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Introtluction

fn a euclide&n space, balls centered at the origin can be characterized as

domains invariant under the action of the orthogonal group. Hence it is
not surprising that some problems concerning maps of balls have a con-
nection wit'h symmetry. \Ye shall study functions which commute with a
pair of group actions, one action on the domain of the map aud the other
on its codomain. Such a condition imposed on the function often l,urns out
to be equivalent with others, e.g. injectiveness or the existence of a boundary
extension.

Some of our results depencl on certain category theorems u'hich are
established in § I. In § 2 rve st'udy interior maps in higher dimensional
euclidean spaces; here some of tlte main tools come from algebraic topology.
The tlro-dimensional case is sliglrtl;' different ancl admits a nlore detailed
discussion, as shos'n in §§ 3-a. In §§ 5-6 t-e specialize to conformal and
quasiconformal actions aud extensions, and in § 7 rve interpret some of the
previous theorems in tenns of Schwarzian derivatives.

§ 1. Category theorems

1.1. Definitions. Let f be a topological space and A C I. \Ye sa5,

lhat A is nowhere d,ense 'it, -Y if its closure .4 contains no nonempty
open subsets of X. Clearl5', each subset, of a nowhere d.ense set is nowhere
dense. Moreover, the bounclary 0n of any closed set I c f is norvhere
dense in X.

If ,4 is the union of a countable collection of nou-here rlense subsets
of X, lhen A is m,eager ira lf and its complement f - J is residual
in X. Meager sets are also callecl sets o/ first cutegot'y. Baire's classical
theorem states that no complete metric space is meager in itself.

Let [- 6, @] be the extended real line. Its topology has as a subbase
the collection of all intervals [- oo , o) and (u, , af rvhere a € R. A
map f from a topological space -lf to [- oo , oo] is upper sem,'icont'imuous

if 7-t1- oo , o) is open for each a € R. Similarly / is l,ouer semicontinuous
if f-L(q,, co] is openfor each a € R. Amapis semi,conti,nuou.s,if iliseither
upper or lower semicontinuous.
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The follorvirg result appears in [6, p. Zaa]:

1.2. Theorem. If f :X--> [- oo , «tl i,s semicont'i,ttuotts, thenthe xt of
points at which, f is conti,nuous is a res'i,dual G,r-set i,n X.

Proof. Replacing / by - f if necessary \ye may assume that / is
upper semicontinuous. Let N:{0,1,2,...} be the set of najural
numbers and Q the set of rational numbers. Then the set, of points at
which f is not continuous coincides with

U Af -'lq, .ol n f -'lq + 2-'" , @f
(q,n)€QxN

rvhere each member of the union is closecl andl norvhere dense. I

1.3. Theorem. Let X and, Y be topological spaces and, (Z , d) o'

pseud,ometric spa,ce. Let go be a li,mi,t point of Y haui,ng a countable locer,l,

basis of ne'i,ghborhoods, and, l,et E : XxY -> Z be a malt wi,th the follou'
ing progterties:

(1) the map rr>I(r,y) from X to Z i,s continuous for euclr,

seY-{vo}.
(ii) the m&p A r> I(r , y) fronr 7' to Z is continuous at yn for ea,clt,

a:eX.
?hen there erists a res'idual Go-set C c X su,ch that F is continu,otts

at (* , yo) for eaclt, r Q. C.

Proof. Let {2,},.N be a countable local basis ofneighborhoods at yo.

Given z € N define a, map d'*: X + [- oo , oo] so that cl,(r) equals
the diameter of -F({a;}x 7,) for each r €X. To shos- that d,, is lou-er

semicontinuous, &ssume that r e d;t(a, cc] rvhere n € R. Tlr.en there exist,

Ut,Uz€ Z, such tbat dlF(r,yr),F(:,:,yt))) ct. 85- (ii) \\-e ma)'assllme
that y, and. y, are in V"- {yo} because yo is a limit point of Y. By
(i) there is a neighborhood U of r such that tllF(:t' ,!/,,),I(t' ,yr))) ct

foreach r'e(J. Consequently Uc d;t(a, rc] ancl r1, issernicontinuous.
By theorem 1.2 the set C, of points at s'hich d, is continuous is a

residual Gr-set in X. Then C : O.ex C, is also a resiclual Gu-set in X
and we neecl only shorv that -F is continuous at er-er1. point of Cx{aol.
Given re C arrd. e>0 thereexists ra€N suchthat d^(r) 1e/6, by(ii).
If y e V* - {Eo}, then by continuity of d, at r and bi' (i) there exists a

neighborhood. U of r such lhat d,*(r') ( e/3 and dlF{r' , y) , F(r , y)) <
elz for each r' e U. For (cr' , A') e U xT/, it follorvs that,



Trmo Enx,riue, Group actions anrl extension problems for maps of balls

d,l?(e:' ,y'),I(n,Uo)f Sdll(r' ,U'),X(r' ,y)l* d,ll(n' ,Y) 'E(r,A))
t d,p(r, U), I(r, yo)] I d*(r') * el2 { d"(r) < e,

rvhich proves the continuity of n al @,Yo). O

Theorem 1.3 is related to a result of weston [19, Theorem 2]. It con-

tains some classical propositions as special cases:

1.4. Corollary. Let {,f,},.r be a conuergent sequence of cont'i'nuous nxops

from a togtologi,cal, space X to a pseud,ometria space Z, Then there erists ct

resiilual, Gu-set C c X such that f : lim f,'i's cont'i'nuous at each poi'mt of C'

Proof. Let y be the subspace of [- oo , .o] consisting of all
nat'ural numbers ancl the point yo : oo' Apply theorem 1'3 to the map

E : XxY ---> Z defined by I(r ,11) : /*(r) and I(r , Ao) : /(r)' tr

For real functions corollary 1.4 is due to Baire. In the general case

a proof similar to the above has been gir-en by tr'ort [7, p. 278]. The next

corollary also extends one of Baire's classical results.

1.5. Corollary. Let X and, Y be first ooumtable topol,ogi,cal, spaces and,

Z a ytseud,ometric spd,ce. Sugtpose that I : XXY --> Z is continuous i,n each

aariable separately. Then for each aoe Y there er'i,sts a res'id,ual Go-set

C c X such that I i,s continuous at (r , Ao)' for each r e C.

Proof. If yo is an isolated point of Y, there is nothing to prove' If
yo is a limit point of Y, apply theorem 1.3. tr

our application of theorem 1.3 depends on the follo$-ing result which

is related to a theorem of Collingu'oocl [5, p. 76]:

1.6. Corollary. Let B be the opett, tr,ttit ball, of a n'orrued' l'inear spa'ce,

and, let f be a conti,nuous map from, B to a pseudometric space z. Bupltose

that the rad,i,al l,i,mi,t lim,*rf (rw) erists for each w € 08. Thert' there etists

a res'id,ual G,r-set C C AB such that lim,-rl(reo) :lim***f(n) for each

w eC.

Proof.Themap X:08x[0, f] ->Z definedby .F'(zo,l) : lim,*i(rtw)
satisfies the hypotheses oftheorem r'3 for uo:L' Thus there exists a

resid.ual Gr-set, C c OB such that 7 is continuous at (w, I) for each

w e C. Since f(n) : F(rlllxll ,llr,ll) for r € B - {0}, it follows that
F(w,L):lim*-*f(r) for each ue C' J



Ann. Aead. Sci. Fennicre A. r. 556

§ 2. Interior mappings ot a ball

2.1. Definitions. An action of a group G on a sef § is a homomorphism
from G to the group Aut § of bijections of § onto itself. We say that a
subgroup H of AutS actstransiti,uelyonaset -Ec§, if E:{h(");heH}
for each reU.

Lef O(n) be the multiplicative group of real orthogonal rixz matrices
with determinant l. Regarding the elements of O(z) as Hilbert space
automorphisms of the zz-dimensional euclidean space -8" u,e obtain a
natural action of O(n) on -8". In particular, each g e O(n) maps the open
unit ball B: {r €.B";llrll ( I} as well as the unit sphere }n-r - 63n
onto itself. Unless otherlrise specified, we shall a,ssume n 2 2.

a

v

2,2, Lemtrna. O(n) acts

complete orthonormal
=- (orrr. ,ant).Hence

transi,tiuely o?t, §'- 1.

