ON THE DILATATION OF ISOMORPHISMS BETWEEN COVERING GROUPS

BY

TUOMAS SORVALI

HELSINKI 1973
SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.551
Communicated 14 May 1973 by Olli Lehto
Introduction

A group G of Möbius transformations fixing a disk or half-plane D is called a covering group if it is discontinuous in the following sense: For each point $z \in D$ there exists a neighborhood U such that $g(z) \not\in U$ whenever $g \neq id$ lies in G. Hence a covering group may contain hyperbolic and parabolic transformations only.

In [3] we introduced the dilatation $\delta(j)$ of an isomorphism $j : G \to G'$ defined as follows: If $\kappa(g)$ denotes the multiplier of a Möbius transformation g, then $\delta(j)$ is the smallest number $1 \leq a \leq \infty$ for which $\kappa(g)^{1/a} \leq \kappa(j(g)) \leq \kappa(g)^a$ holds for all $g \in G$. As examples of the case where $\delta(j) < \infty$ we have the isomorphisms j induced by quasiconformal mappings f, i.e. $j(g) = f \circ g \circ f^{-1}$ for all $g \in G$. On the other hand, if there is a parabolic $g \in G$ such that $j(g)$ is hyperbolic or vice versa, then $\delta(j) = \infty$.

In § 1 we consider isomorphisms j between noncyclic covering groups with $\delta(j) = \infty$. We show that the dilatation of j restricted to elements whose type is preserved is also infinite. In § 2 we consider parabolic elements under an isomorphism with a finite dilatation.

In § 3 we prove the following theorem: Let $\{g_1, g_2, \ldots\}$ be a set of generators of G. Suppose that an isomorphism $j : G \to G'$ preserves the multipliers of the elements of the type $(g_1^a \circ g_2^b)^{\alpha} \circ (g_3^\beta \circ g_4^\gamma)^{\varepsilon}$ where $\alpha, \beta, \gamma, \varepsilon$ are integers and $a = 1, 2$. Then j is induced by a Möbius transformation.

Let $j : G \to G'$ be an isomorphism between covering groups acting on the upper half-plane H. A homeomorphism $\varphi : R \cup \{\infty\} \to R \cup \{\infty\}$, where R is the set of the real numbers, is called a boundary mapping of j if $\varphi \circ g = j(g) \circ \varphi$ holds for all $g \in G$. In § 4 we characterize $\delta(j)$ in terms of the local Hölder continuity of φ and φ^{-1}. As a corollary we then obtain the following result: If φ has a K-quasiconformal extension to the extended complex plane, then $\delta(j) \leq K$.

§ 1. Isomorphisms with an infinite dilatation

For a hyperbolic transformation g, let $\kappa(g)$ denote the multiplier and $P(g)$ and $N(g)$ the attracting and the repelling fixed point. The
parameters \(x(g) \), \(P(g) \), and \(N(g) \) determine \(g \) uniquely. We have \(x(g) = (z, g(z), P(g), N(g)) \) \(> 1 \), the cross ratio being defined as in \([3, \S 1]\). If \(g \) is parabolic, we define \(x(g) = 1 \) and \(P(g) = N(g) \) as the only fixed point of \(g \).

Let a parabolic or hyperbolic transformation \(g \) be given in the form \(z \mapsto g(z) = (az + b)/(cz + d) \) with \(ad - bc = 1 \). Then \(a + d \) is always real, and \(\chi(g) = |a + d| \) is the trace of \(g \). It follows that

\[
\chi(g) = x(g)^{1/2} + x(g)^{-1/2}.
\]

Hence \(\chi(g) \geq 2 \), where the equality holds if and only if \(g \) is parabolic.

Let \(\mathcal{M} \to \mathcal{M}' \) be a mapping between sets of hyperbolic and parabolic transformations. A calculation shows that the dilatation of \(j \) can also be defined in terms of \(\chi(g) \).

Theorem 1. Suppose that for any \(g \in \mathcal{M} \) the transformations \(g^n \), \(n = 2, 3, \ldots \), are in \(\mathcal{M} \), and suppose that \(j(g^n) = j(g)^n \). If \(1 \leq a \leq \infty \) is the smallest number for which \(\chi(g)^{1/a} \leq \chi(j(g)) \leq \chi(g)^a \) holds for all \(g \in \mathcal{M} \), then \(a = \delta(j) \).

Proof. Let \(g \in \mathcal{M} \), \(k = x(g) \) and \(k' = x(j(g)) \). Suppose that we have \(\chi(j(g)^n) \leq \chi(g^n)^a \) for \(n = 1, 2, \ldots \). Then

\[
(k' - n^2) + (k')^{-n^2} \leq (k^n + k^{-n} + 2)^a,
\]

and hence

\[
(k')^n \leq (k')^n + (k')^{-n} + 2 \leq (k^n + k^{-n} + 2)^a \leq (2k^n)^a
\]

from some \(n = n_1 \) on. Therefore

\[
k' \leq (2k^n)^{a/n} = (2^{1/n} k)^a,
\]

and letting \(n \to \infty \) we obtain \(k' \leq k^a \). Similarly, if \(\chi(j(g)^n) \geq \chi(g^n)^{1/a} \) for \(n = 1, 2, \ldots \), then we get \(k \leq (k')^a \). Thus we have \(k^{1/a} \leq k' \leq k^a \).

