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Introiluction

The spectral properties of wide-sense stationary stochastic processes

r(t) , t € .E , have been extensively studied. It is s'ell-known that ever5,

wide-sense stationary stochastic process is the tr'ourier transform of
a bounded stochastic measure on -B with uncorrelated values for disjoint
Borel sets of ,E (see e.g. Karhunen [11] or Loöve p3: p. a82l).

Several generalizations of the class of v'ide-sense stationary stochastic
processes have been presented in literature. Loöve [I3: p. 474)has intro-
duced the class of harmonizable stochastic processes. Loöve showed that
the boundedness and the continuity of a stochastic process are necessary
conditions for its harmonizability. He brought up the question of the
sufficiency of these conditions and the supplementary conditions possibly
required" for the harmonizability of a stochastic process 113: p. 4771.

Harmonizable stochastic processes were also studied by Cram6r [6]. Bochner

[a: p. f8] introduced another generalization, the class of Z -bounded.

stochastic processes. Bochner proved that every harmonizable stochastic
process is Z -bounded. One can ask whether every continuous (and
bounded) Z -bounded stochastic process is harmonizable. lloreover,
Rozanov [18] stucliecl stochastic processes which are Fourier transforms
of hounded stochastic lneasures, and called them harmonizable. In the
above papers all stochastic ancl scalar-valued measures are treatecl as

completell' adciitive set functiotrs.
In his recent extensire paper Thornas [20] consiclerecl vector rneasures

as Radon measltres 's'ith ralues in a topological vectol sllace. The same

starting point, is also usecl in his later paper [2I] on some relatecl topics.
His former study ga,ve us many of the l:asic itleas for this paper; results
proved. there lvill frequentll' be usecl b1- us.

In this paper we shall consicler stochastic nleasures as Raclon measures

with values in a linear space of stochastic variables. Iu chapter 2 we
develop the integration theory of such stochastic llleasrtl'es. We shall
also consider the so called covariance bimeasures of stochastic measures

and their integration. In studying these covariance bimeasures we shall
use the connectiotr between stochastic mappings ancl r'eproclucing kernel
Hilbert spaces. A short review of this connection is given in chapter l.

In chapter 3 we give a modified definition of a 7 -bounded stochastic
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process and of a harmonizable stochastic process, based on the use of Raclon
measures. Then we show that a stochastic process t(t) , t e R , is the
X'ourier transform of a bounded stochastic measure if and only if it is
7 -bounded and weakly continuous. von Bahr [3] has recently constructed
an example of a non-harmonizable bounded and continuous stochastic
process. We shall use this example to show that there exist, continuous
and bounded stochastic processes which are not 7 -bounded.

X'urthermore, we shall give a characterization of harmonizable stochastic
processes. Modifying an example, due to Edu'ards l9], we show that there
exist continuous (and bounded) Z -bounded stochastic processes rvhich
are not harmonizable. At the end of the paper we shall give a method
of approximating a continuous Z -bounded stochastic process b-v a secprence

of harmonizable stochastic processes.

Our results concerning the constructed examples are also valid if halmo-
nizable and Z -bounded stochastic processes are defined as iu Loåre

[I3: p. 474f and in Bochner [a: p. l8].
Note added" in proof: We learned" quite recently that Glad5-sher [1u]

has already in 196I constructed examples of bounded and continuons
non-ha,rmonizable stochastic processes. These examples are verl similar
to those constructed by von Bahr and the author.

l. Stochastie mappings and reproducing kernel Hilbert spaces

1,1. §tochastic mappings

7. In the follorring s-e shall consicler complex-valued lanclom 'r-arialrles

which are defined on a fixecl probability space ancl s'hich hare fiuite seconcl

order moments and zero lneall value. Let us filst introcluce the space of
all such random variables ancl its Hillrert space stmctrlre.

Let (Q ,V , P) be a fixecl probabilitl space. i.e.. O is a .s1. 7 is

a o -algebra of subsets of !2 aucl P is tr completell trdditive troturegtrtive
set, function on 7 such that P(g) : 1 . The comples vector space

of all complex-valued ranclom variables ; clefinecl ot1 (,{) . I . P) is

denoted by '41O ,21 .

LeL € etZ(Q,7) be a ranclom valial:le. It-, meqil t«lue is clefined
by the relation

EE: f ^"tor_ [r,,-:tp.JJ
if the right hand side is well-defined.

The set
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=Zr(o,7,p) : { 6 e*p,V) I E 16l, < * }

is a linear subspace of 4,(9, 7) . The relation

(1.1.I) €t - €z if P{o e A I Er(*): €r(^) } : I,

*,Ez e=Z'(!),7,P), is an equivalence relation inthe space '-tz(Q,7 , P).
The quotient, space of :!'(Q ,? , P) u'ith respect to the equivalence

relation defined. in (1.1.I) is denoted b.v L2(Q ,7 ,P). In the following
we use the same notation for an equivalence class f e Lz(Q, 7 , P) and
for its arhitrary representative E e 12@ , J , P) , if no confusion is

possible.
The space

€r,€, eL26),

(1.1.2)

\Yhere E, is the
is

I:§l : (6 l6)".
On the right hand side of (1.1.2), f1 and E2 arc arbitrary representatives
of §, and fr. The definition (1.1.2) is independent of the choice of the
representatives.

As usual, we consider only random variables € e :l@ ,11 fot which
fr E :0 . We denote

L2(9 , i , P) is a Hilbert space if ihe inner prod.uct of
7 , P) is clefinecl bv the relation

complex cotljugate of 6z , alrcl the tlorm of € e Lz(Q ,7 , P)

Unless

L\e) - L\@,7, P) : { å e L',(Q,7, P) I E € -
The space L'r(P) i* a closecl linear suhspace of L'(Q , 7 ,

otherwise statecl, the topologlr of Lle) is the norm topolog)r.

o)

P)

2. In this paper' \1-e consicler stochastic processes as mappings from
a parameter set ? into the space Lie) . In the follorving rve use the
term stochastic process onlr s-hen the palatleter set is -R , i.e. the set of
all real numbers, ancl the telm sfocånsttc nttrppirig in the case of a more

general space. In our applications the parameter set is either -B or a func-

tion space.
Next we give some general clefinitions. Before stating the clefinition

we remark that in this paper the set of all positive integers is clenoted by
.M and the set of all complex numbers is clenotecl bl' C .

Definition 1.1.1. A stochastic mappittg of a set f is ct moytpi,ng

r: T --> LI(P) and, i,ts couari,ance mcrytpi,ng i,s the mcLpping r : T xT ---> C ,

r(s,t) .=- (r(s) lru(t)), s,te T
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Let I he a topological vector space and let A C
paper we denote by sp {1} the linear subspace of F ,

A and by *p {rU the closure of the space sp { A} .

Let T be a set and let n be a stochastic mapping of
we use the notation

.p{"} : *p{ r(t)l teTl
and denote the closure of sp {r} bf' rp {"} and call it the Hi,lbert space

spanned, bA r.

3. Let T be a topological space

of f . We call fr cont'itzuor.Ls (resp.
n : T -> L\V) is continuous, rvheil

F . Troughout the
spa,nned by the set

f fn the follou-ing

ancl let ft) be a stochastic mapping
r.L)ectklU cont'inuous) if the mapping
LZe) carries its norm topologr-

(resp. weak topology).
The following results are direct' collsequences of the above definitions.

They can be found in many studies. We refer to Karhunen 111: pp. 27 - 281.

Lemma 1.1.2. Let T be a toptological space. A stoclrasti,c ntuppittg
of T is continuous if ancl only if i,ts couar,i,ance mapp,i,ng r ,i,s cotttittuotts
at all, d,iagonal po'ints (t,t) eTxT . If r ,is continuous at all di«gonal
poi,nts (t , t) e T XT , then, it 'i,s euerywhere conti,nuous.

Lemma 1.1.3. Let T be a separable topologi,cal space ancl let r be

a continuous stochastic magtping of T . Thenthespace fi{x) is seltar«Ltle.

1.2. Reprorlucing kernel Hilbert spaces

l. The use of reproclucing kernel Hilbert spaces in stucll-ing stochastic
processes or mappings is noryaclal-s a rvell-knos'n methocl. -{n extensire
presentation of this methocl is given for example br- Parzen [I7: pp. 25I-
382]. Our aim is to give a short rerieu- of tlie connection betu-een I'ellro-
ducing kernel Hilbert spaces ancl stochastic mapping-r in section 1.3, and
in 2.4 to use this connection in stuclr-ing -stochastic nleasul'es ancl their
covariance mappings.

Here we give the definition of a reploclucitrg kernel Hilllert space and
also give some of their basic properties. For further le-.ults see Aronszajn

l2l or Meschkowski [14].
Definition 7.2.1. Let E be an arbi,trary set. ctncl let H be a Hi,lbert space

of mappi,ngs f : E ---> C . The space H i,s c«llecl cL reprocluci,ng kernel, Hilbert
spctce out E or ,in short an r. k. Hilbert sp&ce on E . if there erists a mayryting
K : E xE --> C such that

(i) K' e H ( K'(t):K(s,t),s,teE ) forall t e E,
(ii) f@:fflK),te E,forallf eH.
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A maptping K: ExD --->C which satisfies the cond,itions (i) and, (ii)
of thi,s deJi,nition is called, a reprod,uc'ing lcernel of the space H .

An r. k. Hilbert space has one and only one reproducing kernel
(Aronszajn [2: p. 3a3]).

2. Next we give some results concerning the continuity properties
of the functions of an r. k. Hilbert space.

Let H be an r. k. Hilbert space on a topological space ,E and let

f e H, then

i/(") - f(t)l : Kf ) K" - K,)) < lfi',:iK, - K,i, t e E,

where 1{ is the reproducing kernel of H . Thus the continuity of the
mapping iy'.8-->H, iK(t):K,, teE, implies the continuit'y of f .

For later use we state this result as a lemma.
Lemma 7.2.2. Let H be an r. k. Hi,lbert space on a topologi,cal

space D and let K be the reptroducing kernel of H . If the mappi,ng
iu: E+H, i*1t1 :11,, te E, is contintLotLs, thenallfunctions f e H
are continuous.

The next result is an analogue to Lernma 1.1.2.

Lemma 1.2.3. Let H be an r. k. Hilbert spoce on a topological sytace

E and, let K be its reprod,uci,ng lcernel. The mapping i,u: E ---> H , i"(t) :
K, , t e E , is continuous if and, only if K is continuous at all, d,i,agonal

points (t,t) eExE . If K is cont'inuous at diagona! poi,nts (t,t) eUxil,
then K is eaerywhere continuous.

Proof . The proof is a repetition of the proof of Lemma 1.1.2.

3. The rest of this section is devoted to a generalization of a theorem
by Mercer (see Neveu [16: p. 42-43)). Let H be an r. k. Hilbert space
on a topological space E and let K be its reproducing kernel.
Let f*e H, r€1. beanorthonormal basisof theHilbertspace H.
We note, that

(I.2.1) 1((s,l) : (1i" 1i,) : )rÅtr)/Jt) , .c. t e. E.

Mercer's theorem states that if 1i is contil1uolls. tlien the selies (1.2.1)

converges uniformlr- on e\-ely set §x§. x-lteLe §cZ is compact.
In the proof of our generalization \\-e use the approxirnation propertv

of the Hilbert space fl .

