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Introduction

In a euclidean space, balls centered at the origin can be characterized as
domains invariant under the action of the orthogonal group. Hence it is
not surprising that some problems concerning maps of balls have a con-
nection with symmetry. We shall study functions which commute with a
pair of group actions, one action on the domain of the map and the other
on its codomain. Such a condition imposed on the function often turns out
to be equivalent with others, e.g. injectiveness or the existence of a boundary
extension.

Some of our results depend on certain category theorems which are
established in § 1. In § 2 we study interior maps in higher dimensional
euclidean spaces; here some of the main tools come from algebraic topology.
The two-dimensional case is slichtly different and admits a more detailed
discussion, as shown in §§ 3—4. In §§ 5—6 we specialize to conformal and
quasiconformal actions and extensions, and in § 7 we interpret some of the
previous theorems in terms of Schwarzian derivatives.

§ 1. Category theorems

1.1. Definitions. Let X be a topological space and 4 c X. We say
that A is nowhere dense in X if its closure A contains no nonempty
open subsets of X. Clearly, each subset of a nowhere dense set is nowhere
dense. Moreover, the boundary 0F of any closed set F' < X' is nowhere
dense in X.

If A is the union of a countable collection of nowhere dense subsets
of X, then A is meager in X and its complement X — A4 is residual
in X. Meager sets are also called sets of first category. Baire’s classical
theorem states that no complete metric space is meager in itself.

Let [— oo, 0] be the extended real line. Its topology has as a subbase
the collection of all intervals [— o ,a) and (e, ] where ¢« €R. A
map f from a topological space X to [— oo, oc] is upper semicontinuous
if f~1[— o0, a) is open for each a € R. Similarly f is lower semicontinuous
if fYa, oo] is open for each a € R. A map is semicontinuous, if it is either
upper or lower semicontinuous.



6 Ann. Acad. Sci. Fennica A. 1. 556

The following result appears in [6, p. 244]:

1.2. Theorem. If f: X —[— o, w] is semicontinuous, then the set of
points at which f is continuous is a residual G,-set in X.

Proof. Replacing f by — f if necessary we may assume that f is
upper semicontinuous. Let N =1{0,1,2,...} be the set of natural
numbers and @ the set of rational numbers. Then the set of points at
which f is not continuous coincides with

U o 'lg, o]Nf g+ 27", ]
(gn)€QXN

where each member of the union is closed and nowhere dense. []

1.3. Theorem. Let X and Y be topological spaces and (Z,d) «
pseudometric space. Let y, be a limit point of Y having a countable local
basis of meighborhoods, and let F :XXY —Z be a map with the follow-
ing properties:

(i) the map aw+>F(x,y) from X to Z is continuous for each
yeY — (yh

(ii) the map y+>F(x,y) from Y to Z is continuous at y, for each
v € X.

Then there exists a residual G,-set C C X such that F is continuous
at (x,y,) for each x €C.

Proof. Let {V,},ex be a countable local basis of neighborhoods at .
Given n € N define a map d,: X —[— o, o] so that d,(x) equals
the diameter of F({z}xV,) for each « € X. To show that d, is lower
semicontinuous, assume that @ € d7'(«, =] where « € R. Then there exist
Y1, ys €V, such that d[F(x,y,), F(z,y,)] > «. By (ii) we may assume
that 7, and 7, are in V, — {y,} because y, is a limit point of Y. By
(i) there is a neighborhood U of x such that d[F(x", ), F(2',y,)] > a
for each 2’ € U. Consequently U c d;' (¢, x] and d, is semicontinuous.

By theorem 1.2 the set C, of points at which d, is continuous is a
residual Gyset in X. Then C = N,y (', is also a residual G -set in X
and we need only show that F is continuous at every point of CX{y,}.
Given x € C and & > 0 there exists n € N such that d,(x) < ¢/6, by (ii).
If y €V, — {y,}, then by continuity of d, at = and by (i) there exists a
neighborhood U of z such that d,(2") <e¢/3 and d[F(2',y), F(v,y)] <
e/2 for each 2"’ €U. For (2',y')€UxV, it follows that
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A[F @ ,y), Fle,y)] =dF@",y), F@',y] +dFE,y), Fl,y)]
+d[F (@, y), F,y)] <d () +e2 +d,(2) <e,

which proves the continuity of F at (v, y). U

Theorem 1.3 is related to a result of Weston [19, Theorem 2]. It con-
tains some classical propositions as special cases:

1.4. Corollary. Let {f.}.ex be @ convergent sequence of continuous maps
from a topological space X to a pseudometric space Z. Then there exists a
residual G,-set O € X such that f = lim f, is continuous at each point of C.

Proof. Let Y be the subspace of [— oo, 0] consisting of all
natural numbers and the point y, = oc. Apply theorem 1.3 to the map
F:XxY 27 defined by F(zx,n) = f,(x) and F(z,y,) = f(z). U

Tor real functions corollary 1.4 is due to Baire. In the general case
a proof similar to the above has been given by Fort [7, p. 278]. The next
corollary also extends one of Baire’s classical results.

1.5. Corollary. Let X and Y be first countable topological spaces and
Z a pseudometric space. Suppose that F : XX Y —Z 1is continuous in each
variable separately. Then for each v, € Y there exists a residual Gy-set
C c X suchthat F is continuous at (x,vy,) for each z €C.

Proof. If g, is an isolated point of Y, there is nothing to prove. If
y, is a limit point of Y, apply theorem 1.3. [

Our application of theorem 1.3 depends on the following result which
is related to a theorem of Collingwood [5, p. 76]:

1.6. Corollary. Let B be the open wunit ball of a mormed linear space,
and let f be a continuous map from B to a pseudometric spuce Z. Suppose
that the radial limit lim,_,f(rw) exists for each w € 8B. Then there exists
a residual Gy-set C G 0B such that lim, ,f(rw) = lim,,, f(2) for each
w€C.

Proof. The map F : 3Bx[0,1]— Z defined by F(w,1t) = lim, , f(rtw)
satisfies the hypotheses of theorem 1.3 for y, = 1. Thus there exists a
residual Gy -set C G 9B such that F is continuous at (w, 1) for each
w€C. Since f(x)= F(x/la],|]) for x€B —{0}, it follows that
F(w, 1) = lim,, f(z) for each w€C. L
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§ 2. Interior mappings of a ball

2.1. Definitions. An action of a group G on a set S is a homomorphism
from G to the group Aut S of bijections of S onto itself. We say that a
subgroup H of Aut S acts transitively onaset E c S, if E = {h(z);h € H}
for each = € E.

Let O(n) be the multiplicative group of real orthogonal > n matrices
with determinant 1. Regarding the elements of O(n) as Hilbert space
automorphisms of the n-dimensional euclidean space R" we obtain a
natural action of O(n) on R". In particular, each g € O(n) maps the open
unit ball B" = {x € R"; |z < 1} as well as the unit sphere S"! = 3B"
onto itself. Unless otherwise specified, we shall assume n = 2.

2.2. Lemma. O(n) acts transitively on S"~'.

Proof. Let e = (1,0,...,0) and y € S"~'. Since y is contained in
a complete orthonormal set, there exists ¢ = (a;) € O(n) such that
Y= (@y,...,0,). Hence y €{g(e);g € On)}. [

2.3. Lemma. Let «,y and z be points of S"~" where n = 3, and suppose
that z is orthogonal to a — y. Then there exists ¢ € O(n) such that
gx) =y and g¢(z) = z.