Conversely, suppose that \(k^{1/a} \leq k' \leq k^a \). Then

\[
\chi(j(g)) = \sqrt{k'} + (1/\sqrt{k'}) \leq (\sqrt{k})^a + (1/\sqrt{k})^a \leq (\sqrt{k} + 1/\sqrt{k})^a = \chi(g)^a
\]

and similarly \(\chi(g) \leq \chi(j(g))^a \). \(\square \)

Let \(j : G \to G' \) be an isomorphism between covering groups \(G \) and \(G' \). If there is a parabolic \(g \in G \) such that \(j(g) \) is hyperbolic or vice versa, then \(\delta(j) = \infty \). By the following theorem, the dilatation of \(j \) restricted to elements whose type is preserved is also infinite.

Theorem 2. Let \(j : G \to G' \) be an isomorphism with \(\delta(j) = \infty \). Define \(G^* \) as the set of all hyperbolic elements \(g \in G \) for which \(j(g) \) is hyperbolic. If \(G \) is not cyclic, then \(\delta(j|G^*) = \infty \).
Proof. It follows from Lemma 3.1 in [3] that \(G^* \neq \emptyset \). If \(j \) preserves the type of all transformations of \(G \), then there is nothing to prove. In other cases choose a hyperbolic \(g_2 \in G \) such that \(j(g_1) \) is parabolic (if this is not possible, then we consider the isomorphism \(j^{-1}: G' \to G \)) and let \(g_2 \in G^* \). Then we have ([3, (4.11)]):

\[
\chi(g_1^n \circ g_2) = \left| \frac{k_1^n k_2 + 1 - x(k_1^n + k_2)}{(1-x)(k_1^n k_2)^{1/2}} \right|
\]

where \(k_1 = x(g_1) \) and \(x = 1 - (N(g_1), N(g_2), P(g_1), P(g_2)) \). Therefore

\[
\lim_{n \to \infty} \frac{\chi(g_1^n \circ g_2)}{k_1^n} = k_2^{-1/2} \frac{k_2 - x}{1 - x}.
\]

If \(k_2 - x = 0 \), we replace \(g_2 \) by \(g_2^2 \). Then there is a \(b \geq 1 \) such that we have for \(n = 1, 2, \ldots \)

\[
(1/b)k_1^n \leq \chi(g_1^n \circ g_2) \leq bk_1^n.
\]

We now consider the group \(G' \). Since \(g_1' = j(g_1) \) is parabolic and \(g_2' = j(g_2) \) hyperbolic, we may normalize such that

\[
g_1'(z) = z + \omega, \quad g_2'(z) = (kz)/((k-1)z + 1),
\]

where \(k = x(g_2') > 1 \). We may also assume that \(\omega > 0 \) since we can replace \(g_1' \) by \((g_1')^{-1} \) if necessary. Then we have

\[
((g_1')^n \circ g_2') (z) = \frac{(k + n\omega(k-1))z + n\omega}{(k-1)z + 1},
\]

and hence

\[
\chi((g_1')^n \circ g_2') = \frac{1 + k + n\omega(k-1)}{k^{1/2}}.
\]

From (1.1) and (1.2) we conclude that \(g_1^n \circ g_2 \in G^* \) from some \(n = n_0 \) on.

By (1.2), \(\chi((g_1')^n \circ g_2') \leq 2n\omega k \) for sufficiently large \(n \). Then we have for any \(1 \leq a < \infty \)

\[
\chi(g_1^n \circ g_2)^{1/a} \geq (k_1^n/b)^{1/a} > 2n\omega k \geq \chi((g_1')^n \circ g_2')
\]

from some \(n = n_a \) on. Therefore \(\delta(j | G^*) = \infty \) by Theorem 1. \(\square \)

§ 2. Distortion of parabolic transformations

Let \(j : G \to G' \) be an isomorphism between covering groups which act on the upper half-plane \(H \), and suppose that \(\delta(j) < \infty \). In this
section we consider the behavior of the parabolic elements of G under j.

A parabolic transformation $g \in G$ fixing ∞ is of the type

$$g(z) = z + \omega. \tag{2.1}$$

If g is parabolic with $P(g) \neq \infty$, then g has a unique representation in the form

$$\frac{1}{g(z) - P(g)} = \frac{1}{z - P(g)} + \omega. \tag{2.2}$$

We call the number $\omega = o(g)$ defined by (2.1–2) the translation vector of g. From $g(H) = H$ it follows that $P(g)$ and $o(g)$ are real. If the transformation g in (2.2) is given in the form $g(z) = (az + b)/(cz + d)$ with $a + d = 2$, then an elementary calculation shows that $o(g) = c$.

