ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

558

TENSOR PRODUCTS OF COMPLEX L-SPACES AND CONVOLUTION MEASURE ALGEBRAS

BY

KARI YLINEN

HELSINKI 1973 SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.558

Copyright © 1973 by Academia Scientiarum Fennica ISSN 0066-1953 ISBN 951 41-0137-5

.

Communicated 8 October 1973

KESKUSKIRJAPAINO HELSINKI 1973

.

1. Introduction

J. L. Taylor has defined in [12] an abstract convolution measure algebra as a complex L-space M equipped with a multiplication which makes Ma Banach algebra and satisfies certain extra requirements. Complex Lspaces may be characterized as the preduals of commutative W^* -algebras. This is the point of view adopted in the present study of the projective tensor product $M \otimes N$ of two complex L-spaces M and N. In Theorem $3.1 M \otimes N$ is identified as the predual of the W^* -tensor product $M^* \otimes N^*$. The theory of tensor products set out in section 3 yields a lucid interpretation of the proof of a basic result needed in the construction of the structure semigroup of a commutative convolution measure algebra (Theorem 4.1). Theorems 4.2 and 4.3, which generalize some results of P. S. Chow [2], state that the projective tensor product $M \otimes N$ of two convolution measure algebras is a convolution measure algebra whose structure semigroup, in case M and N are commutative, is topologically isomorphic to the product of the structure semigroups of M and N.

2. Preliminaries

In analogy with the classical notion of a real L-space (see e.g. [11, p. 457]), M.A. Rieffel has introduced in [8] the concept of a complex L-space, whose definition in J. L. Taylor's formulation [12] reads as follows: A (partially) ordered complex Banach space M is a complex L-space if (i) the real linear subspace M_r generated by the positive cone of M is a real L-space, (ii) for any $\mu \in M$ there exist unique elements $\operatorname{Re} \mu$, Im $\mu \in M$, such that $\mu = \operatorname{Re} \mu + \operatorname{iIm} \mu$, and (iii) $\|\mu\| = \||\mu\|\|$ for all $|\mu| = \bigvee \{ \operatorname{Re} (e^{i\theta}\mu) \mid 0 < \Theta < 2\pi \}$. Using Kakutani's $\mu \in M$, where classical representation theorem for real L-spaces, Rieffel proved in [8,p. 37] that any complex L-space is isometrically linear and order isomorphic to $L^{1}(\Gamma, m)$ for some localizable measure space (Γ, m) , so that its dual may be identified with $L^{\infty}(\Gamma, m)$. As any such space $L^{1}(\Gamma, m)$ is, conversely, an abstract complex L-space (see [8]), Proposition 1.18.1 in [9] yields the following characterization.

Theorem 2.1. The complex L-spaces are precisely the preduals of commutative W^* -algebras.

The Banach-Stone theorem shows that in the topological dual M^* of any complex *L*-space there is only one structure of a commutative C^* -algebra compatible with the norm and order determined by M. (In fact the word »commutative» in this statement may be omitted. This can be proved using Kadison's generalization [5] of the Banach-Stone theorem, since every C^* -algebra which is a dual Banach space has an identity.) It is this unique structure in M^* that will be referred to in the sequel.

A bounded linear map $T: M \to N$, with M and N complex L-spaces, is called an L-homomorphism, if $T \mu \geq 0$ and $||T\mu|| = ||\mu||$ for any $\mu \geq 0$ in M, and if $0 \leq v \leq T\mu$ with $\mu \geq 0$ implies that $v = T\omega$ for some $\omega \in M$, $0 \leq \omega \leq \mu$. The following basic result is due to J. L. Taylor [12, p. 153]. For an alternative proof, cf. [6, p. 664].

Theorem 2.2. Let M and N be complex L-spaces. A bounded linear map $T: M \to N$ is an L-homomorphism, if and only if its transpose $T^*: N^* \to M^*$ is a *-homomorphism which preserves the identity.

