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1. Introduction

J. L. Taylor has defined in [12] an abstract convolution measure algebra
as a complex .L-space -44 equipped with a multiplication which makes M
a Banach algebra and satisfies certain extra requirements. Complex Z-
spaces may be characterized as the preduals of commutalive W*-alsebras.
This is the point of view adopted in the present study of the projective
tensor product A 6 X of two complex Z-spaces M and, -l[ . In Theorem
3.1 M frj .l[ is identif ied as the predual of the W*-tensor product ]VI* a, Itr* .

The theory oftensor products set out in section 3 yields a lucid interpreta-
tion ofthe proofofa basic result needed in the construction ofthe structure
semigroup of a commutative convolution measure algebra (Theorem 4.1).
Theorems 4.2 and 4.3, which generalize some results of P. S. Chow [2],
state that the projective tensor product A ä W of two convolution
measure algebras is a convolution measure algebra whose structure semi-
group, in case M and .ly' are commutative, is topologically isomorphic
to the product of the structure semigroups of M and -ly' .

2. Preliminaries

In analogy with the classical notion of a real -D-space (see e.g. [ll, p.
457]), M.A. Rieffel has introduced in [8] the concept of a complex Z-space,
whose definition in J. L. Taylor's formulation [12] reads as follows: A
(partially) ordered complex Banach space -/r1 is a compler L-space if (i)
the real linear subspace M, generated by the positive cone of M is a
real -L-space, (ii) for anv p e lI there exist unique elements Ru p ,

Imp,e M, such that ,rz:Rep, lilmp, and (iii) ll,"ll :lll,"lll for all
peM, where lpl :V{Re(e'eir) lO<@<2n}. Using Kakutani's
classical representation theorem for real Z-spaces, Rieffel proved in [8,
p. 37] that any complex "t-space is isometrically linear and order isomorphic
to Lt(l , m) for some localizable measure space (l , m), so that its
dual may be identified with L*(f ,m) . As any such space Z1(J- ,m) is,
conversely, an abstract complex ,t-space (see [8]), Proposition I.18.1 in
[9] yields the following characterization.
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Theorem 2.1. The complex L-spaces are prec'i,selg the pred,uals of com,-

mutatiae W*-algebras.

The Banach-Stone theorem shows that in the topological dual M*
of any complex -L-space there is only one structure of a commutative C*-
algebra compatible with the norm and- order determined by M . (L
fact the word »commutative» in this statement may be omitted. This can

be proved using Kadison's generalization [5] of the Banach-Stone theorem,

since every C*-algebra which is a dual Banach space has an identity.)
It is this unique structure in M* that will be referred to in the sequel.

A bounded linear map T: M -> N , with M and trf complex,t-spaces,
is called an L-homomorph'i,sm,if T p 2 0 and llTpll: llpll for any p,) 0

in M, and if 0 < t lTp with p ) 0 implies that v: Ta for some

a € M, 0 ( @ < 1.t. The following basic result, is due to J. L' Taylor

Ll2, p. 1531. For an alternative proof, cf. [6, p. 66a].

Theorem 2,2. Let M and' N be compler L-spaces. A bound,ed, l'inear

m,ap T: M -> N d,s an L-homomorphism, i,f and, only if its transltose Tx :
-l[* -> M* 'i,s a *-homomorphism wh'i,ch preseraes the id,enti,ty.

X'or any Banach sp&ces E anl I , n 6 f *iU denote their projective
tensor product (i.e. the completion of the algebraic tensor product E I F
with respect to the greatest cross-norm 7) and E A ? their weak tensor
product (i.e. the completion of Z' 6 7 s'ith respect to the least one )'

of all cross-norms whose dual norms are also cross-norms).If EL , E2 , ?1

and -8, are Banach spaces and a : Dt+Ez, P: Fr---> -Fr^bounded linear
maps, there exist^uniq-ue bouldecl linear *up, . 6 p 

' 
f, G Fr---, Er$ F,

and " d §rUr6 Fr-->Er6 Fz rvhich map r E y to \n I0a for
allre Er, U e It [], pp. 349 ancl 356]. In particular, t'e shall regard

Z'x I X'x as a subspace of both (E O',F)x and (E e .F)* by defining
(r 8y,,f 8g):(r, f)(y,s) for re E, yel, f eE*, ger*.