We recall that a locally convex topological vector space .P is saicl to
have the approri,mati,on propterty, if the identitl- operator e of F can
be approximated uniformly on every precompact set in .F bv continuous
linear operators of finite rank.
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Every Hilbert space has the approximation property. First we note
that in a Hilbert space precompact and relatively compact sets are the
same, thus it suffices to consider compact sets. Let, H be a Hilbert
space and lel roe H, x €-I , be an orthonormal basis of H. Then

r : ) (rlno)ro, r e H.
def

Lel J cl befinite. Denote

er(x) :2 @',ro)no, r e H,
a€J

then the operators e, , J c I , J is finite, are offinite rank, and converge
uniformly to e on eyery compact subset of H , the limit being taken
with respect to the filtering increasing family of finite subsets of 1
(Schaefer [19: p. 108]).

I{ext we give the generalization of }Iercer's theorem.
Theorem 1.2.4. Let H be an r. k. Hilbert spcrce on a set D and let

K bei,tsregtrod,ucinglcernel. Let foe H, xe I,beanorthonormalbests
of H . ?hen the representation

K(s,t) : z f"alkol, 8, t e E,
e€ f

connerges uni,forml,y on eaery set AxB C ExE , for which i"(J) is
a bound,ed, set and, i,u(B) is a comltact set of H , where iy: E - H is
d,efined, by i"(t) : K,, t e E .

Proof' Denote"r"'rlo:zt^f)f", 
f e H,

deJ

when "/ C 1 is finite. Let e ) 0 . Since z:r(B) is compact in fI the
approximation propert;. of I/ implies that there esists a finite J,C I
such that

11116,) - K,t : ; ) Åttl f,- ri, ( r, t e. B .

;u€J

forallfinite JcI suchthat JrcJ. Since i"(J) isbounclecl.u'eget
! 

-t 

/ \

lx@,t) -) Åt'tÅtrl (z',-I /.trr^ /i,)I "Er \ iE;' "/',

i: 
- 

/ \
< ilr<,-) Åtrt f, ti" ( e(sup Ii, ).11 a€J \s€.{ /

v'hen s €.4, teB, for every finite J c I such that, JoC J, which
proves the theorem.
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1.3. Stochastic mappings and r. k. Hilbert spaces

1. The following theorem gives the connection between r. k. Hilbert
spaces and mappings from an arbitrary set into an inner product space.

Theorem 1.3.1. Let H be an inner prod,uct space anil, let E be a set-

Then for euerA nla,ppi,ng i : E ---> H there erists a uni,que r. lc. Hilbert space
H(K) on E such that the maptping K:ExE-->C, K(s,t):
(i(s) ld(l)) , s, teU, ,is the reproduc,ing kernel, of the spaae H(K).
The spaces H(K) and the strong d,ual of sp {d(Z)} are,isometr,i,cally i,somorphic.

Proof . Let M be the completion of the linear subspace sp {d(E)}
of .H , then M is a Hilbert space. Let M' be the dual of J|l equipped.
with the norm topolog5r, then there exists an isometric anti-linear bijection
j , M ---> M' . The space M' is a Hilbert space if the inner product is
defined by the relation

(r' y')' : (j-(y') J-,(,r')) , "t' , y' e 1[' .

Let r' e lI' , rve define a mapping i' : E --- C bv setting

i'1s; :(i(s) ,r',\, s€8,
where (i(s) , r') is the value of r' € .lI' at i(s) € -iII . \\:e shorv that
the linear space H(K) : { i' t, *' e M' } is an r. k. Hilbert space u,ith
K as its reproducing kernel.

Define a mapping h: M' --> H(K) by setting h(r') : i' , r' e M' .

The mapping å is linear and well-defined. Furthermore, fr, is iniective.
Let n' ,y' e M' , r' * y'; since M : W{i(E)), there exists at least
one seE, such that (i,(s),r')*(i(s),A'), thus A'+U'. The
mapping ä is onto, since by definition H(K): h(M'), thus ä is a bijec-
tion.

Define a mapping B*: H(K)XH(K) -+ C by setting

Bo(i' ,i'l : (i' ',il')o : (h-t(fr') lh-r(il'»' , il' , il' e H(K),

then B" isaniturerprocluct of H(K) and ä isaninnerproductpreserving
bijection. Therefore the space H(K) , equipped rvith the topologl. incluced
by the inner procluct B" , is a Hilbert sllace, l-hich is isometrically iso-
morphic to the space ,l/'.

Next we shou' that the space ä(.li) is an r. k. Hilbert space on ,E .

First we note that the elements of ä(-K) are conplex-r.aluecl urappings
defined on E. Set .&j : h(j(i(t)» , t e E, then for everv s €.O

1(,(s) : K(s,t) : (d(s) li(,)) : (i(s) , j(a(r))) : nl(r) ,

thus r(,:ft;, so 1{, eH6) for everv teU. Fnrthermore,forevery
ä' e u1x1 we have
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i'(t) : {i(t),r') : (*'lj1,(t)))' : 1i'lk)" := (i'lK,)*,
t e E , since y'(, : k: . Thus rK is the reproclucing kernel of the space
H(K).

The space fI(K) is the onlv r. k. Hilbert space on D with -( as its
reproducing kernel as the values of everr element of such an r. k. Hilbert
space are uniquely determined in all points of -E b1.- the reproclucing
property.

The space ä(K) is isometrically isomorphic to the strong dual of the
space sp {i(f')} , since it is isometricalll- isomorphic to the strong clual
of the completion M of sp {i(U )} . The proof of the theorem is complete.

2. Next we consider the connectioir betrveen positive definite functions
and r. k. Hilbert spaces.

Definition 1.3.2. Let E be a set. Å mappittg Ii: ExE -C' i.s

call,ed, positi'ue definite, if

Ic... I

n

§
Z-

"i:L

Jorall % €Är, t;efr, &je C, ,i- I. ,?l
The next results are immediate.
Corollary 1.3.3. Let K he the reproduci,ng kernel ,f

space. I'hen K 'is posit,iue deJini,te.

Corollary 1.3"4. Let r be, the coaarictnc( 'rnappirt 
y7

rvtapping. Then ris pos'it'iue defi,ni,te.

Aronszajn fl] has shorvn that the corlverse of ['cro]larr- 1.3.3 is also
trne. i.e., for a given positive clefinite nrapping^ Ii : E E - 

(' s-liere
E is an arbitrart' set, there exists a uiticlne r'. ii. Hilltert space -t-r :ff I

on E , such that Ä is tlie reprorlucing kerriel of the .1,,rr." *p : .Ii I . The
space sp-{,K} is callecl the r. Å'. Hilbert sPqce.sl,)annel lty 11 and it consi,qts

of the linear space sp{A} : sp [1i, t e E i ancl o{ functions. u'hich
are pointwise Iimits of the Cauchr- secluences of tlie ftrnctions of the space
sp U() . We state this result as a theorenr and s-ir-e a proof n-liich shos's
that, the result is a consequence of Theorem l.3.l.

Theorem 1.3.5. Let E be a set qnrl let li: E E -(' lt( e positiue
d,efinite mappi,ng. Then there. erists u uniclue r. l;. Hilbetl .:1tuce *I, l.Äl
on E, such that K is the reprorlucing kentel uJ'lht ':,trrct V:ffj The
space .p {1(} consists of the space sp {f } : sp [ /i, t e E 1, and th,e

pointu;ise limi,ts of the Cauchy sequeru:es (in the norm tctpoloSy) oJ sp{A}.
Proof . Denote by sp {f } the linear s}lace spannecl b1- the set

{R,, te E).The space sp{.K} is an inner prorluct space u'ith the
inner product defined by the relation

(tt1 r.l;. Hilltcrt

oJ (t .-*trtclt((.\ti('
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(,f ' g)r oi 5r X(si , tr)
mfLssLL

i=- L k:L

in, Rr,, e :;
ir " k I

for .f ,g €sp{^K}

f-:
The proof of this fact is a repetition of the proof given by Aronszajn
!: pp. ta3- laö]. Define a mapping i : E --:.-.p {(} , by setting
i@): ftr, s €,O. Then K(s,t): (i(s) li(r))r. Thus, the mappings
i: D -> rp {E} and K satisfy the conditions of Theorem 1.3.1, which
proves the first part of the theorem. Denote .p [K] - H(K) (see Theorem
r.3. r ).

The second part of the theorem follows from the fact that sp {1(} is
dense in -p {/(} and from the inequality

f^(s)-"f"(r)l : l(f*-f"lK")l <ll,f^ -/"ll ll1(,ll , se E,

when /. ,/, € sp {1(} .

Remark 1.3.6. Let H be an rrrner product space and leL il be a set.
Let i: E--->H be a mapping. Then the mapping K: E<E_-C,
K(s,t):(,t(s) ii(t)), te E, ispcsitivedefinite. Let sp{1{} bether.k.
Hilbert space spanned by 1( . By Theorem 1.3.I there exisis a unique r. k.
Hilbert space ä(1() on E, for which 1( is the reproducing kernel. It
follows that tp {1( } : H(K), since K is the reproducilg kernel also
of the space sp {K} .

2. Stochastic measures

In this pall3r \1'e -qliall cc;rsicler stochastic rneasures as vector measures
taking values in the space L'r(P) . \1-e shall define a vector measure as

a continuous linear mapirilg from a suitable function space into a topclogical
vector space. \\'e shall use the integration theory of vector measures given
by Thomas [20]. It is clos:lr- r-.latecl tc the one given by Bourbaki
f5: Ch. 6, § 2]. In fact. in the case of a stochastic measure the integrable
functions are the same. 1\'e prefer Thomas's integration theory, because
rve r.vant to shorv hou- the integration of a stochastic measure is related to the
integration of its covariance mapping, when the covariarrce mapping is
interpreted as a bimeasure.

We note that one verv often defines a vector measure as a completell'
additive vector-valued set fuaction, defined on an o -algebra or a o -ring
of subsets of a space § (see for example Dinculeanu [7]).

In the works of Karhuneii [11], Loöve [13], Cramdr [6], Bochner [4]

b* R,*
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and Rozanov [18], mentioned in the Introduction, a stochastic measure
is defined as a completely additive set function taking values in the space
Lie) .

Our aim is first to give the definition of a vector measure and of the
integral with respect to it. Then rve collect some general results about
vector measures. After that we consider vector measures taking .r,alues

in a Hilbert space. In our applications the Hilbert space is either the
space Zfr(P) or an r. k. Hilbert space. As noted above, in the first case

the vector me&sure is called a stochastic measure. fn section 2.3 rre
introduce the notion of a bimeasure. The rest of chapter 2 is devotecl t,o

stochastic measures and to their covariance mappings.
We begin with a short revierv of complex Radon measures. The

integration of complex R'adon measlrres is similar to the integration of
vector measures taking values in a normed space. We consider onh- the
latter case. For reference on the complex-r,alued case see Bourbaki
[5: Ch. 3-5].

Note that in this paper we consider essential integrals and \te use the
same terminology as Thomas, that is, we use the terms integral, andintegr«ble.
when Bourbaki uses the terms essential, i,ntegral and essentially integrable.