For any Banach spaces E and F, $E \otimes F$ will denote their projective tensor product (i.e. the completion of the algebraic tensor product $E \otimes F$ with respect to the greatest cross-norm γ) and $E \otimes F$ their weak tensor product (i.e. the completion of $E \otimes F$ with respect to the least one λ of all cross-norms whose dual norms are also cross-norms). If E_1 , E_2 , F_1 and F_2 are Banach spaces and $\alpha: E_1 \to E_2$, $\beta: F_1 \to F_2$ bounded linear maps, there exist unique bounded linear maps $\alpha \otimes \beta: E_1 \otimes F_1 \to E_2 \otimes F_2$ and $\alpha \otimes \beta: E_1 \otimes F_1 \to E_2 \otimes F_2$ which map $x \otimes y$ to $\alpha x \otimes \beta y$ for all $x \in E_1$, $y \in F_1$ [11, pp. 349 and 356]. In particular, we shall regard $E^* \otimes F^*$ as a subspace of both $(E \otimes F)^*$ and $(E \otimes F)^*$ by defining $\langle x \otimes y$, $f \otimes g \rangle = \langle x, f \rangle \langle y, g \rangle$ for $x \in E$, $y \in F$, $f \in E^*$, $g \in F^*$.

If A and B are algebras, there is a unique algebra multiplication in $A \otimes B$ such that $(x \otimes y) (u \otimes v) = xu \otimes yv$ for $x, u \in A, y, v \in B$ [1, A III, p. 33]. For two C*-algebras A and B, an involution is defined in $A \otimes B$ by setting $(x \otimes y)^* = x^* \otimes y^*$ for $x \in A, y \in B$, and making the extension by conjugate-linearity. If A and B are Banach algebras, the product described above extends uniquely to a Banach algebra product of $A \otimes B$, namely to the mapping $(a, b) \mapsto ab =$ $(\alpha \otimes \beta) (\Theta (a \otimes b))$, where $\alpha : A \otimes A \to A$ and $\beta : B \otimes B \to B$ correspond to the multiplications in A and B, and Θ is the natural isometric isomorphism from $(A \otimes B) \otimes (A \otimes B)$ onto $(A \otimes A) \otimes (B \otimes B)$ [11 p. 358]. See also [3, p. 298] and [14, p. 148]. If A and B are commutative, so are $A \otimes B$ and $A \otimes B$. For details on tensor products we refer to [1], [4], [10], [11] and [9].

3. The projective tensor product of two complex L-spaces

Throughout this section M and N denote complex L-spaces. For any compact Hausdorff space Z, C(Z) is the C^* -algebra of all continuous complex functions on Z, and $M(Z) = C(Z)^*$, i.e. M(Z) is the space of regular complex Borel measures on Z. We make the identifications $M^* = C(X)$, $N^* = C(Y)$, where X is the maximal ideal space of M^* , and Y that of N^* . Let μ_X (resp. ν_Y) denote the natural image of $\mu \in M$ in M(X) (resp. $\nu \in N$ in M(Y)).

Clearly, $M \otimes N$ may be identified with a subspace of $M^{**} \otimes N^{**}$, and thus with a subspace of $(M^* \bigotimes N^*)^*$. Let E, equipped with the induced norm, denote the closure of $M \otimes N$ in $(M^* \bigotimes N^*)^*$. It is known that $M^* \bigotimes N^*$ is a commutative C^* -algebra having $M^* \otimes N^*$ with the product and involution defined in section 2 as a *-subalgebra. In fact, $C(X) \bigotimes C(Y) = C(X \times Y)$ [11, p. 357]. By some arguments used in [9, p. 66] it follows that E^* is a commutative W^* -algebra and the natural embedding of $M^* \bigotimes N^*$ into E^* is an isometric *-homomorphism. We denote $E^* = M^* \boxtimes N^*$ and identify $M^* \bigotimes N^*$ with its image in $M^* \boxtimes N^*$. Being a separating subspace of E^* , $M^* \otimes N^*$ and hence $M^* \bigotimes N^*$ is $\sigma(E^*, E)$ -dense in $M^* \boxtimes N^*$. As there is only one C^* norm on $M^* \otimes N^*$ [9, p. 62], $M^* \boxtimes N^*$ is actually the usual W^* -tensor product of M^* and N^* [9, p. 67].