..,0) ancl y €§"-1. Since
set, there exists g - (a,i)

ye{g@;s€O(n)}.I

y is conta,ined in
e O@) srlch that

n > 3. cn?d suppose
e 0@) suelr tltat

-r* -L n'2 
-

r ' i "t1,

1) such that,

has the reclrlirecl proper-

2,A. Lemma. Let fr , ?/ o,ncl z be points of §n-L ulte,t'e

tlt cr,t z ,is ortlt ogo?LCLI to t: - y . Then there erists g

e. Then if r
equenttf' r.;
heO(n

Proof. By lemma 2.2 we maJr assum e that z :-
ancl y - (Ur,. . " , U,), we have frt: !/r and cons
yZ + . . . 4- y?,. B;,- lemma 2.2 there exists

2.4. Theorem. Let f , S"-' r ,S' be u,

(a) f as,inject,iue.
(b) tltere ,is un act,irstt § ,f O(n) ort,

fo, ec(,ch ge O(n) u,nd ne§"-1.

'iLonco?lstcttit cottt i ti it(ttts nltt"l) t.L:ltei'e

eq?( i t'ctl e nt :

,fS'-' such thctt ltrJ(,,-'l) - l@)f (t,)

Proof .If (a) holds and g e O(n), there is a unique map 1i(9) :/§"-t >/§"-1
such that fr(S)f@ : f @(")) for each :,- € ,S"-1. It is clear that
fi(g') " §(g) : fi(g'g) for g , g' e O(n), and (b) follou-s.

Conversely assume that (b) holds. \\'e first consicler the case when
f(r)+f(y) if n*U and n *-y. Sincethe (ra-l)-clirnensionalreal
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projective space ca,nnot be imbedded in 
^S" 19,p.172f, there exists r € §"-I

such that f(*) +lF r). X'or each g eo(n) we have

l@@)) : §(s)f(r) * fr(s)ft- x) : f(s(- r)) : f(- s(r));

hence / is injective by lemma 2.2.
fn the remaining case there exist t: , A € §"-r such Lhat f(r) : f(y)

and r + +y. Since /(g(z)):f(g(y)) for each g e O(n), we ma,y assume

that A:e. Then if x:(rr,...,fro) and t:1/t_ *zr, we have
f > 0 because # * * e. The next step is to prove that f is constant in
U : {z e /S"-r ;llz - rll < 2t}.

Define d r§"-'--rB"-r by ö(€r,...,6,_r) : (frr,ttr,...,t€.-r).
Then /(8"-'; is a path connected set whose diameter is at least 2t, the
distance between a : $(rrlt, . . ., n,lt) anc1.

2rre - n : ö(- nrlt, . . ., - n,lt).

Hence given z € [/ there exists f € §"-' such that li" - *ll: IId(å) - rll.
Since r is orthogonal to $(€) - z, by lemma 2.3 there exists g e O(n)
such that g(ÖG» : z ä,Ld g(x) :;u'. ]Ioreover, since e is orthogonal to
n - ö(€), there exists h, e O(n) such that h(r) : ö(t) and h(e) - s.

Therefore

f(ö(€» : f(h(r)) : §(h)f(r) : §(h)f(r) : f(h(e)) : f(e) : f(r)
and consequently

f(") : f(s(ö(€))) : §(s)f(ö(E)) : §(s)f(r) : l@@)) : f(").

This shows Lhat f is constant in U.
Since each g e O(rl maps ,S"-1 topolc,gically onto itself, we see from

fgU : §(S)fU ancl lemma 2.2 tliat / is locally- constant in §"-I. Thus /
is constant becanse ,S"-1 is conneetecl. This contradicts the assumption,
and the proof is complete. E

2.5. Definitions. Let X and I' be topologiczrl spaces and let U be
open in X. A map 

"f 
: U ---> Y is open, if it ruaps each open subset of U

onto au open subset of Y. A map /* is an entensiott, of /, if the domain
of /* contains U atd f*(t:) : f(a) for each r e lJ.

2.6. Lemma.
efrtensi,on f* : U

(a) If X rs

(b) If Y is

Let f : {J --> Y be G,'r?., o'pe'??, 'r?L(Lp

Y.
hcrusdorlf ä?Ld f ?1.§'injeotdue, then,

Tr,ausdorff Lt?xd tr ?'s conlpctct, tlt eru

lt,ct'u itt g ct co'lt tin'uoutr

f*aLi c af U.
Af(f c f*A{J.
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Proof . (a) Since f*ltl c f U by continuity, it suffices to shou' that

fUnfAU:0. Given r€IJ and ye0U there existdisjointopensets
D and V in X suchthat, re D c Lr anil Ae Y.Since / is open and

injective, /(D) and fP n V) arc disjoint open sets. By continuity J@)
and /x(7 O V) arc also disjoint and thereforc f(r) +f*(y).

(b) By continuity f*(A) is a compact subset ot ffl containing /U.
Since Y is hausdorff, f*(U) is closed and consequently f*@) : fLr '

Hence AfU cf*(U) and. because /xtl is open, 1fU cf*)U. A

2.7. Theorem. Let f : B'--> S" be q,tt open cont'i,nuous nx&p whose restric-

ti,on tothesythere §"-'(q) : {r € R;llrll: p} i§ injectiueforeach g € (0, r).
Bupytose that for q , g' € (0 , t) the sets ,f§"-'(p) and, fB-r(g') are either

equal or d,i,sjoi,nt. ?hen f is i,niectiae.

Proof . We prove first that (0 , 1) can be covered by open intervals

-[ such that the restriction of f to the ring l?(1) : {r e B; ile'll e 1} is

injective. Given g € (0 , l) there exist points (, , i, € §" rvhioh are

separated by "f§"-'(S), by the Jordan-Brou\T'er separation theorem. Let

"I C (0 , 1) be an open interval containing g such that /A(/) C S" -
({1r}u{(r}), and for r€I define "f,,§"-'->§"-({ar}u{ar}) b}'

fJ4 :/(rr). Since each f is homotopic to /, and f§"-t separates {,
and Cr, it follows from the Borsuk separation theorem [8, p. 275] that
,ror" o] the maps f is homotopic to a constant map and that /§"-1(r)
separates 6r and ez for each rel.

If /lA(1) (i.e. the restriction of / to A(/)) is not injective, there

exist a,beI such that a <b and /§"-1(4,) :/§"-r(b). B;r lemma

2.6 (b) we have OfR(a,b) c/S"-1(a); c,on'sequentlv /A(4, b) must contain

one of the components of §" - /§"-1(n). But tliis is impossible because

/§"-'(o) separates (1 and (r. Hence f RQ) is injective.
Suppose fhaf f is not injective. Then in vielr-of lemma 2.6 (a) f ,B - {0)

is not injective and there exist a,b€(O,L) such that, a <b and

.f§"-'(o) : /§"-1(b). Let q be the greatest number in (o , bl such that

flh(* , q) is injective; we show next that /S"-1(a) :,fS"-'(S).
Choose o, 0 e(0, 1) suchthat a < I < p and f,R(n,p) isinjective.

Then a > a by definition of g. lloreo\-er, b}. compactness there exist

convergent sequences {r,},eN ancL {9t,},.x in R(a , §) such that
Iimllr"ll {a,IimllA"ll: q and f(r.):f(y") foreadnn € N. Let r:limro
and. y:lim1,i then by continuity f("): f(A) and by lemma 2.6 (a)

f@) e OfR(a , g). Since / is open, it follorvs that lia:il : ,, and consequently

.f§"-'(r) :,fS"-'(g).
Applying lemma 2.6 we now see that / maps -B(o , q) t'opologically



Trrvro Emeue, Group actions and extension problems for maps of balls 11

onto one of the components of S" - "f§"-'(g). But this is impossible because
E(a, d is homotopicallyequivalentto ,S"-r while the (n - l)-dimensional
homology of S" -,f§"-t(S) is zero [8, p. 361]. The contradiction shows that
/ is injective. [I

2.8. Definition. Let X and Y be topological spaces and A c X.
We say lhat A is totally d,i,sconnected,, if each of its components consists
of a single point. A map f : X ---> I' is an 'interi,or map, if / is continuous
and open and f-L{y) is totally disconnected for each A e Y.