2.7,. On Radon measures

1. AII results given here are proved in Bourbaki [ö: 0h. 3]. Let T
be a fixed locally compact Hausdorff space. By .,K.17; rre clenote the
vector space of all continuous mappings f : T '+ C . for which the support
af f , supp ("f) , is compact. Let K c T be cornpact. Set,

',K"(T : K) : .!, f e'.<r(T) supp (./) c /i I .

then the spaces ';K"(T ; r() are Banach spaces if the topolog.r- i,r clefinecl l:1'

the supremum norm. The topologl' of '.(.17) is the incluctive limit of
spaces X"(T ; K) relative to the canonical injections .ir : .(c(f : 1i)
--->'Xs(T) , K C f , K compact. \\'e recall tliat tire space .Kr(T) is
barreled.

2. fn the following the dual of :(.(7) is clelotecl l»- '//lc(Z) and
its elements are called com,pleru Radon nte«sureö on T o,- in short Radon, meas-
ures, if no confusion with respect to the cloruain is possible. A Radorr meas-
we p is real ual,ued, if it coincides u'ith its complex corrjugate, that is if p(f)
: m for all f e'Xc(?). A real valuecl Raclon nleasure is positiueit p(f) >
0 for all f elKc(T) , ! > O. The absolu.te ualue of a Radon measure p is
the positive Radon me&sure lpl , for t-hich
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It'|ff) : ,suP lt.,(g)l , where g e"Kc(T),

for/€')("(T),1>0. Wenotelhat l1t(f)l <1,"1(l/l) forall f eKc(T),
when pr eqllc(f) .

The elements of the dual of K"(T), when the space ',K"(T) carries
the topology defined by the supremum norm, are called bound,ed, Radon
rneasures on T . In the following c)11L9) denotes the space of all bounded
Radon measures on T .

Let G c T be open, then G is, as a topological subspace of T ,

a locally compact Hausdorff space. We may iclentify the space X"(G)
with a linear subspace of 'Xs(T). Let p,e1|lc(T), then the restriction
of p to ',)("(G) is an element of cl?t"(G) 

.

2.2. On vector measures

7. ,As mentioned above, u'e begiu this section by giving the definition
of a vector measrlre ancl of the integral rrith respect to it, Ours is an obvious
generalization of the definition given b1' Thomas [20], rvho had the scalar
field ,B . In the following the scalar field of the topological vector spa,ces

in which the vector measures take their values is C .

Let, T be a fixed locally compact Hausdorff space.
Definition 2.2.1. Let I be a locally conaer toytological, aector space.

An F -ualued, uector measure on T or'in short a uector nl,easure'is a cont'inuous
l,inear mapping p: K"1f1---> E .

Next we shall define the set of integrable functions for a vector measure.
First we consider the case of a normed space I and then give the gener-
alization to the case r.here ,F' is an arbitrary locally convex vector space.

2. Let F be a fixecl normecl space. \\'e begin with the definition of
the semi-variation of a vector rneasrlre. Let us denote the norm of I' by
Il ll and by ')*(T) the set of the los-er semi-continuous nonnegative
functions f : T--->E-, rvhere E-: [.t'€-R rt']0]U{-cc}.

Definition 2.2.2. Let p be an F -"-qlued tector ntecrsure. ll-e define
a norunegat'iae, not necessarily finite nuntber p'(f) lor etery nonnegutiue

function f : T --- fi+ by setti,ng

igi sl

8>l

15

(iii) t'(f) : 
;I$ 

r; @)

g € ,)* (f ) , if srlpp (/) as compuct, and

tuhere

i,f f is an arbi,tro,r'A nonnegcttdae function.
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The mapping p' is called the sem,i-auriation of p .

Let A C 7 . We denote its characteristic function by y, a'nd define
pt'(A) : p'(X), when p is an 7 -valued vector measure.

Remark 2.2.3. For a complex Radon measure p, , that is, in case.
I : C , the definition of pr' coincides with the definition of the essential
upper integral of lp1 given by' Bourbaki 15: Ch. 5, p. 2).

Let p be an /-valued vector measure. In the following we use the
notation p,,, : r,' o 

1.t, , ixJ' € 7r' . Note that p,*. ec)ltc(T) for all *-' € F' .

Let p be an ,t' -valued vector measure and let f e")*(T) , then

t '(f) : sup l,&(g)rl sup sup ,&,,(g)
.s\<l s =f x' =t: 
,)Ln, 

suP '"''(9) 
: 

:11 l,'''(f) '

where g e Xcg). For later use we state this result. clne to Thorua-q.
as a lemma.

Lemma 2.2.4. Let p be an F -aal,ued, uector meqsure. Tlten

t ' (f) : sup lp,, l'(.f )
,t',ll s r

for all f e,)*(r) .

Let p, be an -ä'-valued vector measure. Then for all 2 € C ancl for
all complex-yalued functions f , g and ä , defined on T, u,e have

p,'U,il : V.l tr'|fl), t'lf*sD I p'|fl) + t,..( s ),
p'lfD < 1t'(lh)) if ifl < jh'. .

The set of all functions /: T--->C, for t-hich p'(f )< r is clenotecl
by JZ]t). The mapping f,(/) : p'(f ),f e=,rz(,u) . is a semi-noun
of JZ0"). lYe clefine the topclogv of --ti(f) a-q the locallr conrex
topology definecl bl the -serni-norrr 11 . Obvioush- '.ric(f) c 7i1,u1 .

Detinition 2.2.5. Let p be qn F -utlued t-'c.ctor meesure. Tlte set
:lLtd ,f p, -i.ntegrable functiotts f ; T - C' 1.* the clo.*ttre ,f .KcQ)
. 

-a , \Ln rc\P).
LeL p, be an .F -valuecl vector rneasrlre. In orcter tc clefine tlie integral

of the functions of 1L0") rvith respect to the rector lneasru'e ,u , $'e
note that llt ff)l < p'01'), s-heir f e '.\c€): that is, the mapping
p: ',K"1f1-+ l' is continuous, x-hen X.(7) carlies the topclogr- incluced
by '1L0r).

Definition 2.2.6. Let p be an F -ualu,eduectornrc«sttre.Thentheintegral

of a function f e :tL|i with respect to 1.r, is tlte uilue pff) e i , of the
ertension by continui,ty of the .mappi,ng p,: ',Kr1T! --- F to ct mapping
p: 4t"1p1--- fi.
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We use the notation

Let x' e F' , then 1L0r) c =/'r(lr*,) and

f € :tLfpl

(2.2.1)

Let
then

f € lLk)f r d{,*, ,,[ f dp

F be a Banach space and let p: ',)ir(T) * .F be a vector measure,

lll,r,ij = ,'riru
for all f eqLk ) .

3. We go on to the case rvhere I is an arbitrary locally conyex
vector space.

Let I be a locallr- coltvex vector space and let p be an F
-valued vector measnre. Let p be a continuous semi-rrorm of .F and
leb ?o be the quotient space I ,iKer (p) . ulien .F carries the locall5'
convex topology defined b5'the semi-norm p. Set ilp: ap opr, where
zo denotes the canonical mapping from -F into -Eo , then p,o is an Io
-valued vector measure. Let ? be the collection of all continuous semi-
norms of F . \{e denote

720,) : fi 720,o)
pe9

and define the topology of 1i(p) u. the projective locally convex topology
with respect to the canonical injections jo, 720")*720r), p e g
(the topolog]' of lZ0r) is defined by the semi-norm Ui fo, all p e c.?).

Note that ',K"(T) cli1r) .

As in the case of a normecl space, 'w,e clenote by 1L0r) the closure
of X"(?) in lZ@) ancl call the functions f e |tL}") p, -ittegrable.
We see that

:tL@ : n :tllu).
p el?

Furthermore, the topolog;' of =[rr1pl is the projective locall;- convex
topology with respect to the canorrical injections jo, '-tLjr)--{LQro),
pe?.

As in the case of a normed space, 1ve see that the mapping p,:',Kr1T1--> I
is continuous if 1K"17) carries the topologv inclucecl b1' :li1p1 . Suppose
that the space ,F is a Hausdorff space, then rve clefine the integral of
2
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a funct,ion f e 4L0r) wi,th respect to the uector nl,eq,sure pc analogouslv to
the case of a normed. space (see Definition 2.2.6). The equation (2.2.1)

is still valid.
Let E be a locally convex vector space and let p:'K"(T).+/ be

an -E -valued vector measure. Denote by .F, the Hausdorff space / / {0}
associated. with .F and let n: ? '---> Ir be the canonical mapping, then
:{Lk ) :4L@ " p) . Thus it is no restriction to consider onl5r legallt
conYex Hausdorff spaces.

4. Next we consider how Bourbaki's definition of the integral of
a vector measure [5: Ch. 6, § 2] is related to Thomas's.

Let f be a locally convex t'ector space and let I' be its clual.

Let p : ',K"171->,F be a vector measure, then the mapping pr is still
continuous if we equip the space I u'ith the rveak topology o(F , F') .

Definition 2.2.7. Let F be a locully conl)et uector space and let F'
be its d,ual. Let p. be an I -aalueil aector measure. Then the (continuott.s)

mapping p*:',K"171+F, p*(f): prff), f e',Kcl(), u;ith the topology

o(I , I') on I , is called, the wealt aector measure d,efined bA p .

The following lemma is needed to show how to get the set of integrable
functions of a weak vector me&sure.

Lemma 2.2.8. Let F anil Fo, a e I , be l,ocally conaen uector spctces.

such that the topology of ? i,s d,efined, as the proiectiae locally conaet topology

w'ith respect to the gi,uen l,inear mappings uo: I -'-> ?o, x e I . Let p be

an F-aal,ueil,uectormeasureandlet po:?t'dop, xe L Then

:/:L7r) : 
"]r,,{L@*)

and, the topology of '-L1r1p1 i.s the proiectiue locally cottL'e.{ toltology ttitli
respect to the ccutonical iniectiotts j, : '-L'r(t ) -r'-Lt6{,u,) . r € 1 .

Proof . The proof giren b1- Tiroura-s [20: pp. 77-7s] is also ralitl. r'r-lierr

the scalar field of ,F is (' .

LeL I be a locally conve§ \-ector space attcl let 1r: '.iir1T| -I be

a vector measure. BY Lemma 2.2.8 lr-e get

.-LLUI,,) :,!o.at,,r,.t .

Since the completion of the space -F . rl'hel it carries tlle topologr- o\F , F') ,
is the space -X"* (i.e. the algebraic clual of ,F'), l-e irave

f tdt"ne F'*

B), (2.2.1) w'e have

for all f € '-LL(,u,,)
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fcrr all ff' € "F'

rn hen f e'-tL1r,r) . Since

we get

,-LLO,)

fn the following we call the functions / € :LLQI*) u,eakly p -integrable

and the integral of / € ttL]r) with respect to pr. is called lhe weak
integral of f with respect to l, .

We note that the above definition of the weak integral is equivalent
to Bourbaki's way of defining the integral of a vector measure [5: Ch. 6, § 2].

5. Let F be a locally convex Hausdorff space^ and let p be an X
-valued vector measure, then in general If dp € .F', when f e:Lr"1p1 ,

if the space .F is not complete. The following theorem gives a sufficient
condition for Jf d,pe? to be valid for all /€lLtpl. The theorem
is an obvious generalizaLion of Thomas's corresponding result [20: pp"

80- 811.

Before stating the theorem we recall that, a topological vector space

is said tobe quasi-complete if its every bounded and closed subset is complete.

