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Some remarks on pseudocompact spaces

A topological space E is pseudocompact if it satisfies one of the following
equivalent conditions:

(P1) Every continuous real function of £ is bounded,

(P2) If f:E—[01] is continuous, then f(&) is closed ([10]),

(P3) Every countable cozero-set cover of K has a finite subcover ([6]),
(P4) Every locally finite collection of cozero-sets of E is finite ([6]),
(P5) Every continuous!) pseudometric of E is precompact ([5]).

Moreover, a uniformisable topological space K is pseudocompact
if and only if

(P6)" Every compatible uniformity of E is precompact ([3]).

We generalize (P6)’ to arbitrary topological spaces and present
two conditions similar to (P5).

Proposition 1 For a topological space E, the following conditions are
equivalent:

(P) E s pseudocompact,

(P6) Hvery continuous uniformity of E s precompact,
(P7) Every continuous pseudometric of FE is compact,
(P8) Ewvery continuous pseudometric of E is complete.

Proof: To prove (P)— (P6) we assume (P). Let U be a continuous
uniformity of E. Since pseudocompactness is preserved under continuous
maps, ‘U is pseudocompact and, consequently, precompact by (P6)".
Obviously, (P6) — (P5). Hence (P6)— (P). To prove (P)—- (P7), we
again note that pseudocompactness is preserved under continuous maps
and then use the fact that a pseudocompact pseudometric space is compact
([7]). The implication (P7) — (P8) is immediate. Thus it remains to prove,
e.g., that (P8) — (P2). Suppose f:E —[0,1] is continuous. The equa-
tion d(x,y) = |f(x) — f(y)! defines a continuous pseudometric d, which,

1) A pseudometric (or uniformity) of a topological space (E, 7) is continuous
if it induces a topology that is weaker than 7.
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by (P8), is conplete. From this it easily follows that f(£) is complete
and hence closed.

A subspace A of a topological space E is C-embedded (C*-embedded)
if each continuous (and bounded) real function of A4 can be extended
to a continuous real function of K. Analogously, A4 is P-embedded (T-
embedded) if each continuous (and precompact) pseudometric of 4 can
be extended to a continuous pseudometric of E. Suppose A is a pseudo-
compact C*-embedded subspace of a topological space E. By (Pl) A
is C-embedded and hence T-embedded, by Corollary 3.5 of [1]. Finally
A is P-embedded by (P5). Thus we have obtained a short proof of Theorem
3.7 in [9]. On the other hand, a P-embedded subspace is known to be
C*-embedded ([9]). Thus, for a pseudocompact subspace, the notions of
P-embedding, T-embedding, C-embedding and C*-embedding are all
equivalent. This remark can be used to avoid the cardinality assumption
in Theorem 3.6 of [9]. The reformulation of this theorem reads: a uniformis-
able space E is pseudocompact if and only if it is P-embedded in BE.
This is proved as follows. A uniformisable pseudocompact space K is
C*-embedded and hence P-embedded in BE, by the above remark. On
the other hand, a P-embedded subspace is always C-embedded by Theorem
3.2 of [9] and hence pseudocompact (pseudocompactness is clearly in-
herited by C-embedded subspaces).

The following proposition contains some modifications of

(P9) If f:E— R is continuous, then f(E) is compact ([4])}

which is a combination of (P1) and (P2) and equivalent to them.

Proposition 2 For a topological space E, the following conditions are

equivalent:

(P) E is pseudocompact,

(P10) If E’ is a Lindelof (or paracompact) Ty-space and f:E —E' is
continuous, then f(E) 1is relatively compact,

(P11) If E’ is a hereditarily Lindeldf Ty-space and f:E —E' is con-
tinuous, then f(H) is compact,

(P12) If E' is a second countable Ty-space and f: B — B’ is continuous,
then f(E) s compact,

(P13) If E' is a uniform space and f:E —E' is continuous, then f(H)
18 precompact,

(P14) If E' is a complete uniform space and f:E —E' is continuous,
then f(E) s relatively compact.

