ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

559

SOME REMARKS ON PSEUDOCOMPACT SPACES

BY

JOUKO VÄÄNÄNEN

HELSINKI 1973 SUOMALAINEN TIEDEAKATEMIA

.

https://doi.org/10.5186/aasfm.1973.559

Copyright © 1973 by Academia Scientiarum Fennica ISSN 0066-1953 ISBN 951-41-0138-3

.

Communicated 8 October 1973 by Kalevi Suominen

KESKUSKIRJAPAINO HELSINKI 1973

.

Some remarks on pseudocompact spaces

A topological space E is *pseudocompact* if it satisfies one of the following equivalent conditions:

(P1) Every continuous real function of E is bounded,

(P2) If $f: E \to [0,1]$ is continuous, then f(E) is closed ([10]),

(P3) Every countable cozero-set cover of E has a finite subcover ([6]),

(P4) Every locally finite collection of cozero-sets of E is finite ([6]),

(P5) Every continuous¹) pseudometric of E is precompact ([5]).

Moreover, a uniformisable topological space E is pseudocompact if and only if

(P6)' Every compatible uniformity of E is precompact ([3]).

We generalize (P6)' to arbitrary topological spaces and present two conditions similar to (P5).

Proposition 1 For a topological space E, the following conditions are equivalent:

(P) E is pseudocompact,

(P6) Every continuous uniformity of E is precompact,

(P7) Every continuous pseudometric of E is compact,

(P8) Every continuous pseudometric of E is complete.

Proof: To prove $(\mathbf{P}) \to (\mathbf{P6})$ we assume (\mathbf{P}) . Let \mathcal{U} be a continuous uniformity of E. Since pseudocompactness is preserved under continuous maps, \mathcal{U} is pseudocompact and, consequently, precompact by $(\mathbf{P6})'$. Obviously, $(\mathbf{P6}) \to (\mathbf{P5})$. Hence $(\mathbf{P6}) \to (\mathbf{P})$. To prove $(\mathbf{P}) \to (\mathbf{P7})$, we again note that pseudocompactness is preserved under continuous maps and then use the fact that a pseudocompact pseudometric space is compact ([7]). The implication $(\mathbf{P7}) \to (\mathbf{P8})$ is immediate. Thus it remains to prove, e.g., that $(\mathbf{P8}) \to (\mathbf{P2})$. Suppose $f: E \to [0, 1]$ is continuous. The equation d(x,y) = |f(x) - f(y)| defines a continuous pseudometric d, which,

¹) A pseudometric (or uniformity) of a topological space (E, τ) is continuous if it induces a topology that is weaker than τ .

by (P8), is complete. From this it easily follows that f(E) is complete and hence closed.

A subspace A of a topological space E is C-embedded (C*-embedded) if each continuous (and bounded) real function of A can be extended to a continuous real function of E. Analogously, A is P-embedded (Tembedded) if each continuous (and precompact) pseudometric of A can be extended to a continuous pseudometric of E. Suppose A is a pseudocompact C*-embedded subspace of a topological space E. By (P1) Ais C-embedded and hence T-embedded, by Corollary 3.5 of [1]. Finally A is P-embedded by (P5). Thus we have obtained a short proof of Theorem 3.7 in [9]. On the other hand, a P-embedded subspace is known to be C*-embedded ([9]). Thus, for a pseudocompact subspace, the notions of P-embedding, T-embedding, C-embedding and C*-embedding are all equivalent. This remark can be used to avoid the cardinality assumption in Theorem 3.6 of [9]. The reformulation of this theorem reads: a uniformisable space E is pseudocompact if and only if it is P-embedded in βE . This is proved as follows. A uniform sable pseudocompact space E is C*-embedded and hence P-embedded in βE , by the above remark. On the other hand, a P-embedded subspace is always C-embedded by Theorem 3.2 of [9] and hence pseudocompact (pseudocompactness is clearly inherited by C-embedded subspaces).

The following proposition contains some modifications of

(P9) If $f: E \to \mathbf{R}$ is continuous, then f(E) is compact ([4]),

which is a combination of (P1) and (P2) and equivalent to them.