Theorem 2.2.9. Let I be a quasi-complete local,l,y conuer Hausd,orff
space and let pr be an F -ualued oector measure. Then I f dp € I for all

f e '.1:L@) .

Remark 2.2.10. Let F be a barreled locall5, corlvex Hausdorff space,

then the space -F' ecluipped u'ith the topology o(?' , F) is a quasi-complete
locallv coll\'ex Hausclorff space. since in the topology o(I' . I) eYer\-

bounded set of the space .E' is relativell- ccmpact (Schaefer []9: p. lall).
Let F be a semi-reflexive locallr- con\:ex Hausclorff sllace. then the

space -F equippecl s-ith the topologv o(F . F') is a tpasi-complete locallv
convex Hausdorff space (Schaefer !9: p. 1441).

6. In stud;ring the counection of stochastic lneastlres aucl their
covariance mappings we use a result, provecl br- Tltomas [20: pp. 106- 107].

The proof given by Thomas is valid also in the case of the complex scalars.
Before stating this result as a theorem u-e give a clefinition.

First we recall that a function f t T --> C is saicl to be a Borel ftcnction
if f'L(G) is a Borel set of T for eyery open set G c C 

"

Definition 2.2.71. Let F be alocally conae:L aector sptoce. An I -aalued

{,f f dp,,, , t''), - { t drr*,
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uector measure p, is said, to be e*tend,i,ble if for euery bound,eil, Borel functi,otr,

f : T --->C r»ith compact support we haae f e :4L0r).
Theorem 2.2.12. Let I be a Banach space und,let pr be an ertendible

-F -aal,ueil uector rteasure. Then a wealcl,y p -integrabl,e function f is p
-i,ntegrable if anil only if f f X"dp*e X for all, open sets GcT .

For later use we still state one lemma concerning a condition for a vector
measure to be extendible. As above, the proof given by Thomas [20: p. 101]

is valid also in the case of the complex scalars.
Let, F be a locally convex Hausdorff space and leL p: ''K"1f'1 -'> f

be an -F -valued vector measure. Suppose that, G c T is an open rel-
atively compact set,. As noted above, the space 'X"(G) can be consiclered

as a linear subspace of Ks(T) . If p is a continuous semi-norm of .F .

then using the notation introduced in 2.2.3,'w-e have

sttpp(p(s)): p;((]) < oo.

rE o="i,

Thus the restriction of p to 'K"(G) is continuous if the space l(.1G;
carries the norm topology defined by the supremum norm.

In the following Cr(?) denotes the space of all contirlrrorrs functions

J: T ---> C vanishing at infinity. The topology of Co(T) is <lefinerl b1' the
supremum norm.

Lemma 2.2.13. Let I be a locally conL*er HausdorfJ .*1xtce utrl let p

be an P -ualued. aector nteasure. Then p, is e;rtendible if «nd only iJ the restric-
tion of p to ',K"1G), where G is an urbitrury rel«tircly comltctct open set

contained, in T . can be efiended, by continttitg tr.t ct u'eukly contp«ct »t«1t1-,itt17

from Co(G) into i .

2.3, Bimeasures

7. In this section we present the basic results on the integration of
bimeasures. We note that bimeasures are studied especiallv in the llapers
of Morse and Transue [15] and Thomas [20: pp. 144-147}

Let § and T be fixed locally compact Hausdorff spaces.

Definition 2.3.1. A continwous bilinear mapping -B : ',("1,S; .1'lic(7)
--., C i,s called a bimeasure on SxT .

We remark that every separately continttous bilinetu' ruapltirtg
f : i("1S; y'K"171 ---> C is continuous"

Let B be a bimeasure on .9XZ ancl let g € ,tir(T) be fixecl. \\'e
define a linear mapping B( . , g): X"1§; -* C bv setting I]( . , S)(f) :
B(f ,g), /€:(c(§) . Let f €.Xc(S) be fixed. As abo'i'e, u'eclefinealinear
mapping B(f , .) | .Xc(T) 

---> C by setting B(f , .)(g) : B(f , g) ,

Ann. Acad". Sci. Fennicar
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g e lK.(") . Since the bilinear mapping B : Xc(,S)v'K"1f1---, C is

continuous, we have B\.,g) €'l/lc(S) and B(f ,.1e"\fl"1f1 for all

se?<c(r), /€:Kc(,s) .

Let, ')ilc(§) carry the topology o(')/16(§) ,',Kc(§)) , then the linear
mapping p:o: 

"Kr1T1'+9/1c(/S) 
,

in@) - B(',s), g € 
"Krg) 

)

p'a is an '' //1c(§) -valued" vectoris continuous, i.e., the linear mapping
measure on T . B.v Lemma 2.2.8 we get

"tLkh): n '.LL@$,.)),
e xc(s)

since {f ,t'r@)):B(f ,g) for all 7e ';(.1S; , ge',Kr(T).
Similarly, let ")nc(f) carry the topology o((lllr(T) ,',K"(T)) , then

the linear mapping p! : l("1S; -->9"11c(T) ,

(2.3.2) plrtfl : B(f ,.), / € 
"Kc(s) 

,

is an ' )ltcg) -valued vector measure on § . As above, we have

'-LL1hL): n tLL@(.,il).
se XcF:l

Definition 2.3.2. Let B be a b'imeasure o?L § x 7 . ?hen the 'lllc(,S)
- ual,ued uector measu,re p[* on T (d,efined, by (2.3.1)) is called the right
nl,easu,re defi,nect by B and the funct'i,ons h: T ---> C , h etlljiB) are

called, ri,ght itttegrable with respect to B . Si,milarlg, the (lllc(T) 
-aalu,ecl

uector measure pL o?t § (defined, by 12.3.2)) i,s called the left measure

d,ef,ined by B «nd the futtctions h: S ->C , h e'-tLjh) are called left
integrabl,e with respect to B .

The follon'ing lemma is clue to Thomas [20: pp. 144- 145].

Lemma 2.3.3. Let B be qbime«stre on SxT . Then Jh dpL €')/lc(S)
for all h : ? --> C, lt e'.Lt 1u'") «nd l' l, dpL ec)llc(T) for «ll å : § -C,he'-LL1rlrl .

Proof . We consider onlv the former ass:rtion. the latter's proof being
similar. The space 9/lc(§) carrling the topclogv o'(9/lc(S) . :(c(S))
is a quasi-complete locally convex Hausclorff spac3. as uotecl in Remark
2.2.3, since the space :Kc(S) is barreled (Bourbaki [ö: Ch. 3, p. +2]).
Thus, the lemma follows by Theorem 2.2.1.

Let B beabimeasureon §x? andlet h:T--C besuchthat
he'-l,L1i;, then b;r Lemma 2.3.3 Jhdpb €')ilc(S) . In the follo'w,ing
we use the notation B( . , h) : J h dp,', , that is

f € ',Kc(,S)



defined ) ,

(ii) f €

(iii) [ r
J

then we sey t
B a,nd d,enote,
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Similarly, let h: B--->C be such that ne'.Li1p!"1. As above, we use
the notation B(h, .) : Jhdplr, then by Lemma 2.3.3 B(h,.) ec)ltc(T) .

Definition 2.3.4. Let B be a bi,measure on Bxf. We suptpose that
thefunctions /: §--->C and, g: ?-->C satisfythecond,,it,ions

(i) f e'{L1rlr), s e :ZLtp;l

(the Radon rneasu,res B(f , .) e clllc (T) and B( . , S) €'/llc(,S) are thu,s

%L(B( . ,s))

ilB(.,9) :

hat the pa'ir ll'ith, respect to the b'imeasu.re

86,il: Isda$,.): [,fort.,rl .

JJ

2. fn the following we call a bimeasure B bounded if the bilinear
mapping B: ,lKc(,S)xX"(T) -> C is continuous, when the spaces :(c(§)
and X"(T) carry the topology defined b), th" supremum norm. Let B be
a bounded bimeasure. Since the space ',K.1§) (resp. \Kr(T) ) is clerr.se in
Co(§) (resp.in Cr(T) ) we can extend the bilinear mapping B b1'continuit.r'
to a continuous bilinear mapping B : Co(§)x C0(7) --> C . Obviouslv,
every pair (f ,g) e Co(§)XCo(Z) is integrable x'ith respect to B ancl

B(f ,g) : att, g) , rvhere Eff ,g) is the value of the extension (b1- conti-
nuity) of B.

As above, we introducethe (bound,ed) right measure pl : Co(T) -+ 'lllt(S)
(resp. the (boundnd) l,eJt measur" ptr, Cs(§) +'lnLg) ) clefined by B .

Clearly
:{Lk;) : n ZL@ff,.»

"f € c.(^s)

and

*Lk'.) _- 
*rf,.)rr, ,VL@t. 

,s))

cl ph € '///L(§) for all
e :tL1r'u) . Thus ttre

a,nd, g € |tL@ff

,{ rdB(f,.) ;

(f , g) is integrable

)) i

Analogousll,' to Lenr ma 2.3.3 \lre have J" h

h e rtL\rb) and J h dpL e ')?tb|7,) for all h

hound.ed Radon measures

B(. , hr) _- { 0., duh ancl B(h= )J '"1*f { n' dp'*

above.

Ann. Acad. §ci" Fennicar
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B bea
o, g:

f€
f:

Let
§--
(i')

(ii')

( iii' )

bound.ecL bimeasure on § r 7 . Srppose that the function§

T ---> C satisfy the conditions

n %h(B( .,h)),s € n:ZL(B(n,.)) ,

l, e Co(S)

€ 'ÅL@u,. )) ,

.),

g) 'is »>strongly»> i,ntegrable u;i,th respect to thethen we
bounded

d,B(f ,

l, e Co(r)

f € *Ltst.,s)), s

Itd,B(.,e)- I,
say that the pai,r (f ,

bimeas%re B .

3. Let D (resp. -F') be a linear space of functioirs f : U "-> C (resp.

of functions g: V---rC),where U (resp.7)isanarbitraryset. We

remark that in this paper the tensor product E&F of the spaces -o and

-F is considered as the lilear space spannecl b1- the functions f@g: UxV

-C,
$&g)Ot,u):f(u)g(u), 7re L:-,ue V'

Let B be a bimeasure on S x ? , then there does not always exist'

a Radon measure pa on S x 7 such that,

(2.3.3) B(f , s) -- puff&s) , f € :'Kc(S), g €'i)(,s1p)

(see Bxample 3.3.4). A simple condition for the existence of a unique

Radon measure Fa ort Sx? such that (2.3.3) is satisfied, is given in the
following lemma.

Let B be a bimeasure on §xZ ' We denote by B the unique linear

mapping .6: i("1S16iX"(T)-C, for which

(2.2.4) Afesl:B(l ,s), /€"(c(s) ,se7<c(T).

Lemma 2.3.5. Let B be a bime«sure on S x ? . If tke line«r mapping

6 : ',K"1S16rXc(T)--- C is contirtuous. tL'hen :(c(S)t',(c(7) c«rries the

toytology induced by ',\r1SXT'1 , tlten th,ere et-i.st.s ct rttticpte Rctclon tneastlre

Fa on SxT suchthat (2.3.3) isa«lid'
Proof. First we note that the tensor procluct :(c(S)E:(c(?) is

dense in K"(SxT) (Bourbaki [5: Ch. 3, p. 83]). The rest of the proof
is then immediate.