Proof. By lemma 2.2 we may assume that z = e. Thenifa = (2, ..., a,)

2 | 2
and y = (yy,...,¥,), wehave z; =y, and consequently a3 - ... & a2 =

“n

Ys+ ...+ y.. By lemma 2.2 there exists h € O(n — 1) such that

My, ... 2) = Yy, ...,7,). Then ¢ = L0 has the required proper-
. " 0 h
ties. [

2.4. Theorem. Let f: 8" ' — S" be a nonconstant continuous map where
n = 3. Then the following conditions are equivalent:

(a) f 1is imjective.

(b) there is an action f of O(n) on fS"' such that fig(r)) = plg)f(x)
for each g € O(n) and 2 € S"~ %

Proof. If (a) holds and g € O(n), there is a unique map j(g): fS" ' — fS" !
such that p(g)f(z) = f(g(x)) for each x€8" ' It is clear that
B(g’) - Blg) = B(g’g) for g,g" €Om), and (b) follows.

Conversely assume that (b) holds. We first consider the case when
fl@) # fly) if @y and x = — y. Since the (n — 1)-dimensional real
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projective space cannot be imbedded in 8" [9, p. 172], there exists z € S"~!
such that f(x) s f(— «). For each ¢ € O(n) we have

flg(@)) = B@f (@) # B@f(— 2) = flg(— =) = f(— g9(=)) ;

hence f is injective by lemma 2.2.

In the remaining case there exist x,y € S"~! such that f(z) = f(y)
and x % 4+ y. Since f(g(x)) = f(g(y)) for each g € O(n), we may assume
that y =e. Then if &= (2,,...,2,) and t=1/1—2’ we have
t > 0 because x = -4 e. The next step is to prove that f is constant in
U={z€8";|z— 2| < 2t

Define ¢ : 8" —=8S""1 by & ,...,E 1) = @ ,t&, ...t ).
Then $(S"7%) is a path connected set whose diameter is at least 2¢, the
distance between = = d(x,/t, ..., ,/t) and

2we —x = p(— x,/t, ..., — x,ft).

Hence given z € U there exists & € S*™* such that |z — ]| = ||$(&) — 2]
Since « is orthogonal to ¢(&) — z, by lemma 2.3 there exists ¢ € O(n)
such that ¢(¢(f)) = 2z and ¢(x) = «. Moreover, since e is orthogonal to
x — (&), there exists h € O(n) such that A(x) = ¢(&) and hie) =e.
Therefore

f@) = fg())) = BOI($(£)) = P@)f () = f9(x)) = f(x).

This shows that f is constant in U.

Since each g € O(n) maps S"' topologically onto itself, we see from
foU = B(¢)fU and lemma 2.2 that f is locally constant in §"~'. Thus f
is constant because S"™7' is connected. This contradicts the assumption,
and the proof is complete. [

2.5. Definitions. Let X and Y be topological spaces and let U be
open in X. Amap f:U —Y is open if it maps each open subset of U
onto an open subset of Y. A map f* is an extension of f, if the domain
of f* contains U and f*(2) = f(x) for each z € U.

2.6. Lemma. Let f: U —Y be an open map having a conlinuous
extension f*:0 — Y.

(@) If X is hausdorff and f is injective, then f*oU c ofU.

(b) If Y s hausdorff and U is compact, then ofU C f*oU.
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Proof. (a) Since f*oU C fU by continuity, it suffices to show that
fU ﬂf"aU @. Given z € U and y € 0U there exist disjoint open sets
D and V in X suchthat x€Dc U and y € V. Since f is open and
injective, f(D) and f(U N V) are disjoint open sets. By continuity f(D)
and f#(U N V) are also disjoint and therefore f(x) # f*(y).

(b) By continuity f*(U) is a compact subset of f? containing fU.
Since Y is hausdorff, f¥(T) is closed and consequently f*(U) =f—U.
Hence ofU c f*(U) and because f*U is open, ofU c f*oU. [

2.7. Theorem. Let f B" — 8™ be an open continuous map whose restric-
tion to the sphere 8"~ '(0) = {®@ € R" ; x| = o} isinjective for each o € (0, 1).
Suppose that for o, Q 6(0 1) the sets fS""'(0) and fS""'(o') are either
equal or disjoint. Then f is injective.

Proof. We prove first that (0,1) can be covered by open intervals
I such that the restriction of f to the ring R(I) = {x € B": x[ €I} is
injective. Given Q E (0,1) there exist points ¢, 5, €S" which are
separated by fS"~'(g), by the Jordan—Brouwer separation theorem. Let
Ic(0,1) be an open interval containing o such that fR([)C S" —
{&YU{%)), and for r€l define f,:S"7'— 8" — ({45} U{L}) by
f.(x) = f(rz). Since each f, is homotopic to f, and f,S"" ! separates (g
and £,, it follows from the Borsuk separation theorem [8, p. 275] that
none of the maps f, is homotopic to a constant map and that fS"7'(r)
separates (; and (, for each r €[

If fIR(I) (i.e. the restriction of f to R(I)) is not injective, there
exist @,b €l such that a <b and fS"'(a)=fS"'(b). By lemma
2.6 (b) we have dfR(a ,b) C fS" '(a); consequently fR(e,b) must contain
one of the components of S* — fS"~}(a). But this is impossible because
f8"~Y(a) separates ; and &, Hence f R(I) is injective.

Suppose that f isnot injective. Then in view of lemma 2.6 (a) f B" — {0}
is not injective and there exist «,b € (0,1) such that a<b and
8™ Ya) = fS"~'(b). Let o be the greatest number in («,b] such that
fiR(a , o) is injective; we show next that £S5 Ha) = fS" (o).

Choose «, 8 € (0, 1) such that « < o < and f R(~,f) isinjective.
Then « > a by definition of o. Moreover, by compactness there exist
convergent sequences {#,)},en and {y.),en in R(a,f) such that
lim ||| < o, lim |jy.] = o and f(2.) = f(y») foreach n € N. Let « = limx,
and y = lim y,; then by continuity f(z) = f(y) and by lemma 2.6 (a)
f(y) € afR(a , ). Since f is open, it follows that [2] = ¢ and consequently
8" (a) = f8" ()

Applying lemma 2.6 we now see that f maps R(a, o) topologically
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onto one of the components of 8™ — fS"~'(0). But this is impossible because
R(a , o) is homotopically equivalent to S"~* while the (n — 1)-dimensional
homology of S™ — fS"~!(o) is zero [8, p. 361]. The contradiction shows that
f is injective. []

2.8. Definition. Let X and Y be topological spaces and A4 c X.
We say that A is totally disconnected, if each of its components consists
of a single point. A map f: X — Y is an interior map, if f is continuous
and open and fy} is totally disconnected for each y € Y.

2.9. Theorem. Let f:B"— 8" be an interior map where n = 3. Then
the following conditions are equivalent:

(a) f s injective.

(b) there is an action B of O(n) on fB" such that f(g(x)) = B(g)f(x)
for each g € O(n) and x € B

Proof. The proof that (a) implies (b) is trivial as in theorem 2.4. There-
fore assume that (b) holds. Given o € (0, 1) theorem 2.4 shows that
18"~} (0) is injective or constant. Since S"7'(0) is not totally disconnected,
f1S" (o) is injective.

Let o' € (0,1) be such that fS""'(g) and fS"'(o’) have a common
point y. Then fS8"7'(p) and fS""'(¢’) coincide with the orbit
Blg)y) ;9 €0(n)}, and f is injective by theorem 2.7. []

2.10. Definitions. We recall some basic facts from the theory of quasi-
conformal and quasiregular mappings; these will be needed in theorem
2.11. The general references are [12] and [18].