Proof: To prove (P)— (P10), we assume (P). Suppose E’ is a Lin-
delof (or paracompact) Ty-space and f:E — E’ is continuous. Since a
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Lindeldf Ts-space is paracompact, we may assume that E’ is paracompact.
As a continuous image of a pseudocompact space, f(E) is pseudocompact.
It iseasily seen that the closure of a pseudocompact subspace of a topo-
logical space is pseudocompact. Thus f(—lﬂ—) is pseudocompact. As a closed
subset of a paracompact Tj-space, ﬁE—) is a paracompact Tsi-space.
Consequently, fTI’T) is compact (Corollary 2 of [7]). Finally, we note that
the relative compactness of f(£) is (in the Ty-space E’) equivalent to the
compactness of fm We next prove (P10) — (P11). Suppose E’' is a
hereditarily Lindelof Ty-space and f: E — E’ is continuous. Then f(E)
is a Lindelof Ts-space and hence (by (P10)) relatively compact in f(E),
ie. compact. Obviously (P11)— (P12)— (P9). To prove (P)— (P13),
assume (P). Suppose E’ is a uniform space and f: E — E’ is continuous.
Again, f(#) is pseudocompact and hence precompact, by (P6)’. Thus
we have (P13). (P13) implies (P14), since a precompact subspace of a
complete uniform space is relatively compact. The final implication

(P14) — (P) is trivial.

A family U is star-countable if each member of U intersects at most
countably many members of “!(. The notion of star-countability can be
used to generalize the condition (P3).

Proposition 3 A topological space is pseudocompact if and only if every
star-countable cozero-set cover of the space has a finite subcover.

Proof: Suppose E is a pseudocompact topological space and V is
a star-countable cozero-set cover of F. For each V €V we define
inductively

SV =V,
SH(Y) = U{U €V | UNSV) =0},
8V)y = U 8(V).

n<m

Let S — {SM(V) ! Ve C)/} .

It is easily verified that - is a discrete open cover of E. S is finite by
(P4) (note that each member of & is closed and open, hence a cozero-set).
On the other hand, the star-countability of “/ implies that each member
of & is a countable union of members of /. Hence V itself is countable
and, therefore, has a finite subcover. The converse is obvious (by (P3)).
since a countable cover is always star-countable.

A topological space E is lightly compact if every locally finite collection
of open subsets of E is finite or, equivalently, if every countable open
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cover of E has a finite subfamily the union of which is dense. The proof
of Proposition 3 applies also, mutatis mutandis, to the case of a lightly
compact space. Thus, a topological space E is lightly compact if and
only if every star-countable open cover of E has a finite subfamily the
union of which is dense.

A lightly compact space is necessarily pseudocompact (by (P4)). The
converse is known to hold for completely regular spaces but not for com-
pletely Hausdorff spaces ([10]). We give an example of a regular non-
lightly compact space which is pseudocompact. In fact, every continuous
real function of this space is constant.

Suppose X is any regular space every continuous real function of
which is constant (e.g. that of [8]). Let E = X x N (N is the set of
non-negative integers). As a product of two regular spaces, ¥ is regular.
Suppose « and b are two different fixed points of X (note that X is
necessarily infinite). For each n € N we identify the points (¢, 2n), (¢, 2n+-1)
as well as the points (b, 2n-+1), (b, 22+2) of E. Let E’ be the resulting
space with the identification topology. Suppose & is the canonical mapping
from E onto E’. Now k is a closed mapping, since k (k(4)) is closed
for each closed 4. Hence E is T,. To prove that E' is T;, we take a
point k((x,n)) €EE’ and an open neighborhood 17 of k((x.n)). We may
assume that n» is even. The case « € {«, b} is straightforward. Suppose
then » = a. Since E is regular, the point («.n) has a closed neighbor-
hood A, and the point (a,7-+1) a closed neighborhood A, so that
AU A,k (V') — {(b,n), (b,n-+1)}. Obviously, k& (Int (4,)U Int(4,))
is open. Hence k (4;U 4,) is a closed neighborhood of k ((x, n)) such
that k (4,U 4,) € V'. Consequently. K’ is regular. To prove that B
is not lightly compact, we choose an open non-void subset U of X such
that « € U and b € U. Then the infinite open family

{k(U » {n}) n € N}

of E' is locally finite and, consequently. E' is not lightly compact. We
finally note that a continuous real function of E’ is constant on
each k(X x {n}) and hence, by construction. constant on the whole
of £’

In the following proposition we present some simple properties of lightly
compact spaces.