Delinition 2.3.6. Let B be a bi,measure on S x ? satisfying the

hypothesi,s of Lem,ma 2.3.5, then we saA that B can be efiended, to a Radon

nl,easure and, the unique Rad,on nl,eo,yure p, satisfyi,ng (2.3.3 ) is called, the

.Rad,on nxeasure ind,uced, by the bi,measure B .

Remark 2.3.7. Let B be a bounded bimeasure on § x 7 . Suppose
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that the linear mapping å : Cr(r9)Q Co(T) ---> C , defined by the extend.ed
bilinear mapping -B : Co(§) xC'(T) + C , is continuous, when the space
C0(§)8Co(") carries the topology induced bythe space Co(sx?) . Then
there exists a unique bounded Radon measure pu on Sx? such that

forall f € Co(§) ,9 € Co(T),

and we say that the bounded bimeasure B can be ertend,ed, to a bounded
Rad,on nl,easure.

2.4. Stochastic measures

1. rn this section we shall develop the integration theory of stochastic
measures and show how the integration of stochastic measures is relatecl
to the integration of their covariance mappings, when the covariance
mappings are interpreted as bimeasures.

We begin with the definition of a stochastic measure.
Definition 2.4.1. A aector nlea,sltre p , ',Krip) --- L'oV)

stochastic rneq,sure.

In the following we shall also consider vector measures p: ',K"1Ty
--- sp {0} , where the space .p {0} is an r. k. Hilbert space spannecl b1-
a positive definite mapping Q . For that reason we here state the results
for vector measures p: K"171 + H , where f1 is an arbitrary Hilbert
space. of course, the results are then valid also for stochastic measures.

we recall that in general, if 7 is an arbitrary locally convex vector
space and p is an /-valued vector me&sure, we have

:{LQr) c:{LQ.,.) : fi_ZLjr_,).

\[e shall shou'that' for a'ecto, *"u.o*ti taki,g values i, a Hilbert
spa,ce, ALjil : =eLtp\. For nore general results of thi-* tvpe see
Thomas [20: pp. 134-139].

we shall also consider the follorvi,g case. Let H be a Hilbert space
and let A be a linear subspace of H' . Let p be an ä -valuecl vector
measure. Then the mapping p, : Kr1T1 --- H is continuous. also if ä
carries the topology o(H , A). Define a mapping ir: '.\..171--> H ,

when 11 carries the topclogy o(H , A), bl setting

We recall that by Lemma 2.2.8 we get

f e 1'(. €)

:/L1r^) - n :eL7r*,)

is aalled ct
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Suppose that A is dense in f(rp {fr}) c H' , irr the norm topology of H' ,

where j : H ---> fl' is the canonical anti-linear bijection. fn Theorem 2.4.8
we give a (necessary and) sufficient condition for a function / € ZL(|,,A)
to be p, -integrable.

2. First we consider weakly integrable functions.
Lemma 2.4.2. Let H be a Hilbert space and, let p be an H -aalued,

aector measure. Then Jf dp. e H for euery f e=ZLkr.,) .

Proof. tr'irst we note that the weak vector measure pr,. , defined by the
fl -valued vector measure p , is an ä -valued vector measure, when ä
carries the topology 6(H , H') . By Remark 2.2.3 lhe space ä carrying
the topology o(H , H') is a quasi-complete locally conrrex Hausdorff
space, since ä is as a Hilbert space barreled. Thus, the lemma follows
by Theorem 2.2.9.

Lemma 2.4.3. Let H be a Hilbert space and, let p be an H -ualued

uector measure, then p, i,s ertend,i,ble.

Proof . Suppose that G C ? is an open relatively compact set. Denote
by p" the restriction of p to ',K"(G) and let fi6 be the extension bv
continuity of pc to a continuous linear mapping fi": C.(G)--->H.
Then fr" is a weaklv compact mapping as a continuous linear mapping
from a normed space to a Hilbert space. Thus, the lemma follorvs by
Lemma 2.2.13.

Theorem 2.4.4. Let H be a Hilbert space and, let p, be an H -aalued,

aector meas.ure, then *L!r) : lLUr*) .

Proof. Suppose that G c 7 is an open set. Lef f e:lL@-), then

f X" e 4L0"",) for all n'e H'. Thus f X" e sZLQd. By Lemma 2.4.2
we have

Furthermore, by Lemma 2.4.3,the vector me&sure p is extendible. Thus,
the theorem follows by Theorem 2.2.12.

Let H be a Hilbert space and let p, be an ä -valuecl vector measure.
Denote

tp{p} : .P{ t"ff) ,l€','("(T)},
then If dp eup{p} for all f e -AL|r). The follox-iirg corollarv shows
that only the Radon measures H,, , t' € .p {p}' ale essential in studying
the integrability with respect to the vector measure /, .

Corollary 2.4.5. Let H be a Hilbert space and let p be on H -aulued,

uector measure, then

:{L0,) : 410il : n :t10,",).
'e.p{pY

f t x,cdtt* € H .
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is
fr'

Proof. The inclusion

=ZLtpl:"tL1r*) - n*'*Ur.,)
x'e H'

immediate. On the other hand, denote
e H' to the space -p { p} . Since

p*,(f): Qrff),*') : t-,_*ur(f), f e'xc(T),

for all r' e H' and since *p {p}' : { **ul I r' e H' } we get

n sZL1r",) : n 4L0'",) .

x'e H' *'e*ipj'

Remark 2.4.6. Let H be a Hilbert space and let p, be an 11 -valued
.vector measure. Then by Corollary 2.4.5 and by the remarks made before
it we can consider F, as a vector measure u-ith values in the space sp {p}.

3. Let H be a Hilbert space and let p be an ä -valued vector
measure. Let A C H' be a linear subspace which is dense in f(sp {,"})
(in the norm topology), where j : H ---> H' is the canonical anti-linear
bijection. Leb lta:',K"1f1--->H be defined as in (2.4.1). Asnotedabove,
we can consider p as a vector measure with values in the space sp 1p) .

Since -4 c sp {p}' is dense (in the norm topology), the pairing (sp {p} , 1)
separates the points of sp {pr}, thus the topclogy o(sp {p},1) of the
space sp {p} i* a locally conrrex Hausdorff topology.

fn Theorem 2.4.8 we give a (necessary and) sufficient condition for
a function f eqL]r) lo be p, -integrable. The following example shows
that the inclusion

=tL1"): fiZL1r",) c lr,{L@",): ={L1r)

can be stricb.

c n :/LUr*,)
r'€ *pipr)'

b-v *oir,i the restriction of

Example 2.4.7. Suppose
is so large that the space

\9nJne N t <

setting

pff) : ) f(n) €", / € :(c(A).
n€.ff

The mapping p is linear. We sholv that it is continuous. Let K c R
be a compact set,, lhen K O-l/ is afiniteset {rz, t...,tr*K} (orempty)
and

llt (flll' : Zlft")z I ru*(sttp i,fl)z,
n€N

if 7 e'X"1n ; X7 . Thus, l.t is a stochastic me&sure on R . Let

that the probabilitr- space @ ,- , P)
L'r(P) contains a corlntable orthonormal set
Define a mapping p: :(c(A) --, L'o(P) bv
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j : Li@) ---> t2o1P1' be the canonical anti-linear bijection. Denote
.4 : sp{j(§") i ne I,l }, then A is dense in the space j(sp{,u}) :
f(sp{fr,fr,...}) . We shov'thatforthe constant function I we have

L e.lL(it) but t e:/[1@ .

As noted above

',tlL(irr\ : n 4'"(p",).
x,E A

Let r' €,4 , then fr' ca:n be represented in the form

iL : 2o^i(to^), a^€C,m - 1,...,tu,

thus 
m:t

P*' : å'o*i(,,o)'' '

Therefore

when

)tu1

p:.(r) : sup l,rz,,(,f)i : sup 2 r^l&^)i
'f <l f al .m-t I"n-

S ),,n. < c) (rvhere / € 
"(c(A) 

) .

Thus t e :(.11p,",), since the constant function is continuous, so that,
le'-LLG). Furthermore, Ildfr" is a linear mapping from A into
C , for which

<*', I tdfr,) : å,o*,

*' : 
Z''a^ 

j(§*^) e A'

We see thab Jldfi,e.p{p}, so by Lemma 2.4.2 we get I €'-LLUr*) :
'aLo").

The follou,ing theorem gives a (necessarv and) sufficient condition for
a function f e'-LLGt,) to be pr -integrable. For the proof of the theorem
we note that Thomas [20: Lemme 3.1.1] provecl (in the real-valued case,

but the proof is valid also in the complex-valuecl case): For a sequence

{r,},er C'llt(T) rvith the propertl-

2 lr"(f)t < oo for all f e ',K(T) 
,

n€lf

onehas gelLt(a),if ge'-L'(r^), ne N, andif
lni

2l lsy6ilan 1oo
nerrlJ I

c):
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for ever), open set G C T, wliere

Theorem 2.4.8. Let H be a Hilbert space anil let p be an H -ualuetl
uector measure. Let A C H' be al,inear subspace, whi,ch is d,ense in j(.p tp))
(in the norm topology of H' ), where j : H ---> H' is the canonical anti-linear
bijection. A ir":',K"1?1---H is defined, as in (2.4.1), then a function
g e',LLGr) is 1t -integrabl,e if and only if I g X"dfro erp{1t\ for euery
T'pen,1et Gcr 

"

Proof. The condition is
let GcT beopen. Tiren
g Xc € '-t'ak), thus

neI

necessar.v. Suppose that g e 'l'r0r) , and
g Lc € ',LL]rr) for all ,1" e H' . Therefore

rr
J 9 xcdt,, - J I /ccl ! € rptrrt

the sufficierlcr- of the conclition. Suppose that g e '-LLG 4)

lrdi, €sp {p) for ever\- op3r1 set GcT. fn proving
Next we sho\\r

is such that i g

t hat

s € '.LL}r) -
\\-e use an idea due to Thomas [20: pp. 110-

Suppose that y' € *p {p}' is such that

g € :t'r6t) ....- n :ZL{p*,)
x'e A

Suppose that A' € sp {t }' is such that y' C A
tr*'*I,.rc1 such that

1l**ll < oc and y I
:LN

in the norm topology of H' The sequen"" {p4}^.*cc}71"(T) and the
function g satisfy the conditions of Lemme 3.14 of Thomas [20: p. I09],
mentioned above, since

n€I

if ,f e 1{ ,(f ) , and b-,v assumption

1111.

y'eA, then by assumption

c :tL\rr,) .

Then there exists a sequence

\/L
n€N,ä

åi{ e xcd'P.'-t

'll.herefor all open sets G c T . Thus g e:Llr1lrr,)

28
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py : ,Z*r*.
lJo g e :l[1p-,1 for all ,' € .p {pc}' , which proves the theorem.

The next example points out the character of the assumptions of
'Iheorem 2.4.8.

Example 2.4.9. Suppose that the probability space (Q ,7 , P) is
so large that the space Zfr(P) contains a countable orthonormal sequence

{6,},.r, and let T: R. Define a linear mapping p: Ks(R)--->t'fi1P1
by setting

t (f) : 
^Z 

ffP n) - f(2 % + r)) 8,, f e ',Kc(R) .