Let D be a domain in R". A path in D is a continuous map from an
interval of R into D. We define an outer measure M, called the modulus,
in the space P(D) of all pathsin D as follows. Given I'c P(D) denote
by F(I') the class of all Borel measurable functions p:R"— [0, o]

such that for each rectifiable y € I' the integral f .ods with respect to
arc length of y has value = 1. Then

M(I') = inf, ¢y f o"dim, ,
Rn
where m, is the n-dimensional Lebesgue measure. If [ contains no
rectifiable paths, then M(I") = 0.
Let f be a sense-preserving homeomorphism from D onto a domain
D'c R Given I'c P(D) let IV = {foy;y € I'} be the image family
in P(D’). We say that f is quasiconformal, if there exists a constant K
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with 1 <K < oo such that KIM(I') = M(I¥) < KM(I') for each
I'c P(D) [18, Definition 13.1].

Let f be a continuous map from D to R". We say that f is quasi-
regular, if there exist a constant K with 1 < K < o andaset K C D
with m.(E) = 0 such that the following two conditions are fulfilled:

(i) each z € D has an open neighborhood U c D such that the
components of f|U have generalized derivatives (in the Sobolev sense)
of class L™ in U.

(ii) if x€ D — E and h€S"', then f is differentiable at 2 and
satisfies | Df(x)(h)|" = KJf(x), where Df(x) and Jf(x) are the derivative
and the Jacobian of f at =, respectlve]y

The above definition is a generalization of the analytic deflmtlon of
quasiconformality [18, Theorem 34.6]. More precisely, an injective map
f:D— R" is quasiregular if and only if it agrees with a quasiconformal
homeomorphism of D. On the other hand, a nonconstant quasiregular map
is an interior map [12, Lemma 2.26].

Let B be an action of a group G on a topological space X (cf. Defini-
tion 2.1). We say that f is continuous if f(g) is continuous for each g € G.

2.11. Theorem. Let f:B"— R* be a nonconstant quasiregular map
where n = 3. Then the following conditions are equivalent:

(a) f is quasiconformal and has a homeomorphic extension to the closure
B" of B

(b) there is a continuous action [ of O(n) on the closure of fB" such
that f(g(x)) = B(g)f(x) for each g € O(n) and x € B".

Proof. Suppose first that (a) holds and let f* be the extension of f;
then in view of lemma 2.6 f* is a homeomorphism from B" onto the
closure of fB". For g € O(n) the map f(g) = f*g(f*)~* is a homeomorphism
of the closure of fB" onto itself, and we thus obtain a continuous action
f satisfying (b).

Suppose conversely that (b) holds. Since f isan interior map, it is quasi-
conformal by theorem 2.9. To define the extension of f we first show that
f has radial limits.

Choose ¢ € (0, 1) and for each x € S"~! define 7.:(0,1)—B" by
v.(t) = tz. Then the path family "= {y.;x € S*™'} has positive modulus
[18, Example 7.5]. Since f is quasiconformal, the modulus of I =
{foy.;x €8 '} is also positive and it follows that foy. is rectifiable
for some x € 8" ! (cf. 2.10). Thus the radial limit ¢ = lim,_, f(rz) exists
and belongs to the closure of fB". For g € O(n) we have

B(g)(£) = lim,_, f(9)f(re) = lim, _, f(g(r2)) = lim, _, f(rg())
and hence by lemma 2.2 f has a radial limit at each point of S"~.
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We define the extension f* by f*(x) = lim,_; f(rz). Then f*(g(x)) =
B(9)f*(x) for each g € O(n) and z € B". Moreover, by corollary 1.6 there
exists a residual Gyset C C oB" such that f*(w)=lim,, f(x) for each
w € C, and by Baire’s theorem C is not empty (cf. 1.1). Given w €C
and g € O(n) we have

J*gw) = o)f*(w) = lim,_,, f(9)f(x) = lim,_,, f(g(x)) -

Since ¢ maps B" topologically onto itself, it follows that f*(g(w)) =
lim, ., f(%); hence f* is continuous at g(w). Because g € O(n) is arbitrary,
by lemma 2.2 f* is continuous in the whole of bB"

By theorem 2.4, f*|S"~! is either injective or constant. On the other
hand 9fB" contains more than one point and is contained in f*8"~' by
lemma 2.6 (b). Hence f*|8"~' is injective, and in view of lemma 2.6 (a)
the same is true of f*. [

2.12. Corollary. Let f be a quasiconformal homeomorphism from B"
onto a domain D C R™ where n = 3. Then f has a homeomorphic extension
to the closure of B", if and only if every quasiconformal automorphism of D
has a continuous extension to the closure of D.

Proof. Suppose first that f has a homeomorphic extension f* : B"— D,
and let ¢ be a quasiconformal automorphism of D. Then « = fl¢f is
a quasiconformal automorphism of B" and has therefore a homeomorphic
extension a* : B* — B" [18, Theorem 17.20]. Itis clear that ¢* = f*x*(f*)-1
is a continuous extension of ¢.

Suppose conversely that every quasiconformal automorphism ¢ of D
has a continuous extension ¢* to D. Define an action 8 of O(n) on D
such that (g)(y) = (fgf2)*(y) for each g €O(n) and y € D. Then B is
continuous and f(g(z)) = p(g)f(xz) for each g €O(n) and =« € B". By
theorem 2.11, f has a homeomorphic extension to the closure of B~ [

§ 3. Groups of projective transformations

3.1. Introduction. Let P be the complex projective line with the
topology coinduced by the canonical projection = :C* — {0} — P. The
image of R? — {0} under = is the real projective line P; clearly P and
P are homeomorphic with S2 and S, respectively.

Let SL(2, R) be the multiplicative group of real 2 x 2 matrices with
determinant 1. There is a continuous action § of SL(2,R) on P such

that p(4)a(x, y) = n(ax + by, cx + dy) whenever A = (g’ 2) is in
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SL(2,R) and (z,y) €C*— {0}. We also use the notation f(4)=
{a,b,c,d}. The image of f is the group I' of real proper projective
transformations of P, and the kernel of p is a group of order 2 generated
by <— (1) . (1)) It is clear that ¢g(P) = P for each ¢ € I'; we shall be
interested in those subgroups of I which act transitively on P.

The eigenvalues of a matrix 4 € SL(2, R) are the solutions of the
equation 42— Atr A 4 1 =0 where tr 4 is the trace of A. The eigen-
vectors correspond to fixed points of f(4) in P. If f(4) isnot the identity
of I', the number of fixed points of $(4) in P equals the number of real
eigenvalues of 4. This number can be 0, 1 or 2, and accordingly we call
B(A) elliptic, parabolic or hyperbolic. Since tr A is invariant under con-
jugation, it follows that the classes of elliptic, parabolic and hyperbolic
elements are invariant under inner automorphisms of I

The isotropy subgroup of a point [ €P is I.={g € I';9({) = {}.
and we use the special notations I'"= I Ly and M= TI,,. Then
I’ and I" are images under S of the orthogonal and upper triangular
subgroups of SL(2, R), respectively. By elementary theory of linear
fractional transformations, I, is conjugate to I (resp. I™) if and only
if €EP — P (resp. ¢ €P). It follows that I'. acts transitively on P
if and only if  €P — P.

3.2. Lemma. Let g and h be in I' and let [g,h] = ghg—hL.

(a) If g is elliptic and has no common fixed points with h, then [g , h]
15 hyperbolic.

(b) If g and h are hyperbolic and have precisely one common fixed
point, then [g,hk] is parabolic.