To interpret geometrically the translation vector $o(g)$, consider first the transformation (2.1) with $\omega > 0$. If we define the non-euclidean metric in H by $(\text{Im } z)^{-1} |dz|$, then the non-euclidean length of the euclidean line segment $\{x + i | x_0 \leq x \leq x_0 + \omega\}$ is ω. Since the non-euclidean distances are invariant under Möbius transformations, we then obtain from (2.2) the following interpretation for $o(g)$: Suppose that $P(g) \neq \infty$ and define $K(g)$ as the circle of diameter one through $P(g)$ and $P(g) + i$. If $z \in K(g)$, then $|o(g)|$ is the non-euclidean length of the part of $K(g)$ between z and $g(z)$. From this it follows that we have $o(g) = o(h \circ g \circ h^{-1})$ for all translations $h: z \mapsto z + b$, b real.

For a hyperbolic transformation h fixing H, let $Ax(h)$ be the axis of h (i.e. the circle through $P(h)$ and $N(h)$ orthogonal to R). If $z \in Ax(h)$, then $\log \kappa(h)$ is the non-euclidean length of the part of $Ax(h)$ between z and $h(z)$. Thus $|o(g)|$ has some analogy with $\log \kappa(h)$. However, if we normalize such that j fixes the translation $z \mapsto z + 1$, then $|o(g)|$ does not behave under j as $\log \kappa(h)$ but like $\kappa(h)$.

Theorem 3. Suppose that the transformation $g_0: z \mapsto z + 1$ lies in $G \cap G'$. Let $j: G \to G'$ be an isomorphism such that $a = \delta(j) < \infty$. If $j(g_0) = g_0$, then $|o(g)|^{1/a} \leq |o(j(g))| \leq o(g)^{a}$ holds for all parabolic transformations g of G.

Proof. We first note that for any parabolic element $h = g_0$ of G we have $|o(h^{-1} \circ g_0 \circ h)| = o(h)^2$. To prove this, let h be the transformation $z \mapsto ((1 + ox)z - ox^2)/(oz + 1 - ox)$, where $x = P(h)$ and $o = o(h)$. Then

$$(h^{-1} \circ g_0 \circ h)(z) = \frac{(1 + ox - o^2x)z + (1 - ox^2)}{-o^2z + 1 - ox + o^2x}.$$

Hence $o(h^{-1} \circ g_0 \circ h) = - o^2$.

Let \(g \neq g_0 \) be a fixed parabolic transformation of \(G \). Define \(g_1 = g^{-1} \circ g_0 \circ g \) and inductively \(g_n = g_{n-1}^{-1} \circ g_0 \circ g_{n-1} \) for \(n = 2, 3, \ldots \). Then \(\{g_n\} \) is a sequence of parabolic elements of \(G \). By the above remark we have \(|\omega(g_n)| = \omega(g_{n-1})^2 \). Therefore
\[
(2.3) \quad |\omega(g_n)| = \omega(g)^{2^n}
\]
for \(n = 1, 2, \ldots \).

Since \(a = \delta(j) < \infty \), \(\{j(g_n)\} \) is a sequence of parabolic elements of \(G' \). Because \(j(g_0) = g_0 \), (2.3) holds if \(g_n \) and \(g \) are replaced by \(j(g_n) \) and \(j(g) \), respectively.

For any parabolic transformation \(h \neq g_0 \) of \(G \) we have
\[
(2.4) \quad \chi(g_0 \circ h) = |2 + \omega(h)|.
\]
Since \(\chi(g_0 \circ h) \geq 2 \), it follows that \(|\omega(h)| \geq 4 \). We apply (2.4) to the transformations \(g_n \) and \(j(g_n) \). Then by Theorem 1
\[
|2 + \omega(g_n)|^{1/a} \leq |2 + \omega(j(g_n))| \leq |2 + \omega(g_n)|^a.
\]
Formula (2.3) and the triangle inequality yield
\[
0 < (\omega(g)^{2^n} - 2)^{1/a} = (|\omega(g_n)| - 2)^{1/a} \leq |2 + \omega(g_n)|^{1/a} \leq |2 + \omega(j(g_n))| \leq 2 + \omega(j(g))^2^n.
\]
Hence
\[
[(\omega(g)^{2^n} - 2)^{1/a}]^{1/a} \leq [2 + \omega(j(g))^2^n]^{1/2^n},
\]
and letting \(n \to \infty \) we obtain \(|\omega(g)|^{1/a} \leq |\omega(j(g))| \). It follows similarly that \(|\omega(j(g))| \leq |\omega(j(g))|^{1/a} \).

Remark: Let \(G \) be a covering group containing the transformation \(g_0 : z \mapsto z + 1 \). As remarked above, it follows from (2.4) that \(|\omega(g)| \geq 4 \) for all parabolic elements \(g \neq g_0 \) of \(G \). This bound is sharp: Let \(g_1(z) = z/(4z + 1) \) and let \(G_1 \) be the group generated by \(g_0 \) and \(g_1 \). Then \(G_1 \) is a covering group and we have \(\omega(g_1) = 4 \).