As in Example 2.4.8 we see that p, is a stochastic measure on rB . Let
j : Li@) ---, L2oe)' be the canonical anti-linear bijection. Denote again
,4 : sp{iG") lzeN}. Then A is dense in sp{p}' (in the norm
topology). As in Example 2.4.7 we see that L eZLGr). Furthermore,

tlfr-r: 0 € -lr{tt't,

but using Lemma 2.-1.4 rve get p'(I) : r. The assumptions of Theorem
2.4.8 are not satisfied. Choose. for example, an opeu set G c R snch
that Gn.\- : {2m n€J}, then jtz"dii.re"p{t"}.

3. Next, we consider the covariance mapping of a stochastic measlrre.
Let p,: ',K"1T l --> L?(P) be a stochastic measure, then its covariance

mapping Q t',Kc€)x',Kc(T) + C,

Qff,s):jrj)lp@)), l, s e ',K"(T),

is a continuous sesquilinear mapping. We make a small modification,
which allows us to interpret the covariance mapping Q as a bimeasure.

Detinition 2.4.10, The coaariance bimeasure of a stochustic mectsure

y, : ',Kr1?1 ---> LZe) i.s the bilinear mapping B : ',)ic(T) y',tir1Z1 - C

rlefinecl, by

B(f,s):0,$) p@», f ,se '.(c(7) .

Our aim is to shorv hou' the integration of a stochastic measure is related
to the integration of its covariance bimeasure.

l'irst we shorv that the integrabilitl- rvith respect to a stochastic measure
implies the integrability with respect to its cor-ariance bimeasure.

Theorem 2.4.17. Let p: ',K"171---, Lie) be cL stochastic me&sure
q,nil, let B be i,ts coaariance bimeasure. If f ,g etlL}r), then the pair
(f ,0) is integrable wi,th respeat to thebimeasure B ancl, B(f ,0) : }rff) 1t"@)).

[,
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Proof. Let f ,S e 4L0r) and let pL (resp. p! ) be the left (resp.
the right) measure defined by B (see Definition 2.3.2). Then

t{Lk!") : 
^rf;"rrirL@(.,h)) 

: 
oril,rroL@(. ,lL)) .

Since f e:ti1p1, we have f e:lL|r",) for all tr' € sp {pr}' , especially

f e:tr"1p",1 for all r': j].r(h)), he',)<c(?) , where j: Li1P1-->Ll1P1'
is the canonical anti-linear bijection. It follows that f e '-LLjÄ), since

Hjtu@)) : B(., 7r), h e',K"(T) Furthermore,

B(.,fi,)(f) : 0,ff) | p(h)) for all h e 
"Kc(T) 

-

Similarly we get g e {LjrLl and B(h,.)@):}r(h) p(S» for all
h e''Kc(f). Thus

B(f , .)01) : (p(f) !(h)) : F;r,u»(h)

and

B( . ,0)(h) : (p(h) p(s)) : #irurr»(h) ,

r,vhen h e'Kc(f ). Since S e t{L]r",) for all r' € sp {/r}' u.e have

0 e '.tL@$,.)). Similarll, f e ttL@(.,s». Furthermore,

B(f ,')@) : r^*t@) : 0r0I t @): pit,<e»ff) : B(. ,il(f),
thus B(/ , s) : 0r$) \ p(s)) .

The converse of Theorern 2.4.L1 is not valid as the following example
shows.

Example 2.4.12. Consider the stochastic me&sure p defined in
Example 2.4.7, i.e.,

t,,(f) : ,Z f{n) €*, I e :Xc(R) ,

rvhere {§,},., c Ltre) is an orthonormal sequence. Let j : Li@)
--> f2o1P)' be the canonical anti-linear bijection. Then

1: sp{j(6")lneN }: { j},(D) iD€',(c(n) }.
Since 1 e'-LLjr-,) for all r' e A , we have

r€ n ttL@(.,1r»: n'-f,17a1n,.y1 .

he Jtc@) he J{c6)

Therefore, I etlL1å) and I e tLL1jB), but r q'-LL@l ,.)), L e
!Zä(B( ., I)) and t e .4Lfu).

Consider then the stochastic measure pr clefinecl in Example 2.4.9, i.e.,

p(f) : ) t/tz n) - l(2 n + r)) t., f e 
"Kc(R),
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where {6,},., c ti1e1 is an orthonormal sequence. As above, we have
t e:{r"11iu1 and t e*i1p!r\. Furthermore, B(L,. ) : B( .,1) :0,
thus the pair (1 ,l) is integrable with respect to B and B(1 ,1):0,
but 1 e={L?r).

The following theorem is an analogue to Theorern 2.4.IL.
Theorem 2.4.73. Let p: ',K"1T) ---> Ltre) be a bound,ed, stochastic

nleasure arud, let B be its coaariance bi,measure. If f ,g erlLjr), tlten
the pair (f , S) is »strongly»» i,ntegrabl,e u;ith respect to B and, B(f , S) :
k ff) I r.t(s)) .

4. Let p: ',K"1?1--->Lie) be a stochastic measure and let B be

its covariance bimeasure. Our aim is to give a (necessary and) sufficient'
conditionforthefunctions f : T-->C and g: T--->C tobe p-integrable,
if the pair (f , S) is integrable with respect to B . IMe have included
these considerations for the sake of completeness. The results in this
subsection are not used in the sequel.

First we make some preliminary considerations.
Let p: ',Kr1T1-> Lie) be a stochastic measure and 1et A be its

covariance mapping. Define a mapping pr: 
"Kr1?1-sp{0} 

by setting

paff) - Q7, f e"K"(T).

The mapping ,&a is liirear, since

Q.v*a(h) : 'L: ,l; uT),r, 
'?S;{,';:1:,'i,'

3I

when N,p e 0 and f ,E
for every compact K c T

ilpaff)ll :

e ')(c(T) . Moreover, pa is continuous, since
there exists an M r, 7 0 such that

ll?rll : lipff)ll < Å1r K sup tf i 3

if f e',)(c(K;T) . Thus pn is a vector measure with values i" .p {0} .

In the follorring prQ is called the r. k. oector measure defined, ba p .

Lemma 2.4.74. Let p : 
"K"1f1---> 

L'oe) be a stochastic rnectsu,re and
tet Q be its coactricrttce mctppittg, then '-!,1"(1t): lL@a) .

Proof. Let f e',.)-(T).then

Ura)' (f ) - stur {ta @)
s..-f

stlp ,P(g),
o {f

where g 4-'Kc(?), which proves the lemma.
The following lemmas show the connection betrveen the r. k. vector

measure p0 , defined by a stochastic measure H , and the covariance
bimeasure B of p.
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Lemma 2.4.75. Let p: K"171--- ti1f1 be a stoclLastic measure anil
let A be ,its couariance mapping. Then the topology o(sp {0},f(sp {0}))
of the space 

"p {0} c ''ll't"(T) , where , : sp {0} * *p {0}' is the canonical
anti-linear bijecti,on, is id,entical, u;ith the toptology o/ sp t0) ind,uced, by the
topology o(91t"(T) ,',K"(T)) of the space ?'|tc(T) .

Proof . The topology o(nil"(T) ,X"(T)) of n11"(T) is the projective
locally convex topology of c)lL"(T) with respect to the mappings u7: c')ltr(T)

-C , u7@): a(f), v e%c(T) , f eKcg) . on the other hand, the
topology o(sp {0} , f(sp {0})) of sp {0} i. the projective locally convex
topology with respect to the mappings a,,: sp{Q}--->C, a,.(0): (0,2') ,

0 e tp {Q} , "'ef(sp {0}) .

Let z' € ,(sp {Q}) , then it can be represented in the form
n

z' : j(\a^Qy*), a^ e C, f* e',K"(T),,nL : 1,...,n.

Suppose thrt ;€ sp {A}, then

(o ,Qr) - o(s),

where

d*f^

Thus u,,(0) : ur(O) , i.e. the semi-norms defining the topologl,-
o(sp {0} , "?(sp {Q})) and the topology of sp {Q} , induced by the topology
o(?11"(T) ,',)i"(T)) of ')lt"(T), are the same.

Lemma 2.4.16. Let p: ',K"171---> LZe) be a stochastic measure and
let Q be its couariance mapping. Denote -4:i(sp {Q)), where j' .p{0}
--- sp {0}' ,is the canonical anti-linear bijecti,on. Then, '..L1"(ir9) : :d1"1p'u1 :
'.tL]rL), where B is the couariuttcebinrcasrtre of p . Afu,nction, f e,.L'"jrL)
is p-i,ntegrableif andorulyif B(.,frde.p{A} for all open sets GcT.

Proof . The statement, '.t-L1rh) :'-LLtpL) is immediate, since

u,hul)@ - B(.,fl@):Etf .st:EG. W:lRfi@)
forall l,ge ''K"(?). Moreover, forafixecl /€',(c(?)

ti,9tflltsl : @a(f))(s) : et@ : B( ., f)@) . s e.tti"(r) .

Therefore t|(f): t;(f) , f e ',Kc(T). Thus, the first part of the lemma
follows by Lemma 2.4.15.

If /€:LL|"L) issuchthat B( .,f Xd €.p{0}, then i'|Ux")€sp{0}.
By assumption this is valid for all open sets G c T , thus by Theorem
2.4.8 f e',tl1po1. By Lemma 2.4.14 :tLko):ttL@), which proves
the lemma.

n\

m:L /

g --= ;
m:L
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For the sake of completeness we collect the above results into a theorem.
Theorem 2.4.77. Let p,:',K"1f1--->Lie) be a stochastic measure and,

let Q be ,its coaariance mapping. Srytpose that the functions f : T '-> C ,

g : T ---> C are such that the pair (f , S) is integrable uith respect to the

coaarianceb,imeasure B of p.Then f , g e :{'rfir) if andonlyif B(.,f xde
.p{0} ancl B(., I Xc)€spt@} for all open sets G c T .

5. Next, rve consider a special way to define a stochastic measure,
Let y : 'Xr1f1-+ C be a Radon measure and let § be a topological

space. We recall that a mapping f : T '--> § is said to be r, -measurable

ifforevery e > 0 andforeverycompact set' K c ? thereexistsacompact
set Krc K, such that lrl(Z.r.o,) { e and the restriction of f to
K, is continuous.

Let a:',K"171 --C be a Radon measure and let r: T--->L',(P)
be a stochastic mapping of T . We call r scalarly r' -measurable (resp.

scalarly a -integrable) if the mapping r,,: T ->C , t",(t): (r(t) ,z') ,

t e T , is r, -measurable (resp. r, -integrable) for all z' e L'(,(P)' .

Suppose that r: T ---> L'zo1P\ is scalarlv v -measurable and that for
all z' e L?r(P)' r,r-e have v'( r,, y"*) < * for all cornpact sets K c T .

Then x,,f €'-Ll"Q,) for all f e"Kr(T) (Bourbaki [5: Ch. 5, pp. 41-42)).
Ler f e',Kc(T). If the mapping j r f da : Li1P1' --- C ,

z' € Lie)'

is continuous, when Lle)' carries the norm topology, then J r f da e

LZe)' - Lie). In the follou,ing we consider f r f dv as an element of
thespace Lie) if Ixfd,aeLZe)'. Supposethat Jrfd,aeLle)
for all f e'Xc(f). If the mapping p: 'X"1T1--- LI(P) , p(f) -
Jrf ila, f e',K"(T), is continuous, we call p lhe stochasti,c measure

d,efined, by r and. v

Lemma 2.4.18. Let pr : ',Kc(T) ---> L'zoe) be a stochastic measure d,efined
by a stochastic ntappittg t' : T - LilP) ancl a Rudol1 meosure, :',Kr(T)
---> C . Then

Us(t)Ur,t* I,or)-

Usdrti ",,,,) -

f rot (.r (/ ) .t'(s ) ) d, (r)) du (s)

for all I , s e *Ltpl .