Proposition 2 For a topological space E, the following conditions are equivalent:

- (P) E is pseudocompact,
- (P10) If E' is a Lindelöf (or paracompact) T_3 -space and $f: E \to E'$ is continuous, then f(E) is relatively compact,
- (P11) If E' is a hereditarily Lindelöf T_3 -space and $f: E \to E'$ is continuous, then f(E) is compact,
- (P12) If E' is a second countable T_3 -space and $f: E \to E'$ is continuous, then f(E) is compact,
- (P13) If E' is a uniform space and $f: E \to E'$ is continuous, then f(E) is precompact,
- (P14) If E' is a complete uniform space and $f: E \to E'$ is continuous, then f(E) is relatively compact.

Proof: To prove (P) \rightarrow (P10), we assume (P). Suppose E' is a Lindelöf (or paracompact) T_3 -space and $f: E \rightarrow E'$ is continuous. Since a

Lindelöf T_a -space is paracompact, we may assume that E' is paracompact. As a continuous image of a pseudocompact space, f(E) is pseudocompact. It is easily seen that the closure of a pseudocompact subspace of a topological space is pseudocompact. Thus $\overline{f(E)}$ is pseudocompact. As a closed subset of a paracompact T_3 -space, $\overline{f(E)}$ is a paracompact $T_{3\frac{1}{2}}$ -space. Consequently, $\overline{f(E)}$ is compact (Corollary 2 of [7]). Finally, we note that the relative compactness of f(E) is (in the T₃-space E') equivalent to the compactness of $\overline{f(E)}$. We next prove (P10) \rightarrow (P11). Suppose E' is a hereditarily Lindelöf T_3 -space and $f: E \to E'$ is continuous. Then f(E)is a Lindelöf T_3 -space and hence (by (P10)) relatively compact in f(E), i.e. compact. Obviously $(P11) \rightarrow (P12) \rightarrow (P9)$. To prove $(P) \rightarrow (P13)$, assume (P). Suppose E' is a uniform space and $f: E \to E'$ is continuous. Again, f(E) is pseudocompact and hence precompact, by (P6)'. Thus we have (P13). (P13) implies (P14), since a precompact subspace of a complete uniform space is relatively compact. The final implication $(P14) \rightarrow (P)$ is trivial.

A family \mathcal{U} is *star-countable* if each member of \mathcal{U} intersects at most countably many members of \mathcal{U} . The notion of star-countability can be used to generalize the condition (P3).

Proposition 3 A topological space is pseudocompact if and only if every star-countable cozero-set cover of the space has a finite subcover.

Proof: Suppose E is a pseudocompact topological space and \mathcal{V} is a star-countable cozero-set cover of E. For each $V \in \mathcal{V}$ we define inductively

$$\begin{array}{ll} S^{0}(V) &= V \ , \\ S^{n+1}(V) &= \mathsf{U} \left\{ U \in {}^{\varsigma_{1'}} \mid U \cap S^{n}(V) \neq \emptyset \right\}, \\ S^{\omega}(V) &= \bigcup_{n < \infty} S^{n}(V) \ . \\ \mathcal{S} &= \left\{ S^{\omega}(V) \mid V \in {}^{\varsigma_{1'}} \right\}. \end{array}$$

Let

It is easily verified that S is a discrete open cover of E. S is finite by (P4) (note that each member of S is closed and open, hence a cozero-set). On the other hand, the star-countability of \mathcal{V} implies that each member of S is a countable union of members of \mathcal{V} . Hence \mathcal{V} itself is countable and, therefore, has a finite subcover. The converse is obvious (by (P3)), since a countable cover is always star-countable.

A topological space E is *lightly compact* if every locally finite collection of open subsets of E is finite or, equivalently, if every countable open cover of E has a finite subfamily the union of which is dense. The proof of Proposition 3 applies also, mutatis mutandis, to the case of a lightly compact space. Thus, a topological space E is lightly compact if and only if every star-countable open cover of E has a finite subfamily the union of which is dense.

