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On normal meromorphic functions

l. Normality Cri,teria. A function /(z) meromorphic in D: {lrl < f }is called normal if
(r.t)

where

l,l<1

lo("): -lI 9l-
t _t t.f@)tz

denotes the spherical derivative. This concept, 'r,vas introduced by Lehto
ancl Virtanen [7]; see also Yosida [f8] and Noshiro it4l.

1.1. trve first prove tu,o criteria of normality; the first of these criteria
is essentially a reformulation of (l.l).

Theorem 7. A non-constant functi,on f(z) meromorphic i,n D i,s normal
i,f and, only if there d,o not exist sequences {2,} and, {g,,} wi,th z^ € D , p" } 0,
Q,+ f 0, snch that

(t .2) lim f(r* -t- A*e) - gG) locally unifornll7 ,in C ,

where g({) ,i,s a non-constant meromorph'ic functiott, ,in C , the fi,nite com-
pler plane.

rn somervhat picturesque language, \ye may express trris theorom as
follows: A function is normal if and only if its Riemann image surface
does not contain asymptotically a Riemann surface of parabolic type.

Proof. (a) Suppose thab f(z) is not normal. By (t.t) there exists a
sequence {z}} such that

(I .3)

W"e choose

(1.4)

(1 I*Il\f*(rX) -+ co

{r,,} such that l*Il I r; 1t
(n + cc).

and

(n, + co).('-Wr*@I) -+."

tr'urthermore, we choose {**) such that
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(r")

t{
i._

(I.r ) tr,, E max (, - Ei) ,' I i"t\ "t,2,,.:rn\ - ,t'^)t 
(:) -\t '{)i'

tlre maxirnurn exists because f n'(*) is coutintlous in { l,
lrf t 4 rn, it follows from (1"4) that' )[,"*+ cc .

If we set

;

f ,,) . 'Since

( 1"6)

we have

( 1.?)

Therefore

(1.8)

t
Q" : jl{ 

,,

Q,, l'n * i:r, i

the functions

g 
"(z) - f (r,, -i

ifl <..8,, where R,,* ':- lL --> a. rt follo*-s from

I

7"qil'

2

--{ _- -+ C}

ft
sIl

å,re definecl for
(1 .6) that

( 1.9)

\Ye norr appll, Marty,s criterion 12, p. 169] to show that the seqllence

{g"(i)} is normal. ff lål <E 1Rn, then, by (1.6)

gIG) : Q^f*(",,* q, () =, - *ffi;_.rf

< --:, +)it - -_-L--lfi-- -= .
=- ,, + lr,,l - Q* R r,, - 'iz,l - Q,, R'

By (1.7) the last term of this inequality tencls to I as m-> q,, for each

txea n. Hence {g,(()} is a normal seqllence, and rve may assume that
g,(() converges locally uniformly in c . The limit function g(4) is melo-

morphic in C , and is non-constant becanse, by (1'9), g:(0) : I + 0 '

1b; Corro"r.ely, let f(z) be normal in' D.If (1'2) holds, then

g,,/(l-lz"l)-0. Since

Q^fo(",* e^6) = , - 1"-'f:u1q,'(1 - lz^ i Q' i'')f=(2"* s' 6) '

it therefore follows from (I.1) and (f .2) that g#(C):o for all 6 e C,

so that g{e): const. This completes the proof of Theorem 1'
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As an application, we carl clerive Schottky's theorem from picard.,s
theorem. fndeed, it f(z) omits three values, then the same is true of the
limit functior g(c) in (1.2). Hence g(6) is constant, by Picarcl's theorem.
Therefore /(z) is normal, from r.rhich schottky's theorem easily follows.

1.2. We need the follo.w,ing result of Ahlfors lfl in the form given in
[5]; it is clear that upper semi-continuity is sufficient.

5'u(z) , a(zo) '- tt(zo)

?heru u,(z) 1I for ze D.