Proof. Firstwenotethat Jf dp, jgdpeLilPl far all /. ge'-LLUr).
Moreover,

I uO @Q) ,r(s) ) d,u(t), s € T

:13
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Thus

da(s)

3. Z -boundeil anil harmonizable stochastic processes

3.7. Classification of stochastic processes

7. Our aim is to characterize the class of (rveakl1.) continuous
7 -bounded stochastic processes and the elass of hannonizable stochastic
processes.

We begin with the definitions. The clefinition of a tr- -bouncled stochastic
process is due to Bochner [a: p. I8]. Our clefinition cliffers slightlv from
that of Bochner, because r\-e use the t-eak irttegration technique developed
in 2.4.5.

Before stating the clefinition we note that in the follorving the Lebesgue
measureof -B isdenotedb1' rz . Let p e '-tlr(rn), thenitsFourier transform
is denoted [1, 7p , i.e.,

(= p)O : I pel ei,L d,m(t), t e R .

J

Furthermore, in the follorving s'e call a stochastic process r : R ---> Lf,1P1
bound,ed,, if thereexists a lI>0 suchthat llr(t)ll <II forall te&.

Let r : R --- Li1P1 be a bounded scalarly n1, -measutable stochastic
process. Then one gets

U s(t)(r(r) | *(,) ) d,(,)) da@)

l ror)k,,,Urdp [ , or): ff 
,,,,',,0,

i,f *,'h d'm for all z' € L'o(P)' , h € ',){.c(fr) 
,

where M>0 issuchthat llr(l)ll 1M forall te-8. Thusthestochastic
me&sure pr defined by r and ra exists and, ';tLr(m) c lLQr) .

Definition 3.1.1. A bound,ed, scalarly rn -nLeasurable stochastic process
r : R --> Li@) is culled, V -bound,ed, if there erists a constant c ) 0 such that

tlr il
',1 I tpdml I csup J p. for all p e :{tQtt1.tr i.

The definition of a harmonizable stochastic process (or a harmonizable
covariance function) is due to Loöve [13: p. 474]. Note that Loöve considers
stochastic and scalar-valued measures as completely additive set functions.
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Definition 3.1.2. A stochastic process r: R "> LllP) is called, har-
monizable iJ its coaari,ance function can be represented, i,n the form

r(s , f) : v(e"' A e*i'') : n-itoclaQ,r0), s, t € R,

where y i,s abound,ed, Rad,on nleasure on RxR, for which ,ffAi) > 0

for all I e Co@) .

3.2. Z -bounileil stochastic processes

l. We begin with a result which shows that every weakly continuous
7 -bounded stochastic process is the Fourier transform of a boundecl

stochastic measure. The result is analogous to Theorem 2 of Kluvånek [12]'
Theorem 3.2.1. A weaklg cont'inuous stochast'ic process r: R=- Ll1P1

is V -boundecl i,f and, only i,f there erists a bounded stochastic measure p on

R such that

,[ 
n'r^

(3.2. I )

If {r can be represented in tlte form (3.2.1),
Proof. Let n : R ---> L'r(P) b. r,r-eaklv

Define a stochastic measure p" on R bv

r(/) -- .[ n"' it trQ) ,

p.(h) _- 
I.hd,m,,

teR

then it as tmiformlU co?Ltinttotts.

colltinuous anal tr/ -bounclecl.

setting

h € ',Kr(R) .

Since r is 7 -bounded 4L@) c:ZLjr"), and there exists a c ) 0

such that

p-|p)ll < c sup lV ytl for all p e ll(m) .

Define a linear mapping pt: Co(R)---> Lie) by setting p(f): t-(p)
if f e}o@) issuchthat / :1p forsome pe'-t'"1m1. Theclefinition
isuniquesinceforfunctions p,q e/L@) suchthat f :7p:7q,
we have

{t "(p) , z'') (.r(t) , z''; p(t) dm(t)

(r (t) , z' ') q(t) d tn (t ) - ,\lt. (q) , z' ')

for all z' e L2o(P)' , thus p"(p) : t-@) . The mapping p i. linear on the
linearsubspace V(ZL?n)):{f€C.(R) f :Vp, pe4l1m)} of
Co(A) and p: 7 (4r"(m11=- l'01f1 is continuous if 7 1'.{r"1my carries
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the norm topology induced by Co@) . Since L?e) is complete, the
mapping p carr be extended by continuity to a continuous linear mapping
p: Co(R) --- Lf;1P1 , i.e.

Il,a(/)ll < c sup i/l for all f e Co@) .

"Ihus p is a bounded stochastic measure on A . Our aim is to show that
.r is the Fourier transform of p . Let z' e L?e)' and p e:Zi@), then

frr
lr,,pdm (l*pd,m,z') p(Jp),:' lJpdp,.JJJ

: 
{ (f 

"' 
e"ld'rn{t))dP''(i)

: { nlt(l "'^or.a)dm(t)
Thus, by the continuitl' of the functions 2,. and I etL. d,p,,,(l) we get

(r(t), z''2 :, I ei'i ilprQ"), a') for all t e R .

Therefore

.r(t) : I e"i d,p,(),), t e R .

J

Suppcse then that the stochastic process r .. R ---> Ii(P) is such that
it can be represented in the form (3.2.1). Then r is bounded and weaklr-
continuous. lloreover,

t[ *pdnt.=' - [.r" p,tn, [([,','ar,.ti)\p(t)rtm(t)JJ
r_
lJpdp" {,r'(t)(sup 7p) z' , pe,.Lt@t).

J

for all z' e L2o(P)' , thus r is I' -bounclecl.
I{ext we show that r is uuiformlv continuous if it is representable in

the form (3.2.1), where p is a bounclecl stochastic r)teastlre on r? . First
rve note that p, can extended to a ccltiuLloLrs mapping p : Co(R) ---> Lie) .

The mapping ,& is weakly compact, since C'o(A) is a normed space and
1,å(P) is a Hilbert space. Then by Gantmacher's theorem (Dunford and
Schwartz 18: p. a85l) the transpcse p' : L'01P|+ Co(A)' (: .)//å(n) 

)

isweakly compact. Therefore the set {p,,e')ltt"1B) i z'e LZIY, llz'l< I }
is relatively weakly compact. Let e I 0 . Then, by a criterion concerning
weak compactness of sets of bounded Radon measures, due to Grothendieck
(see Thomas [20: Condition 4, p. 174]), there exists a compact set K c R
such that
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rf
J .J

( 
",a'(r) llz'll | 2 e,

if is - I I is small enough, thus z is uniformly continuous.
Remark 3.2.2. There exist Z -bounded stochastic processes r: R,

--- Lle) which are not (weakly) continuous. Consider, for example. the
process tr,

1fi,'i(Xo\ r()

Let s,t €A and ilz'it

(r(r) - 'il(t) 
, e"i) clp,,(2)

j

for all

Then

I (,'r^

x(t): 0, t+0, r(0) : 5,

where tet-ie),,6i:r.
Definition 3.2.3. Let ;L' : R - Li1P7 be a (ueakly) continuous

V -bounded stochastic process. Then tlte botutcled stochasti,c ntec:,sure p, appear-
ing in (3.2.1) is called the spectrctl nteesure of *" .

Remark 3.2.4. The spectral measru'e of a (weakh-) continuous
7 -bounded stochastic process is unique.

2. The following characterization of (rveakly) continuous 7 -bounclecl

stochastic processes is similar to the definition of harmonizable stochastic
processes.

First we give a preliminary result.
Corollary 3.2.5. A bound,ed scalaily m -trueasurable stochast'ic Ttrocess

is V -bound,ed, i,f and, only if its couari,ance function r satisfies the conditi,on

I ral (f ,r . t) tt(t) d*a)) rtm(,)' 
, 
( c sup E trt s,,p 'rt q

Jor all 'p , (t e '-Lt 1m) . Jor some c > 0 .

Proof . Suppose that .r' is I'-bounclecl. then

i(l 
.rd* I.s't*)',, 1''oo'' l''aa"' <cslr,7p strp rq'

for all ?,8 e :ti@), for some c ) 0. Jloreoler. b.r' Lemma 2.4.18

(l "n d*|{ "ro*) : I nat(l,u . tt qota,,r*r) dm@) .

which proves the first part of the lemma. The seconcl part of the lemma
is immediate.
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Theorem 3.2.6. A bownd,ed, wealcl,y continuous stochastic process x: R
---> Lie) is V -bound,ed, if and, onlg if there erists u bound,ed, bi,measure

B on RxR such that B(f ,i) t 0 for all f e Co(R) , the pair ("'"' , r-"')
is»>strongl,g»>integrablewi,threspectto B forall, s, teR,andthecouariance
function r of r cun be representeil in the Jorm

r(s,t) : B(ei"' ,e-"'), s, t e R '

Proof. Suppose lhat r is weakly continuous and Z -bounded, then
b5, Theorem 3.2.1 there exists a bounded stochastic measure ,r,c on -B such
that

n(t) :-': teR

Let B be the covariance bimeasure of p, , then B(/ , f) : }tU) i p(/)) 2 O

for all f e C o@) , and by Theorem 2.1.13 the pair ("t"' , "-"') is »strongly»
integrable with respect to .B and

r(s , t) -i U e"' d,p
\

/

f n"^ d p(1) ,

| ,,,, (/ rG ,t) N ctm(t) ,rz(s)

r(s , » q|l clm(r)) d,m(s)
I

Corrversely, if r is rveaklr continuous and r(s , t) : B(ei'' , e-i'') ,

s, l€J?,where B isaboundeclbimeasureon -Bx.E suchthat B(f ,f)>O
for all f e Co@). Then

: lB(f p ,:' ql 
,

i'J pl sup i3 ql ,

- { ,(', (/ Trc" , e-") N ct,t(,)) ,}z(s)

: 
{ U 

p@) n" ctnt(sl) ar1 ,i ,r) - BF p ,1q) ,

thrrsthereexistsa c> 0 suchthat

since B is bound.ed. The theorem then

F,q e lL(*),
fbllorvs by Corollar.\' 3. 2.5.

3. Next we consider a stochastic process constructed bv von Bahr [3].
He uses it to show that there exist bounded and contiuuous stochastic
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processes which are not harmonizable. The same example can be used to
show that the class of bounded and continuous stochastic processes is
strictly larger than that ofthe continuous Z -bounded stochastic processes.

Example 3.2.7. Let €eLie), llfll : l. Defineafunction f : R--->R
by setting

* sinnt
f@ : Zr"r"*, t e R.

The series is uniformly convergent and / is bounded and continuous
(Zygmund 122: pp.I82-f 831). Define a stochastic process r: R--- L'zo(P1

by setting n(t): f(t)€, f €-B, then r is bounded and continuous.
Let us show that r is not Z -bounded. If r were Z -bounded, there
would exist a unique bounded Radon measure ,, on -E such that

(r(t) til : f@ : I et'A d,vQ), t e R.
J

Moreover, let g e Zrc@) be continuous and such that :l g e t{Lc1m1 .