Proposition 4 Let E be a topological space.
(W) If ACE is lightly compact, so is A,
(2) If E isTyand A C B is lightly compact and Lindeldf, then A s closed,
(3) If E is lightly compact and Ty, then it is Baire.
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Proof: (1): Suppose {V:|i¢ <o} is a countable open cover of A
Since A is lightly compact, the open cover {V;N A |i <m} of A has
a finite subfamily {V:N A4 |i <=n} the union of which is dense in A.
The union of the family {V;|¢ <n} is easily seen to be dense in A.
(2): Suppose there exists an @ € 4 — 4. For each » € 4. let U. and
V. be open subsets of E such that » € U, « € V.. and U.N V.= 0.
Since A is Lindeldf, there exists a countable 4’'C 4 such that A c U
(U, |z € A’}. By the light compactness of A, there is a finite A" c 4’
such that A c U{U, |z € A”}. The set V =0N{V, x € .A4"} is an open
neighborhood of x, which does not meet A. since VN U,=0 for
each z € A”. This contradiction shows that A is closed. (3): Suppose
Uy, Uy, ... is a sequence of dense open subsets of E. To prove that
M., U. is dense we consider an arbitrary non-void open subset U of E.
Since UN U, # O and E is T;, there exists an open non-void 4, such
that ;4_0C UN U, We assume, for an inductive construction, that
Aqg, .. ., A, are open non-void subsets of E suchthat 4, ,c 4N UNU,
N...NU; for each i <mn. Since 4, NUNTU,N...NTU, =0, there
exists an open non-void 4,., suchthat 4, ,c 4. NUNUN...NT.
The light compactness of E implies now ¢ = N..4d:cunn.,U.
Consequently, (), U is dense. Thus we have proved the Baire property
for E.

Arens and Dugundji ([2]) have proved that for a T,-space each of
the following conditions is equivalent to countable compactness:

(A) Every infinite open cover of the space has a proper subcover.

(F) Every infinite subset of the space has an accumulation point.

The T,-assumption is essential as is seen from the following examples.
At first, let E = N with the topology {{0,1.....n} =n € Nj. Obviously,
E is T,. E is also T,, since no two non-void closed subsets are disjoint.
It is easily verified that E satisfies (A) but is not countably compact.
It may also be noted that E is lightly compact. since every non-void open
subset of E is dense. Thus a lightly compact T,-space need not be countably
compact. The topological sum of an infinite collection of copies of E is
a Ty -space satisfying (F) but not (A). On the other. it is known that counta-
ble compactness implies (A) and (A) implies (F).

The following lemma will be needed later.

Lemma 5 A Ty-space satisfying (A) is countably compact.

Proof: Suppose K is a Ty-space satisfying (A). Let E, be the Ty-space
associated with E. It is easily seen that H is still a Ts-space satisfying
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(A). But being T,, £, is T, and, therefore, countably compact. It follows
that also K is countably compact.

The condition (F) can be strengthened to a form equivalent to (A).
To see this we introduce a new concept. A point p of a topological space
E is an n-accumulation point of A C E if card (U N A) >n for each
neighborhood U of p.

Proposition 6 Let E be a topological space. Each of the following con-
ditions 1s equivalent to (A):

(A1), Ewery infinite subset of E has an n-accumulation point (n > 2 1is
a fixed integer),

(A2) Every infinite subset of E has an nm-accumulation point for each
integer n > 2,

(A8) Every discrete family of subsets of E is finite,

(Ad) Every discrete family of closed subsets of E 1is finite.

Proof: We at first prove (A) — (A4) and, therefore, assume (A). Suppose
A ={d4; |1 <%} is an infinite discrete collection of closed non-void
subsets of E (indexed without repetitions). We define for each i <7

Vi=E—U 4.
J#
Since <A islocally finite, the set U,.; 4; is closed and hence V; is open.
It is easily verified that {V; |7 <7} is an open cover of K having no
proper subcover, a contradiction. The implication (A4) — (A3) follows
from the fact that the closures of the members of a discrete family form a
discrete family. To prove (A3) — (Al), we assume (A3) and use induction
to prove (Al),. If 4 were an infinite subset of E having no 2-accumulation
points, then the family {{a} |a € A} would be discrete, contradicting
(A3). Hence we have (Al),. As an induction hypothesis we assume (Al),_;
(k> 2). For the reductio ad absurdum, we take an infinite set 4 C B
which has no k-accumulation points. Using the induction hypothesis we
can select a (k-1)-accumulation point b, of 4 and an open neighborhood
Vo, of b, such that card (V,N 4) = k-—1. Now, the induction hypothesis
can be applied to 4 — V,. Suppose b, isa (k—1)-accumulation point of
A —V, and V; is an open neighborhood of b, such that card (V;N
(A — V,)) = k-1. Inductively, we can construct an infinite sequence
by, by, ... of (k-1)-accumulation points of A such that for each ¢ < o,
b;€V: and
card (V:N (4 —U V) = k-1
j<i

Suppose b is a 2-accumulation point of the infinite set {b; |4 < w}. The



Jouko VAANANEN, Some remarks on pseudocompact spaces 9

point b is not a k-accumulation point of 4 and, therefore, has an open
neighborhood V such that

card (Y Nn4) < k—1.

