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Introduetion

The spectral properties of wide-sense stationary stochastic processes
x(t), t € R, have been extensively studied. It is well-known that every
wide-sense stationary stochastic process is the Fourier transform of
a bounded stochastic measure on R with uncorrelated values for disjoint
Borel sets of R (see e.g. Karhunen [11] or Loéve [13: p. 482]).

Several generalizations of the class of wide-sense stationary stochastic
processes have been presented in literature. Loéve [13: p. 474] has intro-
duced the class of harmonizable stochastic processes. Loéve showed that
the boundedness and the continuity of a stochastic process are necessary
conditions for its harmonizability. He brought up the question of the
sufficiency of these conditions and the supplementary conditions possibly
required for the harmonizability of a stochastic process [13: p. 477].
Harmonizable stochastic processes were also studied by Cramér [6]. Bochner
[4: p. 18] introduced another generalization, the class of V -bounded
stochastic processes. Bochner proved that every harmonizable stochastic
process is ¥V -bounded. One can ask whether every continuous (and
bounded) V -bounded stochastic process is harmonizable. Moreover,
Rozanov [18] studied stochastic processes which are Fourier transforms
of bounded stochastic measures, and called them harmonizable. In the
above papers all stochastic and scalar-valued measures are treated as
completely additive set functions.

In his recent extensive paper Thomas [20] considered vector measures
as Radon measures with values in a topological vector space. The same
starting point is also used in his later paper [21] on some related topics.
His former study gave us many of the basic ideas for this paper; results
proved there will frequently be used by us.

In this paper we shall consider stochastic measures as Radon measures
with values in a linear space of stochastic variables. In chapter 2 we
develop the integration theory of such stochastic measures. We shall
also consider the so called covariance bimeasures of stochastic measures
and their integration. In studying these covariance bimeasures we shall
use the connection between stochastic mappings and reproducing kernel
Hilbert spaces. A short review of this connection is given in chapter 1.

In chapter 3 we give a modified definition of a 1 -bounded stochastic
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process and of a harmonizable stochastic process, based on the use of Radon
measures. Then we show that a stochastic process xz(t), ¢ € R, is the
Fourier transform of a bounded stochastic measure if and only if it is
V -bounded and weakly continuous. von Bahr [3] has recently constructed
an example of a non-harmonizable bounded and continuous stochastic
process. We shall use this example to show that there exist continuous
and bounded stochastic processes which are not V -bounded.

Furthermore, we shall give a characterization of harmonizable stochastic
processes. Modifying an example, due to Edwards [9], we show that there
exist continuous (and bounded) V -bounded stochastic processes which
are not harmonizable. At the end of the paper we shall give a method
of approximating a continuous V -bounded stochastic process by a sequence
of harmonizable stochastic processes.

Our results concerning the constructed examples are also valid if harmo-
nizable and V -bounded stochastic processes are defined as in Loéve
[13: p. 474] and in Bochner [4: p. 18].

Note added in proof: We learned quite recently that Gladyshev [10]
has already in 1961 constructed examples of bounded and continuous
non-harmonizable stochastic processes. These examples are very similar
to those constructed by von Bahr and the author.

1. Stochastic mappings and reproducing kernel Hilbert spaces
1.1. Stochastic mappings

1. In the following we shall consider complex-valued random variables
which are defined on a fixed probability space and which have finite second
order moments and zero mean value. Let us first introduce the space of
all such random variables and its Hilbert space structure.

Let (2,7 ,P) be a fixed probability space. ie., Q is a set. [
a o -algebra of subsets of 2 and P is a completely additive nonnegative
set function on 7 such that P(2) = 1. The complex vector space
of all complex-valued random variables $ defined on (2..7.P) is
denoted by <L(Q,7F).