Theorem 2. Let E be rt, cotttinttustr in the efiencled. cornple.c ,plane

Let f(z) be nr,eromorpltic irt, D , arucl, fot sonte JI > I, let

Lemma. Let u,(z) > 0 (te u.pper

borluood, ,f ?a s,u,ch th,ctt lVQr)i <

, \ (1 lri') ip'(r) ia\z):-:i I _ ,l6rld j

(1. 10)

Tlr,en

(1.1 1)

seilL'i-cotttittttor.{s ,i?L D . Eor et$ch zo € I) ,

u fu.,rt ction, V@) analytic ,itr, so,nle n eiglt-
1 &?bd, fo, ,sl,rbl,ll lz zal ,

(1 lz"r) f ," (r) 
= 

11 , z €/-r (E)

sup (1 lri,) f" (*) { Kr II ,
i'l<r

wluere K L ?',s fr, co'nste?Lt clepending ottly ott, E .

(In Theorern 2 ancl its proof, \\'e shall clenote b;- Ii, 
2

stants that tlepencl onlr- orl E ,)

Ti,, corl-

Proof. (a) \Ye may assume
G be that cornponent of 0 \ f

that 0e f iurdthat Ec{t,rui <1}.Let
corltaining .r) . Let the univalent function

; bo + bys-r I . .g(s) .- bs

ma,p lsi > I onto the simply co,nectecl clo,raiu G . \tr e define the func-
tion h(za) @ e G) by

(1.tr2)

(1" l3)

Since ls(r) I 5 /f ,
see that

(1.1.1) lh(ra)j < /{,, , uec;
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Turthermore, (f .13) shows that h'(g(s)) 9'(r) : s-'g'(s) , and t'herefore

that h'(g(s)) : s-2. Ilence, bY (f'12),

t -.- l+ls(s)l'-,,(1.15) K4= G * lzul'z) lh'(w)t,: -ffi = 
x'

for w: g(s) € C.

(b) We choose d : ö(Z) > 0 so small (see (l'14)) that

K.ö r ö r
(I.16) :t _ 5z6z 

11 , I :T 1; .

Leb zo € D . Suppose first, lhat zo e G* : f-'(G). Then the function

d

v@): uh(f(z))

is analytic in some neighbourhood of zo and satisfies lrp@il < öKslM <
< äK, < I by (l.l4) and (I.16). We see that

| - lzlz 5u'rl{(f(z))'
(r.l?) o(z): f_T@frlrp'(z)i: (1 - ,.i')',f '@)i t -Ejtzttt*

Suppose now that z0 €r\(G*UE*), rvhere p*:f-t(E). This case

can occur only if -E disconnects the plane. If we now consid'er

ö
!t(z):Vf@),

we have, instead of (1.17), that

öM_L(1.1s) a(z) : (L - l"l')ll'@l t _ A, A-"ttA?.

(c) We define

< å (r lrlr) lf '(r)t, M-, 
r

( $ a-rg - lzl\ lf'(z), for ; e E* .

(1.19) u(z) : 1

[ ,(r) for : 4. E* .

This function is continuous in ,\ar* . \Ye shall shorv that u,(z) is upper

semi-continuous at each point C e AE* . To shorr this, it is sufficient to
consider z8E*.If zeG*, 'wehave
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by (1.17), (r.15), (1.14), (r.16), and by the fact lhat M > I . If z e.G* ,

Iile have

u(z) : o(z) < (t - lzl,)V't"lt !ff.*< å(r - l"l,)ll,(z)la*,

by (1.18) and (r.16) because C\(.8'U G) c {l,r.ul S r} and therefore
lf@l < I . fn any case rve must have

lim sup u(z) < å(t - Gi\ lf'G)l M-L : u(C) .
z+e

It follows from (1.19) and (1.10) that u(z) ! I for ze E*. Hence
theLemmashowslhat u(z) (l for ze D.If zeG*,r.ededucefrorn
(r.17) and (r.15) that

G - tzt\fot"t < u;ffiy\ry1y,1y< M ö-L KL.

if z e ,\(G* U E*) , rve deduce from (1.I8) that

G-lzl')l#@)<Ma-t.
This proves (1.11) for all cases.

1.3. The condition (t.l) for uormality can be written as

'o*)..r( const. , lo",)ru , ,n : f(z) ,tf rr.iz l-12,,
that is, the spherical element of length of the image is bounded in terms
of the non-Euclidean element of length. We shall shorv that the spherical
element of length can be replaced by any other, that is,

(r.20) e@|ld,wi J const. J4= , 1i) : f(") ,L 
- l4l

already implies normalitv.