2.9. Theorem. Let f : B" --> S" be un 'interior m,ap where n 2 3. Then
the foll,owing cond,i,ti,ons are equiaalent:

(a) f is i,njecti,ue.

(b) there is an acti,on B of O(n) on fB" such that f(S@)) : §@)f(r)
for each geo(n) and, xe 8".

Proof . The proof that (a) implies (b) is trivial as in t'heorem 2.4. There-
fore assume that (b) holds. Given g € (0, I) theorem 2.4 sholr.s that
,fi§"-'(S) is injectir.e or constant. Since §"-r(9) is not totally disconnected,

,fiS"-'(e) is injective.
Let g' € (0 , 1) be such that /§"-1(g) and ,f§'-'(g') have a common

point y. Then "fS"-'(S) and "f§"-'(q') coincide 'with the orbit
l§@)(y);g €O(n),r, and / is injective by theorem 2.7. e

2.10. Definitions. 11-e recall some basic facts from the theory of quasi-
(:onformal and. quasiregular mappings; these lr,ill be needed. in theorem
2.11. The general references are [12] and [18].

Let D be a dornain in -8". A gtath in D is a continuous map from an
intervalof R into D. Wedefineanoutermeasure M, calledLhemodulus,
in the space P(D) of all paths in D as follov's. Given I c P(D1 denote
by XQ) the class of all Borel measurable functions QiR"---> [0, oo]

such that for each rectifiable y e f the integral { ^,gd,s u,ith respect to
arc length of y has value ) 1. Then

Mq): inf"..1,.1 [ Q"d,,,^,

Rr

nhere nlo is the rz-dimensional Lebesgue measure. If J' contains no
rectifiable paths, then M(l) : 0.

Let f be a sense-preserving homeomorphism from D onto a domain
D'CR". Given f CP@) let If :{f .y;yeJ"} be the image family
in P(D'). We say that / is quasi,conformal,, if there exists a constant K
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u'ith 1 < K < oo such that K-LMV) < M€r) < KMg) for each

I c P(D) [8, Definition l3.I].
Let J be a continuous map from D to R". We say thaL f is quasi,-

regular, ifthere exist a constant K with l<R ( oo andaset EcD
wit]n m"(E) : 0 such that the following tu'o conditions are fulfilled:

(i) each r e D has an open neighborhood U c D such that the
components of /lU have generalized, derivatives (in the Sobolev sense)

'of class -t" in U.
(ii) if reD-E and, he § -1, then / is differentiableat r and

satisfies llDf(r)(h)ll" < KJf(r), where Df(r) and Jf(r) arc the derivative
a,nd the Jacobian of. f at' r, respectively

The above definition is a generalization of the analytic definition of
quasiconformality lI8, Theorem 34.6]. More precisely, an injective map

J: D ---> -8" is quasiregular if and only if it agrees rvith a quasiconformal
homeomorphism of D. On the other hand, a nonconstant quasiregular ma,p

is an interior map ll2, Lemrna 2.26f.
Lef B be an action of a group G on a topological space X (cf. Defini-

tion 2.1). We say tlrat B is cotttirt'uous if. B@) is continuous for each S e G.

2.11. Theorem. Let f : B" --> R" be a nonconstant qu,asiregu,lar magt

uhere n 2 3. Then the follouing cond'it'ions are equ,i,aalent:

(a) / ds quas'iconformol, and, has a homeomorphic efiension to the closure

B" oy 8".
(b) there 'i,s a cont'i,nuous act'ion B of O(n) on the closure of fB" such

that f(g(ru)) : §(g)f(x) for each g e O(n) anrl, r e 8".

Proof. Suppose first that (a) holds and let .f* b" the extension of f;
then in vierv of lemma 2.6 f* is a homeomorphism from B" onto the
closure of fB". For geO(n) t'hernap §(g):f*g(f*)-L isahomeomorphism
of the closure of fB" onto itself, ancl l-e thus obtain a eontinuous action
p satisfying (b).

Suppose conversely tliat (b) holds. Since / is an interior map, it is quasi-

conformal by theorem 2.9. To define the extension of / we first sho'w that
/ has radial limits.

Choose A€(0,1) andforeach ru-€§'-l define ),"i(g,t)*B by

T,(t): fr. Then the path family I : {y,;a- € §"-1} has positive modulus

[18, Example 7.5]. Since / is cluasiconforrnal, the rnodulus of f' :
{f " y-; r € ,S"-1} is also positive and it follou's that / o y, is rectifiable
for some u €8"-r (cf.2.10). Thus the radial limit ö :lim,*rf(ru) exists
and belongs to the closure of fB". For g e O(n) rve have

§(g)(C) : lim"*1 §@)l(r") : lim,4f(g(rx)) : lim,*rf(rg(r))

ancl hence by lemma 2.2 f has a radial limit at each point of §"-r.
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We define the extension /* by l*@):lim,*tl(rr). Then f*(g(*)):
§(g)f*(*) for each g e O(rL) and. r € 8". Moreover, by corollary 1.6 there
exists a residual Gr-set C CAB" such that f*(w):lim*-.f(x) for each
we C, and by Baire's theorem C is not empty (cf. l.t). Given we C
and g e O(n) rve have

f*(g(*)) : fi@)l*(*): lim,*- 0@)f("): 1im,*,/(g(r)) .

Since g maps B" topologically onto itself, it follows fhaf f*@(w)) :
lim*rprf(r); hence /* is continuous at g(w). Becattse g € O(n) is arbitrary,
by lemma 2.2 f* is continuous in the whole of 8".

By theorem 2.4, f*l9-r is either injective or constant. On the other
hand, OfB contains more than one point and is contained in .yrx§"-t O,
lemma 2.6 (b). Hence "f*l8"-' is injective, and in view of lemma 2.6 (a)

tho same is true of /*. I

2.12. Corollary, Let f be a quasiconformal homeomorphi,sm from Bto

ontoad,omain DcR" where n23. Then f hasahomeomorph,i,centens'ion
to the closure of 8", i,f and, onfu1 if eaery guasiconformal, automorphi,sm of D
has a conti,nllous ertcnsion to the closure of D.

Proof . Suppose first that / has a homeomorphic extension /* : B" --- D,
and let S be a quasiconformal automorphism of D. Then a : f-tSf is
a quasiconformal automorphism of B" and has therefore a homeomorphic
extension a* : B" -> -E' ;18, Theorem 17 .207.It is clear th ab $* : f*o$(f*)-t
is a continuous extension of {.

Suppose conversely that every cluasiconformal automorphism $ of D
has a continuous extension ö* to D. Define an action p of O(n) on D
such that §(g)(y) : (fgf-L)*(y) for each g e O(n) and y e D. Then p is
continuous ard f(g(r)) : §(S)f@) for each g e O(n) and r € 8". By
theorem 2.11, f has a homeomorphic extension to the closure of 8". I

§ 3. Groups of projective transformations

3.1. Introiluction. Let P be the complex projective line rvith the
topology coinduced by the canonical projection n: Cz - {0} + P. The
image of R2 - {0} under z is the real projective line P; clearly P and
P are homeomorphic rvith §2 and 81, respectively.

Let SL(z, R) be the multiplicative group of real 2 X 2 matrices rvith
determinant 1. There is a continuous action § of SL(2, R) on P such

that p(A)n(r, A) : n(ar { by, ct: * dy)'ivhenever 
" 

: 
eil is in
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Br(2, R) and (r,A) e C'- {0}. We also use the notation §(A):
{a,b,c,il,}. The image of p is the group T of real proper proiectiae

transformati,ons of P, and the kernel of p is a group of order 2 generatecl

a" (-: 9) It is clear r.nab g(P): P for each g € 1'; rve shall be" \ tJ-rl
interested in those subgroups of -l' which act transitively on P.

The eigenvalues of a matrix A ?SLP,R) are the solutions of the
equation 12- ).tuA ! I :0 where tr,4 is the trace of A. The eigen-
vectors correspond to fixed points of p(A) in P. If B(.4) is not the identity
of .f', the number of fixed points of B@) in P equals the number of real
eigenvalues of A. This number can be 0, I or 2, ancl accordingly rve call

B(A) elli,ptic, parabolic ot hyperbolic. Since tr -4 is invariant under con-
jugation, it follows that the classes of elliptic, parabolic and hyperbolic
elements are invariant under inner automorphisms of f .