Statements (i) and (iii) in the next theorem are essentially known. Indeed, (i) follows from the proof of Theorem III.4.4 in [2] and (iii) is stated in [6, pp. 664-665]. Our proof, however, is shorter than these measure theoretic considerations. The fact that $M \otimes N$ is an *L*-space could also be proved by using [4, Cor. 4, p. 61] and the representation of a complex *L*-space as a space $L^1(\Gamma, m)$ [8, p. 37].

Theorem 3.1. (i) There is an isometric isomorphism Θ from $M \otimes N$ onto the closed subspace of $M(X \times Y)$ generated by the product measures $\mu_X \times v_Y$, where $\mu \in M$, $\nu \in N$, such that $\Theta(\mu \otimes \nu) = \mu_X \times v_Y$ for $\mu \in M$, $\nu \in N$.

(ii) With the order determined by the closed convex cone generated by the tensors $\mu \otimes \nu$, where $\mu \in M$, $\mu \ge 0$, $\nu \in N$, $\nu \ge 0$, $M \otimes N$ is isometrically linear and order isomorphic to the predual of $M^* \otimes N^*$.

(iii) With the order described in (ii), $M \otimes N$ is a complex L-space.

Proof. There is a linear injection of $M \otimes N$ into $M(X \times Y)$ which

makes each $\mu \otimes \nu$ correspond to $\mu_X \times \nu_Y$. When $M \otimes N$ is identified with its image in $M(X \times Y)$, the greatest cross norm γ of $M \otimes N$ agrees with the usual norm of $M(X \times Y) = [C(X) \widehat{\otimes} C(Y)]^*$. This is a consequence of the remarks made at the end of page 59 in [9]. Thus (i) follows. To prove (ii), we first note that an element f of the space $E \subset (M^* \bigotimes N^*)^*$ appearing in the discussion before the theorem is positive as a functional on $M^* \bigotimes N^*$, if and only if f is positive as an element of the predual $(M^* \otimes N^*)_* \subset (M^* \otimes N^*)^*$ of $M^* \otimes N^*$. Indeed, since $M^* \otimes N^*$ is weak* dense in the W*-algebra $M^* \ensuremath{\overline{\otimes}}\ N^*$, and the multiplication in $M^* \overline{\otimes} N^*$ is separately weak* continuous, the identity of $M^* \widehat{\otimes} N^*$ coincides with that of $M^* \otimes N^*$, and since by definition each $f \in E$ has the same norm in $(M^* \widehat{\otimes} N^*)^*$ and in $(M^* \overline{\otimes} N^*)_*$, Propositions 1.5.1 and 1.5.2 in [9, p. 9] can be applied. By virtue of (i) and the fact that $C(X) \ \widehat{\otimes} \ C(Y) = C(X \times Y)$, $M \ \widehat{\otimes} \ N$ is isometrically isomorphic to E, the predual of $M^* \otimes N^*$. To prove (ii) it is now enough to show that $P_1 = P_2$, where $P_1 = \{m \in M(X \times Y) \mid m \in \Theta(M \otimes N), m \ge 0\}$ (with the map Θ of (i)) and P_2 is the closed convex cone in $M(X \times Y)$ generated by all $\mu_X \times \nu_Y$ with $\mu \ge 0$ in M and $\nu \ge 0$ in N. As the natural injections $M \to M(X)$ and $N \to M(Y)$ are bipositive, obviously $P_2 \subset P_1$, and the converse inclusion $P_1 \subset P_2$ can be proved by showing that any m > 0 in $\Theta(M \otimes N)$ is the norm limit of linear combinations, with positive coefficients, of product measures $\mu_X \times \nu_Y$ with positive $\mu \in M$, $v \in N$. Indeed, since the natural image of M in M(X) (resp. of N in M(Y) is an L-subspace [12, pp. 151-152], a method used in [12, pp. 155-156] shows that each $m \in O(M \otimes N)$ is absolutely continuous with respect to some $\mu_X \times r_Y$ with $\mu \ge 0$ in M, $r \ge 0$ in N, and the Radon-Nikodym theorem yields the conclusion as e.g. in the proof of Theorem 2.2 in [7]. Finally, (iii) is an immediate consequence of (ii) and Theorem 2.1.