Corollary. Let p(w) * 0 he continuous ,in, ö , cmd, let f(z) be m,ero-
morphic i,n D. If
(r.2r) 

il11(t -1,1,)!f'(z)le(/(z)) ( @,

then f(z) ,i,s norm,al in D .

Proof. There exists a closed disc D such that e(w) > o > 0 for
w e E . I{ence (1.21) implies that
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l'ur ; €/-1(,0) , and the assert'ion follows immediately from Theorem 2.

ft remains an open problem rvhether the h5,pothesis of Theorem 2 that
ff be a eontinuum can be replaced by a weaker hypothesis, for instance
that E have positive capacity or analytic capacit5'. It might perhaps

er-en be true that one c&n allvays find a finite set -E, clepencliug on Jf ,

.quch that (1.10) implies normality.

t. Boundury Behaa'iour. 2.1. Let f(z) be normal it D . As Lehto and
Yirtanen [7] have provecl, every asymptotic value is an anqular limit, that
is, if ./(a) --> c il,s z -, e'o along some arc ending at e'o , then f(z) ---> c

in t:ver3' Stolz angle at, e'o. Furthermore, non-constant trormal functions
Irirve no Koebe arcs l3]. This means that if there is a, sequence {4"} of
trrcs in D converging to a non-degenerate boundary arc such that f(z) --> c

fbr : € An , 'tL --> (& , then it follows fhaf f @) : c . A consequence is that
ererl' aner,lytic normal function has angular limits on a clense srrbset of
aD: {i;i : t}. The ruoclular function shol-s tliat this subset rnal- be

t'ountable.
Hayman ([6], [5]) has shorvn that for er-er1- anal5't.ic Irorural function

/r \(r.r) log.'/(:)l : o (, _ a) , lzl -+ I .

ll'he rriotlular function shon s that O cannot be replaced b5, o in general.

Theorem 3. Lr:t ,f(r) be

I
i-\

U

I ") 
.)\

l-.;i

r.tn,ctl ytic cr,rld 'rLo!'?rLCLl 'in, D I J

lr\
- o[ 1. :' I" \r - z l )

then, f(:) luts «,ngula,r' limits orl &n uncountubly dr:ttse subset of 0D .

ifhis result is closely relatecl to a theorem of Hali [5]: A function analytic
iu I) has an uncountablv clense set of asy-mptotic values if either (2.2)

is srrtisfied a,ncl the function omits some finite value, or if

/t\
:f (r) :, \, -r1/ 

(izl -+ 1) .

It is not trssurned in Hall's theorem that the function is normal. As a con-
seqLrence, a function has an uncountabl;r dense set of angular limits if it
is a Bloch function ([8], [12], [16]), that is, if

lo,* ifG)',
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iH(r-izl\lf'(z)t<a.
Proof . (a) Let ,4 be an open arc of the unit circle ancl let io € I .

\,fe may &ssume lhat f(z) is unbounded near (s because otherwise the
assertion follows from Fatou's theorem. n'or rn : l, 2, . . ., there is a
component G, of {z e D : lf@)12 zrz} rvhose distance from fe is arbi-
trarily small. Furthermore, diam G.-->0 because otherwise /(z) woulcl
have Koebe arcs for the value c : oo, which is impossible for a normal
function. Furthermore, 7Gofi 0D :0 because /(e) has no poles. There-
fore we can choose a value of zz such that AG,, n 1DcA .

(b) Let 9(s) map lsl < I conformally onto the universal covering
surface of G*CD. The function m-,f(q@)) is analytic in Isl < I and
has modulus greater than I. Hence there exists a non-decreasing func-
tion p(t) such that

(2.3) n?, 2n

ei' -l- s

*= d,u(t),

(.t
::t,

{
J

0

It is clear tlrut p(t) is not, constarrt and that 'Xe g(s) I 0 in isl < f
nnless /(z) is constant. We shall deduce from (2.2) fhat p(t) is continuous.

Snppose fhal p(t) is not continuous. Then p(f) has a jump o )' 0,
sa;'at f:lo.Since ls(s)l S(of lsi)/(t+rrl,sl) for lsl <l,rvhere
a : lV$)|, rve see that

{2.4}

Hence

tog tm-t f(eu",u))i= " *_ I = #"4t,
whiclr contradicts the assumption (2.2).

