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On normal meromorphic functions

1. Normality Criteria. A function f(z) meromorphic in D = {lz] < 1}
is called normal if

(L1) sup (1 — [3f%(z) <
Jz]<1
where

7)1
Flo) .
T =1 p

denotes the spherical derivative. This concept was introduced by Lehto
and Virtanen [7]; see also Yosida [18] and Noshiro [14].

1.1. We first prove two criteria of normality; the first of these criteria
is essentially a reformulation of (1.1).

Theorem 1. A non-constant function f(z) meromorphic in D is normal
if and only if there do not exist sequences {z,} and {0} with z, € D > 0,
0, — -0, such that

<

?‘.n

(1.2) lim f(z, + 0,0) = 9(2) locally uniformly in C,

n->o0
where ¢({) is a non-constant meromorphic function in C, the finite com-
plex plane.

In somewhat picturesque language, we may express this theorem as
follows: A function is normal if and only if its Riemann image surface
does not contain asymptotically a Riemann surface of parabolic type.

Proof. (a) Suppose that f(z) is not normal. By (1.1) there exists a
sequence {z*} such that

(1.3) (L— R E) >0 (01— o).
We choose {r,} such that [z} <r;<1 and

a P .
(1.4) l—rﬂﬁmrwo (> o).

Furthermore, we choose {z,} such that
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(1.5) M, =max |1 — el F@)=\1l——=|();
lsj<<ry, n /"n

the maximum exists because f7(z) is continuous in {z} <r,}. Since
lz¥| < r,, it follows from (1.4) that J/, — .

If we set
Lo 1 (1 iz,.F) 1
-9 =\ T ) T e
we have
Q'l )Il + i’:"X 2
1.7 = 5 - < 0
(17) el TR, S

Therefore the functions

(1.8) gu(z) = [z, + 0. 0)

are defined for || < R,, where R,— x as n— o« . It follows from
(1.6) that

(1.9) g9:(0) = of7(2) = 1.

We now apply Marty’s criterion [2, p. 169] to show that the sequence
{g.(0)} is normal. If || = R < R,, then, by (1.6)

g#( 5‘) fr',( i C) - Qn]l[n
) =0, & T 0 = e -
" " " =" 1 - rll i:n + Q.’l : 2
! | P PV |
"n T = T, i~n

< . - — - -
= ! > | y ts | "
7'" na l"nl - Qn R rn - 12711 - Qn R

By (1.7) the last term of this inequality tends to 1 as n— <, for each

fixed R . Hence {g,({)} is a normal sequence, and we may assume that

g.(0) converges locally uniformly in €. The limit function ¢(¢) is mero-

morphic in €, and is non-constant because, by (1.9), ¢7(0) = 15£0.
(b) Conversely, let f(z) be normal in D . If (1.2) holds, then

?n/(]‘ - lzn‘) — 0. Since

0

;Z l_"— 0 {CI : (1 - EZ" + 0, 512)f¢(3n + Qvn C) ’
n n I

an#(zn ”%_ an:) g 1 —

it therefore follows from (1.1) and (1.2) that ¢7({) =0 for all {€C,
so that g(¢) = const. This completes the proof of Theorem I.
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As an application, we can derive Schottky’s theorem from Picard’s
theorem. Indeed, if f(z) omits three values, then the same is true of the
limit function ¢({) in (1.2). Hence ¢(Z) is constant, by Picard’s theorem.
Therefore f(z) is normal, from which Schottky’s theorem easily follows.

1.2. We need the following result of Ahlfors [1] in the form given in

[15]; it is clear that upper semi-continuity is sufficient.

Lemma. Let w(z) > 0 be upper seimi-continuous in D . For each z, € D ,
let w(zy)) <1, or else let there exist a function ¢(z) analytic in some neigh-
borhood of z, such that |p(z)| <1 and, for small |z — z,),

(L— 23 ') .
_1———(;(51__ = u(z), v(29) = u(2,) .

Then w(z) <1 for 2€D .

v(z) =

Theorem 2. Let E be a continuuimn in the extended compler plane € .
Let f(z) be meromorphic in D, and, for some M > 1, let

(1.10) 1— 3G =M, :efyE).
Then
(1.11) sup (1 — [22) f7(z) = K, M,

where K, is a constant depending only on E .
(In Theorem 2 and its proof, we shall denote by K,, X,,... con-
stants that depend only on E )

Proof. (a) We may assume that 0 € £ and that Ec{lw] = 1}. Let
G Dbe that oomponent of 6\ E containing = . Let the univalent functlon

(1.12) g(s) = bs -+ by + b, s71 -

map |s| > 1 onto the simply connected domain . We define the func-
1 pi
tion A(w) (w € G) by

s

(1.13) h(g(s)) = 572 g(s) = 2 f CRgd, s> 1.
Since g(s)] = K, for 1 < |s| < 2, and since h(g(s)) = —bs! ..., we
see that

(1.14) [h(w)] < K, weEG.
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Furthermore, (1.13) shows that 7/(g(s)) g'(s) = s2¢'(s), and therefore
that A'(g(s)) = s—2. Hence, by (1.12),