§ 3. Isomorphisms with dilatation one

For a set \(M \) of Möbius transformations, let \(\text{Fix}(M) \) denote the set of fixed points of non-identity transformations of \(M \). If the set \(\text{Fix}(G) \) is dense in a circle or a straight line, then the covering group \(G \) is said to be of the first kind. If not, then \(G \) is of the second kind.

Let \(j : G \to G' \) be an isomorphism with \(\delta(j) = 1 \). If \(G \) and \(G' \) are of the first kind, then by Theorem 4.3 in [3] there is a Möbius transformation
Theorem 4. Let $E = \{g_1, g_2, \ldots \}$ be a set of generators of a covering group G. Let F consist of the transformations of the form $(g_1^n \circ g_2^n \circ (g_1 \circ g_2)^a)$, where $\alpha, \beta, \gamma, \varepsilon$ are integers and $a = 1, 2$. If an isomorphism $j : G \to G'$ preserves the multipliers of the elements of F, then j is induced by a Möbius transformation.

Proof. It suffices to show that there is a Möbius transformation h such that $j(g_i) = h \circ g_i \circ h^{-1}$ for all $g_i \in E$.

(A) Suppose first that E contains at least one hyperbolic element.

If $E = \{g_1\}$, g_1 hyperbolic, then j is induced by any Möbius transformation sending $P(g_1)$ to $P(j(g_1))$ and $N(g_1)$ to $N(j(g_1))$. Let $E = \{g_1, g_2\}$ with g_1 parabolic and g_2 hyperbolic. We show that the Möbius transformation which sends $P(g_1)$ to $P(j(g_1))$, $i = 1, 2$, and $N(g_2)$ to $N(j(g_2))$ induces j. Since we can replace G and G' by conjugate groups $G_1 = hGh^{-1}$ and $G'_1 = h'G'h'^{-1}$, we may assume that g_2 and $j(g_2)$ both are the transformation $z \mapsto kz/((k - 1)z + 1)$ and that $P(g_1) = P(j(g_1)) = \infty$. Since we have $\chi(g_1^n \circ g_2^n) = \chi(j(g_1)^n \circ j(g_2))$, it follows from (1.2) that

$$|1 + k + n(k - 1)\omega(g_1)| = |1 + k + n(k - 1)\omega(j(g_1))|,$$

for $n = 1, 2, \ldots$. Therefore $\omega(g_1) = \omega(j(g_1))$, and the assertion follows.

Let $\text{Fix}(E)$ contain at least four distinct points. Choose $z_i \in \text{Fix}(E)$ such that $(z_1, z_2, z_3, z_4) > 1$. Suppose that $z_1 = N(h_1)$, $z_2 = N(h_2)$, $z_3 = P(h_3)$, $z_4 = P(h_4)$, where for each $i, i = 1, 2, 3, 4$, either $h_i \in E$ or $h_i^{-1} \in E$. If

$$w_1 = N(j(h_1)), \quad w_2 = N(j(h_2)), \quad w_3 = P(j(h_3)), \quad w_4 = P(j(h_4)),$$

then the points w_i are well-defined and distinct. We show that

$$z_1, z_2, z_3, z_4 = (w_1, w_2, w_3, w_4). \quad (3.1)$$

To prove (3.1), set $g_1n = h_3^a \circ h_1^a$ and $g_2a = h_4^a \circ h_2^a$. Then by Lemma 3.1 in [3], $N(g_1n) \to z_i$, $P(g_1n) \to z_{i+2}$, and similarly $N(j(g_1)) \to w_i$, $P(j(g_1)) \to w_{i+2}$ as $n \to \infty$, $i = 1, 2$. Thus it suffices to show that

$$\begin{align*}
(N(g_1n, N(g_2a), P(g_1n), P(g_2a)) = &
(N(j(g_1)), N(j(g_2)), P(j(g_1)), P(j(g_2))))
\end{align*} \quad (3.2)$$

for sufficiently large values of n. Choose n_0 such that for $n \geq n_0$
(N(\(g_{1n}\)), N(\(g_{2n}\)), P(\(g_{1n}\)), P(\(g_{2n}\))) \geq 1.

Since \(j\) preserves the multipliers of \(g_{1n}, g_{2n}, g_{1n} \circ g_{2n}\) and \(g_{1n}^2 \circ g_{2n}^2\), we can apply the proof of Theorem 4.3 in [3] by replacing \(g_i\) by \(g_m\). Then it follows that (3.2) holds for \(n \geq n_0\), and (3.1) is proved. By (3.1) there is a Möbius transformation \(h\) such that \(h(P(g_{i}^{\pm1})) = P(j(g_i)^{\pm1})\) for all \(g_i \in E\). By the previous part of the proof we have \(j(g_i) = h \circ g_i \circ h^{-1}\) for \(g_i \in E\). Thus case (A) is proved.

