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1. Introduetion

J. L. Taylor has defined in [12] an abstract convolution measure algebra
as a complex L-space M equipped with a multiplication which makes M
a Banach algebra and satisfies certain extra requirements. Complex L-
spaces may be characterized as the preduals of commutative W*-algebras.
This is the point of view adopted in the present study of the projective
tensor product M & N of two complex L-spaces M and N . In Theorem
3.1 M & N isidentified as the predual of the W*-tensor product M* @ N* .
The theory of tensor products set out in section 3 yields a lucid mterpreta-
tion of the proof of a basic result needed in the construction of the structure
semigroup of a commutative convolution measure algebra (Theorem 4.1).
Theorems 4.2 and 4.3, which generalize some results of P. S. Chow [2],
state that the projective tensor product M ® N of two convolution
measure algebras is a convolution measure algebra whose structure semi-
group, in case M and N are commutative, is topologically isomorphic
to the product of the structure semigroups of M and N .

2. Preliminaries

In analogy with the classical notion of a real L-space (see e.g. [11, p.
457]), M.A. Rieffel has introduced in [8] the concept of a complex L-space,
whose definition in J. L. Taylor’s formulation [12] reads as follows: A
(partially) ordered complex Banach space M is a complex L-space if (i)
the real linear subspace M, generated by the positive cone of M is a
real L-space, (ii) for any u € M there exist unique elements Re u,
Im w € M, such that u = Reu + ilm pu, and (iii) [ju| = ||[p||| for all
p €M, where |ul =V {Re(€%)|0 <6 <2x}. Using Kakutani’s
classical representation theorem for real L-spaces, Rieffel proved in [8,
p. 37] that any complex L-space is isometrically linear and order isomorphic
to I1(I",m) for some localizable measure space (I',m), so that its
dual may be identified with L®(I", m). As any such space LI, m) is,
conversely, an abstract complex L-space (see [8]), Proposition 1.18.1 in
[9] yields the following characterization.
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Theorem 2.1. The complex L-spaces are precisely the preduals of com-
mutative W*-algebras.

The Banach-Stone theorem shows that in the topological dual M*
of any complex L-space there is only one structure of a commutative C*-
algebra compatible with the norm and order determined by M. (In
fact the word »commutative» in this statement may be omitted. This can
be proved using Kadison’s generalization [5] of the Banach-Stone theorem.,
since every C*-algebra which is a dual Banach space has an identity.)
Tt is this unique structure in M* that will be referred to in the sequel.

A bounded linear map 7: M — N, with M and N complex L-spaces,
is called an L-homomorphism, if T u >0 and |Tu|| = ||u|| for any u >0
in M, andif 0 <» <Tu with x>0 implies that » = Tw for some
w€M, 0<o <pu. The following basic result is due to J. L. Taylor
[12, p. 153]. For an alternative proof, cf. [6, p. 664].

Theorem 2.2. Let M and N be complex L-spaces. A bounded linear
map T: M —N is an L-homomorphism, if and only if its transpose T™* :
N* — M* is a *homomorphism which preserves the identity.

For any Banach spaces £ and F, E ® F will denote their projective
tensor product (i.e. the completion of the algebraic tensor product £ @ F
with respect to the greatest cross-norm y) and £ ® F their weak tensor
product (i.e. the completion of E @ F with respect to the least one 7
of all cross-norms whose dual norms are also cross-norms). If E,, E,, F,
and F, are Banach spaces and ~: HE, — E,, f: F — F, bounded hnear
maps, there exist unlque bounded linear maps ® g:E; F — B, & F,
and oc@/i’ E, ®I’ — K, ®F which map z @ y to xx @ fy for
allx € E,, y €F; [11, pp. 349 and 306] In partlcular we shall regard
E* ® F* as a subspace of both (X ® F)* and (E & F)* by defining
x @Y, f®g>:<x? f><?/>g/ for z €F, yEF: fEE*? gEF*

If A and B are algebras, there is a unique algebra multiplication in
A ®B such that (z Q@ y) (x @v)=2u Qyv for x, u€d, y, v€B
[1, A III, p. 33]. For two C*-algebras 4 and B, an involution is defined
in A ®B by setting x Qy)*=a*Qy* for x€4, y€B, and
making the extension by conjugate-linearity. If 4 and B are Banach
algebras, the product descrlbed above extends uniquely to a Banach
algebra product of A® B, namely to the mapping (a b) +>ab =
(oc®,3 O (e ®b)), where o: A®A——>A and 5B®B—>B cor-
respond to the multlphcatlons in A and B and O 1s the natural iso-

metric isomorphism from (4 8 B) ® A4 ® B) onto (4 ® A4) ® (B ® B)
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[11 p. 358]. See also [3, p. 298] and [14, p. 148]. If A4 and B are com-
mutative, so are 4 @ B and 4 @ B . For details on tensor products
we refer to [1], [4], [10], [11] and [9].