If. A and B are algebras, there is a unique algebra multiplication in
AAB suchthat @Ail@&a)-n%8ya for r, u,eA, g, aeB
[I, A III, p. 33]. X'or two C*-algebras A and B , an involution is defined

in A8B by setting (r8y)*:r*EU* for reA, AeB, and

making the extension by conjugate-linearity. ff .1 and B are Banach

algebras, the product described above extends uniquely to a Ranach

alqebra product of A A B, namelv to the mapping (a,b)t>ab:
1*"60) lbpab)), where a:AOA->A ana B:BOB-->B cor-

respond to the multiplications in I and ^B , and @ is the natural iso-

-"t i"isomorphismfrom (,4 6 rl 6 @A B) onto (/ 6 el 6 (B 6 B)
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[11 p. 358]. See also [3, p. 298] and lL4,
mutative, so Are A tB and" A 6.B.
we refer to [1], l4), [10], [11] and [9].

p. 148]. ff A and B are com-
tr'or details on tensor products

3. The projective tensor proiluct of two eomplex L-spaces

Throughout this section M and ^lI denote complex Z-spaces. X'or
åny compact Hausdorff space Z , C(Z) is the C*-algebra of all continuous
complex functions on Z, and M(Z) : C(Z)* , i.e. M(Z) is the space
of regular complex Borel measures on Z . We make the identifications
M* : C(X) , -ntl* : C(Y) , where X is the maximal ideal space of II* ,

trnd Y that of .l[* . Let p* (resp. zr) denote the natural image of p e M
in M(X) (resp. r, €.0/ in ilI(Y)) .

Clearly, M & N may be identified with a subspace of M*x I lf** ,

arrd thus with a subspace o1' 1Mx 6 rY*;* . Let Z , "quipped 
with the

irrduced norm, denote the closure of M & N in (IW* A I'r*)* . It is
known lhat M* 6 lf* is a commutative C*-algebra having M* & I{*
with the produrct and inyolution definecl in section 2 as a *-subalgebra.
In fact, C(X) 6 C(Y) : C(Xx y) [11, p. 357]. By some arguments used
in [9, p. 66] it follorvs that E* is a commutative W*-algebra and the
natural embedcling of lI* 6 f* into E* is an isometric *-homomorphism.

We denote E* : M* El trtr* and identify 2'* § ry* with its image in
;11x 8 -l/* . Being a separal,ing subspace of E* , M* & -Iy'* and hence
7'* § 7yx is 6(E* ,Z)-dense in jU''F I l[x . As t]rere is only one C*-
rlorm o11 M* I ly'* [9, p. 62], M* E.l[* is actually the usual W*-tensor
prod,uct of M* and l[x [9, p. 67].

Statements (i) and (iii) in the next theorem are essentially known.
fndeed, (i) follolvs from the proof of Theorem III.,1.4 in [2] and (iii) is
stated in [6, pp. 664-665]. Our proof, holever, is shorter than these
measure theoretic consid.erations. The fact that ,ff 6 if is an Z-space
could also be proved by using [4, Cor. 4, p. 61] and the representation ofa
complex -L-space as a space L, (f , nx) 18, p. 37].

Theorem S.1. (i) There,i,,s an isometric isomorgthi,sm, @ from M S N onto
the closed, subspace of M(X X Y) generated, by the prod,uct rneasures Fx X ay ,

where pe M, t€N, suchthat @(p I y) : l-rxX yv for pe M, ae N.
(ii) tVifh the order d,etermined, by the closed, conuen cone generated,

bythetensors p&1', where peM, p)0, aeN, rr)0, AdN
'is 'i,sometriaallg l,inear and, oril,eri,somor,phic to the pred,ual of M* I trtr* .