Proof. (a) By passing into suitable conjugates we may assume that
g € I'’. Choose &« € (0,7) and B = <Z 3) €SL(2, R) so that h = p(B)

cos v sin x
— sinx cos
[(@ — d)2 4 (b 4 c)?] sin?x is greater than 2 because % is not in I
by assumption. Hence [g,h] = f[4 , B] is hyperbolic.

(b) We may assume that g ={r,0,0.r} and h={s,b,0,s;
where |r|# 1 and b 30. Then [g.h]={1,s0(>—1),0,1} is
parabolic. []

and ¢ = f(4) where 4 = ( ) Then tr[d,B] =2+

3.3. Lemma. Fach I'. is a maximal subgroup of I

Proof. Suppose that I'. is a proper subgroup of a subgroup G C I}
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we have to show that G' = I'. Since the conjugates of a maximal subgroup
are maximal, we need only consider the cases of I and I™.

In the case of I it is clear that G acts transitively on P and hence
contains I, for each (€P. If g={a,b,c,d} isin I and a # 0,
then

g=1{1,0,a%,1a,b,0,a1}
where the factors are in I',,,, and I", respectively. If a =0 but
d # 0, then
g=A{d1,6,0,d}{1,0,cdt,1}
and again ¢ € ¢. In the final case @ =d = 0 we can write
g={—10,26,0,¢}{2,—1,1,0}

where the last factor belongs to I', ;. The assertion G = I" follows.
In the case of I we have I, CG for each g €(G. On the
other hand we can choose ¢ € G — [’ so that g¢ga(i, 1) = n(yi, 1) for
some y > 1. Given such a » it suffices to show that I and I',
generate I
TFor each « € (0,x) write &k = (1 -+’ cot’ o)™ '?,

goc = {ykaCOtfx3 - ka,ka,}/kacot(x},

h, = {cosa,ysina, —y~'sinx, cosa}.

Then ¢, € I and h €I, , sothat gh, €G. Computing

L {sinzx e 1 0 yka}
Gty = vk, ’ (y* — 1)k, cos o, S S

and
(=17 .
(9. 1Pra > 9] = {1 , — T sin2x,0, 1

we see that G contains each parabolic element of I™¥. Hence G also
contains the elements

2 -1 sin vk
{1,—y sin2o¢,0,1}g ={—,o,0,./'°‘
2y o vk, sin «

which together with the parabolic transformations generate the whole of
I'". Since I" is a maximal subgroup of I, we conclude that ¢ = I

3.4. Convention. Let SL(2, R) have the topology induced by the mayp
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(Z Z)H(a,b,c,d)

from SL(2,R) to RY and let I' have the topology coinduced by B.
Then SL(2, R) and I" are connected topological groups and f determines
a two-sheeted covering projection from SL(2, R) onto I'. Also for { € P,
the map g+>¢(l) from I' to P is continuous.

3.5. Theorem. Let G be « closed subgroup of I' acting transitively on
P. Then either G = I' or there exists . €P — P such that G = rI,.

Proof. Suppose that G is not contained in I', for any (€ P; we
have to show that G = I. Since ¢ acts transitively on P, it contains
uncountably many elements. Hence & cannot be discrete, and a well-
known result of Siegel [17] implies that each neighborhood of the identity
e of G contains elliptic elements of G.

Let {g.}.ex be a sequence of elliptic elements of G converging to e.
Since G is not contained in any I'., lemma 3.2 (a) shows that G contains
a hyperbolic element % and that {[g,, 2]}, is a sequence of hyperbolic
elements of G converging to e.

Since G acts transitively on P, each [g,, k] has a conjugate h, =
{8,,0,,0,s7'} in GNI* Then |s,| #1 because k, is hyperbolic.
Moreover lim,  |s, 4 s7'| = 2 because the trace of a matrix is invariant
under conjugation and lim,_ [g,,k] = e.

In order to show that I c ¢ we first consider the case when n(1, 0)
is the only common fixed point for all %,. Then by lemma 3.2 (b) ¢ N I**
contains a parabolic element p = {1,5,0, 1} where b = 0. Considering
hiph7* = {1,s*b,0,1} for different integers % we see that b can be
chosen arbitrarily small. Consequently, because G is a closed subgroup
of I', it contains each parabolic transformation of /. Combining these
parabolic transformations with the elements of {,},x We obtain, because
lim,_  [s,| =1, a system which generates a dense subgroup of I. Since
@ is closed, it follows that I < G.

In the remaining case each £, has the same fixed points. By the above
reasoning the assertion I C ¢ will follow if G N I contains at least
one parabolic element. Replacing & by a conjugate subgroup if necessary,
we may assume that the points =(0,1) and =(1,0) are fixed points
for each h,. Then b,= 0 for n» € N and we see that the elements of
{h.}nex generate a dense subgroup of I' , ;N I". Since G is closed,
it follows that 5, = {r,0,0,r1} isin G for each r # 0.

Choose n € N so that g, is of the form {a,b,c,d} where a # O;
this is possible because lim g, = e¢. Then 7,9, is elliptic for » =1 and
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hyperbolic for sufficiently large values of r. By continuity there exists
0> 1 such that #g, is parabolic, and the assertion /™ c G follows.

Since I is a proper subgroup of @, we conclude by lemma 3.3 that
G=1T. 1]

§ 4. Interior mappings of a dise

4.1. Introduction. We want to establish 2-dimensional analogues for
the results of section 2. It is convenient to use complex notation and replace
B? by the open unit disc U = {z € C; |2|] < 1} and 8! by the unit circle
T =29U.

We identify the complex plane C with a subset of P by means of the
imbedding z+>n(i + 2,1 —2) from € to P. Then 7' corresponds to
P and each g € I' maps U onto itself. In fact, the set of restrictions
glU with g € I' coincides with the set of holomorphic automorphisms of
U. The complement of C with respect to P consists of m(1,4), »the
point at infinity», and accordingly we shall regard P as the Riemann sphere
C U {}. In particular, the holomorphic automorphisms of P are linear
fractional transformations.

Let G be a group of bijections of a set S onto itself, and let f be a
map from S to a set §’. We then write

R(S,G)={(x,g(®);x €8 and ¢ € G}
RS, f) = {(=,y) €SXS; fla) = f(y)}
It is clear that RB(S, () and R(S,f) are both equivalence relations in S.

4.2. Theorem. Let f:T — P be a nonconstant continuous map, and let
G be a subgroup of I' acting transitively on T. Then the following conditions
are equivalent:

(a) there is a finite normal subgroup F of G such that R(T, F) =
BT, f).

(b) there is an action [ of G on fI such that f(g(x)) = pg)f(x) for
each g €G and x€T.

Moreover, if G is not contained in any I'.. then (a) and (b) hold if and
only if [ is injective.

Proof. Assume first that (a) holds and let (x,y) € R(T', f). Then there
exists h € F' such that y = h(x). Given ¢ € ¢ we have ¢(y) = (ghg~)g(x)
and consequently (g(z),g(y)) € R(T , F) because F is normal in G.
Hence f(g(x)) = f(9(y)) and we can define a map SB(g):fT —fT such
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that  p(g)f(z) = f(g)) for «€T. Clearly f(g')plg) = plg’y) for
g,9 €G, and (b) follows.