(B) Suppose secondly that \(E\) contains only parabolic elements.

The case when \(E\) consists of one parabolic element is clear. Let \(E = \{g_1, g_2\}\) with \(g_1\) and \(g_2\) parabolic. We may suppose that \(g_1\) and \(j(g_1)\) both are the transformation \(z \mapsto z + 1\) and that \(P(g_2) = P(j(g_2))\). Since we have \(\chi(g_1 \circ g_2^*) = \chi(j(g_1) \circ j(g_2)^n)\), it follows from (2.4) that

\[
|2 + n \omega(g_2)| = |2 + n \omega(j(g_2))|
\]

for \(n = 1, 2, \ldots\). Therefore \(\omega(g_2) = \omega(j(g_2))\), and it follows that \(j = id\).

Let \(E = \{g_1, g_2, g_3\}\) with \(g_1, g_2, g_3\) parabolic. We show that the Möbius transformation sending \(P(g_i)\) to \(P(j(g_i))\) induces \(j\). We normalize such that

\[
P(g_1) = P(j(g_1)) = \infty, \quad P(g_2) = P(j(g_2)) = 0, \quad P(g_3) = P(j(g_3)) = -1.
\]

Then it suffices to show that \(j = id\).

Let \(\omega_i = \omega(g_i), \quad i = 1, 2, 3\). Then we have (cf. 2.4)

\[
\chi(g_i^* \circ g_i) = |2 + n \omega_i \omega_i|,
\]

for \(i = 2, 3\). A simple calculation yields

\[
(g_3 \circ g_2^*) (z) = \frac{(1 - n \omega_2 \omega_3 - \omega_3) z - \omega_3}{(n \omega_2 + n \omega_2 \omega_3 - \omega_3) z + \omega_3 + 1}.
\]

Hence

\[
\chi(g_3 \circ g_2^*) = |2 - n \omega_2 \omega_3|,
\]

and we also obtain similar expressions for

\[
\chi(j(g_1)^n \circ j(g_1)) \quad \text{and} \quad \chi(j(g_3) \circ j(g_2)^n).
\]

Let \(\omega_i' = \omega(j(g_i))\). Then we have the following equations

\[
|2 + n \omega_i \omega_i'| = |2 + n \omega_i' \omega_i'|, \quad i = 2, 3,
\]

\[
|2 - n \omega_2 \omega_3| = |2 - n \omega_2' \omega_3|,
\]

for \(n = 1, 2, \ldots\). Hence \(\omega_i \omega_k = \omega_i' \omega_k'\) holds for \(i \neq k\), and we have either \(\omega_i = \omega_i'\) or \(\omega_i = -\omega_i'\) for \(i = 1, 2, 3\). To verify that the latter
case is impossible, consider the transformation \(g_3 \circ g_2 \circ g_1^n \). It follows from (3.3) that
\[
\chi(g_3 \circ g_2 \circ g_1^n) = |2 - \omega_2 \omega_3 + n(\omega_1 \omega_2 + \omega_1 \omega_3 + \omega_2 \omega_3)|.
\]
From \(\chi(g_3 \circ g_2 \circ g_1^n) = \chi(j(g_3) \circ j(g_2) \circ j(g_1)^n) \) we infer that \(\omega_i \) and \(\omega_i' \) have the same sign. Hence we have \(j(g_i) = g_i \) for \(i = 1, 2, 3 \) and it follows that \(j = \text{id} \) as asserted.

Suppose finally that \(\text{Fix}(E) \) contains at least four points. Similarly as in (A) we can show that there is a Möbius transformation \(h \) such that \(h(P(g_i^{1})) = P(j(g_i)^{1}) \) for all \(g_i \in E \). From the case of three generating transformations it then follows that \(h \) induces \(j \).

About results related to Theorem 4 we refer to \([2]\) pp. 150—151.

If we only know that \(\varphi(g_i) = \varphi(j(g_i)) \) for all \(g_i \in E \), then \(j \) need not be induced by any Möbius transformation. This is seen considering e.g. the case when the Riemann surfaces corresponding to \(G \) and \(G' \) are compact.

§ 4. The boundary mapping of an isomorphism with a finite dilatation

Let \(G \) and \(G' \) be covering groups acting on the upper half-plane \(H \). A homeomorphism \(\varphi: R \cup \{\infty\} \to R \cup \{\infty\} \) is called a boundary mapping of an isomorphism \(j: G \to G' \) if \(\varphi \circ g = j(g) \circ \varphi \) for all \(g \in G' \). Thus we have \(\varphi \circ (P(g)) = P(j(g)) \) for \(g \in G \). (Therefore, if \(G \) and \(G' \) are of the first kind, an isomorphism \(j: G \to G' \) has at most one boundary mapping.) In this section we consider the interrelation between \(\varphi \) and \(\delta(j) \).