A lightly compact space is necessarily pseudocompact (by (P4)). The converse is known to hold for completely regular spaces but not for completely Hausdorff spaces ([10]). We give an example of a regular nonlightly compact space which is pseudocompact. In fact, every continuous real function of this space is constant.

Suppose X is any regular space every continuous real function of which is constant (e.g. that of [8]). Let $E = X \times \mathbf{N}$ (\mathbf{N} is the set of non-negative integers). As a product of two regular spaces, E is regular. Suppose a and b are two different fixed points of X (note that X is necessarily infinite). For each $n \in \mathbf{N}$ we identify the points (a, 2n), (a, 2n+1)as well as the points (b, 2n+1), (b, 2n+2) of E. Let E' be the resulting space with the identification topology. Suppose k is the canonical mapping from E onto E'. Now k is a closed mapping, since $k^{\leftarrow}(k(A))$ is closed for each closed A. Hence E is T_1 . To prove that E' is T_3 , we take a point $k((x, n)) \in E'$ and an open neighborhood V' of k((x, n)). We may assume that n is even. The case $x \notin \{a, b\}$ is straightforward. Suppose then x = a. Since E is regular, the point (a,n) has a closed neighborhood A_1 and the point (a, n+1) a closed neighborhood A_2 so that $A_1 \cup A_2 \subset k^{\leftarrow}(V') - \{(b, n), (b, n+1)\}.$ Obviously, $k (\text{Int}(A_1) \cup \text{Int}(A_2))$ is open. Hence $k(A_1 \cup A_2)$ is a closed neighborhood of k((x, n)) such that $k(A_1 \cup A_2) \subset V'$. Consequently, E' is regular. To prove that E'is not lightly compact, we choose an open non-void subset U of X such that $a \notin U$ and $b \notin U$. Then the infinite open family

 $\{k (U \times \{n\}) | n \in \mathbf{N}\}$

of E' is locally finite and, consequently, E' is not lightly compact. We finally note that a continuous real function of E' is constant on each k ($X \times \{n\}$) and hence, by construction, constant on the whole of E'.

In the following proposition we present some simple properties of lightly compact spaces.

Proposition 4 Let E be a topological space. (1) If $A \subset E$ is lightly compact, so is \overline{A} , (2) If E is T_2 and $A \subset E$ is lightly compact and Lindelöf, then A is closed, (3) If E is lightly compact and T_3 , then it is Baire.

Proof: (1): Suppose $\{V_i \mid i < \omega\}$ is a countable open cover of \overline{A} . Since A is lightly compact, the open cover $\{V_i \cap A \mid i < \omega\}$ of A has a finite subfamily $\{V_i \cap A \mid i \leq n\}$ the union of which is dense in A. The union of the family $\{V_i \mid i \leq n\}$ is easily seen to be dense in \overline{A} . (2): Suppose there exists an $a \in \overline{A} - A$. For each $x \in A$, let U_x and V_x be open subsets of E such that $x \in U_x$, $a \in V_x$, and $U_x \cap V_x = \emptyset$. Since A is Lindelöf, there exists a countable $A' \subset A$ such that $A \subset U$ $\{U_x \mid x \in A'\}$. By the light compactness of A, there is a finite $A'' \subset A'$ such that $A \subset \bigcup \{\overline{U_x} \mid x \in A''\}$. The set $V = \bigcap \{V_x \mid x \in A''\}$ is an open neighborhood of x, which does not meet A, since $V \cap U_x = \emptyset$ for each $x \in A''$. This contradiction shows that A is closed. (3): Suppose U_0, U_1, \ldots is a sequence of dense open subsets of E. To prove that $\bigcap_{i < \omega} U_x$ is dense we consider an arbitrary non-void open subset U of E. Since $U \cap U_0 \neq \emptyset$ and E is T_3 , there exists an open non-void A_0 such that $\overline{A_0} \subset U \cap U_0$. We assume, for an inductive construction, that A_0, \ldots, A_n are open non-void subsets of E such that $\overline{A_{i+1}} \subset A_i \cap U \cap U_0$ $\bigcap \ldots \bigcap U_i$ for each i < n. Since $A_n \cap U \cap U_0 \cap \ldots \cap U_n \neq \emptyset$, there exists an open non-void A_{n+1} such that $\overline{A_{n+1}} \subset A_n \cap U \cap U_0 \cap \ldots \cap U_n$. The light compactness of E implies now $\emptyset \neq \bigcap_{i < \omega} \overline{A_i} \subset U \cap \bigcap_{i < \omega} U_i$. Consequently, $\bigcap_{i<\omega} U_i$ is dense. Thus we have proved the Baire property for E.