The isotropy subgroup of a point 6 €P is fe :{g e f ;g(l): (}.
and we use the special notations T0 : I,Q,r1 a,nd I' : I,(r,o). Then

-l'0 and I' are images under B of the orthogonal and upper triangular
subgroups of Br(2 , R), respectively. By elementary theory of linear
fractional transformations, { is conjugate to ./-0 (resp. J-') if and. onll''
if 6€P-P (resp. CeP). Itfollov'sthat, l-, actstransitivelvon P
ifandonlyif e eP-P.

3.2. Lemma. Let g ancl, h be i,n I anrl let lg ,h,): ghg-t7r-r.
(a) If g i,s elli,ltti,c and, has no com,m,orb firecl, poi,nts with k, then lg , h]

i,s hyperbolic.
(b) If g and, h are hyperboli,c anil, haae preci,sely one aommon fi,red

poi,nt, then lS , h7 i,s parabolic.

3.3. Iremma. Each fc 'i,s a, nta:cintcil subgroup ,f f .

Proof. (u) By passing int'o suitable conjugates \\'e mav assume that

g e ro.Choose a € (0,2) ancL B: (: !) .s21,, n; so tliat t : P(B)' \c dl

and s:fr(A) where A:( :f]::'il) rhen tr'lr,B):2+
\- sin l cos r/

L@ - d)'+ (å + c)21 sin2 cv is greater than 2 because L is not in J-"

by assumption. Hence lg , h7 : PIA , Bl is h1-perbolic.
(b) We ma,y Er,ssume that g:{r,0,0.t'-1} and ä:{s,b,0,s-1}

where lrl+t and b+0.Then lg,hl:{l ,sÖ(rz-1) ,0,1} is
parabolic. E

r,Proof. Suppose that is a proper subgroup of a subgroup G c l';

Ann. Acacl. Sci. Fennicrr
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we have to show lhat G : l-. Since the conjugates of a maximal subgroup
are ma,ximal, we need- only consider the ctlses of J"0 and -I-'.

In the case of .l'' it is clear that G acts transitively on P and hence

contains J', foreach CeP. If g:{o,b,c,d} isin -/'and e*0,
then

g - {1 , 0 , $-1c , L}{o ,b , A ,o-'}

are in I.10, ,; anrJ l', respectively" If ct -: 0 butwhere the factors
cl * o, then

and again S e G. In the final case a : d,: 0 tve can write

g : {- b,2b, 0, c}{2, - 1, 1, 0}

rvhere the last factor belongs to l*o,rl. The assertion G: -l' follows.
In the case of -I-0 we have le,(i,r) c G for each g e G. On the

other hand we can choose g€G- I0 sothat gn(i,l):n(yi,l) for
some 7 > l. Given such a 7 it suffices to show that J-0 ,rd J',(r,,rr
generate J".

For each a e (0 ,n) x'rite Ä'1 : (I a y2 cotz o)*'i',

go : {ykocot a , - ko,lco, ykncob a) ,

ä*: {cos a,ysino(, - T-r sincv, cosa}.

Then go € l-0 and hoe l,(ri,r1 so that gohoe G. Computing

[sin a ^ ylc*l
goho: 

I n , (y' - l)k* cos ", o, .irräi
and.

( r^,2 - 112 I
l9,ph..,r,gohof: {r, 

sin2:r,0,'.[

rve see that G contains each parabolic element of l-'. Hence G also

contains the elements

L _v:_ I I Jsin: ^ n vku.l
[- , zy "in2a ,o ,tl l*h*: i ,r', , 0, 0, #oJ

which together with the parabolic transformations generate the whole of
f'. Since J-' is a maximal subgroup of l, we conclude that G : f.

T

3.4. Convention. Let SL(Z , R) have the topology induced by the map
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la b\

It o)*(a 'b 'c 'd')

from BZ(2, R) to .Ba, and let .l' have the topology coinduced by §.
Then BZ(2, R) and I are connectedtopologicalgroupsand p determines
a trvo-sheeted covering projection from BZ(2 , R) onto ,I'. Also for ( € P,
the map g > g(C) from l- to P is continuous.

3.5. Theorem. Let G be a closed, subgrougt of I acti,ng transi,t,iuely on
P. Thenei,ther G:T orthereeti,sts 6€P-P suchthat G-le.

Proof. Suppose that G is not contained in { for any 6 € P; we
lrave to show that G : T. ,Since G acts transitively on P, it contains
uncountably many elements. Henco G cannot be discrete, and a rvell-
known result of Siegel [7] implies that each neighborhooct of the identity
e of G contains elliptic elements of G.

Let {g^),r* be a sequence of elliptic elements of G converglng to e.

Since G is not contained in anF I;, lemma 3.2 (a) shows Lhat G contains
a hyperbolic element h and that {[g" , å]],.x is a sequence of hyperbolic
elements of G converging to e.

Since G acts transitively on P, each lg^,hl has a conjugate h,:
{sn,b.,0,s,1} in Gnf'. Then is*l+1 because h" is hyperbolic.
Iloreover limo**ls^ * s.-'l : 2 because the trace of a matrix is ilr,ariant
under conjugation and lim"*-lg,,h7: e.

In order to shorv lhal f'c G we first consider the case rvhen z(l , 0)
is the only common fixecl point for all ä,. Then by lemma 3.2 (b) G n f'
contains a parabolic element, p : {1,b, 0, I} rvhere b + 0. Considering
h!,ph;r: {l , s'^kb,O, l} for clifferc,nt integers Ä s-e see that b can be
chosen arbitrarily small. Consecluently, because G is a closed subgroup
of J', it contains each parabolic transformation of I,. Combining these
parabolic transformations with the elements of {ä,}, e N rrre obtain, because
lim,** Is,l : 1, a system rrhich generates a dense subgroup of -Z''. Since
G is closed, it follow-s that T' c G.

In the remaining case each å,, has the same fixed points. By the above
reasoning the assertion -Z'' C G u,ill follorv if G n I, contains at least
one parabolic element. Replacing G lty a conjugate subgroup if necessary,
we ma,y assume that the points z(0 , t) and z(I , 0) are fixed points
for each h,. Then b.: 0 for n € N and llte see that the elements of
{å,},ux generate a dense subgroup of l-.t,,ry O.l-,. Since G is closed,
itfollowslhat r1,:{r,0,0,r*1} isin G foreach r+0.

Choose z€N sothat g, isof theform {a,b,o,d,} where a#0;
this is possible because limg,: s. Then r7,g^ is elliptic for r: I and

Ann. Åeacl. §ci. Fennic.r
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hyperbolic for sufficiently large values of r. By continuity there exists
g > I such that Tng, is parabolic, and the assertion f' c G follows.

Since J-' is a proper subgroup of G, we conclude by lemma 3.3 that
G:I. J

§ 4. Interior mappings of a disc

4.1. Introduction. We want to establish 2-dimensional analogues for
the results ofsection 2. It is convenient to use complex notation and replace
B'by the open unit disc U : tz e C ; lzl < l) and B, by the unit circle
T :0U.

We identify the complex plane C with a subset of P by means of the
imbedding z r-> n(i, * dz ,1 - z) from C to P. Then 7 corresponds to
P and each g € J- maps 7 onto itself. In fact, the set of rostrictions
glU wifh g e f coincides with the set of holomorphic automorphisms of
U. The complement of C rvith respect to P consists of n(l ,i), »the
point at infinity», and accordingly rve shall regard P as the Riemann sphere
C U { oo}. fn particular, the holomorphic automorphisms of P are linear
fractional transformations.

Let G be a group of bijections of a set B onto itself, and let / be a
map from § to a set §'. We then write

-B(§,G) :{(r,S@));r€B and geG}
fi(s,/) :{(r,y) €§x,S;/(c) :fg)l

ft is clear that .E(§, G) and B(B ,"f) are both equivalence relations in B.

4.2. Theorem. Let f :T ->P be anonconstant conti,nuous map, and, let
G be a subgroup of I acti,ng transitiuely om T. Then the followi,ng cond,itions
are equi,ualent:

(a) there i,s a fini,te normul subgroup X of G su,clt tltat R(T,F):
R(T,f).

(b) there 'i,s an act'ion {l of G on, JT su,clt. that f(g(.r)) : 11(g)f(r) for
each geG and, reT.