1
(1.15) 7, = (0 el )] = —

for w=g(s) €G.
(b) We choose 0 = 6(E) > 0 so small (see (1.14)) that

K, 6
1 — 62K§;<

19| =

0
;<<

1
2’ 11—

(1.16)

Let z, € D. Suppose first that z, € G* = f7(G). Then the function

is analytic in some neighbourhood of z, and satisfies |y(z)| < 0K/ M <
< 0K, <1 by (1.14) and (1.16). We see that

1— |22 S OML'(f(2))
(117)  w(z) = W W@l = 0 — 2O ek

Suppose now that zy € D\ (G*U E*), where E* = f~(E). This case
can occur only if E disconnects the plane. If we now consider

8

we have, instead of (1.17), that

1.18 1 ZR)If'(z)] i

( . ) /U(Z) - ( — [?i )J‘f ('/')E 1 — 62 Ju'_zgf(z) 2

(c) We define
(M2 — 2) If'()] for z€E*.
1.19 w(z) = 3
( ) ) 1@'(2) for z ¢ E*.

This function is continuous in D 8E* . We shall show that u(z) is upper
semi-continuous at each point { € 9E* . To show this, it is sufficient to
consider z ¢ E* . If z € G*, we have

o ey oMK,
u(z) = v(z) = (1 — [zP) [f'(2)] 2K

<z — PR M?
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by (1.17), (1.15), (1.14), (1.16), and by the fact that M >1.1If z ¢ G*,
we have

-1

we) =v(E) = (1= P =g s <

< 31— ERIE
by (1.18) and (1.16) because C\(EUG)cC {jw <1} and therefore
If®)] < 1. In any case we must have
lim sup u(z) < 3(1 — [Z7) [f'(0)] M7 = w(l).
It follows from (1.19) and (1.10) that wu(z) <1 for z € E*. Hence
the Lemma shows that «(z) <1 for z €D . If z € G*, we deduce from
(1.17) and (1.15) that

M s
TR < M 5VK,;
@) E) I (f2))]

if z€ D\ (G* UE*), we deduce from (1.18) that
(I =[P f7() < Mot.

(1 —=12B)f"() < T

This proves (1.11) for all cases.

1.3. The condition (1.1) for normality can be written as

|dw! ldz|

o < const. I——ME . w=f(z)
=

L+

that is, the spherical element of length of the image is bounded in terms
of the non-Euclidean element of length. We shall show that the spherical
element of length can be replaced by any other, that is,

ldz!

1 — 22’
[N

(1.20) o(w)|dw! < const,. -

|
S
I

=
w

o

already implies normality.

Corollary. Let o(w) =0 be continuous in C, and let f(z) be mero-
morphic in D . If

(1.21) sup (1 — [213)1f'(2)o(f()) < o0,
=<1

then f(z) is mormal in D .

Proof. There exists a closed disc E such that o(w) > o> 0 for
w € E . Hence (1.21) implies that



e
'
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1
(1= R <

for z € fYE), and the assertion follows immediately from Theorem 2.

It remains an open problem whether the hypothesis of Theorem 2 that
F Dbe a continuum can be replaced by a weaker hypothesis, for instance
that E have positive capacity or analytic capacity. It might perhaps
even be true that one can always find a finite set E, depending on I/,
such that (1.10) implies normality.

2. Boundary Behaviour. 2.1. Let f(z) be normal in D . As Lehto and
Virtanen [7] have proved, every asymptotic value is an angular limit, that
is, if f(z) —c¢ as z—>¢" along some arc ending at €, then f(z)—c
in every Stolz angle at ¢ . Furthermore, non-constant normal functions
have no Koebe arcs [3]. This means that if there is a sequence {4,} of
ares in D converging to a non-degenerate boundary arc such that f(z) —¢
for ~€.4,, n-— o, then it follows that f(z) = ¢ . A consequence is that
every analytic normal function has angular limits on a dense subset of
oD = {|z] = 1} . The modular function shows that this subset may be
countable.

Havman ([6], [15]) has shown that for every analytic normal function

1
(2.1) log+:f(z):=0(—~ ) =1,

1 — iz}

The modular function shows that O cannot be replaced by o in general.

Theorem 3. Let f(z) be analytic and normal in D . If

1
(2.2) log* ()] = "(1 ) 1
then f(z) has angular limits on an uncountably dense subset of D .
This result is closely related to a theorem of Hall [5]: A function analytic

in D has an uncountably dense set of asymptotic values if either (2.2)
is satisfied and the function omits some finite value, or if

J@) :0<1—_ bf) (zl—1).

It is not assumed in Hall’s theorem that the function is normal. As a con-
sequence, a function has an uncountably dense set of angular limits if it
is a Bloch function ([8], [12], [16]), that is, if
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sup Hif'(=
i<l

Proof. (a) Let 4 be an open arc of the unit circle and let [, € 4.
We may assume that f(z) is unbounded near ¢, because otherwise the
assertion follows from Fatou’s theorem. For m =1, 2, ..., there is a
component , of {z € D:|f(z)] > m} whose distance from ¢, is arbi-
trarily small. Furthermore, diam G, — 0 because otherwise f(z) would
have Koebe arcs for the value ¢ = co, which is impossible for a normal
function. Furthermore, G, N 9D = @ because f(z) has no poles. There-
fore we can choose a value of m such that oG, N aDcA4 .