Arens and Dugundji ([2]) have proved that for a T_1 -space each of the following conditions is equivalent to countable compactness:

- (A) Every infinite open cover of the space has a proper subcover,
- (F) Every infinite subset of the space has an accumulation point.

The T_1 -assumption is essential as is seen from the following examples. At first, let $E = \mathbf{N}$ with the topology $\{\{0, 1, \ldots, n\} \mid n \in \mathbf{N}\}$. Obviously, E is T_0 . E is also T_4 , since no two non-void closed subsets are disjoint. It is easily verified that E satisfies (A) but is not countably compact. It may also be noted that E is lightly compact, since every non-void open subset of E is dense. Thus a lightly compact T_4 -space need not be countably compact. The topological sum of an infinite collection of copies of E is a T_0 -space satisfying (F) but not (A). On the other, it is known that countable compactness implies (A) and (A) implies (F).

The following lemma will be needed later.

Lemma 5 A T_3 -space satisfying (A) is countably compact.

Proof: Suppose E is a T₃-space satisfying (A). Let E_0 be the T₀-space associated with E. It is easily seen that E_0 is still a T₃-space satisfying

(A). But being T_0 , E_0 is T_1 and, therefore, countably compact. It follows that also E is countably compact.

The condition (F) can be strengthened to a form equivalent to (A). To see this we introduce a new concept. A point p of a topological space E is an *n*-accumulation point of $A \subset E$ if card $(U \cap A) \ge n$ for each neighborhood U of p.

Proposition 6 Let E be a topological space. Each of the following conditions is equivalent to (A):

- (A1)_n Every infinite subset of E has an n-accumulation point ($n \ge 2$ is a fixed integer),
- (A2) Every infinite subset of E has an n-accumulation point for each integer $n \ge 2$,
- (A3) Every discrete family of subsets of E is finite,
- (A4) Every discrete family of closed subsets of E is finite.

Proof: We at first prove (A) \rightarrow (A4) and, therefore, assume (A). Suppose $\mathscr{A} = \{A_i \mid i < \eta\}$ is an infinite discrete collection of closed non-void subsets of E (indexed without repetitions). We define for each $i < \eta$

$$V_i = E - \bigcup_{j \neq i_j} A_j.$$

Since \mathscr{A} is locally finite, the set $\bigcup_{i\neq i} A_i$ is closed and hence V_i is open. It is easily verified that $\{V_i \mid i < \eta\}$ is an open cover of E having no proper subcover, a contradiction. The implication $(A4) \rightarrow (A3)$ follows from the fact that the closures of the members of a discrete family form a discrete family. To prove $(A3) \rightarrow (A1)_n$ we assume (A3) and use induction to prove $(A1)_n$. If A were an infinite subset of E having no 2-accumulation points, then the family $\{\{a\} \mid a \in A\}$ would be discrete, contradicting (A3). Hence we have $(A1)_2$. As an induction hypothesis we assume $(A1)_{k-1}$ (k > 2). For the reduction ad absurdum, we take an infinite set $A \subset E$ which has no k-accumulation points. Using the induction hypothesis we can select a (k-1)-accumulation point b_0 of A and an open neighborhood V_0 of b_0 such that card $(V_0 \cap A) = k-1$. Now, the induction hypothesis can be applied to $A - V_0$. Suppose b_1 is a (k-1)-accumulation point of $A = V_0$ and V_1 is an open neighborhood of b_1 such that card $(V_1 \cap$ $(A - V_0) = k$ -1. Inductively, we can construct an infinite sequence b_0, b_1, \ldots of (k-1)-accumulation points of A such that for each $i < \omega$, $b_i \in V_i$ and

card
$$(V_i \cap (A - \bigcup_{j < i} V_j)) = k$$
-1.