Convention. For any complex *L*-spaces M and N, $M \otimes N$ will be regarded as a complex *L*-space with the order defined in the above theorem. In accordance with (ii) we write $(M \otimes N)^* = M^* \otimes N^*$.

Theorem 3.2. Let M_1 , M_2 , N_1 and N_2 be complex L-spaces and $T_j: M_j \rightarrow N_j$ L-homomorphisms, j = 1, 2. Then

$$T_{\mathbf{1}} \bigotimes T_{\mathbf{2}} : M_{\mathbf{1}} \bigotimes M_{\mathbf{2}} \to N_{\mathbf{1}} \bigotimes N_{\mathbf{2}}$$

is an L-homomorphism.

Proof. The following calculation shows that the restriction of $(T_1 \otimes T_2)^*$ to $N_1^* \otimes N_2^* \subset (N_1 \otimes N_2)^*$ is the ordinary algebraic tensor product mapping $T_1^* \otimes T_2^* : N_1^* \otimes N_2^* \to M_1^* \otimes M_2^*$.

For $\mu_1 \in M_1$, $\mu_2 \in M_2$ and $x_1 \in N_1^*$, $x_2 \in N_2^*$ we have

 $\begin{array}{l} \langle \mu_1\otimes\mu_2\,,\quad (T_1\bigotimes T_2)^*\;(x_1\otimes x_2)\rangle = \langle (T_1\bigotimes T_2)\;(\mu_1\otimes\mu_2)\,,\; x_1\otimes x_2\rangle = \\ = \langle T_1\;\mu_1\otimes T_2\mu_2\,,\; x_1\otimes x_2\rangle = \langle T_1\mu_1\,,\; x_1\rangle\;\langle T_2\mu_2\,,\; x_2\rangle = \\ = \langle \mu_1\,,\; T_1^*\;x_1\rangle\;\langle \mu_2\,,\; T_2^*x_2\rangle = \langle \mu_1\otimes\mu_2\,,\; T_1^*\;x_1\otimes T_2^*\;x_2\rangle. \quad \text{As the linear combinations of the tensors } \\ \mu_1\otimes\mu_2\,,\; t^*_1\;x_1\otimes\mu_2\,,\; t^*_1\;x_1\otimes T_2^*\;x_2\rangle = \langle T_1^*\;x_1\otimes T_2^*\;x_2\rangle. \\ \text{By Theorem 2.2 and the definition of the *-algebra structure in } \\ M_1^*\otimes M_2^*\,,\; \text{it follows that } (T_1\bigotimes T_2)^*\;(x_1\otimes x_2) = T_1^*\;x_1\otimes T_2^*\;x_2\,. \\ \text{By Theorem 2.2 and the definition of the *-algebra structure in } \\ M_1^*\otimes M_2^*\,,\; \text{the restriction } (T_1\bigotimes T_2)^*\;|\;N_1^*\otimes N_2^*\,\; \text{is thus a *-homomorphism which maps the identity } 1\otimes 1\,\; \text{of } \\ M_1^*\otimes M_2^*\,,\; \text{Since } \\ M_1^*\otimes N_2^*\,\; \text{is weak* dense in } \\ M_1^*\otimes N_2^*\,\; \text{continuous (similar remarks holding for } \\ M_1^*\otimes M_2^*\,,\; \text{is a *-homomorphism preserving the identity. The proof is completed by appealing again to Theorem 2.2. \end{array}$

4. Applications to convolution measure algebras

A convolution measure algebra (or CM-algebra for short) is a complex L-space M with a Banach algebra product $(\mu, \nu) \mapsto \mu \nu$ such that the unique bounded linear map $\Theta: M \otimes M \to M$ for which $\Theta(\mu \otimes \nu) = \mu \nu$, μ , $\nu \in M$, is an L-homomorphism. This is the definition given in [13, p. 812], for the tensor product considered there is just the projective tensor product $M \otimes N$ (see Theorem 3.1). For an equivalent definition, see [12].