.Moreouer, if G is not contai,ned, in any lr, tlren (a) und (b) holcl if and
only if f i,s injecti,ue.

Proof . Assume first that (a) holds and let (r , y) e R€ , f). Then there
exists ä €-E such lhat y:h(r). Given g e G wehave g(y): (ghg-L)g(r)
and consequently (g(r) , S@» e R(f , n) because n is normal in G"
Hence f(g(r)) : f@@)) and we can define a map p(g) : fT ---> fT such



Ann. Acad. Sci. l-ennicie A. r. 556

that §(s)f(") : f(g(r)) for r e T. Clearly 0@') " §(s) : §@'s) for
g ,9' e G, and (b) follows.

Conversely assume that (b) holds. We first consider the case G : f 
e

where Ce U and denote by I the stabilizer {hefe;/(l) :l(h(r)l
of /(t) in G. Because / is nonconstant, the orbit {ä(f) ;h,e F} cannot,

be dense in 7; hence -[' is finite. On the other hand, given z , y e T therc
exist unique elements g ,h e /-, such that g(f ) : tr a,nd h("): y. Since
(b) holds and 1', is abelian, \Ye have /(g(t)) : f(h(SG))) if and onl;, if
/(1) : f(h(l». This is equivalent to lt,eF, and the proof of the case

G: lr is complete.
In the remaining case G is not contained in any lr. Tf (r , y) e RQ , f)

and g € G, then l@@)) : f@@)) by (b). Since G is dense in J- by theorem
3.5, it follows rlnab f(g(r)) : f(g(y)) for each g e f . This is possible only
if n : y because ;f is nonconstant. Hence / is injective ancl (a) holcls if
-F is the trivial subgroup of G. I

4.3. Theorem. Let f :U'-->P be an, interior map, and let G be « sub-

group of I acti,ng transitiuely on T. Then the following conditions ctre

equ,'iafilent:

(a) t-lter"e tls a fin'ite %ornLCLl subgroup

B(U ,f).
(b) there is ct?t ctct'ion p ,f G o?L fU

ea,ch g€G u,nd z€tl"
I{oreol)er, if G 'is not conta'inecl 'itt, a,%?/

ovlly if f i.s 'inj ectiue .

Proof . The proof that (a) implies (b) is trivial as in theorem 4.2. To
proye the converse rve again start with the case G: fc r,vhere C eU.
Precomposing / with a suitable holornorphic automorphism of t/ rve may
assumethat, 1:0.

Given g € (0 , l) Iet /" be the restriction of / to §t(S) @f. 2.7).

Then by theorem 4.2 hbere is a subgroup -Fo of fo of finite order
i,rn suchthat -E(§1(g) ,nn) : A(B'(p) ,å). It particulal, l§'(s) isaJordan
curve. Choose tu,o points 4 and ez from clifferent cotnpouents of
P -,fSt(g) andahomeomorphism h from P - ({,'r} U i;}) onto C - {0},
and define yail0,2nl_> C - {0} by Zn(a) :lt(f(Se")).Then iz, coincides

with the absolute value of the index n(yo , 0) of ?,,, rvith respect to 0

[1, Section L10]. Since n(y.,0) depends contiuuouslY on Q, it follows
that the map Q>no from (0, l) to N is constant.

Let n be the value of nn for A € (0 , 1), and clefine fo: U --> P so

that, fu@") : f(z) for z e U. Then /, is an interior map rvhose restriction
to §1(g) is injective for each q € (0 , 1). lforeover, if lr§1(g) and. 

"fo§t(e')

s?rcll thcr,t f(g(z)) - §(g)f(r) fo,

lr, th,en (") cl?bd (b) holcl i,f ancl

18
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have a common poinb y, they coincide with the orbit {0@)@))g e l'd.
Thus by theorem 2.7 fo is injective and (a) holds if -F is the subgrorrp of
Io of order zt,.

fn the remaining case G is not, contained in any Ir. Tf (z , w) e R([,t , f I

and g e G, rhen f(g(z)):f(g(ro)) by (b). Since G is dense in 1' 1r)'

theorem 3.5, it follor.vs Lhaf f@@)) : f@(w)) for each g e f . This is
possible only if z : w because / is an interior map. Ilence f is injectire
and (a) holds if -F is the trivial subgroup of G. tr

Our next goal is to prove an analogue oftheorem 2.11. The appropriate
mappings are now quasiconformal functions (for the definition a,ncl basic
properties see fll, Chapter YII).

4.4. TheoretrIt. Let f : [-I --->

u,nd let G be u subgro'up ,f f
cond'iti,ons &re eqw'iualent :

(a) there i,s a finite norrnal subgroup I of G and, a oontinuou,s etten,.siorr

f*,e =>P of f such that R(A ,F): R(A ,f*).
(b) tltere is q, continuous aati,on § of G on the closure ol lLt strclt tlutt

f @(z)) : §@)f (") for each s e G and, z e U.
JVloreoaer, if G is not conta'ined, i,n, any lr, then (a) and, (b) hold if u,nrl

only if f is injectiue ctncl hcts a ltomeom,orphic ertension to the closure oJ I' .

Proof . Suppose first that (a) holds. Then -F is contained in 1', for some

6 € U and we ma,y obviously assume l}.at l: 0. If 'E, is the trivial sub-
group of l'0, then /* is injective and we can define fr(g) : /*g(/*)-r for
each g € G. If the order of -E is n ) I, by lemma 3.2 (a) G is containcrl
in ./'o because -F is normal in G. Moreover, there exists a uniqrte homert=

nrorphism fo: A -rfu such that l*@) : foQ\ for eacli : € [--. \\'o carr

then define an action p satisfying (b) by §(il : fog",fi'.
Suppose conversely that (b) holds. \tr'e first consicler the case when ./

is injective ancl thus agrees l-ith a quasiconfonnal homeomorphism of U.
Then there exists r € 7 such that / has an angular limit i' at, rr [1:],
p.731. Let /: {" e L,'; ;arg (l - e/"i) (,r} be tr, Stolz region tt r: u'ith
0 < « < n12. Given g € G'we ha'i,e

§@(q : limrru*, §@)f (") : limr r. *, f @tr11

which sho'ws Lhat f has an angular limit at g(r), too. Since G act,s

transitively orr T, it follows t'hat f has an angular limit at every poiut
of. T.

We define the extension ,f* by f*("):lim,*rf(rz); then /*(g(e)) :--

§(g)f*(z) for each g e G and ze O. The continuity of .f* ,ot, follou.s

P be cL no??,cortstunt q'uasicottfor"nru,l frn?,atil)tt .

act'ing trans'it'iuely ott, T. Tltett, the foll,ort:ittyy
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from (b) and corollary 1.6 just as in the proof of theorem 2.11. Henee in
vierv of lemma 2.6 we need. only show that /*17 is injective.

First of all, f* i7 is not constant because f*T : lfU and. [/ is not,
quasiconformally equivalent with a punctured sphere [tl, p. 44]. Next, by
theorem  .Zthereisafinitenormalsubgroup I of G suchthat R(f , F) :
R(T ,f*l?). Hence f*T is a Jordan curye. Choose two points år and (,
from different components of P - f*f and a positive number r ( I such
that /*§1(g)cP-(6rlU{(r}) foreach g€(r,t). Leb h beahomeo-
rnorphismfrom P-(frlu{1r}) onto C-{0} and for q€(r,ll define
y!! i LO , 2nf -> C - {0} by yn(t) - h(f *k"")). Since / is injective, we
thenhave ln(yr,0)l :I for q(l andconsequently ln(yt,0)l:f by
continuity. Hence the order of ,F' is one and f*lT is injective.

fn the remaining case / is not injective. Hou,ever, since / is an interior
map, by theorem 4.3 there exist 6 € U such that G: J-, and a finite
rrormal subgroup X of G such that R(U , n) : R(U,/). Precomposing

/ with a suitable holomorphic automorphism of U rye ma,y a,ssume that
i:0.