Suppose b is a 2-accumulation point of the infinite set $\{b_i \mid i < \omega\}$. The

8

point b is not a k-accumulation point of A and, therefore, has an open neighborhood V such that

card
$$(V \cap A) \leq k-1$$
.

Using the definition of b we can select $b_i \in V$ and $b_j \in V$ such that e.g. j < i. But the definition of b_i and b_j implies card $(V_i \cap V \cap (A - V_j)) \ge k-1$ and card $(V_j \cap V \cap A) \ge k-1$, whence card $(V \cap A) \ge$ card $(V_i \cap V \cap (A - V_j))$ + card $(V_j \cap V \cap A) \ge k-1+k-1 > k$, a contradiction. We next prove $(A1)_2 \rightarrow (A)$. Suppose $\{V_i \mid i < \eta\}$ is an infinite open cover without a proper subcover. The sets

$$A_i = E - \bigcup_{j \neq i} V_j$$

4

are non-void and pairwise disjoint. Consequently, if we pick out one point a_i from each A_i , the resulting set $A = \{a_i \mid i < \eta\}$ is infinite and, therefore, has a 2-accumulation point a. Since $\{V_i \mid i < \eta\}$ is a cover, there is an i such that $a \in V_i$. But card $(V_i \cap A) = 1$, a contradiction. The final equivalence $(A) \leftrightarrow (A2)$ is now obvious.

Arens and Dugundji ([2]) have also shown that each point-finite open cover of a space satisfying (A) has a finite subcover. Hence (A) implies the following condition:

(L) Every locally finite open cover of the space has a finite subcover.

The condition (L) is, by definition, weaker than light compactness and is equivalent to it in T_{1} - (or T_{3} -) spaces. An example of a non-lightly compact T_{0} -space satisfying (L) will be given on page 10. Since (L) implies (P4), we conclude that (A) implies pseudocompactness. We are going to prove the converse for T_{4} -spaces. For this purpose we need the following simple lemma, which also demonstrates the superfluousness of a notion of a countably collectionwise T_{4} -space.

Lemma 7 A topological space E is T_4 if and only if it satisfies the condition:

For every countable discrete family $\{A_i \mid i < \omega\}$ of closed subsets of E there is a family $\{U_i \mid i < \omega\}$ of pairwise disjoint open subsets such that $A_i \subset U_i$ for each $i < \omega$.

Proof: It suffices to prove the necessity. Suppose $\{A_i \mid i < \omega\}$ is a countable discrete family of closed subsets of E. The sets $\bigcup_{j \le i} A_j$ and $\bigcup_{j>i} A_j$ are closed and disjoint. Hence they can be separated by disjoint open sets $V_i \supset \bigcup_{j \le i} A_j$ and $W_i \supset \bigcup_{j>i} A_j$. Let $U_0 = V_0$ and $U_{n+1} = V_{n+1} \cap \bigcap_{j \le n} W_j$. Then $\{U_i \mid i < \omega\}$ is the required family.

Proposition 8 A pseudocompact T_4 -space satisfies (A).

Proof: We show that the condition (A4) is fulfilled. Let $\{A_i \mid i < \omega\}$ be a countably infinite discrete family of non-void closed subsets of a pseudocompact T_4 -space E. Lemma 7 can be used to establish a collection $\{U_i \mid i < \omega\}$ of pairwise disjoint open subsets of E such that $A_i \subset U_i$ for each $i < \omega$. The family

$${}^{c}\mathcal{U} = \{U_i \mid i < \omega\} \cup \{E - \bigcup_{i < \omega} A_i\}$$