Using the definition of b we can select b; € V' and b; € V such that
e.g. j<i. But the definition of b; and b; implies card (V.N ¥V N
(4 —V;) =k—1 and card (V;N VN A4) >k—1, whence card (VN 4) >
card (V;n¥VNn (4—V)) + card (V;NVNA) > k—1+k—1 >k,
a contradiction. We next prove (Al),— (A). Suppose {V:li¢ <#} is an
infinite open cover without a proper subcover. The sets
Ai = E - U Vj
j#i

are non-void and pairwise disjoint. Consequently, if we pick out one point
a; from each A4; the resulting set 4 = {a: |¢ <<y} is infinite and,
therefore, has a 2-accumulation point «. Since {V; |7 <7} is a cover,
there is an ¢ such that a € V;. But card (V:N A4) = 1, a contradiction.
The final equivalence (A)<«> (A2) is now obvious.

Arens and Dugundji ([2]) have also shown that each point-finite open
cover of a space satisfying (A) has a finite subcover. Hence (A) implies
the following condition:

(L) Every locally finite open cover of the space has a finite subcover.

The condition (L) is, by definition, weaker than light compactness
and is equivalent to it in T;- (or T;-) spaces. An example of a non-lightly
compact Ty-space satisfying (L) will be given on page 10. Since (L) implies
(P4), we conclude that (A) implies pseudocompactness. We are going to
prove the converse for T,-spaces. For this purpose we need the following
simple lemma, which also demonstrates the superfluousness of a notion
of a countably collectionwise T,-space.

Lemma 7 A4 topological space E is T, if and only if it satisfies the
condition:

For every countable discrete family {A:|7 <o} of closed subsets of

E there is a family {U;|i < w} of pairwise disjoint open subsets such

that A:c U; for each @ < w.

Proof: It suffices to prove the necessity. Suppose {4: |7 <o} is a
countable discrete family of closed subsets of K. Thesets U;<; 4; and
Uj>: 4; are closed and disjoint. Hence they can be separated by disjoint
opensets ViD U;<; 4, and W:D U;-; 4. Let Uy=V, and U,,, =
Vit 0 Nj<n Wi Then {U:|¢ < w} is the required family.
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Proposition 8 A pseudocompact Ty-space satisfies (A).

Proof: We show that the condition (A4) is fulfilled. Let {4: | <o}
be a countably infinite discrete family of non-void closed subsets of a
pseudocompact Ty-space E. Lemma 7 can be used to establish a collection
{U: 1i < o} of pairwise disjoint open subsets of K such that 4;C U:
for each ¢ << . The family

U ={U;li<o}U{E — U4}
i<o

is clearly a point-finite open cover of E. It is well known that a point-
finite open cover of a T,-space is shrinkable, i.e., we are able to select
an open cover {V: i <w} of E with the property that V.c U; for
each i<, and V, CHE— U,.,, 4i. Again by the T,-property, the sets
Vi(i <w) can be extended to cozero-sets N; (i <o) in such a way that
the family N = {N: i <o} is still a refinement of U. But, being
a countable cozero-set cover of the pseudocompact space K, 7/l has a
finite subcover, which is. obviously, impossible.

From the above proposition it can be concluded that for T,-spaces
the conditions (A) and (L) are both equivalent to pseudocompactness.
Yet a pseudocompact T,-space need not be lightly compact (and hence
not countably compact), which is seen as follows. Let B = N x {0, 1}.
The points (n, 1) are defined to be isolated, and a neighborhood of a
point (n, 0) is defined to be any subset of E containing (U, -, {¢}) X {0, 1}.
We at first note that E is T,, since no two non-void closed subsets are
disjoint. Clearly E is T,. E is not lightly compact, since the infinite
open family {{(n, 1)} | n € N} is, obviously, locally finite. To see that
E satisfies (A), we take an arbitrary infinite open cover <V of E. Let
VeV, If {V} isa cover, there is nothing to prove. Suppose then V = K.
Since V is open, there isan n € N such that (n, 0) € V. For each m >n
we choose a V., €' such that (m,0) € I",. The family {V. |m > n}
is a proper subcover of V.

We now have the following relations: A countably compact space
satisfies (A) and the converse holds for Tj- (Lemma 5) but not for T,-
spaces. (A) implies pseudocompactness and the converse holds for T,-
but not (by Lemma 5) for Ty-spaces. Especially, a pseudocompact T,-
and T,-space is countably compact, but neither T,- nor Tj-assumption
can be omitted. Furthermore, we have shown that the class of pseudo-
compact T,-spaces properly includes the class of lightly compact Ty-spaces,
which in turn properly includes the class of countably compact T,-spaces.

University of Helsinki
Helsinki, Finland
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