoinl of the circle arc orthogonal to St
whose endpoints are identified by 1 .

After that we extend (K,,7,f;,S;.k) to a representation of
(K',0K' ,n | K') where K’ is K; added by a component K" of
el(K, N K,). We first consider the case in which this component
is compact. We then construct a representation (£, ,f", 8", k")
of (K”,0K",n | K") satisfving conditions similar to (i)—(iv). Besides we
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may assume that K, N E” is a circle arc orthogonal to S! and that
fiki VELQE" = f"k" | E;N E". Now we define the representation (£,
VL f L8 k) with B = E,UE" where we set

ro

i | domain of i, = ¢,

4

" ' domain of " =1

Besides there may be sets of circle arcs [, C £, and J,C K", L€EN,
orthogonal to S' such that fik([x) = f"&k"(Jix) . Then we define ' on
Urenr U Jy) in such a way that the resulting quotient space is homeo-
morphic to K’ by a homeomorphism f’.

If the component A" added to K; is not compact we obtain by the
above lemma 1 a representation for K”. Other details are similar and
are omitted. There are only a finite number of components to be added
to K; to obtain K,, so after a finite number of steps we have a repre-
sentation (H,,1y,f,,8,,ky) for (K,,dK,,n K;). It should be re-
marked that this representation fulfils conditions similar to (i)—(iv) ex-
cept that we must remember that non-compact compoenents may be added
to K;. Therefore we add to conditions (i)—(iv) the condition (v). Let
I and J be two intervals of S identified by i,. Then [ may also be
open or half-open.

(v) If [ s half-open, the endpoint belonging to it is cither a verlice of
the representation or belongs to the set ki 'fs(B).
The above discussion shows that we can form a series of representa-

tions (K, ,4,,f.,8,,k,) for (K, ,0K,,n K)).n >1. so that con-

n o

ditions similar to (i)—(v) hold true and that for » > 2
E, .Ck,,
1, | domain of 1, | =1, ,,
fn S :fn—] .

Besides we may demand:
(vi) The diameter of components of E E, | <1 u.0 2.
Then the representation (E£',¢.f) is defined as follows.

B~ UE,

i=1

«w
domain of i = U domain of 1;,
j=1

i |domain of 4 =1;,j > 1.
fiSi=hg=1.
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The triple is not yet the representation we have sought. First of all it
may be that E ¢ E’. This is remedied by substituting for every circle arc
orthogonal to S! belonging to the boundary of E’ the corresponding
arc of S1 and modifying 7 suitably. We suppose this is done. After that
cl(E' N SY = S' but two intervals identified by ¢ may not have equal
length. However, by the following lemma 2, the representation (£ 1, f)
can be replaced by another that has this property.

Lemma 2. Let (E',i,F), ECE CE', be a representation for some
pointed surface (S, B, n). Then there is a homeomorphism f of S' such
that if I and J are two intervals identified by i then f(I) and f(J)
have equal length.

3

Proof: Let V be the set of vertices of the representation and let 1, J
k €k, i(ly) =Jir, be the intervals of E'N S\ V identified by . we
choose a & € K and define a homeomorphism fi : St — St as follows. Fo
simplicity we assume that the endpoints of I, are ¢ and ¢* and thos®
of Jre™ and "™ o < < (m—y) < a. Let fi = id restricted to th¢
lower half of y <o of the circle. Let fi | (exp o, expai) be the linear
stretch to the interval (expo,exp (r-y)i2).fi | (exp (x—y)i, exp i)
be the linear stretch to the interval (exp (z—(x-+y)/2)i, exp ni) and let
Jx restricted to (exp ai,exp (z—y)i) be the rotation to the interval
(exp (v+y)i 2. exp (x—(x-+y)/2)i) . We remark that fi does not change
the lengths of the other intervals [,,J,,k 1,1 € K, and that the
difference between arc 2 and arc fi(x) is not more than 1/2 {length of 7, —
length of Ji!.

We shall denote this mapping by f; . After that we choose another
index [ € A and define the mapping f, in the same manner with respect
to the intervals f(7;) and f,(J)) . We continue in this way. If K is finite.
K={k.... k1.

Gn = :.0,..()]‘1.

will be the required homeomorphism. Otherwise there will be a limit
lim, g, that is the required homeomorphism.

