ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

554

NOTE ON WARING'S PROBLEM (mod p)

 $\mathbf{B}\mathbf{Y}$

AIMO TIETÄVÄINEN

HELSINKI 1973 SUOMALAINEN TIEDEAKATEMIA

Copyright © 1973 by Academia Scientiarum Fennica ISBN 951-41-0131-6

Communicated 14 May 1973 by K. INKERI

KESKUSKIRJAPAINO HELSINKI 1973

Note on Waring's Problem (mod p)

1. Introduction. Let p be a prime, k a positive integer and d the highest common factor of k and p-1. Let $\gamma(k, p)$ denote the least positive integer s such that every residue \pmod{p} is representable as a sum of s kth power residues \pmod{p} . It is well known [6] that

$$\gamma(k, p) = \gamma(d, p) \le k$$

and

$$\gamma(p-1\,,p)=p-1\,,\;\gamma(\frac{1}{2}(p-1)\,,p)=\frac{1}{2}(p-1)\,.$$

Put

$$\gamma(k) = \max \{ \gamma(k, p) : d < \frac{1}{2}(p-1) \}.$$

S. Chowla, Mann and Straus [2] showed in 1959 that

$$\gamma(k) \leq \left[\frac{1}{2}(k+4)\right].$$

Much earlier, in 1943, I. Chowla [1] had proved the result

(1)
$$\gamma(k) = O(k^{1-\epsilon+\epsilon})$$

where $c = (103 - 3\sqrt{641})/220$ and, as always in this paper, ε is a positive number. Recently Dodson [5] improved (1) to the simpler result

$$\gamma(k) < k^{7,8},$$

provided k is sufficiently large. The purpose of this note is to show that

(2)
$$\gamma(k) = O(k^{3/5+\varepsilon}) .$$

It is very probable that (2) is not best possible, and it would be desirable to reduce the exponent to ε or, at least, to $\frac{1}{2} + \varepsilon$ (cf. [7] and [5]).

2. Preliminary results. Dodson ([5], p. 151) has shown that if $p>d^2$ then

$$\gamma(k, p) \le \max\{3, [32 \log d] + 1\}.$$

Therefore we may suppose that

$$p \le d^2.$$

Let Q_w be the set of those distinct residues \pmod{p} which can be represented as the sum of w kth power residues \pmod{p} , and let q_w be the number of the elements in Q_w . Put

$$e(x) = e^{2\pi i x/p}$$
, $S_w(u) = \sum_{y} *e(uy)$, $M_w = \max\{|S_w(u)| : u \not\equiv 0 \pmod{p}\}$

where the sum Σ^* is over all the elements of Q_w . Then ([8], Lemma 1)

$$M_w < (q_w d)^{1/2}$$
.

3. The main lemmas.

Lemma 1 (Cauchy-Davenport Theorem; see [3] and [4]). Let $\alpha_1, \ldots, \alpha_m$ be m different residue classes \pmod{p} ; let β_1, \ldots, β_n be n different residue classes \pmod{p} . Let $\gamma_1, \ldots, \gamma_h$ be all those different residue classes which are representable as

$$\alpha_i + \beta_j \ (1 \leq i \leq m, 1 \leq j \leq n).$$

Then $h \ge \min \{p, m+n-1\}$.

Lemma 2 (cf. [8], Lemma 2). If $q_w \ge 2d$ then $\gamma(k, p) \le w(1 + [2 \log p/\log 2])$.

Proof. Put $r = 1 + [2 \log p/\log 2]$. Let a be any integer, and let N = N(a) be the number of solutions of

$$y_1 + \ldots + y_r \equiv a \pmod{p}$$
, $y_i \in Q_w$.

Then

$$pN = \sum_{y_1}^{*} \dots \sum_{y_r}^{*} \sum_{u=0}^{p-1} e(u(y_1 - \dots + y_r - a))$$

$$= \sum_{u=0}^{p-1} (S_w(u))^r e(-ua)$$

$$= q_w^r + \sum_{u=1}^{p-1} (S_w(u))^r e(-ua)$$

$$\geq q_w^r - (p-1)M_w^r.$$

Hence, by the inequalities $M_w < (q_w d)^{\frac{1}{2}}$, $q_w / d \ge 2$ and $r/2 > \log p / \log 2$, we get

$$N > p^{-1}(q_w d)^{r/2}((q_w/d)^{r/2} - p + 1)$$

$$\ge p^{-1}(q_w d)^{r/2}(2^{r/2} - p + 1) > 0.$$

Lemma 3. If $d < \frac{1}{3}(p-1)$ and $w \ge 100d^{3/5}$ then $q_w \ge 2d$.