Let n be the order of -F and. define fs: U --> P so that fo@") - f(z)
for z € U. Then /. is a sense-preserving topological map 'which satisfies

fo(9"(2")): §@)fo@") for each g e lo and ze U. Moreover, in vierv of
the geometric characterization of quasiconformal functions pl, Section
YI.ll we see that folU - {0} is quasiconformal. The same is then true of
å lry the removability of a point [i1, p.a3]. On the other hand, because

P@) : B(hg) for g € lo and h € 7, there is a continuous quotient action

fio of lo oL 70 such that §(il : Bo@") for each g € J-0. Thus fr(g"(2")) :
fio@")fo@") for g e ,I| and. z e U, and the proof of the injective c&se shou,s

thab f, has a homeomorphic extension ft , U -> P. We can now define
the extension of f by f*(r):ft@"); then it is clear fhal R(O ,P):
R{u , f *).

I:ina}l),, if G is not contained in any
and (b) hotd if antl onl5r if f is injeetive
to the closure of L,'. I

lr, then in rrien'of theorem a.3 (a)

and. has a homeonlorphic extension

4.5. Corollary. Let D be a simply cortnectecl clomaiit, itt P u'ith at least

truo bound,ary poi,nts. Then D is ct Jordon clomr,Litt if ond only if euery holo-
m,orph'ia automorph'i,sm of D ltas ctcontinu,ous ertensi.on to the closure of D.

Proof . Suppose first that D is a Jorclan domain, and let { be a holo-
morphic automorphism of D. By the Riemann mapping theorem there
exists a conformal map .f : U ---> D, and because D is a Jordan domain,

/ has a homeomorphic extension /* : A --- D. Then " : f-,öf is a holo-
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morphic automorphism of [/ and hence agrees in U with some g € J'
(cf. a.I). It follows that f*g(f*)-t is a continuous extension of {.

Suppose conversely that, every holomorphic automorphism { of D has
a continuous extension d* to D. Define an action B of T on D such
that p(g) : ffgf-L)* for each g e f . Then p is continuous and /(g(z)) :
§@)f(z) foreach ge I and ze U. Hencebytheorem 4.4, f hasahomeo-
morphic extension to the closure of U. tr

§ 5. Conformal extensions

5.1. Definition. \4/e define a metric k in P by the formula

1.,,, _"",,t
k(n(zr,zr) , n(wr,wz)) : ärö tan :#l

lzrrV, I zrrVrl

where the principal value of arc tan lies betryeen 0 and" nlZ. This spheri,cal
metric is a complete Riemannian metric compatible .lvith the complex
structure of P.

In this section and the next some proofs depend. on a normal famil;,
argument contained in the follox.ing lemma.

5.2. Lemma. Let D beadoma,i,n,i,m P, and,for each ne N let f, be

a K-quas,iconform,al, map from D onto another d,om,ain of P. Suppose tha.t

the sequence {å}".N conuerges at three. d,ist,i,nct po,ints C, e D where
? € {l , 2 ,3}, and, that the lim,i,ts li: limå(6r) are also disti,nct. Then there
erists a subsequ,ence {,f"n}rux ,talticlt cottterges to a l{-quasiconformal, malt,
unifornly on contpact subsets ol D.

Proof. By assumption there exist zo € N and d > O such that
kff"(er) , f"(e)) ) d whenever i, t'j and n ) no. On the other hancl,
the numbers k(f"(il,f"(t)) with i*j and nsno have a positive
lower bound. Hence {År,".1, is a normal family [11, Theorern II.J"1].
The assertion then follov's by [Il, 'Iheorem IL5.3]. tr

5.3. Definition. Let 13 be an action of a group G on a set .& C P.
lVe say that p is conforrnal (resp. qua,s,i,conformal), if. for each g € G the
map p(g) has a conformal (resp. quasiconformal) extension to a domain
of P containing -8.

5.4. Theorem. Let f be a conformal map front, IJ onto a d,omai,n of P,
and, let G be a subgrouTt of I acti,ng transitiueLy on T. Then the following
cond,itions are equi,aal,ent:
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(a) J has a conformal ertens'ion to P.
(h) there i,s a conformal acti,on fr of G on P such that f (g(z)) : fi(g)f(")

Jitr eu,clt ge Cl u,nd, ze U.

l'roof .If (a) holds and /* is a conformal extension of f to P, then

.f* maps P onto itself and we c&n define fr by fr(g) : f*g(f'§)-l. Suppose

conversely that (b) holds. We again start rvith the case G : fe and may
assumethat {:0.

'l'he Bchraarzian deri,uatiue §/ of / is a holomorphic functiou of L'l

rlellinetl bv

rrlrerc. J', .f " and f "' are ordinarv derivatives of /. (Note that / maps
at nrost one point of U to P - C; such a point is a removable singularity
tbr S/.) Given g e fo and z € t/ the compositionrules for Sf 12, p. 1301

vield §/(g(z)).g'(z), : Bf(r), because g and p(g) arc bothlinearfractional
tra,nsformations. On the other hand, the elemeuts of fo are of the form
z e nz n;ith r € 7, and consequently §/(rz) ' 12 *- §/(z) for eaab r e T
iur«I z € L,'.

For a fixed z e U, the rnap ,t r> Sf (rz) ' 12 is holomorphic in the
r.liso {;r € C ; irl < Ll , } and talies the constant value §/(z) on 7. Thus
,!f(ra) . .rz : §/(a) holds for each :c e Li, proving that §/: 0. Hence ,f
rrgrees in [i u,ith a linear fractional transformation and (a) follorvs.

fn the relnaining case G is not, contained in any /i so that G is
,lense in 1"'. \trre now extend the definition of p to the whole of -Z' in
1he follou,ing \vay. Given g € -l' choose a sequence {g,},er,c in G so that
lirrrg,: 17; then |irrlP(g")f(z):f(g(z)) for each ze U. By lemma 5.2 a
srrl-iseqtrr'nce !,.fr@"o)\o.N conrrerges uniformly to a linear fractional trans-

f'ortnation, antl we set §(g): liml** §@"*). Then f(g(21): p(g)f(z) for
ench g € 1'o ancl z e. U, and (a) follows by the prer.ious part of the proof.

u

5.5. Theorem. Let f be a cott,formul m,op fronr, Lt on,trt cr, dontain, of P.

'l'h,en the fol,lowi,ng condit'iotts are equitalent:
(a) f ttas a conformal ertettsion to a dontaitt' cotttctittittg A.
(b) theree*ist (€U and,aconfornrala,ctiott,0 of fe onadom,a'in

D of P containing fU such ttuLt f(g(z)) : Fkif|) for each g e T, and,

:;€U.

Proof . Suppose first that (a) holds and let ,/* b" a conformal extension
erf / to a disc A,: {z eC; lzl < r} 'ivhere r } l. Then / maps /,

u) ;)
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onto a domain D containing fU, a,nd. (b) is fulfillecl if we choose s':0
and define §(S) - f*g(f*)-L for each g € lo.

Suppose conversely that (b) holds; we may again assume that i' : 0.

Then each p(g) determines a holomorphic automorphism of D - {/(0)}.
Since every orbit, {§(g)f(z);g e ft} with z +0 has limit points in D,
it follows lhab D is simply connected- [14, p. 257]. Thus there exists a

conformal rli,ap ö;/--->D where zl is either U, C or P.
If Å: P, thenalso D:P and(a) holdsbytheoremS.4.If Å:C,

then D is P minus a point and each B(g) can be extend.ed to a holo-
morphic automorphism of P. Therefore theorem 5.4 implies (a) in this
case too. It remains to study the case A : U.

Clearlywecanchoose { sothat d(0) :/(0). Then {ö-'§(g)ö;ge /Jo)

is an infinite group of rotations around 0, each mapping ö-'lU onto itself.
Consequently ö-'f(l is a disc /, where r < l. Iforeover, there exists
r e T such that f(r) : $(ru2) for each z e U, ancl we can define an
extension f* : År,,-> D of f by f*(") : $(ru2). A

Combining lemma 5.2 with a category argument \rre carr replace condition
(b) of theorem 5.5 by an apparently rveaker one:

5.6. Theorem. Let f be a conformal mu,p from 
'U 

onto a domain of P.
Then the followittg conditions ure eqttirolent:

(a) f has a conformal ertension to a d,omain containing A.
(b) thereerist C€tl and,aconformalacti,on § of fe on fU strchthut

f(g(z)) : fi(g)f(") for each g e le ancl, z e U.