Theorem 2. Let (S, B, n) be a pointed surface such that S ~ B is non-
compact. Then it can be represented, wp to a homeomorphism, in the form
(Sp, B, ng) by means of a discrete group F of the unit disk acting in a
set B',EC E CE'™ L(F),E open in E'. JMoreover, we can assumc
that either E'N S =0 or cl(E'NSY) =S If lim F contains more than
two points, lim F = S' if B = 0. In addition, if 05 =B, t.e. F does
not contain reflections we may asswme that F is formed as a free combina-
tion of cyclic groups.
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In case B = 98, the proof of theorem 2 is quite straightforward.
once we have theorem 1. It is a repetition of the arguments used to prove
theorem 2.8 p. 25 in [4]. We shall not do it here again. Only the case with
lim F containing at most two points requires a comment. But before
we do this we treat the case with non-empty reflective boundary.

Let (S, B,n) be a pointed surface with o8 == B . We represent the
triple (8,08 .n |intS) by means of a discrete group I of the unit
disk actingin £’ , Ec £’ c E', £’ openin E', where cl(E' N St) =S,
The conformal structure of S is defined to be equal with that of Sp. =
E’/F” . This can be done since we know that oS is non-empty. Let B, =
p '(B) when p:E — S is the canonical projection. Define

§* = (B | B)[(E'n S By)

i.e. we take two copies of K’ and identify the boundary points .« for
which p(r) € 28 . B. This is a bordered surface whose boundary con-
sists of two copies of B) denoted B* = B, | | B, . A mapping »n*:S*% -~ N
is defined by setting #n*(x) = n!{p(p*(x)) if € L' NS and =1 otherwise
when p*:S8*% — E’ is the canonical projection. Since either B* £ ¢ or
S* is non-compact, there is by the first part of the proof of theorem 2 a dis-
crete group F' actingin E”, EcC E"c E' \ L(F') such that (Sp., Bp, )
= (8%, B¥, n¥). We denote the projection E” — S* by p’. It may be
that the combined projection p; = pop*op’ is not a local conformal
equivalence at points of p;'(1n| U (88 ~.B)) but the conformal structure
of E” can be redefined so that it is. Then the homeomorphisms f of E”
for which the triangle

/
e m
AS‘

commutes. form by analogy of corollary 2.4.1 in [4] for the bordered case
a group F of conformal self-equivalences of £” so that (Sp, Bp.ny) is
equivalent, up to a homeomorphism, to (S, B, n).

If F contains a free subgroup with two generators then E” minus
its boundary is conformally equivalent to £ . So we mayv assume that
it is £ added with a union of intervals of S. Moreover it is seen that
E"N St is empty if and only if lim F is dense in S', for the emptiness
of E"N S is equivalent to the emptiness of B, and thus with the empti-
ness of B* and B.If lim £ is not dense in S' we see that "N St =
p* Y B*) = p,Y(B) is dense in S!.

After that we treat the case in which F does not contain a free sub-
group with two generators. If B = 98 . then the discussion in theorem
2.8 p. 25 in [4] shows that this can happen if and only if »n' = o and
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S\.B is a sphere punctured in two points or a projective plane punc-
tured in one point or of the type (X', o ,n) where nl =2 or n={x,y}
with #n(x) = n(y) = 2. Suppose then that S\ B £ ¢. If n] =g we
see that (S\B,@,n) is homeomorphic either to the complex plane
with the open unit disk removed or with the strip {z€C:0 <y <1}.
If n| 40,8\ B,g,n) is homeomorphic to the half plane {z €C:
y =o} with [n| = {o} or n ={i} and n(i)=2 or nl={—1.1}
with n(— 1) = n (1) = 2. In any case we see that the terms of the theorem
can be met.

The boundary homeomorphism. In this section we discuss the case of
a boundary homeomorphism inducing an isomorphism ¢ : F — ¥ be-
tween two discrete groups of the unit disk. First we formulate a lemma
for use in theorem 3.

Lemma 3. Let ¢, F and F' be as above and suppose that F acts
in B, ECE CcE',E open in E' and that F’ acts in E", with
similar properties. If cl(B' N SY) = St = cl(E"NSY) or both groups are
of the furst kind and if f:E' - E" is a homeomorphism such that

(*) fT(@) = @(T)(f(x)) for v €E and T €F

then f can be extended to a homeomorphism ¢ : E'— E' such that (¥) is
valid for all x € KX, T € F if [ s replaced ¢ .

Proof: If F and F' are of the second kind, proof is obvious. If they
are of the first kind see [4] pp. 31--32.