Let \(K_1 \) and \(K_2 \) be circles or straight lines and \(\psi: K_1 \to K_2 \) a homeomorphism. Let \(z_0 \in K_1 \) be a finite point such that \(\psi(z_0) \neq \infty \). We say that \(\psi \) is Hölder continuous with the exponent \(\alpha \), \(0 < \alpha \leq 1 \), at \(z_0 \) if there is a constant \(A \geq 1 \) and a neighborhood \(U \subset K_1 \) of \(z_0 \) such that
\[
(1/A) \, z^{-1/(1+\alpha)} \leq |\psi(z) - \psi(z_0)| \leq A \, z^{-1/(1+\alpha)}
\]
for all \(z \in U \). The mapping \(\psi \) is Hölder continuous with the exponent \(\alpha \) at the point \(\infty \) or at a point \(z_0 \) where \(\psi(z_0) = \infty \) if \(\psi(1/z) \) has this property at the origin or \(1/\psi(z) \) at \(z_0 \), respectively. If \(\psi \) is Hölder continuous with the exponent \(\alpha = 1 \) at \(z_0 \), then we say that \(\psi \) is a Lipschitz mapping at \(z_0 \).

The Hölder continuity of \(\psi \) is invariant under Möbius transformations, i.e., if \(h_1 \) and \(h_2 \) are Möbius transformations and \(\psi \) is Hölder continuous with the exponent \(\alpha \) at \(z_0 \), then the same is true of \(h_2 \circ \psi \circ h_1^{-1} \) at the point \(h_1(z_0) \).
Theorem 5. Suppose that \(\varphi \) is a boundary mapping of an isomorphism \(j: G \to G' \). Let \(B(j) \) be the set of the real numbers \(\alpha \), \(0 < \alpha \leq 1 \), such that \(\varphi \) is H"older continuous with the exponent \(\alpha \) at the fixed points of all hyperbolic elements of \(G \). Then \(B(j) \neq \emptyset \) if and only if \(\delta(j) < \infty \). If \(B(j) \neq \emptyset \), then we have \(1/\delta(j) = \max \alpha \), \(\alpha \in B(j) \).

Proof. Let \(g \in G \) be hyperbolic. From the existence of \(\varphi \) we conclude that \(j(g) \) is also hyperbolic. Since the \(\alpha \)-H"older continuity of \(\varphi \) at a point is invariant under M"obius transformations, we may assume that

\[
N(g) = N(j(g)) = 0, \quad P(g) = P(j(g)) = \infty
\]

and \(\varphi(1) = 1 \).

Suppose that \(\alpha \in B(j) \). Then there is an \(A \geq 1 \) such that

\[
|\varphi(g^{-n}(1)) - \varphi(0)| = |\varphi(g^{-n}(1)) - j(g)^{-n}(1)| = \alpha(j(g))^{-n} \leq A |g^{-n}(1) - 0|^\alpha = A \alpha(g)^{-n\alpha}
\]

from some \(n = n_0 \) on. Thus \(\alpha(j(g)) \geq A^{-1} \alpha(g)^{\alpha} \), and letting \(n \to \infty \) we obtain \(\alpha(j(g)) \geq \alpha(g)^{\alpha} \). Similarly it follows that \(\alpha(g) \geq \alpha(j(g))^{\alpha} \). Hence \(\delta(j) \leq 1/\alpha \).

Conversely, suppose that \(\alpha = \delta(j) < \infty \). Choose \(t \) such that \(0 < t < 1 \) and let \(n \) be the natural number for which \(1/\alpha(g)^{n+1} \leq t < 1/\alpha(g)^n \). Since \(\varphi(1) = 1 \), we have \(1/\alpha(j(g))^{n+1} \leq \varphi(t) < 1/\alpha(j(g))^n \). Hence

\[
\frac{\varphi(t)}{t^{1/\alpha}} \leq \frac{\alpha(g)^{(n+1)/\alpha}}{\alpha(j(g))^{n+1}} \leq \frac{\alpha(g)^{(n+1)/\alpha}}{\alpha(g)^{n/a}} = \alpha(g)^{1/\alpha},
\]

and similarly \(\varphi(t)/t^{1/\alpha} \geq 1/\alpha(g)^{\alpha} \). If \(-1 < t < 0 \), then we obtain \(|\varphi(t)|/|t|^{1/\alpha} \leq |\varphi(-1)|/\alpha(g)^{\alpha} \) and \(|\varphi(t)|/|t|^{1/\alpha} \geq |\varphi(-1)|/\alpha(g)^{\alpha} \). Hence

\[
1/\delta(j) \in B(j)
\]

and the first assertion is proved. Moreover, by the first part of the proof we have \(\delta(j) \leq 1/\alpha \) for all \(\alpha \in B(j) \). Thus \(1/\delta(j) = \max \alpha \), \(\alpha \in B(j) \).