Then by Parseval's formula

f L f sin(-nf)
J o@ d,u^(r) : , " J G il{t) 

"1rr; 
dm(t) ,

where

1

rn : .z ,, i lr* (å" - ä-")

(d, is the Dirac measure. i.e. ö^(g): g(n). g e ',)<c(R) ), since

ri\ry|
nlog n

§uppose that supp
(and since the order

f

(J g) is cornpact. Therl. usilrg again Parser-al's formula
of the integration allcl the stlrlll]]trtion car] lre changecl)

I nW) da(x) : 1

2" (J s)A)fe t) itm(t)

sin (- n /)
g)(t) ,t-- dmo: 2,*_[ ,-

Therefore
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thus y cannot be bounded. This proves that r is not Z -bounded.

?'(1 )

Pl

3.3. Harmonizable stochastic processes

1. Our aim is to show first that every harmonizable stochastic process
is Z -bounded. Then we shall give a characterization of harmonizable
stochastic processes which is related to the definition of Z -bounded
stochastic processes. After that we shall construct an example of a con-
tinous and tr/ -bounded stochastic process rvhich is not harmonizable.

Corollary 3.3.1. Eaery harmonizable stochustic process is '[' -bound,ed

and. continuous.
Proof . Let t' : R --- L')o1P) be a harmonizable stochastic process.

Then the covariance function r of r can be represented in the form

r(s,t) : f ,'"' r-uu du(),,0), s, t e R,
J

where z is a bounded Radon measure on -BxrB, for which y(f & i) > 0,
when f e Co@). Since z is bounded, r is bounded and continuous.
Thus, r is bounded and b5, Lemma 1.1.2 continuous. By the continuity
of r we gei

r) p(s) q(t) d(m E, m)(s , t)

r- ,J -'p()')

for all p,g e :tL@).
Theorem 3,3.2. Let

.tr as harrnoniza,ble i,f and,

f ,t,l (/,t, . t) ,to n,,a)) drn(s) - f ,o

{f ;1, pk rlnt'i f x Qr" d-,)

\.

'' e-ittt ;\r(i, . 0)l p(s) q (t) cl(m '3 //r)(s . /)
I

I q1q ctaQ. , A)
)

J pI sup ,J,1 ,

Thus, the corollarr- follou-s br- C'orollary 3.2.4.
r: : R --- L'r(P) be bourtclecl and contdytuo?es. Th,e'n

rr

i Ä.: 1

or equi,aelently

n

l..o€R ,r...1

_1
-t q*(o)i

I



IIaxxu Nrpryn

ln

l>
I Ic:1 [ ,O ,t) p*(s) qk|) d(m E m)(s , t)

(3.3. 1')

for alt pr, , gr" e *l(m,) ,

functi,on ,f n .

Proof . The equivalence of the conditions (3. 3. I ) and (3. 3. l') is immediate,

since (7 q)(- 1) : (-. dM) for all I € -E and q e'-,t[@) .

Suppose Lhat r is harmonizable, then the covariance function r of
fr carr be represented in the form

k

n pr, ,1,,r" [ ., n d,,r), :

'r) is a
n /f

-), (J

t:
c sup i ) --t pr(D'J Ir,(- 0)

i,oenj t:r

r(s,t) - [n"^r-itoitaQ,,0), s,t € R,
J

bounded Radon measure on Ax R . Iforeover,

:- f - 

- 

I

Z, J J pr(D J qr(o) d,(1 , o) 
I

/

\l'' rr € R
å r p^(i) .r q-(o)l)
Ä-,1 il

- 1 , .. . , % , % e Å- , wltere r is the couctr'ia,nce

forall p*,g*e-=ti1m1 ,lt: I,...,n, ne N, u,hichprovesthefirst
part of the theorem.

Suppose then that a bounded and continuous stochastic process

x: R ---> Lf,1P) satisfies the inequality (3.3.1'). Set I 1'-ti1m11 :
{f e Co@)l f :7p for some ,pe:(,11m1y. Defineabilinearmapping
y" : I t:lL@,)) y 7 1'-tt"(m)) --- C by setting

where

for f ,g
s-Jq
of y"(f ,

thus

is colrtinuous, \4.hel1

Or(A) . Let

e Co(A) to u-hich there exist p , I e '-LL(rr) such that
; here \\:e have u.ritten iU") - g(- ).) , )" € A . The
gl is unique. ]Ioreover,

ir.ff ,7)l - lf r(s , t) p(r) q (t) ctQn a rz)(s , t),
j

i,oeR

f-Jp,
clefinition

'J §Ll(m))x 7 f.t"(*)) * C

fLb(*)) carries the norm topologv inducecl tr.v

y*:

7

4L
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i'*, ? 6tL(*)) 6 7 1:li@)) * C

be the unique linear mapping defined by the bilinear mapping v* for
rvhich i-(f 8 g): v"(f ,g), f ,g e :t fLL(nx)) ' The inequality (3.3.1')
implies that V is continuous, when the space 1t GZL@I)) 17 F$(nx))
carries the norm topology induced. by Co(.Ex-B) . Furthermore, the
space 7 §l[(m)) 6'J 1:tilm)) is dense in Co(ExA) , since C0(,8) I C,(-B)

is dense in Co(RxR) and since - (rtL(nx)) is dense in Co(A) . Thus
the mapping i" : J (lL(nx)) @:t ('-tL(m)) * C can be extended by conti-
nuity to a continuous linear mapping a: Co(R x-B) + C . X'urthermore,

f f _
I r(s,t) p(s) q(t) d(m & m)(s,t) : I',' p(^) J q(-0) tu,Q.,0)

JJ

- { ro 
^r(l 

eisi' e-i'o d'(^ ,o))d?n @ m)(s ,t) ,

for all p,q e lL(*). Thus b,1. the continuitl, of the functions r ancl

J eit' 
"-io' 

daQ. , 0) rve get,

J

Iloreover, let f -7p, petL'r(*);
leB,weget

(s, f) € RxR

t) p(t) pO d(* §i m)(s , t)

clm,

thus y(S I S) > 0 for all g e Cr@), rvhich proves the theorem.
The following characterization is a direct conseqlrence of Theorem 3.3.2

and Remark 2.3.7 -

Theorem 3.3.3. A (weakly) contittttotts li -bou,nclecl stochctstic process

:r : R ---> L!(P) is harmoni,zable if ancl only if the coutri«ttce bimectsure of
the spectral, nl,eo,sure of r can be ertended to « botutded Rcrclou, ntectsure orL

RxR .

2. The following example shou's that the class of all continuous
Z -bounded stochastic processes is strictl5' larger than the class of all
harmonizable stochastic processes. The example is a modification of an
example due to Edwards [9: pp. 93-94].

Example 3.3.4. We construct a bouncled stochastic measure p on

-E having the property that its covariance bimeasure cannot be extended
to a bounded Radon measure on -Bx.B. Thus the X'ourier transform

1'(f E /) : 
.[ ,*, ,

= uxp
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of p is a continuous Z -bounded. stochastic process which is not har-

monizable.
Let (O ,7 , P) be a probability space. Denote by Ltr@)"" the

real Hilbert space of all real-valued stochastic variables 4 defined on
(Q ,7 , P) such that,

(3.3.2) E€:0 and El€l'< oo,

and denote, as usual, by Li@) the complex Hilbert space of all complex-
valued stochastic variables 6 defined on (O,J ,P) satisfying (3'3.2).

Suppose that the probability space (Q ,7 , P) is such that, L?(P)".
is separable and infinite dimensional.

Edwards [9: pp. 93-94] has shown that there exist real numbers
cmn) nl,,n e N andaconstant, llI>0 suchthat

and.

(3.3.1)

forallfinite J, KcÅ'
keK.fnfact

cti bn Qr,

cno : Tn llog (n + L)l'' n e I'{'

sinln (m - n) l2)cmn: 1*-ry;ffi*;r[*("+r) , rnt'tL, ttl, n € ']r

As in the case considered bv Edwards, there exists a sequence

"{,*,},e r c L'o(P)o"

such that
(x",, ', )'n) 

- 
c,,rn

Define a stochastic meastlre p :

neI

Using (3.3.4) we see that p is boundecl . Furtherrnore, b5r (3.3.3) the
covariance bimeasure of pl cannot be extettded to a bounded Radon
measure on RxR. Thus the stochastic process r: R ---> Llg) ,

't:(t) --.: ei'i' d p,(7) t e R,

I

;;LL
') ieJ IceK

, \\rhere

ttl, n € J-.

'(.(A) + L;IP) bl- setting

f € 
"'(..(fr)

f
d,-bound,eis continuous and V but not harmonizable.
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3.4. Approximation of continuous Z -bounileil stochastic processes

l. In this section rve shall consider a method of approximating a
continuous Z -bounded stochastic process by a sequence of harmonizable
stochastic processes. X'or another method. of approximating an arbitrary
continuous and bounded stochastic process by a sequence of harmonizable
stochastic processes see .rron Bahr [3].

Theorem 3.4.1. Let r : R --> L2o1P1 be a conti,nuous V -bou,nd,ed,

stochast'ic process. Then there exists q, sequence x,: R -> LZe) , n e N ,

of harmon'izable stochasti,c processes such that

r(t):1;1;""@, teR,
uni,formlg on eaery comgtact set K c R .

Proof. Let r Tte a continuous Z -bounded stochastic process, By
Theorem 3.2.1 there exists a bounded stochastic measure p on R such that

Since r is continuous the space rp {,r} is, bv Lemma 1.1.3, separable.
Let {6,}*.^ c sp {"} be an olthonormal basis of .p {r'}, then

r(t): z@ttl"Er)€|, t e R.
,4€If

Denote

r"(t) : it"6 l€)En, t € R, n e N.

Then the process rn: R --> Ltre) is bounded and continuous for every
n e N. Iforeover

where
n

P"(f):Z,tu{fllf*) 6u, f €:(c(A) ,n €l-,
The stochastic processes xn: R---> L'oe), l € I, are harmonizable,
since the stochastic measures pn are bouncled, anrl since for everv n e l{
the covariance bimeasute 8",

B,(f ,s):2kff)jEt")@@)lix), f , s e 
"K"(R),

of p* can be "*r"t#to a bounded" Radon measure on -Ex-E.

r*(t) __ f n"^rlp,U,), t e R,
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Let Kc R be a compact set, then the set {"(t) I t e K} c .p{r}
is compact. Thus by the approximation property of the space *p {*}
(see L2.3 or Theorem 1.2.4)

n(t) : 
113""(,)

uniformly on K .

Corollary 3.4.2. Let r be a continuous V -bound,ed stochastic process
arul, let r be the coaari,ance functi,on of r . ?hen there erists a sequence
ro: R ---> L\e) , n e I{ , of harmoni,zable stochastic processes suclt, that

r(s,t) : llr^(s,t)
uniformly on eaery set KxR (o, RxI{ ), where K c R is compact
and, ro is the couari,ance function of x,, n e l{ .

Proof. The corollary is a clirect consequence of Theorem 3.4.1 and
Theorem 1.2.4.

IJniversity of Helsinki
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SF-00100 Helsinki 10
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