is clearly a point-finite open cover of E. It is well known that a point-finite open cover of a T_4 -space is shrinkable, i.e., we are able to select an open cover $\{V_i \mid i \leq \omega\}$ of E with the property that $\overline{V_i} \subset U_i$ for each $i < \omega$, and $\overline{V_{\omega}} \subset E - \bigcup_{i < \omega} A_i$. Again by the T_4 -property, the sets $V_i(i \leq \omega)$ can be extended to cozero-sets N_i $(i \leq \omega)$ in such a way that the family $\mathcal{N} = \{N_i \mid i \leq \omega\}$ is still a refinement of \mathcal{U} . But, being a countable cozero-set cover of the pseudocompact space E, \mathcal{N} has a finite subcover, which is, obviously, impossible.

From the above proposition it can be concluded that for T_4 -spaces the conditions (A) and (L) are both equivalent to pseudocompactness. Yet a pseudocompact T_4 -space need not be lightly compact (and hence not countably compact), which is seen as follows. Let $E = \mathbb{N} \times \{0, 1\}$. The points (n, 1) are defined to be isolated, and a neighborhood of a point (n, 0) is defined to be any subset of E containing $(\bigcup_{i \leq n} \{i\}) \times \{0, 1\}$. We at first note that E is T_4 , since no two non-void closed subsets are disjoint. Clearly E is T_0 . E is not lightly compact, since the infinite open family $\{\{(n, 1)\} \mid n \in \mathbb{N}\}$ is, obviously, locally finite. To see that E satisfies (A), we take an arbitrary infinite open cover \mathcal{V} of E. Let $V \in \mathcal{V}$. If $\{V\}$ is a cover, there is nothing to prove. Suppose then $V \neq E$. Since V is open, there is an $n \in \mathbb{N}$ such that $(n, 0) \notin V$. For each $m \geq n$ we choose a $V_m \in \mathbb{N}'$ such that $(m, 0) \in V_m$. The family $\{V_m \mid m \geq n\}$ is a proper subcover of \mathcal{N}' .

We now have the following relations: A countably compact space satisfies (A) and the converse holds for T_{3} - (Lemma 5) but not for T_{4} spaces. (A) implies pseudocompactness and the converse holds for T_{4} but not (by Lemma 5) for T_{3} -spaces. Especially, a pseudocompact T_{4} and T_{3} -space is countably compact, but neither T_{4} - nor T_{3} -assumption can be omitted. Furthermore, we have shown that the class of pseudocompact T_{4} -spaces properly includes the class of lightly compact T_{4} -spaces, which in turn properly includes the class of countably compact T_{4} -spaces.

University of Helsinki Helsinki, Finland

References

- ALO, R. A. and SHAPIRO, H. L.: Extensions of totally bounded pseudometrics.
 Proc. Amer. Math. Soc. 19 (1968), 877-884.
- [2] ARENS, R. F. and DUGUNDJI, J.: Remark on the concept of compactness. -Portugaliae Math. 9 (1950), 141-143.
- [3] Doss, R.: On continuous functions in uniform spaces. Ann. Math. 48 (1947), 843-844.
- [4] GILLMAN, L. and JERISON, M.: Rings of continuous functions. Van Nostrand, Princeton-Toronto-London-New York (1960).
- [5] FROLIK, Z.: Generalizations of compact and Lindelöf spaces. Czech. Math. J. 9 (1959), 172-217 (Russian, English summary).
- [6] KERSTAN, J.: Zur Characterisierung der pseudokompakten Räume. Math. Nachr. 16 (1957), 289-293.
- [7] MARDEŠIĆ, S. and PAPIC, P.: Sur les espaces dont toute transformation réelle est bornée. - Glasnik Mat. Fiz. Astr. 10 (1955), 225-232.
- [8] NOVAK, J.: Regular space, on which every continuous function is constant. -Časopis Pěst Mat. Fys. 73 (1948), 58-68.
- [9] SHAPIRO, H. L.: Extensions of pseudometrics. Canad. J. Math. 18 (1966), 981-998.
- [10] STEPHENSON, R. M., JR.: Pseudocompact spaces. Trans. Amer. Math. Soc. 134 (1968), 437-448.

Printed October 1973