3. The projective tensor product of two complex L-spaces

Throughout this section M and N denote complex L-spaces. For
any compact Hausdorff space Z, C(Z) is the C*-algebra of all continuous
complex functions on Z, and M(Z) = C(Z)*, i.e. M(Z) is the space
of regular complex Borel measures on Z. We make the identifications
M* = (C0(X), N*=C(Y), where X is the maximal ideal space of M*,
and Y that of N*. Let ux (resp. vy) denote the natural image of u € M
in M(X) (resp. v €N in M(Y)).

Clearly, M ® N may be identified with a subspace of M** @ N** |
and thus with a subspace of (M* & N*)*. Let E, equipped with the
induced norm, de/r}ote the closure of M @ N in (M* @ N *)k . It is
known that M* @ N* is a commutative C*-algebra having M* @ N*
with the product and involution defined in section 2 as a *-subalgebra.
In fact, C(X) ® O(Y) = C(Xx Y) [11, p. 357]. By some arguments used
in [9, p. 66] it follows that E* is a commutative IW*-algebra and the
natural embedding of M* & N* into E* isan isometric *-homomorphism.
We denote E* = M* @ N* and identify M* & N* with its image in
M* @ N*. Being a separating subspace of E*, M* @ N* and hence
M* & N* is o(E*, E)-dense in M* & N*. As there is only one C*-
norm on M* @ N* [9, p. 62], M* @ N* is actually the usual W*-tensor
product of M* and N* [9, p. 67].

Statements (i) and (iii) in the next theorem are essentially known.
Indeed, (i) follows from the proof of Theorem III.4.4 in [2] and (iii) is
stated in [6, pp. 664—665]. Our proof, however, is shorter than these
measure theoretic considerations. The fact that M @ NV is an L-space
could also be proved by using [4, Cor. 4, p. 61] and the representation of a
complex L-space as a space L' (I",m)[8, p. 37].

Theorem 3.1. (i) Tkere is an isometric isomorphism O from M & N onto
the closed subspace of M(X X Y) generated by the product measures px X vy ,
where uw € M, v €N, such that O(u Q@ v) = uy X vy for u €M, vEN .

(ii) With the order determined by the closed convex come generated
by the tensors p Q@ v, where w€M, u>0, vEN, »>0, M@N
ts 1sometrically linear and order isomorphic to the predual of M* @ N* .

(iii) With the order described in (ii), M ®N isa complex L-space.

Proof. There is a linear injection of M ® N into M(X X Y) which
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makes each p ® v correspond to uy X »y. When M ® N is identified
with itsimagein M(X x Y), the greatest crossnorm y of M ® N agrees
with the usual norm of M(X X Y) = [C(X) ® CO(Y)]*. This is a conse-
quence of the remarks made at the end of page 59 in [9]. Thus (i) follows.
To prove (ii), we first note that an element f of the space £ c (M* @ N*)*
appearing in the discussion before the theorem is positive as a functional
on M* @% N#, if and only if f is positive as an element of the predual
(M* @ N*), € (M* @ N*)* of M* @ N*. Indeed, since M* ® N* is
weak* dense in the W*-algebra M* @ N*, and the multiplication in
M* @ N* is separately weak* continuous, the identity of JM* ® N*
coincides with that of M* @ N*, and since by definition each f€E

P

has the same norm in (M* & N*)* and in (M* ® N*), , Propositions
1.5.1 and 1.5.2 in [9, p. 9] can be applied. By virtue of (i) and the fact that
CX)yR0Y)=CX xY), M 2N is isometrically isomorphic to £ .
the predual of M* @ N*. To prove (ii) it is now enough to show that
P, =P,, where P,={m € M(X x Y) m€OM ® N), m >0} (with
the map @ of (i)) and P, is the closed convex cone in M (X X Y) genera-
ted by all uy X vy with x>0 in M and » >0 in N . Asthe natural
injections M — M(X) and N — M(Y) are bipositive, obviously P, C P, .
and the converse inclusion P, C P, can be proved by showing that any
m >0 in QM @ N) is the norm limit of linear combinations, with
positive coefficients, of product measures uy X vy with positive u € M .
vy € N . Indeed, since the natural image of M in M(X) (resp. of N in
M(Y)) is an L-subspace [12, pp. 151—152]. a method used in [12, pp.
155—156] shows that each m € O(M /?: N) is absolutely continuous with
respect to some py X vy with >0 in M. » >0 in N, and the Radon-
Nikodym theorem yields the conclusion as e.g. in the proof of Theorem
2.2 in [7]. Finally, (iii) is an immediate consequence of (ii) and Theorem 2.1.