Conversely assume that (b) holds. We first consider the case G = I'.
where (€ U and denote by F the stabilizer {h € I',;f(1) = f(h(1)}
of f(1) in G. Because f is nonconstant, the orbit {Ai(1);% € F} cannot
be dense in 7'; hence F is finite. On the other hand, given x,y € 1" there
exist unique elements ¢, A € I', such that g(1) =« and A(x) = y. Since
(b) holds and I, is abelian, we have f(g(1)) = f(h(g(1))) if and only if
f(1) = f(h(1)). This is equivalent to & € F, and the proof of the case
G = I', is complete.

In the remaining case @ isnot contained inany 1. If (x,y) € R(T , f)
and g € G, then f(g(z)) = f(9(y)) by (b).Since (¢ isdensein " by theorem
3.5, it follows that f(g(z)) = f(g(y)) for each g € I'. This is possible only
if « =y because f is nonconstant. Hence f is injective and (a) holds if
F is the trivial subgroup of . [J

4.3. Theorem. Let f: U — P be an interior map, and let G be @ sub-
group of I' acting transitively on T. Then the following conditions are
equivalent:

(a) there is a finite normal subgroup F of G such that R(U , F)=
RU , f).

() there is an action f of G on fU such that f(g(z)) = B(g)f(z) for
each g €G and z€U.

Moreover, if G is not contained in any I'., then (a) and (b) hold if and
only if f is injeclive.

Proof. The proof that (a) implies (b) is trivial as in theorem 4.2. To
prove the converse we again start with the case G = I'. where (€ U.
Precomposing f with a suitable holomorphic automorphism of U we may
assume that ¢ = 0.

Given ¢ € (0,1) let f Dbe the vestriction of f to S'o) (cf. 2.7).
Then by theorem 4.2 there is a subgroup F, of I of finite order
n, such that R(SY (o), F,) = R(S(¢).f,). In particular, fS'(o) is a Jordan
curve. Choose two points ; and ¢, from different components of
P — fS'(¢) and a homeomorphism % from P — ({1} U {,}) onto C — {0},
and define y,:[0, 22] — C — {0} by y,(f) = h(f(0e")). Then n, coincides
with the absolute value of the index n(y, ,0) of 5 with respect to 0
[1, Section I.10]. Since =n(y,, 0) depends‘Continuously on o, it follows
that the map ow>n, from (0,1) to N is constant.

Let n be the value of n, for ¢ € (0,1), and define fo: U—P so
that f,(z") = f(z) for z € U. Then f, is an interior map whose restriction
to S%(p) is injective for each ¢ € (0, 1). Moreover, if fS*(0) and f,5*(o")
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have a common point y, they coincide with the orbit {3(g)(y):g € 1}
Thus by theorem 2.7 f, is injective and (a) holds if F is the subgroup of
I, of order n.

In the remaining case G isnot contained inany I'.. If (z,w) € R(L" . f)
and ¢ € G, then f(g9(z)) = f(g(w)) by (b). Since G is dense in [ by
theorem 3.5, it follows that f(g(z)) = f(g(w)) for each ¢ € I This is
possible only if z = w because f is an interior map. Hence f is injective
and (a) holds if F is the trivial subgroup of G. [J

Our next goal is to prove an analogue of theorem 2.11. The appropriate
mappings are now quasiconformal functions (for the definition and basic
properties see [11, Chapter VIJ).

4.4. Theorem. Let f: U — P be a nonconstant quasiconformal function,
and let G be a subgroup of I' acting transitively on T'. Then the following
conditions are equivalent:

(a) there is a finite normal subgroup F of G and a conlinuous extension
f¥: U0 —~P of f suchthat R(U,F)= R(U, f*).

(b) there is a continuous action f§ of G on the closure of fU" such thal
f92) = B(9)f(z) for each g € G and z € U.

Moreover, if G is not contained in any I'., then (a) and (b) hold if and
only if f is injective and has a homeomorphic extension to the closure of U

Proof. Suppose first that (a) holds. Then F is contained in /'. for some
{ € U and we may obviously assume that { = 0. If F is the trivial sub-
group of I7, then f* is injective and we can define f(g) = f*g(f*)* for
each g € G. If the order of F is n > 1, by lemma 3.2 (a) ¢ is contained
in Iy because F is normal in @. Moreover, there exists a unique homeo-
morphism f,: U —fU such that f*z) = f,(z") for each = € [". We can
then define an action B satisfying (b) by plg) = fog"fs -

Suppose conversely that (b) holds. We first consider the case when f
is injective and thus agrees with a quasiconformal homeomorphism of (/.
Then there exists « € 7' such that f has an angular limit . at @ [13.
p-73]. Let 4 ={z€ U ; arg(l — z/x) <} be a Stolz region at 2 with
0 <~ <m/2. Given g €G we have

BIE) = limy,, ., B(9)f(z) = lim 5., f(g(2))

which shows that f has an angular limit at ¢(v), too. Since G acts
transitively on 7', it follows that f has an angular limit at every point
of T.

We define the extension f* by f*(z) = lim,_, f(rz); then f*(g(z)) =
B(g)f*(z) for each g €G and z € U. The continuity of f* now follows
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from (b) and corollary 1.6 just as in the proof of theorem 2.11. Hence in
view of lemma 2.6 we need only show that f*|7 is injective.

First of all, f*/T is not constant because f*7I' = 9fU and U is not
quasiconformally equivalent with a punctured sphere [11, p. 44]. Next, by
theorem 4.2 there is a finite normal subgroup F of ¢ suchthat R(T , F) =
R(T, f*|T). Hence f*T is a Jordan curve. Choose two points {; and {,
from different components of P — f*7T' and a positive number r < 1 such
that f*SY o) P — ({{} U {L,}) for each ¢ € (r,1). Let h be a homeo-
morphmn from P — ({{}U {CZ} onto € — {0} and for g € (r, 1] define

:[0,27] - C — {0} by v,(t) = h(f*(0e"). Since f is injective, we
‘rhen have |n(y,,0)] =1 for o < 1 and consequentlv n(yy,0)] =1 by
continuity. Hence the order of F' is one and f*|T is injective.

In the remaining case f is not injective. However, since f is an interior
map, by theorem 4.3 there exist [ € U such that G = I', and a finite
normal subgroup F of G such that R(U, F)= R(U, f). Precomposing
f with a suitable holomorphic automorphism of U we may assume that

“__.
>

Let n be the order of F and define f,: U — P so that f,(z") = f(z)
for z€U. Then fo is a sense-preserving topological map which satisfies
folg® (&™) = B(9)fo(z") for each ¢ € Iy and =z € U. Moreover, in view of
the creometrlc chara,cterization of quasiconformal functions [11, Section
VI.1] we see that f,!/U — {0} is quasiconformal. The same is then true of
Jo by the removability of a point [11, p. 43]. On the other hand, because
p(g) = p(hg) for g € I, and h € F, there is a continuous quotient action

f, of Iy on ﬁ such that f(g) = f,(g") foreach ¢ € I',. Thus f(g" =
BolgMfo(z") for g € I'y and z € U, and the proof of the injective case sho“s
that f, has a homeomorphic extension f§ : U —P. We can now define
the extension of f by f*() = fi(z"); then it is clear that R(U , F) =
R(U , f*).

Finally, if ¢ is not contained in any I, then in view of theorem 4.3 (a)
and (b) hold if and only if f is injective and has a homeomorphic extension
to the closure of U. [J

4.5. Corollary. Let D be a simply connected domain in P with at least
two boundary points. Then D is a Jordan domain if and only if every holo-
morphic automorphism of D has a continuous extension to the closure of D.