Thus the function p(l) is continuous. \1'e consider first the case that
p(l) is absolutely continuous. Then p'(t) exists and is positir.e on a set E
of positive measure. X'urthermore, at all points of E ,'Xe g(s) possesses

angular limits. It follows from a variant of Fatou's theorem f0ollingwood
and Lohwater [4], p. la9l that g(s) possesses angular limits at almost
all points of E , that is, there exists a subset E' of .E of positive meas-
ure at rvhich g(s) possesses angular limits g(e") . Therefore rve have

(2.5)

In the case that p(f) is not absolutely continuous, it is knorvn [see,
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for example, Saks [17], pp. 127 -1281thab p,'(t) : * oo on a set E having
the power of the continuum, and (2.3) shou's that

(2.6) 'xeg(et')---*oo, r->l-o,teE.
(c) in both cases rye have found. a set ,Eo of the po\yer of the continuum

such that g(ei') exists and 'Re g(et') > 0 for f € Zo . Along the arc

Since /(z) has no Koebe arcs, .l-(f) ends at a point, so that the normal
function /(z) has an asymptotic value at ((f) . Hence it has an angular
limit f(et') there, and it satisfies rL < lf@")l < co by (2.5) and (2.6).

The definition of G- shows that the endpoint ((r) of .f(t) lies on 0D .

By our choice of m , we have that C(t) e A .

{2.7)

\Ye harne

(t1) Irinally we show that f(r)
al:le nulnber of times. Since Ba

\t'i11 complete the proof.

attains the sar]re value only a count-
has the llo\\-er of the continuum, this

Suppose that CQ) : Cr for t e EL. Since f(") *f(e ,) &s z '-- e t
tr,long J (l) by (2.7), a result of Lehto and Virtanen [7] shows lhat' f(z)-->

"f(('r) in the whole set between J-(t) and the radius .81 : [0, 4r] . Since

i/(6r)l > raz, it follo'u,'s that, for f € 81, är:r arc C(t,8) of {1, - 6rl : e}
betrveen .l'(l) and -8, lies in G* if 0 < A < llk and tr; is sufficiently
Itr,rge. Since the normal function g(s) has no Koebe arcs, the diameter
of the component of q-L(C(t, g)) tlrough [0, ei'] tencls to 0 as I -> 0 .

Hence a component of g-1(-8.) ends at, e" for each l e E r. , There are

only countably many such components, so that Zr is countable.

2.2. The proof of Theorem 3 gives at once the follorring local version:
II f@ 'i,s analyti,c and, normal in D , ancl, if (2.2) ltolcls on som,e ope?L

arc A of 0D , then f(z) has angular l'imits on an ttncountctbly dense subset

of A.
\Ye remark that u,e may weaken (2.2) in the follorving sense. The only

use made of (2.2) in proof of Theorem 3 rvas to guarantee the continuity
of the function p(t) in (2.3); any condit'ion rvhich excludes the order of
growbh (2.1) - and guarantees the continuity of p(t) in (2.3) - will yield
the conclusion of Theorem 3. A result in this direction was proved. by Mida

[13] that if f(z) is analytic and normal in D and if f(z) has radial limits
only at a set of measure zeto orr 0D ,lhen /(z) has angular limits at a set
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of points which is dense on äD ; indeecl. if the ,v -points, z*: z*(ot) ,

satisfy the condition

(2.8) it,- lzo')<r,
,,: I

then cr is an angular limit of f(z) at a clense subset of 0D .

Erample /. The function

It"l:);'
is a Bloch functiou, hence normal [16]. It satisfies

/t\
if(z) : o 

llos *J (lzl--+ 1),

and therefore certaiuly (2.2). Tt does not haye any finite asymptotic values.

tuample 2. The function

f("): (t - z1-2".n L=
does not satislr, (2.2). Furthermore,

d1
f*(r) < ,t fej

and therefore

(1 lz

Hence this condition does

l')f"(e) -+ it ( zi + 1) .

not impl.v (2.2).

Case \4restenr Rese rr.e {Jnirrersitr'. Cler-eland. {-I*SA

and
Technische trniversitåt. Berlin
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