Convention. For any complex L-spaces M and N, M SN will be
regarded as a complex L-space with the order defined in the above theorem.
In accordance with (ii) we write (M @ Nyt = M* & N*.

Theorem 3.2. Let M,, M,, N, and N, be complex L-spaces and
T;,: M;— N; L-homomorphisms, j=1,2. Then

T, &T,: M;® My,—~ N, &® N,

1s an L-homomorphism.

Proof. The following calculation shows that the restriction of (T, 8 T,)*
to N* ® N¥c (N, ® Np)* is the ordinary algebraic tensor product
mapping 7§ @ T%: N¥ @ Nf — MF ® M5 .

For u, € M,, u, €M, and z, € N¥, x,€NJ we have
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g @ pos (T @ To)* (21 ® x)) = (T, @ Ts) (y @ po), @ @ ) =
=Ty @ Toty, @y @ @) = Ty, @) Loy, ) =

= s TF @) uyy Tiay) =y @ pp, T @y @ Thay)y . As the linear
combinations of the tensors u; ® w, with u, € My, u, € M, are dense
in M, ® M,, it follows that (T; & Ty* (v, @ a)) = TFa, @ T x,.
By Theorem 2.2 and the definition of the *-algebra structure in M} @ My
and N¥ @ N¥ the restriction (7 ® T,)* | N¥ @ N¥ is thus a *-homo-
morphism which maps the identity 1 ® 1 of Nf ®@ NF to that of
M* @ MF. Since N¥ @ N} is weak* dense in N* @ N¥ = (N, ® Np*
and the involution in NF @ N¥ is weak* continuous and multiplication
separately weak* continuous (similar remarks holding for M} ® M7),
it follows that (7, ® Ty)* : (N, 8 Ny)* — (M, ) M,)* is a *-homo-
morphism preserving the identity. The proof is completed by appealing
again to Theorem 2.2.

4, Applications to convolution measure algebras

A convolution measure algebra (or CM-algebra for short) is a complex
L-space M with a Banach algebra product (u, »)+> uv such that the
unique bounded linear map @ : M 2 M — M for which O ® ») = uv,
u, v€M, is an L-homomorphism. This is the definition given in [13,
p- 812], for the tensor product considered there is just the projective tensor
product M &N (see Theorem 3.1). For an equivalent definition, see [12].

The theory of commutative CM-algebras hinges on the notion of the
structure semigroup [12]. An alternative construction of the structure semi-
group may be sketched as follows. Let M be a commutative ("} -algebra,
and let 4 denote the set of the non-zero multiplicative linear functionals
on M . The norm closed linear span D of A can be shown to be a C*-
subalgebra of M* containing the identity of M*. Let S denote the
spectrum of D , i.e. the set of all non-zero multiplicative linear functionals
on D endowed with the relative weak* topologyv. For any F, G €S
there is a unique element FG of S such that (y . FG> =y, F){y,G)
whenever y € 4. With this multiplication S is a compact topological
semigroup, which is topologically isomorphic to the structure semigroup
of M in the sense of Taylor [12] (see e.g. [15, Theorem 2.1]). The crucial
step in the above construction of S is to prove that A U {0} contains
the identity of M* and is closed with respect to multiplication and in-
volution. We now proceed to give this result (Theorem 4.1) a proof based
on the fact that (M &M )* contains M* @ M* as a *-subalgebra and
has 1 ® 1 as its identity (section 3).
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Lemma 4.1. Let A be any Banach algebra and O : A ® A —> A the
bounded linear map corresponding to its multiplication. 4 functional f € A*
s multiplicative, if and only if O%*f = f ® f for the transpose

OF : A% > (4 & A)*

of O.

Proof. If f is multiplicative and =,y € 4, then <x @ y, O*f) =
=O@Qy).fH= " y,[r=<x,f f>—<w®y f®f>. Since the
linear combinations of the tensors @ ® y are dense in 4 & 4, it follows
that @*f=f @ f. Conversely, if O*f=f® f, a similar calculatlon

shows that (xy.,f> = {a, >y, f>.

Theorem 4.1. (J. L. Taylor [12, p. 157]). Let A be the set of the non-zero
multiplicative linear functionals on a CM-algebra M .
(1) The identity of the W*-algebra M* isin A .
@) If f, g€4, then fg€AUY{0}.
(i) If f€A, then f*€A4.
Pmof We use the preceding lemma. Since O*:M* — (M &M )*
is a *-homomorphism, which preserves the identity, we have 0*1 =1 ® 1
ie. LEA.If f, g €., then O%fy = O%f0% = (f® [) (9 @ 9) = fg ®fg
and O%f* = (O*)* = (fRf)i* =f* Q@ f*, f*#0, ie. fg€AU{0}
and f* €4 .