The theory of commutative CM-algebras hinges on the notion of the structure semigroup [12]. An alternative construction of the structure semigroup may be sketched as follows. Let M be a commutative CM-algebra, and let Δ denote the set of the non-zero multiplicative linear functionals on M. The norm closed linear span D of Δ can be shown to be a C^* subalgebra of M^* containing the identity of M^* . Let S denote the spectrum of D, i.e. the set of all non-zero multiplicative linear functionals on D endowed with the relative weak* topology. For any F, $G \in S$ there is a unique element FG of S such that $\langle \gamma, FG \rangle = \langle \gamma, F \rangle \langle \gamma, G \rangle$ whenever $\gamma \in \Delta$. With this multiplication S is a compact topological semigroup, which is topologically isomorphic to the structure semigroup of M in the sense of Taylor [12] (see e.g. [15, Theorem 2.1]). The crucial step in the above construction of S is to prove that $\Delta \cup \{0\}$ contains the identity of M^* and is closed with respect to multiplication and involution. We now proceed to give this result (Theorem 4.1) a proof based on the fact that $(M \bigotimes M)^*$ contains $M^* \otimes M^*$ as a *-subalgebra and has $1 \otimes 1$ as its identity (section 3).

^

558

A. I.

Lemma 4.1. Let A be any Banach algebra and $\Theta: A \otimes A \to A$ the bounded linear map corresponding to its multiplication. A functional $f \in A^*$ is multiplicative, if and only if $\Theta^* f = f \otimes f$ for the transpose

$$\Theta^*: A^* \to (A \otimes A)^*$$

of Θ .

Proof. If f is multiplicative and $x, y \in A$, then $\langle x \otimes y, \Theta^* f \rangle = \langle \Theta(x \otimes y), f \rangle = \langle xy, f \rangle = \langle x, f \rangle \langle y, f \rangle = \langle x \otimes y, f \otimes f \rangle$. Since the linear combinations of the tensors $x \otimes y$ are dense in $A \otimes A$, it follows that $\Theta^* f = f \otimes f$. Conversely, if $\Theta^* f = f \otimes f$, a similar calculation shows that $\langle xy, f \rangle = \langle x, f \rangle \langle y, f \rangle$.

Theorem 4.1. (J. L. Taylor [12, p. 157]). Let Δ be the set of the non-zero multiplicative linear functionals on a CM-algebra M.

- (i) The identity of the W*-algebra M^* is in \varDelta .
- (ii) If $f, g \in \Delta$, then $fg \in \Delta \cup \{0\}$.
- (iii) If $f \in \Delta$, then $f^* \in \Delta$.

Proof. We use the preceding lemma. Since $\Theta^* : M^* \to (M \bigotimes M)^*$ is a *-homomorphism, which preserves the identity, we have $\Theta^{*1} = 1 \otimes 1$, i.e. $1 \in \Delta$. If $f, g \in \Delta$, then $\Theta^* fg = \Theta^* f \Theta^* g = (f \otimes f) (g \otimes g) = fg \otimes fg$ and $\Theta^* f^* = (\Theta^* f)^* = (f \otimes f)^* = f^* \otimes f^*$, $f^* \neq 0$, i.e. $fg \in \Delta \cup \{0\}$ and $f^* \in \Delta$.

Theorem 4.2. If M_1 and M_2 are CM-algebras, then $M_1 \bigotimes M_2$ is a CM-algebra.

Proof. By Theorem 3.1 $M_1 \otimes M_2$ is a complex *L*-space. We must show that the bounded linear map $\Theta: (M_1 \otimes M_2) \otimes (M_1 \otimes M_2) \to M_1 \otimes M_2$ corresponding to the multiplication in $M_1 \otimes M_2$ is an *L*-homomorphism. If $\Theta_1: M_1 \otimes M_1 \to M_1$ and $\Theta_2: M_2 \otimes M_2 \to M_2$ are the *L*-homomorphisms corresponding to the multiplications in M_1 and M_2 , then

$$\Theta_1 \mathbin{\widehat{\otimes}} \Theta_2 : (M_1 \mathbin{\widehat{\otimes}} M_1) \mathbin{\widehat{\otimes}} (M_2 \mathbin{\widehat{\otimes}} M_2) \to M_1 \mathbin{\widehat{\otimes}} M_2$$

is an *L*-homomorphism (Theorem 3.2), and so is Θ , for it is easily seen from the description of the positive cone of the projective tensor product of two complex *L*-spaces given in Theorem 3.1 that the natural isometric isomorphism from $(M_1 \otimes M_2) \otimes (M_1 \otimes M_2)$ onto $(M_1 \otimes M_1) \otimes (M_2 \otimes M_2)$ is also an order isomorphism.