As in Theorem 4, let \(E = \{g_1, g_2, \ldots\} \) be a set of generators of \(G \) and let \(F \) be the set of the transformations \((g_1^a \circ g_2^b) \circ (g_3^c \circ g_4^d)^e \). Then we have the following generalization for Theorem 5.1 in [3]:

Theorem 6. If an isomorphism \(j: G \to G' \) has a boundary mapping which is a Lipschitz mapping at the points of \(\text{Fix}(F) \), then \(j \) is induced by a M"obius transformation.

Theorem 6 follows from Theorem 4 and the proof of Theorem 5.

The following theorem shows that the H"older continuity of a boundary mapping \(\varphi \) of \(j: G \to G' \) at the fixed points of the parabolic elements of \(G \) does not depend on \(\delta(j) \).
Theorem 7. If \(g \in G \) is parabolic, then all boundary mappings of an isomorphism \(j : G \to G' \) are Lipschitz mappings at \(P(g) \).

Proof. We may assume that \(g \) and \(j(g) \) both are the transformation \(z \mapsto z/(z+1) \) and that \(q(\infty) = \infty \). Choose \(t \) such that \(0 < t < 1 \) and let \(n \) be the natural number for which \(1/(n+1) < t \leq 1/n \). Since \(g^n(\infty) = j(g)^n(\infty) = 1/n \), we have \(1/(n+1) < q(t) \leq 1/n \). Therefore \(n/(n+1) \leq q(t)/t \leq (n+1)/n \), and it follows that \(t/2 \leq q(t) \leq 2t \).

Replacing \(g \) by \(g^{-1} \) we obtain \(|t|/2 \leq |q(t)| \leq 2|t| \) for \(-1 < t < 0 \).

By Theorem 4.1 in [3] we have \(\delta(j) \leq K \) if \(j \) is induced by a \(K \)-quasiconformal mapping \(f : H \to H \). This theorem is a special case of the following more general result:

Theorem 8. Let \(\psi : R U \{\infty\} \to R U \{\infty\} \) be a boundary mapping of \(j : G \to G' \). If there is a \(K \)-quasiconformal mapping \(f : H \to H \) such that \(f(R U \{\infty\}) = \psi \), then \(\delta(j) \leq K \).

Proof. Let \(h \) and \(h' \) be Möbius transformations mapping \(H \) onto the unit disk such that \(f_1 = h' \circ f \circ h^{-1} \) fixes the origin. By Theorem II.3.2 in [1], the restriction of \(f_1 \) to the unit circle is Hölder continuous with the exponent \(1/K \). Then the same holds true of \(\psi \) at every point of \(R U \{\infty\} \) and we have \(\delta(j) \leq K \) by Theorem 5.

Let \(\varphi : R U \{\infty\} \to R U \{\infty\} \) be an increasing homeomorphism fixing \(\infty \). If for an interval \(I \subset \mathbb{R} \) there is a constant \(\lambda \), \(1 \leq \lambda < \infty \), such that

\[
1/\lambda \leq \frac{\varphi(x+t) - \varphi(x)}{\varphi(x) - \varphi(x-t)} \leq \lambda
\]

holds whenever \(x + t \in I \), we say that \(\varphi \) is \(\lambda \)-quasisymmetric on \(I \). The mapping \(\varphi \) is called \(\lambda \)-quasisymmetric if (4.1) holds for all \(x \) and \(t \). Note that \(\varphi \) is \(1 \)-quasisymmetric if and only if \(\varphi \) is the restriction of a Möbius transformation \(z \mapsto az + b \) with \(a > 0 \) and \(b \) real.

If an isomorphism \(j : G \to G' \) has a \(\lambda \)-quasisymmetric boundary mapping \(\varphi \), then

\[
\delta(j) \leq \log 2/\log (1 + 1/\lambda)
\]

by Theorem 4.2 in [3]. On the other hand, there is a \(K \)-quasiconformal extension \(f : H \to H \) of \(\varphi \) with \(K = \min (8\lambda, 1) \) (see [1, II.6.5]). Hence we have \(\delta(j) \leq \min (8\lambda, 1) \) by Theorem 8. However, one can verify by calculation that \(\log 2/\log (1 + 1/\lambda) \leq \min (8\lambda, 1) \) for all values \(\lambda \geq 1 \). Hence Theorem 8 implies (4.2) only if a \(\lambda \)-quasisymmetric \(\varphi \) always has a \(\log 2/\log (1 + 1/\lambda) \)-quasiconformal extension \(f : H \to H \).

By the following theorem, (4.2) can be deduced also from the local \(\lambda \)-quasisymmetry of \(\varphi \).
Theorem 9. Let \(\varphi : R \cup \{ \infty \} \to R \cup \{ \infty \} \) be a boundary mapping of an isomorphism \(j : G \to G' \). If for every hyperbolic \(g \in G \) satisfying \(P(g) \neq \infty \) there is an interval \(I \ni P(g) \) on which \(\varphi \) is \(\lambda \)-quasisymmetric, then \(\delta(j) \leq \log 2/\log (1 + 1/\lambda) \).