Proof . \4re need only shor,v that (b) implies (a) and may again assurne that
6 : 0. X'or each g € fo let a, be the greatest numbel in the interval
(0 , 1] such that fr(S) has a confonnal extension B(g)* to the clomain

U
zefl

if € P;t;G,fG)) < zs'i

The first step is to prove that the map d : J-, --+ [- oo , .c] clefined
by ö(g) : as is upper semicontinuous.

Suppose that {g*}.r* is a convergent sequence of points of ö-1[a , oo]

where alO, ancllet g:limg,. Foreach z€N denoteb5, {, the
restriction of 0@")* to D(a). Then lim,*. ö"(f(z)) : f(g(")) for each
ze U, and hence by lemma 5.2 Lhere exists a subsequence {{,n}0.* of

{d,},.n which conyerges to a conformal map, uniformly on compact
subsets of D(a). Since the limit is a conformal extension of §(g), lr.e have
ä(g) > o. Thus ö-1[a, oo] is closed and ä is semicontinuous.

The next step is to show that d has a positive lower bound. By compact-
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ness of -/'o we need prove this only locally. Choose g e fo and let go e Io
be a point of continuity of d (cf. theorem f .2). Then there is a neighborhood
-I[ oftheidentityof J-o suchthat ö(g'go) >*a(go) for g' €.0[. Moreover,
there is a, € (0 , ö(SS;')7 such that fr(SS;')* maps D(ar) into D($ä(gr)).
If g' e tr[, then g'g - (g'go)(gg;1) because .I] is abelian. It follo'r,r's that
fi@'go)* o (P(gg;t)*p(ds)) is a conformal extension of B@'g) to D(or);
hence ä has the lower bound ar in Ng.

Let a ) 0 bealowerbound of d in J-0. Thenthefamily {0@)*lD(a)}rr""
satisfies a uniform Lipschitz condition in every compact subset of D(u)

[11, p. 73]. In particular, there exists cr € (0 , al such thaf B@)*D(u) c D(a)
for each g € lo. It follows tlnaL D : Un.""fr(h)*D(") is a domain in D(a)
.containing 1U. Mor"orrer, B@h,)*lD(a): §(g)* " (p(h)*lD(a)) for g ,h e /|o.

Each point of D has an expression fi(h)*(y) wilh h € .ft and y e D@).
If §(h)*(y) : §(h')*(y'), then §(sh)*(y) : 0@h')*@') for each s e 7io.
'Thus we can define an action 0* of Io on D such fhaf B*@)B(h)*(y) :
§(gh)*(y) for g ,h e fo and. y eD@). Norv (a) follov's by theorem 5.5
because f(S@): §*(g)f(z) for each g e To and a eU.A

5.7. Corollatry. Let C c P

$onxpoy?,e?Lts ,f P - C. Then,

holomorplt'dc e,?ttomorph,ism rf
oonta'i,n'ittg D U C.

be a, Jordcm curae a%d let D be o?be of tlte
O 'is a,?L un alyt'ic c%rae i,f a,nd, only 'i,f euery

D has a, confornxa,l erJte?t si,on to ct d,oma'in

Proof. Let f be a conformal map from [/ onto D and suppose first
that C is analytic. Then / has a conformal exl,ension /* to a disc I,
u,ith r ) l. It ö is a holomorphic automorphism of D, ther f-1Sf
a,grees in Lr with some g € l-. ]Ioreover', the inverse image g-rÅ. of A"
und.er g is a doinain containing O aucl the image of. A, 11 g-tA, wder f *
is a domain D' containing D U C. It is clear Lhat f*g(f*;-tlD' is & con-
formal extension of {.

Suppose conversely that every holomorphic autornorphism { of D has
a conformal extension {* to a domain containing DUC. Define an
action P of J- on DU C such that {l(g): (fSf-')*',DU C for each
gef.Then B is conformal and f(g(z)):fi@)f(r) for each g€J'and
ze U. Hence bv theorem 5.6, f has a conformal ext'ension to a domain
containing O. e

§ 6. Quasieonformäl extensions

6.1. Theorem. Let f be a aonform,al, map from Ti onto a d,oru,ain of P.
?hen the followi,ng cond,it'i,ons are eqtti,aal,ent:
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(a) f has a quasiconforrnal ente%sion to P.
(b) there is a quasicoTlformal action § ol f on the closure of fU suclt,

that f(g(z)): §(g)f(z) for eaoh g e f and, zeU.

This theorem is a generalization of a result of Rickman 116, Theorem
2]. We start the proof with two lemmas.

Lemma 7. Szcppose tlr,at (h) Ttolds,

frtg) Ttus a, K-guasiconfor"mal extens,ioto

C 'is & com,puct su.,bset rtf f ancl

su,clr, tltat fu each g € C the nl&p

fi(g)* : P -+ F w'itla ll(g)*(p) : p.

Proof . By a well-known extension theorem for quasiconformal mappings
[11, p. 100], each B(g) possesses quasiconformal extensions to P having p
as a fixed point. Among these extensions there exists one, say B(g)*, with
the smallest possible maximal dilatation K(g), in viex, of lemma ;.2. We
prove that, the map ö : g F> K(g) from .f to [- co , co] is lower semi-
continuous.

Suppose that {g"}".* is a convergent sequence ofpoints of ä-1[- oo , 0]
rvhere Q ) 0, ancl let g : lim g^. Then lim,* * §(g")*f(") : B@)f(z) for
each ze U; thus by lemma 5.2 llnerc exists a subsequenc" {E(g.o)*}r.o,
of {§@")*}".0, which converges to a g-quasiconformal map, uniformly on
P. Since the limit is an extension of §(g), we have d(g) < q. This shows
that ä-1[- oo , Q] is closed and that d is semicontinuous.

Since §r(2 , R) is a complete metric space and the canonical map
SL(2 , R) + J' is a tu.o-sheeted covering projection (cf. 3.4), the topology
of -l- is induced by a complete rnetric too. Thus there exists go € J- such
that d is continuous at go, by Baire's theorem and theorem 1.2. Let, I{
be an open neighborhood of the identity of I such thab ö(g'gr) 5 2ö(Sr)
for g'e N. Since ö(Sh)<å(g)ö(h) and d(S-r):ö(S) for g,he f, it,
follov's that ö(g') ! ö@'go)ö@;') 12ö(g)2 for each g' e I{.

Since I is connected, the family {ff"},.* is an open covering of J-

[5, p. 148]. Because C is compact, there exists zn € N such that C C -Y"'.
It follows t]nat K : (2ö(go)2)* is an upper bound for d in C. tl

Lemma 2. There etists a compact set C c l- with the folloring property:
if *,A and z arepointsof T with

Proof. Let
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l2fri
rlvl

\, "l\, al
then it is clear that

1)

4Im Im
ry
lJ

v_

{J

e: lal S l(r * z)(y * z)l-1 < t/3.

Moreover, taking into account the identification z : n(i I i,z , | - z)

(cf. 4.1), a computation shows that

g : {r/r a n -i- 1-G Re z, { arlr- z, {iTm z, {ime z} .

c ,d\ withThus g belongs to the compact set C of elements {a , b ,

Proof of theorem 6.1. It is again trivial that (a) implies (b). To proYe

the converse we &ssume that (b) holds; then b5, theorem 4.4 / has a homeo-

morphic extension "f* to the closure of U. \Ye need only show that the
boundary clrtwe fxT of fU is a quasiconformal curve fll, Theorem II.8.31.
Composing / with a suitable rotation of P rve may assume that f*U c C.

Leb r,y and z be points of f 'lvith

0 < lz - al < ls - zl ! lr - zl St,
and let t : f*(r), ,t : f*@) and. e : f*(z). In view of [II, Theorem
II.8.7l it suffices to find. a constant M > 0, independent of the choice of
r , y and z, such that lrt - el < Md lvhere d, : l€ - el.

Let C c .I' be the compact set describecl in lemma 2. By lemma I there
exists l( ) I such that for each g e C ilte map B(g) has a K-quasi-
corrformal extension fr(g)* : C + C. Choose g e l,n f -, so that g("): y;

then p(g)*(6) : ; and. p(g)*(§): r1. since : is the attractive fixed point
,f g, lve have

m : minp"_q:a l§@)*(u') - :', < d .