The description of the spectrum of the tensor product of two commutative Banach algebras due to Gelbaum [3] and Tomiyama [14] is crucial for the next result.

Theorem 4.3. Let M_1 and M_2 be commutative CM-algebras with struc-

ture semigroups S_1 and S_2 , respectively. The structure semigroup of $M_1 \bigotimes M_2$ is topologically isomorphic to the product $S_1 \times S_2$.

Proof. Let Δ_j (resp. Δ) be the set of the non-zero multiplicative linear functionals on M_j , j = 1, 2 (resp. on $M_1 \otimes M_2$). Denote by D_j (resp. D) the closed linear span of Δ_j in M_j^* (resp. of Δ in $(M_1 \otimes M_2)^*$). We first show that the C*-algebras $D_1 \otimes D_2$ and D are isometrically *-isomorphic. Let us regard $M_1^* \otimes M_2^*$ as a subspace of $(M_1 \otimes M_2)^*$ in accordance with section 3. Let $\alpha_j : D_j \to M_j^*$, j = 1, 2, denote the inclusion maps. When $D_1 \otimes D_2$ and $M_1^* \otimes M_2^*$ are given the λ -norm, the *-homomorphism $\alpha_1 \otimes \alpha_2 : D_1 \otimes D_2 \to M_1^* \otimes M_2^*$ is isometric [10, Lemma 2.12, p. 35], and so is

$$\alpha_1 \stackrel{\widehat{\otimes}}{\otimes} \alpha_2 : D_1 \stackrel{\widehat{\otimes}}{\otimes} D_2 \to M_1^* \stackrel{\widehat{\otimes}}{\otimes} M_2^* \subset (M_1 \stackrel{\widehat{\otimes}}{\otimes} M_2)^* \, .$$

Applying Lemma 1 in [14, p. 149] we see that a functional $f \in (M \bigotimes N)^*$ belongs to Δ if and only if there exist $\varphi \in \Delta_1$ and $\psi \in \Delta_2$ such that $f = \varphi \otimes \psi$. It follows that the range of $\alpha_1 \bigotimes \alpha_2$, being closed, contains D. On the other hand, since $\varphi \otimes 1 \in \Delta$ for all $\varphi \in \Delta_1$, the range of the (continuous) *-homomorphism $x \mapsto x \otimes 1$, $x \in D_1$, is contained in D. Similarly, $1 \otimes y \in D$ for all $y \in D_2$. Hence $x \otimes y = (x \otimes 1)$ $(1 \otimes y) \in D$ whenever $x \in D_1$, $y \in D_2$, and so $(\alpha_1 \bigotimes \alpha_2)$ $(D_1 \bigotimes D_2) \subset D$. We conclude that $\alpha_1 \bigotimes \alpha_2$ defines an isometric *-isomorphism β from $D_1 \bigotimes D_2$ onto D. It is known [14, p. 150] that $S_1 \times S_2$ is homeomorphic to the spectrum of $D_1 \bigotimes D_2$ under the mapping $(F, G) \mapsto F \otimes G$, so that $(F, G) \mapsto (\beta^{-1})^*$ $(F \otimes G)$ is a homeomorphism from $S_1 \times S_2$ onto S. From the definition of the multiplication in a structure semigroup it follows that this map is also a semigroup isomorphism. Indeed, identifying D with $D_1 \bigotimes D_2$ to simplify the notation so that

$$S = \{F_1 \otimes F_2 \mid F_1 \in S_1, \ F_2 \in S_2\},\$$

and recalling the fact that $\varDelta = \{\varphi \otimes \psi \mid \varphi \in \varDelta_1, \ \psi \in \varDelta_2\}$, we have for any F_1 , $G_1 \in S_1$, F_2 , $G_2 \in S_2$, $\varphi_1 \in \varDelta_1$, and $\varphi_2 \in \varDelta_2$,