Proof (which is very similar to that of Lemma 2 of [5]). Clearly $q_w > 2w$. Hence in case $d \le 100000$ the assumption $w \ge 100d^{3/5}$ implies $q_w \ge 2d$. Consequently we may suppose that d > 100000.

Let R be a nonzero kth power residue which is not congruent to $\pm 1 \pmod p$. It is known ([5], p. 151; [1]) that then there exist integers x and y satisfying

$$R \equiv xy^{-1} \pmod{p}$$
, $1 \le y < |x| < p^{\frac{1}{2}}$, $(x, y) \le 1$.

Consider now three separate cases:

(i)
$$d^{2/5} \le |x| < p^{1/2}$$

(ii)
$$d^{1/5} \le |x| < d^{2/5}$$

(iii)
$$1 < |x| < d^{1/5}.$$

As in Dodson's paper [5] we may see that in case (i) the numbers of the form

$$m + nR$$
 $(0 \le m, n < \frac{1}{2}d^{2/5})$

generate at least $d^{4/5}/4$ integers which are incongruent \pmod{p} . Moreover each of these numbers is a sum of at most $d^{2/5}$ kth powers \pmod{p} . Hence, by Lemma 1, the expression

$$m_1 + n_1 R + \ldots + m_r + n_r R$$
 $(0 \le m, n < \frac{1}{2}d^{2.5})$

which is a sum of at most $rd^{2/5}$ kth powers (mod p) represents at least min $\{p \ , \ rd^{4/5}/4 - r + 1\}$ residues (mod p). Setting $r = [100d^{1/5}]$ we get the lemma.

In case (ii) we may show, as Dodson in [5], that the numbers

$$h + mR + nR^2$$
 $(0 \le h, m, n < d^{1/5}/3)$

are incongruent \pmod{p} . Hence, by Lemma 1, the expression

$$h_1 + m_1 R + n_1 R^2 + \ldots + h_r + m_r R + n_r R^2 \quad (0 \le h_i, m_i, n_i < d^{1/5}/3)$$

which is a sum of at most $rd^{1/5}$ kth powers (mod p) represents at least min $\{p, rd^{3/5}/27 - r + 1\}$ residues (mod p). Putting $r = [100d^{2/5}]$ we get the desired result.

Also in case (iii) we adopt the method of [5] and choose an integer f such that

$$d^{2/5} \le |x|^f < d^{3/5} .$$

Thus

$$R^f \equiv x^f y^{-f} \pmod{p}$$

where $(x^f, y^f) = 1$, $1 \le y^f < |x|^f$ and $R^f \not\equiv \pm 1 \pmod{p}$. Moreover (cf. [5], pp. 153—154) the numbers

$$m + nR^f \ (0 \le m, n < \frac{1}{2}d^{2/5})$$

form at least $d^{4/5}/4$ distinct residues \pmod{p} , each number being the sum of at most $d^{2/5}$ kth powers \pmod{p} . The result now follows as in case (i).

4. Proof of (2). Lemma 3 implies that $q_w \ge 2d$ if $w \ge 100d^{3/5}$. It follows from this and Lemma 2 that

(4)
$$\gamma(k, p) < (1 + 100d^{3/5})(1 + 2 \log p/\log 2)$$
.

Since we assumed in (3) that $p \leq d^2$, the inequality (4) implies

$$\gamma(k, p) < (1 + 100d^{3/5})(1 + 4 \log d/\log 2) = O(k^{3/5 + \varepsilon})$$
.

University of Turku Turku, Finland

References

- [1] Chowla, I.: On Waring's Problem (mod p). Proc. Indian Nat. Acad. Sci. A 13 (1943), 195-220.
- [2] CHOWLA, S. MANN, H. B. STRAUS, E. G.: Some Applications of the Cauchy-Davenport Theorem. - Norske Vid. Selsk. Forh. (Trondheim) 32 (1959), 74—80.
- [3] DAVENPORT, H.: On the Addition of Residue Classes. J. London Math. Soc. 10 (1935), 30-32.
- [4] ->- A Historical Note. J. London Math. Soc. 22 (1947), 100-107.
- [5] Dodson, M.: On Waring's Problem in GF(p). Acta Arithmetica XIX (1971), 147-173.
- [6] Hardy, G. H. Littlewood, J. E.: Some Problems of 'Partitio Numerorum': VIII. The Number $\Gamma(k)$ in Waring's Problem. Proc. London Math. Soc. 28 (1927), 518-542.
- [7] Heilbronn, H.: Lecture Notes on Additive Number Theory $\mod p$. California Institute of Technology, 1964.
- [8] Tietäväinen, A.: Proof of a Conjecture of S. Chowla. J. Number Theory (to appear).