Proof. Suppose first that D is a Jordan domain, and let ¢ be a holo-
morphic automorphism of D. By the Riemann mapping theorem there
exists a conformal map f: U — D, and because D is a Jordan domain,
f has a homeomorphic extension f*: U — D. Then « = f-14f is a holo-
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morphic automorphism of U and hence agrees in U with some g € I’
(cf. 4.1). Tt follows that f*g(f*)~! is a continuous extension of ¢.

Suppose conversely that every holomorphic automorphism ¢ of D has
a continuous extension ¢* to D. Define an action f of I' on D such
that f(g) = (fgf1)* for each g € I. Then f is continuous and f(g(z)) =
B(9)f(z) foreach g € I" and z € U. Hence by theorem 4.4, f has a homeo-
morphic extension to the closure of U. [J

§ 5. Conformal extensions

5.1. Definition. We define a metric £ in P by the formula

2y — 20, |

(7(z ). ) =
k(n(z, , 25) , w(wy , wy)) = arc tan |2, T 2,
where the principal value of arc tan lies between 0 and /2. This spherical
metric is a complete Riemannian metric compatible with the complex
structure of P.

In this section and the next some proofs depend on a normal family
argument contained in the following lemma.

5.2. Lemma. Let D be a domain in P, and for each n € N let f, be
a K-quasiconformal map from D onto another domain of P. Suppose that
the sequence {f,},ex converges at three distinct points ; € D where
i €{1, 2,3}, and that the limits = lim f,(,) are also distinct. Then there
evists a subsequence {f, Ve~ which converges to a K-quasiconformal map,
uniformly on compact subsetls of D.

Proof. By assumption there exist #,€ N and d> 0 such that
k(f.(8) 5 [u(5)) > d whenever 4 #%j and > n,. On the other hand,
the numbers k(f.(),f.(¢)) with 4345 and n =< n, have a positive
lower bound. Hence {f,},ex 15 a normal family [11, Theorem II.5.1].
The assertion then follows by [11, Theorem 11.5.3]. [J

5.3. Definition. Let § be an action of a group & on a set E C P.
We say that f is conformal (resp. quasiconformal), if for each g € G the
map f(g) has a conformal (resp. quasiconformal) extension to a domain
of P containing K.

5.4. Theorem. Let [ be a conformal map from U onto a domain of P,
and let G be a subgroup of I' acting transitively on T. Then the following
conditions are equivalent:
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(@) f has a conformal extension to P.
(b) there is 4 conformal action f of G on P such that f(g(z)) = B(9)f(z)
Jor each g €0 and z € U.

Proof. If (a) holds and f* is a conformal extension of f to P, then
/* maps P onto itself and we can define f by p(g) = f*g(f*)~L. Suppose
conversely that (b) holds. We again start with the case ¢ = I'; and may
assume that 7 = 0.

The Schwarzian derivative Sf of f is a holomorphic function of U

defined by
1 3 1\ 2
Sf = f— - T(JC—)
f 2\f

where f', f” and f"’ are ordinary derivatives of f. (Note that f maps
at most one point of U to P — C; such a point is a removable singularity
for Sf.) Given g € Iy and z € U the composition rules for Sf [2, p. 130]
vield Sf(g(z)) - g'(z)* = Sf(z), because g and f(g) are both linear fractional
transformations. On the other hand, the elements of [}, are of the form
>z with » €T, and consequently Sf(xz) - a? = Sf(z) for each a €T
and z € U.

For a fixed z €U, the map x> Sf(xz)-2% is holomorphic in the
dise {w € C; 2] << 1/z } and takes the constant value Sf(z) on 7. Thus
Sf(rz) - w® = Sf(z) holds for each x € U, proving that Sf= 0. Hence f
agrees in U7 with a linear fractional transformation and (a) follows.

In the remaining case (' is not contained in any I, so that & is
dense in 1. We now extend the definition of f to the whole of I' in
the following way. Given g € I" choose a sequence {g,},ex in G so that
limg, = ¢: then lim B(g,)f(z) = f(g(z)) for each z € U. By lemma 5.2 a
subsequence {3(g,,) ey converges uniformly to a linear fractional trans-
formation, and we set p(g) = lim,_,, f(g,). Then f(g(z)) = B(g)f(z) for

cach g € I'y and z € U, and (a) follows by the previous part of the proof.

M
-

5.5. Theorem. Let f be a conformal map from U onto a domain of P.
Then the following conditions are equivalent:

(a) f has a conformal extension to a domain containing U.

(b) there exist (€ U and a conformal action § of I, on a domain
D of P containing fU such that f(g(z)) = p(g)f(z) for each g € I'y and
z€U.

Proof. Suppose first that (a) holds and let f* be a conformal extension
of f toadisc A ={2€C; 2| <r; where r> 1. Then f maps 4.
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onto a domain D containing j—’ﬁ, and (b) is fulfilled if we choose =0
and define f(g) = f*g(f*)* for each ¢ € I.

Suppose conversely that (b) holds; we may again assume that J = 0.
Then each p(g) determines a holomorphic automorphism of D — {f(0)}.
Since every orbit {f(¢9)f(z) ;g € [,} with z = 0 has limit points in D,
it follows that D is simply connected [14, p. 257]. Thus there exists a
conformal map ¢:4—D where 4 is either U, C or P.

If A =P, thenalso D= P and (a) holds by theorem 5.4. If .1 = C,
then D is P minus a point and each f(g) can be extended to a holo-
morphic automorphism of P. Therefore theorem 5.4 implies (a) in this
case too. It remains to study the case 4 = U.

Clearly we can choose ¢ so that ¢(0) = f(0). Then {5(g)d ;g € Iy}
is an infinite group of rotations around 0, each mapping ¢~fU onto itself.
Consequently ¢~}fU is a disc 4. where r < 1. Moreover, there exists
z €T such that f(z) = ¢(raz) for each z € U, and we can define an
extension f*:/4,,— D of f by f*()= ¢(raz). I

Combining lemma 5.2 with a category argument we can replace condition
(b) of theorem 5.5 by an apparently weaker one:

5.6. Theorem. Let [ be a conformal map from U onto a domain of P.
Then the following conditions are equivalent:

(a) f has a conformal extension to a domain containing U.

(b) there exist { € U and a conformal action f of I'. on f_U such that
flg(z)) = p)f(z) for each g€ T, and z€U.

Proof. We need only show that (b) implies (a) and may again assume that
{=0. For each g€ I, let a, be the greatest number in the interval
(0,1] such that pA(g) has a conformal extension J(g)* to the domain

D(a) = U{EP K, f(2) <.
€U
The first step is to prove that the map 6:1,—[— o, ] defined
by 0(9) = a, is upper semicontinuous.

Suppose that {g,},ex 18 @ convergent sequence of points of 0« , o]
where ¢ > 0, and let g =1limg, For each n € N denote by ¢, the
restriction of f(g,)* to D(a). Then lim, . ¢.(f(z)) = f(g9(z)) for each
z €U, and hence by lemma 5.2 there exists a subsequence {¢, }ien Of
{¢n}nex Which converges to a conformal map, uniformly on compact
subsets of D(a). Since the limit is a conformal extension of f(g), we have
8(9) = a. Thus 6 Ya, ] is closed and & is semicontinuous.

The next step is to show that J has a positive lower bound. By compact-
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ness of I, we need prove this only locally. Choose g € I, and let g, € I
be a point of continuity of & (cf. theorem 1.2). Then there is a neighborhood
N of the identity of I, such that d(g'g,) = L6(g,) for ¢’ € N. Moreover,
there is oy € (0, 8(995")] such that B(ggy')* maps D(x,) into D(Ed(gp)).
If ¢ €N, then ¢’g = (9'9,)(995 ") because I, is abelian. It follows that
B(9'90)* o (Blgga H)*|D(cg)) is a conformal extension of B(g’g) to D(xy);
hence § has the lower bound «; in Ng.