(iii) Wi,th the ord,er d,escribed, i,n (ii), U 6 X ,is a comytler L-s1tace.
Proof. There is a linear injection of M 6r -l[ into M(X x I) which
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makes each p, @ rr correspond to FxX vv. When M I N is identified
with itsimage in M(X x y), thegreatestcrossnorm y of M @ N agrees

with the usual norm of M(X x y) : tC(X) 6 C(f)l*. This is a conse-

quence of the remarks made at the end of page 59 in [9]. Thus (i) follows.
To prove (ii), we first note that an element / of the space ,O c (M* 6 Itl*;*
appearing in the discussion before the theorem is positive as a functional

on M* 6 .l[* , if and only if / is positive as &n element of the^predual
(ll[* & N*)* c (M* I ]/*)* of ;14x § i\ix. fncleed, since .41* § N* is

weak* dense in the lV*-algebra llf* €i N* , and the multiplication in
M* A N* is separately weakx continuous, the identit5, of 74x § 1r*
coincides with that, of M* I N* , and since by definition each f e E
has the same norm in (/4x § 1r*;*' and in (M* I ly'*)*, Propositions
I.5.I a^nd 1.5.2 in [9, p. 9] can be applied. By virtue of (i) and the fact that
C(x) 6 C(Y): C(X x Y) , /4 A § is isometricallf isomorphic to E ,

the predual of M* I 
^-* 

. To prove (ii) it is nolr'^enough to show that
Pt:Pz, where Pr:{me M6 x }') lme@(M eNl , rru}0} (rvith

the map @ of (i)) and P, is the closed convex cone in M(X x Y) genera-

tedby all p*Xzy with p>-0 in M and r)0 in Ä'. Asthenatural
injections M --> M(X) and -l[ "- M(Y) are bipositive, obviously P, c Py ,

and the converse inclusion P, c P, can be proved by showing that an1'

m ) 0 in O@ A N) is the norm limit of linear combinations, rvith
positive coefficients, of product measllres px x t,v with positive p e M ,

r, € -l[ . fndeed, since the natural image of M in M(X) (resp. of I in
ilI(Y)) is an tr-subspace [I2, pp. I5l^-152). a rnethod used in [12, pp.
f55-1561 shorvs that each n'e O()I ? J) is absolutely continuous with
respecttosome Fxx.vv with pr)0 in M, v )0 in N, andtheRadon-
Nikodym theorem yields the conclusion as e.g. in the proof of Theorem

2.2 in l7). Finally, (iii) is an immediate consequence of (ii) and Theorem 2.1.

Convention. X'or any complex Z-spaces *11 ancl N , M 6 N rvill be

regarded as a complex -L-space with the orcler defined in the above theorem.
fn accord.ance with (ii) we wrjrte (M 6 lf)* - M* I ;Y*'

Theorem 3,2. Let ll[L , I42 ,

T j t Mi -+ Irrj L-homomorphisms,

TLA rz:Mt

Ärz be com,ple): L-spaces (Lnd

Tlren

Ä'r A f2

'is a,n L-homornorplt ism.
Proof. The followirg calculation shorvs that the restriction of (7,

to If f e frif c (ff, A ffr)* is the ordinarv algebraic tensor
mappins rf A r{ : /rf I nf -> Mf A Mtr .

For he ni[Lt Fze M, and nt €]ff , nz€/ff \r'e have

-Ail end

6 tI, -->

6 rr)*
prod uct
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(tr 8 tr, (", A Tr)* (*rQ rz)): ((116 fr) 0rr8 t r), nt I nz):
: (Tt lh & ?zttz , nr I nz) : (Tilh, nr) (TzPz, nz) :
: Qrr, Tf rr) (tr, Ttxr): QrrS lrr, Tf *r& T\rr). As the linear
combinations of the tensors h I ltz with p, e Mr, lrze M, are dense

in MrO Mr, it follows that' (", A Tr)* (trg rz):T! *r8Tt *r.
By Theorem 2.2 and the definition of the x-algebra structure in M! I Mt

""a f1 O .0[f the restriction (", 6 
"r)* 

I trf 6 l/f is thus a *-homo-

morphism which maps the identity f I I of //f I.&'j' to that of
l][I-A -41f . Since wf O I[f is *"ui.* dense in J[f 6 Xf : 1l', Ö tr/r)*
and the involution in Nf 6 1[] is weak* continuous and multiplication
separately weak* continuous (simil?r remarks holding for Mf 6 Mt) ,

it follows that (", A ?r)* : (1[, 6 l''r)* - (Mr 6 urY is a *-homo-

morphism preserving the identity. The proof is completed by appealing
again to Theorem 2.2.