Proof. Let \(g \in G \) be hyperbolic, \(P(g) \neq \infty \) and \(h, h' \) Möbius transformations fixing \(H \) such that \(h(P(g)) = h'(P(j(g))) = 0 \), \(h(N(g)) = h'(N(j(g))) = \infty \). For every \(\varepsilon > 0 \) there is an interval \(I \) containing the origin such that the mapping \(q_1 = h' \circ \varphi \circ h^{-1} \) is \((\lambda + \varepsilon)\)-quasisymmetric on \(I \). Then there are \(1 \)-quasisymmetric mappings \(h_1 \) and \(h_1' \) fixing the origin such that \(q_1' = h_1' \circ q_1 \circ h_1^{-1} \) is \((\lambda + \varepsilon)\)-quasisymmetric on the closed unit interval. Replacing \(\varphi \) by \(q_1' \) and \(\lambda \) by \(\lambda + \varepsilon \) in the proof of Theorem 4.2 in [3] we can show that \(\kappa(g)^{1/\lambda} \leq \kappa(j(g)) \leq \kappa(g)^{\lambda} \) holds for

\[
a = \log 2/\log (1 + 1/(\lambda + \varepsilon)).
\]

Suppose that all boundary mappings of an isomorphism \(j : G \to G' \) are increasing and fix the point \(\infty \). To our knowledge, it is an open question whether \(\delta(j) < \infty \) then implies that \(j \) has a boundary mapping which is \(\lambda \)-quasisymmetric for some fixed \(\lambda \geq 1 \) in a neighborhood of the attracting fixed point of every hyperbolic element of \(G \). However, the following theorem tells that all boundary mappings of \(j \) have a quasisymmetry property at the fixed points of the parabolic elements of \(G \).

Theorem 10. Suppose that the transformation \(g_0 : z \mapsto z + 1 \) lies in \(G \cap G' \). Let \(\varphi : R \cup \{ \infty \} \to R \cup \{ \infty \} \) be a boundary mapping of an isomorphism \(j : G \to G' \) for which \(j(g_0) = g_0 \). If \(g \neq g_0 \) is a parabolic element of \(G \), \(x_0 = P(g) \) and \(a = \delta(j) < \infty \), then we have for all \(t > 0 \)

\[
\omega(g)^{-a} \leq \frac{\varphi(x_0 + t) - \varphi(x_0)}{\varphi(x_0) - \varphi(x_0 - t)} \leq \omega(g)^{a}.
\]

Proof: It means no restriction to consider only the case when \(\varphi \) is increasing. Using \(1 \)-quasisymmetric mappings of the type \(z \mapsto z + b \) we normalize such that \(P(g) = P(j(g)) = 0 \). Then \(\omega(g) \), \(\omega(j(g)) \) and \(\omega(g_0) \) are not changed. We may assume that \(\omega(g) \) and \(\omega(j(g)) \) are positive. Then by Theorem 3, \(\omega(g)^{1/\alpha} \leq \omega(j(g)) \leq \omega(g)^{\alpha} \).

Let \(t > 1 \) and \(n \) be the natural number for which \(n \leq t < n + 1 \). From \(n = n^{\pm n}(0) = j(g_0)^{\pm n}(0) \) we infer that \(n \leq \pm \varphi(\pm t) < n + 1 \). It follows that \(n/(n + 1) \leq \varphi(t)/(\varphi(t) - t) \leq (n + 1)/n \), and we have

\[
1/2 \leq \varphi(t)/(\varphi(-t)) \leq 2.
\]

Let \(1/\omega(g) < t \leq 1 \). Since \(g(\infty) = 1/\omega(g) \), we obtain

\[
1/\omega(j(g)) < \varphi(t) \leq 1,
\]

and similarly \(-1/\omega(j(g)) > \varphi(-t) \geq -1 \). Hence
\[
\omega(g)^{-a} \leq \varphi(t)/(- \varphi(-t)) \leq \omega(g)^a.
\]

Finally, let \(0 < t \leq 1/\omega(g)\) and \(n\) be the natural number for which \(1/((n + 1)\omega(g)) < t \leq 1/(n\omega(g))\). From \(g^{\pm n}(x) = 1/(\pm n\omega(g))\) it follows that \(1/((n + 1)\omega(j(g))) \leq \pm \varphi(\pm t) \leq 1/(n\omega(j(g)))\). Hence
\[
\frac{n\omega(j(g))}{(n + 1)\omega(j(g))} \leq \frac{\varphi(t)}{- \varphi(-t)} \leq \frac{(n + 1)\omega(j(g))}{n\omega(j(g))},
\]
and we conclude that \(1/2 \leq \varphi(t)/(- \varphi(-t)) \leq 2\).

Since \(\omega(g) \geq 4\) (cf. Remark in § 2), it follows that
\[
\omega(g)^{-a} \leq \varphi(t)/(- \varphi(-t)) \leq \omega(g)^a
\]
for all \(t > 0\). \(\square\)

Observe that Theorem 10 does not follow from Theorem 7.
References

Department of Mathematics
University of Helsinki

Printed August 1973