Applying a lemrna of l\Iori p3, Lemma 4l it follorvs that

bl - ei < max;.-ri :oltT@)*(n) - 6i < e-Knt' < e'Kil';

hence we can choose XI : e'K. D

It is natural to ask if "I- can be replaced by some l-e i" theorem 6.1.

The following result gives a partial anslyer in this direction. It also contains
theorem 5.4 for (]: lc as a special case.

{t+s
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6.2. Theorem. Let f be a confornxa,l rnap from, U onto a d,omain of P.
Sultposethatthereeri,$ e€U and, K<49147 suchthatforeach ge ft
the map fgf-L has a K-quasiconformal ertension to P. Th,en f has a
K'-quasi,conformal eutemti,on to P where K' : (49K - 47)l(45 - 47K).

Proof. We may obviously assume thab C: 0 and fU C C. Moreover,
in view of a well-known result of Ahlfors and Weill 12, Theorem 5] rve neecl
only show that

supoeu ls/(z)l(r - izl,), =s6f|.
Given z e U let h be a holomorphic (affine) automorphism of C

such that h(0) : f(z), hU c fU and hT meets the boundary of fU.
For each r e T let g" be the element of J-o lvith constant derivative r,
and let ö, be a ff-quasiconformal extension of fg-f-L to P. If 7x : h-1 " f ,
rve have f "(gÅU):ö."f :$*"h"k and hence

Sf(rz)- n2 : /S(d" " ä)(0) .k'1272 * Sf(z)

by the transformation rules for B/.
Since /" is 1{-quasiconformal,

lB(d,.ä)(o)i < ,#
[10, Corollary 2]. Moreover, lk'(z)l(l - lzlr) { 4 b5r Koebe's one-quarter
theorem. Therefore

1".2 \ -2tu t)

true for each r € L'tfor x e T, ancl by the maximum principle the sarne is
The substitution n) - 0 vields

I§/(.) :(1 iz',212

the desired estimate. n

§ 7, Schwarzian derivatives

7.1. Introduetion. Let » be the set of Schryarzian derivatives of
univalent, functions. Each element of X is then of the form { : B/ rvhere

/ is a conformal map from U onto a domain of P. We define a metric
d, in E by the formula

Ii--1
/1

Ii-1
=96;,== K -l- I )
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d(ö ,rp): suP,eu iö@ -,P@)lQ - lzl')' .

It is 'w'ell-known that (» , d) is a complete metric space and that
d,(ö ,0) ( 6 for each { €, [3, Section I].

There is a continuous action B of the opposite group of .l' on .X such

rhar P@)($)("):ö@(z))s'(z)'for g€f ,ÖeX and ze U. Each B(s) is
in fact anisometryof ^X. We saythat aset § C,I is inuariantif B(g)§ : S

for each gef.
Lef f : (J -->D and g : U --> D' be conformal maps onto dornains of

P. There is an equivalence relation H in Z such that (S/, §g) e H if
irnrl only if the map g . f-a has a homeomorphic extension to a domain
containing the closure of D. Replacing the worcl »homeomorphic» by
»quasiconformal» and »conformal», we obtain trvo additional equivalence

relations in .X, denoted. by Q and C. Each ö e » then belongs to three
different equivalence classes ä({), A@ and C(f). In particular, 0(0)
is the universal Teichmiiller space clefined. in [3].

7.2. Theorem. Let ö e » crncl let L denote ttne of tlte letters H, Q and

C. Then $ € Z(0) if and, only if L($) 'is inaariant.

Proof.Let' f :(J->D be aconformalmapsuchthat, ö.:Sf Then
I1({) is invariant if and only if for each g € l- the map fgf-' has a homeo-

rnorphic extension to a domain containing the closure of D. fn viclv of
corollary 4.5 this is equivalent to $ € ä(0). If L: Q or L: C, lYe

obtain the result b1. appealing to theorem 6.1 or theorern 5.6 instead of
t'orollary 4.5. tr

The condition of theorern 7.2 can be rreakened if d is restricted to the
set Xo of elements of I for l-hich the map to: T ->,I clefinecl by f4(tr) :
il(g)(ö) is continuous.

7.3. Theorem. Let ö e Zo and,let L clenote one of the letters H, Q and

Th,en $ €r(0) if and, only if L($) corttctitts rc nonernpty open subset

«,n 'inuariant subset of Er.

Proof . Since Xo is invariant (see proposition 7.5), rve treecl onl5r prove

the sufficiency. Let o c L($) be a nonempty open subset of an invariant
snbset B c å, and let f : U'--> D be a conformal map such tlnaf Sf eO.
Siuce fr7 is continuous and rS is invariant, there exists a neighborhood

"1r of the identity of l" such that trr(g): §t/ " @',U)f is in O for each

g e Å'. It follorvs that for g € itr Llne map fgf-r has a homeomorphic,
quasiconformal or conformal extension to a domain containing the closure

( r.

of
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of D, and since .ly' generates J-, tlie sa,me is true for eacb. g € l-. Hence
L(ö) is invariant and d €r(0) by theorem 7.2. Z

7.4. Remark. It is'lr,ell known that @(0) is open in X, and it has aiscr
been conjectured that Q(0) is dense in X (see [3, t.6 and 1.7] and [4.
p. 5981). If this conjecture were true, Q(0) would. consist of those + e »
for which Q({) contains a nonempty open subseb of Z. This problem
was the original motivation for theorem 7.3.

The set Xo cloes not seem to appear in the literature. The following is
a list of some of its properties.

7.5. Proposition. Xo 'i,s a closed and,,i,naariant proper subset of Z whick
contains all, $ wi,th lim;,1*r ld(z)l(t - lziz)r: o.

Proof. \trre first prove that å is
convergent sequenc,e of elements of Zr,
t ö is continllons, let {9,}, .ro be a,

g - lim 9,,. For k , n, e N \rre have

closed. Srppose that {ön}* u* is &

ancl let ö - lim dr" To shorv that
conYergent sequence in f x,ith

because fi(5") as "well as §(g) is an isometry. Iloreover, given e ) 0
there exist lc,me N such that d,($n,d) < ef 4 ancl dytrn@.),t6n@)7 <el2
for n2 rru. Then dltö(g,),tr@)) (e for ta2m andrveseethat öe Zo.

Next assume that ö e » satisfies lim1,1*r ld(z)l(t - lziz)z: O. To
show that t, is continuous, again let {q,},.* be a con'l,ergent sequence
in -l- with g:lirng^. For ze U and n, €N 1r'rite

\\re then have to prove that lim,** supzeu
Gir,,en e>0 choose re(0,1) sothat

ä € U rvith iri 4 r. Since gn+ g uniforrnly
§uch that ng"(z)l 7r for each %e N and

1{(z ,'n) §

For lri S g \T,e obtain

in IJ , there exists
€ !2 for erll

q € (0 , t)
g. Then

{e
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tI(2, n) 
= 

(1ö{0"t4) - ö(s("))1ls^@)P * is"@)z - s', (z)',llö@@))l)(l - izi'z)'z

Since { €X and go+g uniformly in U, lhe family {ö" @"lU)},.'* is
uniformly bounded in every compact subset of U, hence equicontinuous.
Thus ö(g"(z)) -- ö(g(z)) uniformly for lzl S p. On the other hand
g,1z71g'121-*t uniformly in a, and. it follows that

lim,*- supl,l so M(z , n) : 0 .

Together with the estimate for lzl ä e this proves lhat $e Zo.

To show that Xo is a proper subset of Z, rve consider the Koebe
function

)
f@ : 1t - 4z: ,å"'"

and its Schwarzian derivative

-6ö(r):s/(z) : g_"1,.
X'or eaclr r e T let' g* be the (unique) element of -f such lhat g,(z) : s2

for z € U. Then lim*-rgn: e, the iclentity of "I', while

!r2 I
(tltö(s.1 ,toG)J-6sup,.rlfu 

G -+i t, ',2,')' 
= 

6

for r t' e. Ifence f, is not continuous at e.

It remains to prove tlnat p(h)Z, c Xo for eac}. h € L Suppose that
g,he /- and. ö e Zr, and let {g"},.N be a sequence in -l- converging to
s. Tt.en t5(h0) : lim,*o tr(W^) lvhich is equivalent to

§@)p(D@: lim,*- §(s")§(h)(ö) .

Tlris shows t}rat tBp,y61 is coutinuous at g. Z
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University of Helsinki
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