Let a > 0 be alower bound of ¢ in I;. Then the family {(g)*|D(a)},er,
satisfies a uniform Lipschitz condition in every compact subset of D(a)
[11, p. 73]. In particular, there exists « € (0, a] such that ((g)*D(x) € D(a)
for each g € I,. It follows that D = U,ef(R)*D(x) is a domam in D(a)
containing ﬁ Moreover, B(gh)*|D(x) = p(g9)* o (B(h)*|D(«)) for g, h € I.

Each point of D has an expression f(h)*(y) with h € I and y € D(x).
It (h)*(y) = B)*(y), then B(gh)*(y) = Blgh')*(y) for cach g€ I,
Thus we can define an action p* of I, on D such that *(g)f(h)*(y) =
Bgh)*(y) for g,h €I, and y € D(x). Now (a) follows by theorem 5.5
because f(g(z)) = [*(g9)f(z) for each g € [, and z € U. []

5.7. Corollary. Let C C P be a Jordan curve and let D be one of the
components of P — C. Then C is an analytic curve if and only if every
holomorphic automorphism of D has a conformal extension to a domain
containing D U C.

Proof. Let f be a conformal map from U onto D and suppose first
that C is analytic. Then f has a conformal extension f* to a disc 4,
with r> 1. If ¢ is a holomorphic automorphism of D, then f-1¢f
agrees in U with some ¢ € I'. Moreover, the inverse image g4, of 4,
under ¢ is a domain containing U and the image of 4, N g~1A, under f*
is a domain D’ containing D U C. It is clear that f*g(f*)~|D’ is a con-
formal extension of ¢.

Suppose conversely that every holomorphic automorphism ¢ of D has
a conformal extension ¢* to a domain containing DU C. Define an
action g of I' on DUC such that = (fgf )* DU C for each
g €I Then j is conformal and f(g(z)) = /3’ ff for each ¢ € I' and
z € U. Hence by theorem 5.6, f has a conformal extension to a domain
containing U. [

§ 6. Quasiconformal extensions

6.1. Theorem. Let f be a conformal map from U onto a domain of P.
Then the following conditions are equivalent:
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(a) f has a quasiconformal extension to P.
(b) there is a quasiconformal action f of I' on the closure of fU such
that f(g(z)) = p(g9)f(z) for each g € I and z € U.

This theorem is a generalization of a result of Rickman [16, Theorem
2]. We start the proof with two lemmas.

Lemma 1. Suppose that (b) holds, C is a compact subset of I' and
p €P — fU. Then there exists K =1 such that for each ¢ € C' the map
B(g) has a K-quasiconformal extension p(g)*: P —P with B(g)*(p) = p.

Proof. By a well-known extension theorem for quasiconformal mappings
[11, p. 100], each f(g) possesses quasiconformal extensions to P having p
as a fixed point. Among these extensions there exists one, say f(g)*, with
the smallest possible maximal dilatation K(g), in view of lemma 5.2. We
prove that the map d:¢+> K(g) from I' to [— o« , o] is lower semi-
continuous.

Suprpose that {g,},ex is a convergent sequence of points of 61— oo, g]
where o > 0, and let g =limg,. Then lim,_ , B(g,)%f(z) = B(g)f(z) for
cach z € U; thus by lemma 5.2 there exists a subsequence {f(g,)*hex
of {#(g.)*}.ex Which converges to a p-quasiconformal map, uniformly on
P. Since the limit is an extension of S(g), we have d(g) < o. This shows
that 67 [— o0, ¢] is closed and that ¢ is semicontinuous.

Since SL(2, R) is a complete metric space and the canonical map
SL(2, R) — I" is a two-sheeted covering projection (cf. 3.4), the topology
of I' is induced by a complete metric too. Thus there exists ¢, € I" such
that 0 is continuous at ¢, by Baire’s theorem and theorem 1.2. Let N
be an open neighborhood of the identity of I" such that d(g'g,) = 20(g,)
for g’ € N. Since d(gh) =< 6(9)0(h) and 6(g7t) = d(g) for ¢g,h €T, it
follows that d(g') = 6(g9'90)0(95 ") = 28(g,)* for each ¢’ € N.

Since [' is conmnected, the family {N"}, .y is an open covering of I’
[15, p. 148]. Because C is compact, there exists m € N such that ¢ c N™.
It follows that K = (26(g,)°)™ is an upper bound for ¢ in (.

Lemma 2. There exvists a compact set C C 1" with the following property:
if v,y and z are points of T with

A\

O<iv—y = y—2z = lov—z

A

and of g € I,N I'_, satisfies g(x) =y, then g €C.

Proof. Let
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, | 12
(0= G-
(v — y)%? Y @ y |

0= 2 2 2 — 2 [z 2 2\ X ;
(@ )y ) <— — :)(g _—) 4ImgIm

z

[N

then it is clear that
o=lol = |@+2)y+2)T=13.

Moreover, taking into account the identification z = z(i +142,1 —2)
(cf. 4.1), a computation shows that

g:{\/lﬁ—g{—\/Q—Rez, ——\/gImz, —\/Elmz, \/I—Q—Q—X/Q_Rez}.

Thus ¢ belongs to the compact set C of elements {a,b,c,d} with
a4 0+ 2+ a2 < 10/3. O

Proof of theorem 6.1. It is again trivial that (a) implies (b). To prove
the converse we assume that (b) holds; then by theorem 4.4 f has a homeo-
morphic extension f* to the closure of U. We need only show that the
boundary curve f*T' of fU isa quasiconformal curve [11, Theorem II.8.3].
Composing f with a suitable rotation of P we may assume that f*U c C.

Tet x,y and z be points of T with

O<lp—yl=ly—zl=lr—2zl=1,

and let &= f*(x), 5= *y) and = f*(z). In view of [11, Theorem
11.8.7] it suffices to find a constant M > 0, independent of the choice of
2,y and z, such that ln — {| < Md where d = |§ — [|.

Let C c I'" be the compact set described in lemma 2. By lemma 1 there
exists K =1 such that for each g € C' the map p(g) has a K-quasi-
conformal extension f(g)*: C— C. Choose g € I, N ['_, sothat g(x) = y:
then B(g)*(¢) = - and f(g)*(§) = 5. Since z is the attractive fixed point
of g, we have

mo=min, g, 1f9)*w) — I < d.
Applying a lemma of Mori [13, Lemma 4] it follows that
m— =max, . _, [f@)Fw) — | = eFm < eFd;
hence we can choose M = ¢™%. []
It is natural to ask if I" can be replaced by some I’ in theorem 6.1.
The following result gives a partial answer in this direction. It also contains
theorem 5.4 for ' = I'. as a special case.
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6.2. Theorem. Let f be a conformal map from U onto a domain of P.
Suppose that there exist [ € U and K < 49/47 such that for each g € I':
the map fgf* has a K-quasiconformal extension to P. Then [ has a
K'-quasiconformal extension to P where K' = (49K — 47)/(49 — 47K).

Proof. We may obviously assume that ¢ = 0 and fU < C. Moreover,
in view of a well-known result of Ahlfors and Weill [2, Theorem 5] we need
only show that

sup,e v [Sf(2)[(1 — 2[2)2 < 96— .