4. Applications to convolution measure algebras

A conuolution nxeasure algebra (or CM-algebra, for short) is a complex
Z-space M witln a Banach algebra product, (t" , v) r> pl such that the
unique bounded linear map @ : XI 'd M ---> M for which @(p A v) : pt, ,

fi , y e M , is an Z-homomorphism. This is the definition given in [13,
p. 8121, for tle tensor product considered there is just the projective tensor
product M 'd N (see Theorem 3.1). For an equivalent definition, see [2].

The theory of commutalive Ckl-algebras hinges on the notion of the
structure semi,group p2]. An alternative construct'ion of the structure semi-
group may be sketched as follows. Let M be a commutative CM-algebra,
and let / denoLe the set of the non-zero multiplicative linear functionals
on M . The norm closed linear span D of I can be shorvn to be a Cx-
subalgebra of M* containing the identitl' of lI* . Let § denote the
spectrum of D , i.e. the set of all norl-zero multiplicatir-e linear functionals
on D endowed with the relative u'eak* topologl-. For any X , G € S
there is a unique element IG of § such that (y , FGl : (y , I) (y , G)
whenever y e A . With this multiplication § is a compact topological
semigroup, which is topologically isomorphic to the structure semigroup
of M in the sense of Taylor [f 2] (see e.g. il5, Theorem 2.fl). The crucial
step in the above construction of § is to prove lhat A U {0} contains
the identity of M* and is closed with respect to multiplication and in-
volution. We now proceed to give this result (Theorem 4.1) a proof based

on the fact that @[ A M)* contains .41* & M* as a *-subalgebra and
has I I I as its identity (section 3).
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Lemma 4.l.Let A beanyBanachal,gebraand, @:A6A->A the

bouniled,li,near nxap aorrespond,'ing to its multi,ytlicati,on. A funct'i,onal f e A*
i,s multi,pl,i,cati,rse, if and only ,f OY: / O f for the tramspose

@* : A* -+ 1e § .4;*

of @.
Proof.If / ismultiplicativeand n,UeA, t}ren (*8A,@*f):

: (@ (r A y),f>: (.ny ,l): @,1) Q ,l): (# I y ,f A^/). Since the
linear combinations of the tensors r I U are dense in -4 § A , il follows
Lhat @*l:f 8f. Conversely,if @*f :lAf, a similarcalculation
shows t'hat (ry ,l> : @ , f) Q , f) .

Theorem 4.1. (J. L. Taylor Ll2, p. l57l). Let Å be the set of the no%-zero

multi,gtl,i,cati,ae linear functionals on a CIVl-algebra M .

(i) The id,entity of the W*-algebra M* i,s in Å .

(ii)If f , se Å, then lse I U{0}.
(iii) ry feÅ, then f*eÅ.
Proof. We use the preceding lemma. Since @* : M* "- (M 6 A)*

is a *-homomorphism, which preseryes the identity, we have @*I : I E 1 ,

i.e. I € Å.It f , g eÅ, then @*fS:@*f@*g: ("f I f)@ g g):fg elS
and @f* : (@*f)* : (/e/)* :"f* 8"f*, f* +0, i.r. fg€l U{0}
and.f*eA.

Theorem 4.2. If ful, and, M, are CM-algebras, them Mr6 M, 'is a

CM-algebra.
Proof . By Theorem 3.1 Mr6 lUI, is a complex Z-space. We rnust show

that the boundecl linear ,rup O ittrrd 4[;A (M;6 Mr)-Mr6 M,
corresponding to the mtrltiplication in -4,[, 'd M, is an -t-homomorphism.
Tf Or, Mr6 ilIr---> M, and Or: Jl[r6 Mr- Mz are the Z-homomor-
phisms corresponding to the multiplications in M, ar.d M2, then

oL A oz: Mr)nMtA 1[z

is an -L-hornornorphism (Theorem 3.2), and so is @ , for it is easily seen

from the description of the positive cone of the projective tensor product
of two complex -L-spaces given in Theorem 3.1 that the natural isometric
isomorphisÅfrom (-&1, 6"arl6 (ar6 ar) onto (Mr6 arl6 (ur6 aS
is also an order isomorphism.