Theorem 4.2. If M, and M, are CM-algebras, then M, ® M, is a
CM-algebra.

Proof. By Theorem 3.1 M, ® M, is a complex L- -space. We must sho“
that the bounded linear map O : (M, 8 JI 5) ® (M, & M. o) — M, 2 M,
correspondmo to the multiplication in 7l[ 8 M, is an L-homomorphism.
If 0,: M, ® M, — M, and 0,:M, ® M,— M, are the L-homomor-
phisms corresponding to the multiplications in M; and M,, then

0,5 0,: (M, 8 M) ® (M, ® M)~ M, & M,

is an L-homomorphism (Theorem 3.2), and so is @, for it is easily seen
from the description of the positive cone of the projective tensor product
of two complex L- -spaces glven in Theorem 3.1 that the natural 1bometrlc
isomorphism from (J{, & M. 2) ® (M, 8 M o) onto (M, &M 1) ® (M, & M, 2)
is also an order isomorphism.

The description of the spectrum of the tensor product of two com-
mutative Banach algebras due to Gelbaum [3] and Tomiyama [14] is
crucial for the next result.

Theorem 4.3. Let M, and M, be commutative CM-algebras with struc-
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ture sengroups S, and 8y, respectively. The structure semigroup of
M, ® M, s topologically isomorphic to the product S; X S, .

Proof. Let A; (resp. A) be the set of the non-zero multiplicative linear
functionals on M , j=1,2 (resp. on M, M ») - Denote by D; (resp.
D) the closed 11near span of A; in M} (resp. of A in (M, ® M 2)¥) .
We first show that the C*- algebras D ® D, and D are 1sometrlcally
*-jsomorphic. Let us regard M§ &® MF as a subspace of (M, B M o) *
in accordance with section 3. Let o;:D;— M}, j=1,2,denote the
inclusion maps. When D; ® D, and M¥ @ M¥ are given t-he A-norm,
the *-homomorphism «&; ® ap:D; @ Dy— M¥ @ M¥ is isometric [10,
Lemma 2.12, p. 35], and so is

6, & ay: D, & Dy— MF & M e (M, D Mp*.

Applying Lemma 1 in [14, p. 149] we see that a functional f € (M &N )*

belongs to A if and only if there exist ¢ GAI and p € 4, such that
f= ¢ ® . It follows that the range of «x, & &,, being closed, contains
D . On the other hand, since ¢ @ 1 €4 for all ¢ € 4,, the range of the
(continuous) *-homomorphism z+>2 ® 1, x € D;, is contained in D .
Similarly, 1 ® y €D forall y €D,. Hence 2 @ y = (x ® 1) (1 @ y)€ D
whenever z € D1 , Y€D,, and so (x; @ &) (D, ® D) D. We _con-
clude that «; @ «, defines an isometric * 1somorph1sm p from D, ® D,
onto D . It is known [14, p. 150] that S; X S, is homeomorphic to the
spectrum of D, ® D, under the mapping (F,G)—F ® G, so that
F,@) B H* (F ®G) is a homeomorphism from §; x S, onto .
From the definition of the multiplication in a structure semigroup it fol-
lows that this map is also a semigroup isomorphism. Indeed, identifying
D with D, ® D, to simplify the notation so that

S={Fr,QF|F,€s8, F,eS,},

and recalling the fact that 4 ={p Q y |p €4,, v €4,}, we have for
any F,, G, €8, F,, GLbE€ES,, ¢; €4;, and ¢, € 4,,

{1 @ @2, (F1 @ Fy) (G ® Gy)) =
={p1 Q@ o, F1 ® Fy) {1 ® ¢p, G1 Q@ Gy =
=@y, F)Lpa, Fo) {1, G <y, Gy =
=Lgrs FiG gy, Foly) = g1 @ ¢y, F\G, @ Fy6y), e

(17'1 , Fz) (G, Gy) = (16, F,G,) is mapped to the product of the images
f (F,,7F,) and (G;,G,) in §.

Remark. P. S. Chow has proved (see [2, Theorems II1.4.4 and IIT.4.5])
the following special case of Theorems 4.2 and 4.3: If M and N are L-
subalgebras [13, p. 812] of the convolution algebras M(X) and M(Y),
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respectively, of bounded regular Borel measures on the locally compact
semigroups X and Y with a separately continuous multiplication, then
M & N can be realized as an L-subalgebra of M(X x Y) (so that it is
a O M-algebra), and its structure semigroup, in case X and Y are com-
mutative, is topologically isomorphic to the product of those of M and N .

Department of Mathematics
University of Helsinki
Helsinki, Finland
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