$$\begin{array}{l} \langle \varphi_1 \otimes \varphi_2 \,, \ (F_1 \otimes F_2) \, (G_1 \otimes G_2) \rangle = \\ = \langle \varphi_1 \otimes \varphi_2 \,, \ F_1 \otimes F_2 \rangle \, \langle \varphi_1 \otimes \varphi_2 \,, \ G_1 \otimes G_2 \rangle = \\ = \langle \varphi_1 \,, \ F_1 \rangle \, \langle \varphi_2 \,, \ F_2 \rangle \, \langle \varphi_1 \,, G_1 \rangle \, \langle \varphi_2 \,, G_2 \rangle = \\ = \langle \varphi_1 \,, \ F_1 G_1 \rangle \, \langle \varphi_2 \,, \ F_2 G_2 \rangle = \langle \varphi_1 \otimes \varphi_2 \,, \ F_1 G_1 \otimes F_2 G_2 \rangle \,, \quad \text{i.e.} \end{array}$$

 $(F_1\,,\,F_2)\;(G_1\,,\,G_2)=(F_1G_1\,,\,F_2G_2)\;$ is mapped to the product of the images of $(F_1\,,\,F_2)\;$ and $(G_1\,,\,G_2)\;$ in S .

Remark. P. S. Chow has proved (see [2, Theorems III.4.4 and III.4.5]) the following special case of Theorems 4.2 and 4.3: If M and N are L-subalgebras [13, p. 812] of the convolution algebras M(X) and M(Y),

respectively, of bounded regular Borel measures on the locally compact semigroups X and Y with a separately continuous multiplication, then $M \otimes N$ can be realized as an L-subalgebra of $M(X \times Y)$ (so that it is a *CM*-algebra), and its structure semigroup, in case X and Y are commutative, is topologically isomorphic to the product of those of M and N.

Department of Mathematics University of Helsinki Helsinki, Finland

References

- [1] BOURBAKI, N.: Algèbre. Chapitres 1 à 3, Hermann, Paris, 1970.
- [2] CHOW, P. S.: On some Banach algebras of measures. Ph.D. Thesis. University of Aberdeen, 1969.
- [3] GELBAUM, B. R.: Tensor products of Banach algebras. Canad. J. Math. 11 (1959), 297-310.
- [4] GROTHENDIECK, A.: Produits tensoriels topologiques et espaces nucléaires. -Memoirs Amer. Math. Soc. No. 16, 1955.
- [5] KADISON, R. V.: Isometries of operator algebras. Ann. Math. 54 (1951), 325 338.
- [6] MCKILLIGAN, S. A. and WHITE, A. J.: Representations of L-algebras. Proc. London Math. Soc. (3) 25 (1972), 655-674.
- [7] RENNISON, J. F.: Arens products and measure algebras. J. London Math. Soc. 44 (1969), 369-377.
- [8] RIEFFEL, M. A.: A characterization of commutative group algebras and measure algebras. Trans. Amer. Math. Soc. 116 (1965), 32-65.
- [9] SAKAI, S.: C*-algebras and W*-algebras. Springer-Verlag, Berlin-Heidelberg-New York, 1971.
- [10] SCHATTEN, R.: A theory of cross-spaces. Annals of Mathematics Studies. No. 26, Princeton, 1950.
- [11] SEMADENI, Z.: Banach spaces of continuous functions. Monografie Matematyczne, Tom 55, PWN-Polish Scientific Publishers, Warszawa, 1971.
- [12] TAYLOR, J. L.: The structure of convolution measure algebras. Trans. Amer. Math. Soc. 119 (1965), 150-166.
- [13] --- Noncommutative convolution measure algebras. Pacific J. Math. 31 (1969), 809-826.
- [14] TOMIYAMA, J.: Tensor products of commutative Banach algebras. Tôhoku Math. J. 12 (1960), 147-154.
- [15] YLINEN, K.: The multiplier algebra of a convolution measure algebra. Pacific J. Math. (to appear).

Printed November 1973