The description of the spectrum of the tensor product of two com-
mutative Banach algebras due to Gelbaum [3] and Tomiyama [f ] is

crucial for the next result.

Theorem 4.3. Let n[, and, Mrbe commutatiue CM-algebras wi,th struc-

tM,6 M,) A (M,6
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ture 
^sem,igrougts §, and, Sr, respecti,aely. The structure semi,group of

Mr.'d M, is togtologi,cally ,i,somorphic to the prod,ucl §, x §r.
Proof.Let' lt (resp. /) be the set of the non-zero multiplicative linear

functionals on Mr, i:1,2 (resp. on Mr'd U). Denote by D, (resp.
D) the closed linear span of /, in Mf 

^(resp. 
of / in (Mr 8 Mz)*) .

lVe first show that the C*-algebras D, @ D, an<l D are isometrically
*-isomorphic. Let us regard. 

"Af 
6 Ul as a subspace of (Ar 6 Uri*

in accordance with section 3. Let ai:D,--fuIf , j: l,2,denote the
inclusion maps. When Dt I Dz arrld Mf I IItr are given the ,1,-norm,
the *-homomorphism a"1@ a2: D1 I Dr--> M! I YLtr is isometric [I0,
Lemma 2.12, p. 35], and so is

Dz* tYIf e x/I* c (M,6 Ar)*

Applying Lemma I in [4, p. la9] we see that a functional f e (LyI 6 l'r1*
belongs to / if and only if there exist, g F /, and rp € /, such that
f:E 8?. Itfollowsthattherangeof ar§*r, being closed, contains
D. Ontheotherhand,since E8 f e / forall ge År, the rangeof the
(continuous) *-homomorphism r r> r @ l, r e Dr, is contained in D .

Similarly, l&y €D forall yeDr. Hence r8U ^: ("81) (t g y)e D
whenever re pr, U e Dz, and so (o: 6 az) (r,6 Dz)cD. We con-
clude that or 6 o, defines an isometric x-isomorphism I from D, § D,
onlo D. It is known [14, p. I50] that B, X §, is homeomorphic to the
spectrum ot D, § D, ord"" the mapping (X , G) r> E g G , so that
(?,G)»(B-')* (f BG) is a homeomorphism from S, X §, onto /S.
X'rom the definition of the multiplication in a structure semigroup it fol-
lows that thil map is also a semigroup isomorphism. Indeed, identifying
D with Dr 6 D, to simplify the notation so that

and recarins thu r*.sr ":: : : ,it ii; . 
'i,u,r j ; 0,, , we have ror

arny Xr, Gr€Br, Ir, Gre Bz, gte /r, anc\ Vz€/2,
(q' 8 92, (It & Xz) (4 A Gr)) :

:(%8Vr, XtSX)(%6-Vr, Gl 8G2):
: (E,, T,) (E, , E,) (E, , G,) (E,, G,) :
: (Vr, IrGr) (Er, IrGr) : (E, & qr, /rG, I FrGr), i.e.

(8, , Ir) (Gr, Gr) : (ItGt, FrGr) is mapped to the product of the images
of (l,1 , -F'r) and (Gr, Gr) in § .

Remark. P. S. Chow has proved (see [2, Theorems IIL4.4 and IILa.5])
the following special case of Theorems 4.2 and 4.3: If M and N are L-
subalgebras [3, p. 8f 2] of the convolution algebras M(X) and M(Y) ,

  &Lt^az:Drt
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respectively, of bounded regular Borel measures on the locally compact
semigroups X and I with a separately continuous multiplication, then
A 6 N can be realized as an,L-subalgebra of M(X x Y) (so that it is
a CM-algebra), and its structure semigroup, in case X and I are com-

mutative, is topologically isomorphic to the product of those of M and' N .

Department of Mathematics
University of Helsinki
Helsinki, Finland
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