(b) Let ¢(s) map |s| <1 conformally onto the universal covering
surface of G, D . The function m= f(p(s)) is analytic in |s] <1 and
has modulus greater than 1. Hence there exists a non-decreasing func-
tion u(f) such that

2.

((s)) et + s
(2.3) g(s) = lwz%7~=;hfw_sdw, sl << 1.

It is clear that u(f) is not constant and that “Neg(s) > 0 in |s] <1
unless f(z) is constant. We shall deduce from (2.2) that w(¢) is continuous.

Suppose that u(t) is not continuous. Then u(f) has a jump ¢ >0,
say at ¢ =1{,. Since |¢(s)] < (¢ -+ |s))/(1 4 als!) for |s| << 1, where
o = !¢(0)!, we see that

(2.4) 1— jg@re™) > (1 —a)(l —r), 0<r-<1.
Hence it follows from (2.3) that, for 0 <r <1,

147 (1——(&)
> I
l—r—1— [q(re’“)

log |m= f(p(re™)), > o ,
which contradicts the assumption (2.2).

Thus the function u(f) is continuous. We consider first the case that
4(t) is absolutely continuous. Then u'(f) exists and is positive on a set E
of positive measure. Furthermore, at all points of E, “Ne g(s) possesses
angular limits. It follows from a variant of Fatou’s theorem [Collingwood
and Lohwater [4], p. 149] that g¢(s) possesses angular limits at almost
all points of £ , that is, there exists a subset E’ of E of positive meas-
ure at which ¢(s) possesses angular limits g(e") . Therefore we have

(2.5) ‘Rege") >0, tEE.

In the case that w(f) is not absolutely continuous, it is known [see,
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for example, Saks [17], pp. 127—128] that u'(t) = + o onaset E having
the power of the continuum, and (2.3) shows that

(2.6) Rege")— 4+, r—>1—0,t€H.

(c) in both cases we have found a set E, of the power of the continuum
such that g(e") exists and “Reg(e®) > 0 for ¢ € E,. Along the arc

(2.7) Ity = {p@e"):0=r <1}, (€K,
we have

f(z) = m exp g(s) — m exp g(e") .

Since f(z) has no Koebe arcs, I'(t) ends at a point, so that the normal
function f(z) has an asymptotic value at ((f) . Hence it has an angular
limit f(e") there, and it satisfies m < |f(e")] < oo by (2.5) and (2.6).
The definition of G,, shows that the endpoint ((t) of ['(t) lies on oD .
By our choice of m, we have that [(t) €4 .

(d) Finally we show that ((f) attains the same value only a count-
able number of times. Since K, has the power of the continuum, this
will complete the proof.

Suppose that ((t) = ¢, for t€E,. Since f(z) =f({;) as z—{;
along I'(t) by (2.7), a result of Lehto and Virtanen [7] shows that f(z) —
f(&,) in the whole set between I(f) and the radius R; = [0, {,]. Since
(&) > m , it follows that, for ¢ € B, an arc C(t, 0) of {lz — ;| = o}
between I'(t) and R; liesin ¢, if 0 <o <<1/k and £k is sufficiently
large. Since the normal function ¢(s) has no Koebe arcs, the diameter
of the component of ¢=(C(t, o)) through [0, ¢"] tendsto 0 as g—0.
Hence a component of ¢~Y(R,) ends at ¢* for each t € E,. There are
only countably many such components, so that E,is countable.

2.2. The proof of Theorem 3 gives at once the following local version:

If f(z) is analytic and normal in D , and if (2.2) holds on some open
arc A of 0D, then f(z) has angular limits on an uncountably dense subset
of A.

We remark that we may weaken (2.2) in the following sense. The only
use made of (2.2) in proof of Theorem 3 was to guarantee the continuity
of the function u(f) in (2.3); any condition which excludes the order of
growth (2.1) — and guarantees the continuity of u(f) in (2.3) — will yield
the conclusion of Theorem 3. A result in this direction was proved by Mida
[18] that if f(z) is analytic and normal in D and if f(z) has radial limits
only at a set of measure zero on 0D , then f(z) has angular limits at a set
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of points which is dense on 0D ; indeed, if the «~ -points, 2z, = z(x),
satisfy the condition

(2.8) Dl —lz) < =,
k=1
then « is an angular limit of f(z) at a dense subset of 9D .

Example 1. The function

is a Bloch function, hence normal [16]. It satisfies

1
1) =0(logr ) (2] = 1).
el
and therefore certainly (2.2). It does not have any finite asymptotic values.

Example 2. The function

14z
JE) =1 —2)Zexp—

does not satisfyv (2.2). Furthermore,

e e 1) 2
[ = c—zf(zja‘:;u—“)e‘\p 1. =6

and therefore
(I — 2P f7(z) =0 (zi—1).

Hence this condition does not imply (2.2).

Case Western Reserve University, Cleveland. USA
and
Technische Universitit, Berlin
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