Given 2z € U let h be a holomorphic (affine) automorphism of C
such that A(0) = f(z), AU € fU and RT meets the boundary of fU.
For each 2 €T let g. be the element of I, with constant derivative z,
and let ¢. be a K-quasiconformal extension of fg.f to P. If k= h~'of,
we have fo (g.|U) = ¢rof = ¢dsohok and hence

Sf(z) - a = S(gs o B)(0) - K@) -+ Sf(2)

by the transformation rules for Sf.
Since ¢. is K-quasiconformal,

K —

K

—

1S(#s o h)(0) =6

+

[10, Corollary 2]. Moreover, |k'(z)|(1 — [z]?) =<4 by Koebe’s one-quarter
theorem. Therefore
K —1

r)\ (a2 ..».2__ ) < —
Sfiaz) 0 — §) = 96 )

(]' - ‘!:2\)~2

for # € T, and by the maximum principle the same is true for each x € U.
The substitution x = 0 yields

the desired estimate. []

§ 7. Schwarzian derivatives

7.1. Introduetion. Let X be the set of Schwarzian derivatives of
univalent functions. Each element of X is then of the form ¢ = Sf where
f is a conformal map from U onto a domain of P. We define a metric
d in X Dby the formula
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A, p) = sup,ey [¢(z) — p()[(1 — [2[7)?*.

It is well-known that (X,d) is a complete metric space and that
d(¢,0) =6 for each ¢ €2 [3, Section 1].

There is a continuous action f of the opposite group of I” on X' such
that B(9)($)(z) = ¢(9(z))g'(z)? for g€ I',p €L and z € U. Each fp(g) is
in fact an isometry of X. We say thataset § C X is invariant if f(g)S = S
for each ¢ € I

Let f:U—D and ¢g:U — D" be conformal maps onto domains of
P. There is an equivalence relation H in X such that (Sf,Sg) € H if
and only if the map gof! has a homeomorphic extension to a domain
containing the closure of D. Replacing the word »homeomorphic» by
»quasiconformaly and »conformaly, we obtain two additional equivalence
relations in X, denoted by @ and C. Each ¢ € X then belongs to three
different equivalence classes H(¢), Q(¢) and C(¢). In particular, Q(0)
is the universal Teichmiiller space defined in [3].

7.2. Theorem. Let ¢ € X and let L denote one of the letters H, @ and
C. Then ¢ € L(0) if and only if L(¢) is invariant.

Proof. Let f:U—D be a conformal map such that ¢ = Sf. Then
H() is invariant if and only if for each g € I" the map fgf~ has a homeo-
morphic extension to a domain containing the closure of D. In view of
corollary 4.5 this is equivalent to ¢ € H(0). If L =@ or L=C, we
obtain the result by appealing to theorem 6.1 or theorem 5.6 instead of
corollary 4.5. [

The condition of theorem 7.2 can be weakened if ¢ is restricted to the
set X, of elements of X for which the map #,: I'— X defined by 1,(g9) =
3(g)(¢) is continuous.

7.3. Theorem. Let ¢ € X, and let L denote one of the letters H, @ and
(. Then & € L(0) if and only if L(¢) contains a noneinpty open subset
of an invariant subset of X

Proof. Since X, is invariant (see proposition 7.5), we need only prove
the sufficiency. Let O € L(¢) be a nonempty open subset of an invariant
subset S X, and let f: U — D be a conformal map such that Sf € 0.
Since [y is continuous and S is invariant, there exists a neighborhood
Y of the identity of I' such that ty(g) = S[fe (g U)] is in O for each
g € N. Tt follows that for ¢ € N the map fgf~' has a homeomorphic,
quasiconformal or conformal extension to a domain containing the closure
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of D, and since N generates I, the same is true for each g € I". Hence
L(¢) is invariant and ¢ € L(0) by theorem 7.2. []

7.4. Remark. It is well known that @(0) is open in X, and it has also
been conjectured that @(0) is dense in X (see [3, 1.6 and 1.7] and [4.
p. 598]). If this conjecture were true, @(0) would consist of those ¢ € X
for which @(¢) contains a nonempty open subset of X. This problem
was the original motivation for theorem 7.3.

The set 2, does not seem to appear in the literature. The following is
a list of some of its properties.

7.5. Proposition. X, is a closed and invariant proper subset of X which
contains all ¢ with lim,_, [¢(z)|(1 — [z2)2 = 0.

Proof. We first prove that X, is closed. Suppose that {¢,}iex is a
convergent sequence of elements of X, and let ¢ = lim ¢,. To show that
l, 1is continuous, let {g,},ex be a convergent sequence in I' with
g=1img, For k,n €N we have

dl1y(g.) » 1(9)] = dlty(g,) - 14, (9.)] + dlty, (9.) 5 L (9)] +
dlty,(9) » L(@)] = 2d(dy , $) + dlt,(9,) » 14, (9)]

because f(g,) as well as f(g) is an isometry. Moreover, given &> 0
there exist &, m € N such that d(¢s, ) < ¢/4 and dlty,(9,) 5 14, (9)] < &/2
for n = m. Then d[ty(g,),t,(9)] <e for n = m and we see that ¢ € X.

Next assume that ¢ €Y satisfies lim._ a1 ()1 — 222 =0. To
show that ¢, is continuous, again let {q"}nm be a convelgent. sequence
in I' with ¢ =1I1img,. For 2z€ U and »n € N write

Mz, n) = [$(9.())9(2)* — $lg(2))g"(2)*|(1 — [22)5

we then have to prove that lim, . sup,cy M (2, n) = 0.

Given ¢> 0 choose r € (0,1) so that |¢(2)|(1 — |2[2)2 < ¢/2 for all
z €U with [z = 7. Since g, —g¢ uniformly in U, there exists ¢ € (0, 1)
such that |g,(z)] =r for each » € N and z € U with |z] = p. Then

M = (16(0.(N1gn () 2 + 1)) 119 () B)(1 — |22
= [(ga(2) (1 — 1g.(2) 2 + g1 — lg@) P2 < e

for each n € N and z€ U with [z] = p.
For |z| =0 we obtain
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Mz, n) = (16(g.(2)) — $EN92(2) 1 + 19222 — ¢/ Idlg(2) (1 — 22

— $(0.(2) — )1 — .) R +
| g.(2)2 [
bR — 1 B — o)
s
= 1(0a(2) — o] + 6!2@2 - 11

Since ¢ € X and ¢, —g¢ uniformly in U, the family {¢ o (9,|U)}en 18
uniformly bounded in every compact subset of U, hence equicontinuous.
Thus ¢(g.(z)) — $(g(z)) uniformly for |[z| =9o. On the other hand
7.(2))g'(z) = 1 uniformly in U, and it follows that

lim, ,, sup,, -, Mz,n)=0.

Together with the estimate for [z} = o this proves that ¢ € X,
To show that X, is a proper subset of X, we consider the Koebe
function

—6
) = 8 = T

For each 2 €T let g, be the (unique) element of 1" such that g.(z) = =

for z € U. Then lim,_ .9, = e, the identity of I, while

‘ 22 1 §
— B« \ — |
d[tqs(gx) > f‘¢(e)] =6 ~upzeUl (1 — 3,222)2 (1 _ :2>'_‘

o
—
|
o
[
e
Y%
D

for x #e. Hence {, is not continuous at e.

It remains to prove that p(k)X, c X, for each % € I'. Suppose that
g,h €I and ¢ €%, and let {g,},ex be a sequence in I" converging to
g. Then t,(hg) = lim,_, t,(kg,) which is equivalent to

Bg)B(R)(p) = Lim, ., B(g.)B(R)() -

This shows that i, , is continuous at g¢.[]
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