Thecrem 3. Let I', F' and ¢ be s above and suppose that there evists
a boundary homeomorphism h : S'— S' satisfying

(1) T (x)) = ¢(T)(h(x)) for «€SY and T €F .

Then there exists a homeomorphisin f: El-—~ EY cvtending h  such that
(1) @s valid for all « € E* and T € F . h repluced by f.

Proof: We assume that E/F is non-compact. For £ F compact see
references [2]—[5]. In this case any isomorphism ¢ is induced by a ho-
meomorphism f: B — E that can be extended to £' ([4] p. 32).

We first assume that F and consequently F’ does not contain re-
flections. Let (Sz, Bp,np) be the pointed surface defined by F, acting
in B'\_L(F). By theorem 2 (S, B;,ng) is up to a homeomorphism
equivalent to a pointed surface (S, Bg,ns) where (¢ is either of the
first kind or it acts in E', K cC K C E',E open in E', and that
cl(F'N ST = 8! and that it is formed as a free combination of cyclic
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groups. In both cases by corollary 2.4.3 in [4] for bordered surfaces there
exists a homeomorphism ¢ : B’ — E'N_L(F) such that

(2) g(T(x)) = ¢'(T)(g(x) for x €K and T E€G

(if F is of the first kind E’ = K) where ¢’ :G — F is an isomorphism.
By lemma 3 g can be extended to a homeomorphism K — E' so that
(2) is satisfied by all o € E' and 7T € (/. Thus if we replace F by G,
@ by ¢o¢ and the boundary homeomorphism % by hog|S* we may
assume that the group in question is formed as a free combination of
cvelic groups. We suppose this is done.

Let Fi,D;,T:,i€l, form F as a free combination of cyclic groups
where these notations are used as in p. 16 of [4]. Then we define F;, D;,
T,,i €1, by means of the boundary homeomorphism 7% as was done
on pp. 34—35 of [4]. The proof is complete if we can show that F;, D],
T!.,i €1, form indeed F’ as a free combination of cyclic groups. (The
details of defining the homeomorphism inducing ¢ can then be found
on p. 35 of [4] and can be readily modified to the present case.) Accord-
ing to the proof of theorem 2.6 in [4] this is equivalent with the fact that
D’ below is the fundamental domain for F’. Let

D' = N D]
(3) L,
D=y T1Tw).
TeF’

By theorem 2.6, D’ is the fundamental domain for F’ if and only if
D" is the whole open unit disk. Assume the contrary and let a be an
element of K\ _D". Then define a chain {D,},n >0, by (i) and (ii) p. 18
in [4]. Let {D.},n >o, be the chain defined by D, = T.(D) if D, =
p(T)D") and D = Ny Di,n>0. Since D is a fundamental domain
for F this chain converges towards a point 7 of S'. But then {D)}
converges towards the point h(y) in contradiction with the definition of
(D}

After that we assume that there are reflections in the groups F and
F’ . Let E, be the closure of a component of p~'(S\ 9S) where p : 1\
L(F)-— S is the canonical projection. Clearly FE, is a hyperbolically
convex, closed Jordan domain. We may assume that there is a point
y €E,N ST since otherwise S would be compact and this case was treated
in [4].

Next we define K, which is a closure of a component of p'~1(S’ ™\ 2S")
when p': EVN\ L(F') —> 8’ is the canonical projection. Let L be a (closed)
hyperbolic line with the endpoint y such that a neighbourhood of y in
L is contained in int B, U {y}. Let L’ be L transformed by % . Then
E, shall be the closure of a component of p’~1(S’\ 95’) for which a neigh-
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bourhood of A(y) in L’ is contained in int Eg U {h(y)}. It is clear that
E, is uniquely determined regardless of the choice of y or L.

Suppose then that 7 € F is a reflection for which Ax(7) \ E, is
a line segment. We claim that Ax(q(7)) N Ey is also a line segment.
This is obvious if there is a point y € Ax(T)N E,N ST, If Ax(T)N E,
C E we choose a point y € E,N S' and denote by L the hyperbolic
line (closed) that joins the points y and 7'(y). Then if L is not the
axis of a reflection of F, a neighbourhood of y in L is contained in
int £, U {y} and L does not intersect in E with other axes of reflec-
tions of F than 7T . This proves our claim in this case. And it is not
difficult to modify the argument if L is the axis of a reflection of F.

We need the following fact. If 77 and § are reflections of F such
that the intersection of Ax(T)NE,NE with Ax(S)NE,NE s
a point then the same is true of Ax(¢(7))N E,NE and Ax(¢(S)) N
EyN E and conversely. For if this is not the case we could find three
reflections of F such that their axes bound a hyperbolic triangle in £
and this is impossible since S was assumed to be non-compact.

Thus we have the Jordan domains E, and E,. Let F, be the sub-
group of F leaving E, fixed. This is equivalent with the fact that F,
leaves bd E, invariant. So Fo = ¢(F,) is the subgroup leaving K, in-
variant. Next, we define a homeomorphism 7%’ : bd E,— bd E; such that

(4) W(T(x)) = ¢(T)# () for T €F, and « €bdE,.

We set 7' E,NS'=h|E,NS'. Let T be a reflection of F such
that E, N Ax(7T) consists of more than one point. Then E,N Ax(T) is
a (closed) hyperbolic segment if there are two reflections 7, and T,
such that Ax(7:) N E, is homeomorphic to a line segment and that
Ax(T) N Ax(T:) is an endpoint of Ax(T)NE,,i=1,2, that lies in
E . If there is only one such reflection Ax(T) N E, is a hyvperbolic ray
(closed) and if there are not such reflections of F at all E,N Ax(T)
is a hyperbolic line (closed). Thus we can always define a homeomorphism
fr: By N AX(T) — E; N Ax(¢(T)) in such a way that any two mappings
coincide on common points and with A" E, N S1. Besides it is clear
that we may suppose

[r(8(x) = ¢(S)(fsmrs(x)) for x € Ax(ST'TS)NE,,S € F,.

Thus together these mappings fr and k| E,NS' define a homeomor-
phism satisfying (4). Then we can by the first part of this proof extend
it to a homeomorphism f’: E,— E, such that (4) holds for all 7' € F,
and 2z €L, .

By proposition 2.4 (or by its corollary 2.4.1 which, however, does not
take account of the boundary p~'(88\ B)) (Sp.Bp,ny) is equivalent with
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(By \L(F))/Fy, (Ey N SY) N\ L(Fy)/F,,n) where n(xr) is determined by
the stabilizer of ¥, p(y) = x, and a similar result is valid for (S , Bp ,
np) . Thus we can by corollary 2.4.3 find a lifting f of the homeomor-
phism  f”: (Sp, By, ng) — (Sp., Bp., ng) defined by f’ in the quotient
set (B, \L o)/ F,. Then f is a homeomorphism A\ L(F)— E'\ L(F’
and it can be chosen so that

(3) fT@) = ¢ (T)(f(x)) for all €L N L(F) and T E€F,
(6) 1B L(F) = [ | By L(F)

where ¢’ is an isomorphism F — F'. By lemma 3 it can be extended
to the whole closed unit disk so that (5) holds for all « € K1 and T € F .
It is clear that ¢ | Fy= ¢’ | F, and that ¢(T) = ¢'(T) for such reflec-
tions 7 € F for which Ax(7T) N E, is a line segment. Since these generate
F, we have ¢ = ¢'. This proves the theorem. In proving it we have also
proved the fact that a group whose fundamental domain is non-compact
and does not contain reflections can be formed as a free combination of
cyclic groups. This is perhaps worth noting as a proposition.

Proposition. Let F be a discrete group of the unit disk such that E|[F
is mon-compact and that F does not contain reflections. Then F has a fun-
damental domain D bounded by hyperbolic lines equivalent in pairs and by
hyperbolic rays equivalent in pairs so that if P is such a ray, P = T(Q)
where Q 1s another ray bounding D and T s an elliptic transformation
of F with a fixed point that is the common endpoint of P and @ . Let P;
and Q:,1 €1, be the hyperbolic lines or rays bounding D so that P;=
T:(Q:) where T;€F . Let F; be the cyclic group generated by T:. Then
F is the free product of the groups F:,1 €1.

A corollary of theorem 3 is the following.

Corollary. Let F and F’' be discrete groups of the unit disk such that
F contains « free subgroup with two generators, t.e. the limit set of F
contains more than two points. Let ¢ : F— F' be an isomorphism. Then
it is geometric if and only if it satisfies the axis condition (2) p. 3

Proof: By lemma 3.4 in [4] (2) is necessary. It is also sufficient. For
by lemma 3.4 and theorem 2 above we can assume that F and F’ are
groups of the first kind. The conclusion follows now by theorem 3, since
the boundary homeomorphism exists by proposition 3.5.
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