Let £ €<£(Q,7) be a random variable. Its mean value is defined

by the relation
K& = /Re&dP%/ImE(ZP,

if the right hand side is well-defined.
The set

is
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LAQ,T,P) = {(€LQ,T)| B < o}
is a linear subspace of <£(Q, 7). The relation
(1.1.1) & ~ & if Plo€Q2] §o) = &)} =1,

£, & €L2Q,7,P), is an equivalence relation in the space “L3(Q,%, P).
The quotient space of <£2(Q,7,P) with respect to the equivalence
relation defined in (1.1.1) is denoted by L*Q, Y, P). In the following
we use the same notation for an equivalence class & € L¥(Q, 7, P) and
for its arbitrary representative & € <L2(Q,.,P), if no confusion is
possible.

The space L2(2,7,P) is a Hilbert space if the inner product of
& ,& €LXQ,7,P) is defined by the relation

(1.1.2) (51 52) = F 51 5_2 s

where 22 is the complex conjugate of &, , and the normof & € L} 2,7, P)
is
el = (& 18,

On the right hand side of (1.1.2), & and &, are arbitrary representatives
of & and & . The definition (1.1.2) is independent of the choice of the
representatives.

As usual, we consider only random variables & € <£(2,") for which
E&=0. We denote

LAP) = I3(Q,7,P) — {E€IXQ,7,P)| BE=0}.

The space ILi(P) is a closed linear subspace of L*Q,7,P). Unless
otherwise stated, the topology of Lg(P) is the norm topology.

2. In this paper we consider stochastic processes as mappings from
a parameter set 7T into the space Lg(P). In the following we use the
term stochastic process only when the parameter set is R, i.e. the set of
all real numbers, and the term stochastic mapping in the case of a more
general space. In our applications the parameter set is either R or a func-
tion space.

Next we give some general definitions. Before stating the definition
we remark that in this paper the set of all positive integers is denoted by
N and the set of all complex numbers is denoted by C'.

Definition 1.1.1. A stochastic mapping of « set T is a mapping
x: T — LXP) and its covariance mapping is the mapping r: TXT —C,

r(s,t) = (x(s) | z(t)), s, t €T.
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Let I be a topological vector space and let 4 € F. Troughout the
paper we denote by sp {4} the linear subspace of F , spanned by the set
A and by sp{A} the closure of the space sp{A}.

Let T beasetandlet 2 be astochastic mapping of 7' . In the following
we use the notation

sp{a} = sp{a®t)| t€T}

and denote the closure of sp{x} by sp{x} and call it the Hilbert space
spanned by x .

3. Let 7T be a topological space and let & be a stochastic mapping
of T'. We call © continuous (resp. weakly continuous) if the mapping
w: T — Li(P) is continuous, when Li(P) carries its norm topology
(resp. weak topology).

The following results are direct consequences of the above definitions.
They can be found in many studies. We refer to Karhunen [11: pp. 27—28].

Lemma 1.1.2. Let T be a topological space. A stochastic mapping
of T 1is continuous if and only if its covariance mapping r 1is continuous
at all diagonal points (t,t) €T XT . If r is continuous at all diagonal
points (t, 1) €T XT , then it is everywhere continuous.

Lemma 1.1.38. Let T be a separable topological space and let x be
a continuous stochastic mapping of T . Then the space sp {x} is separable.

1.2. Reproducing kernel Hilbert spaces

1. The use of reproducing kernel Hilbert spaces in studying stochastie
processes or mappings is nowadayvs a well-known method. An extensive
presentation of this method is given for example by Parzen [17: pp. 251 —
382]. Our aim is to give a short review of the connection between repro-
ducing kernel Hilbert spaces and stochastic mappings in section 1.3, and
in 2.4 to use this connection in studyving stochastic measures and their
covariance mappings.

Here we give the definition of a reproducing kernel Hilbert space and
also give some of their basic properties. For further results see Aronszajn
[2] or Meschkowski [14].

Definition 1.2.1. Let E be an arbitrary set. and let H be a Hilbert space
of mappings f: B — C . Thespace H iscalled a reproducing kernel Hilbert
space on B or in short an r. k. Hilbert space on E | if there exists a mapping
K:ExE—C such that

(1) K, € H (K(s)=K(s,t),s,t€E) forall t € F,

(ii) f&ty = (f| K), t € B, forall f € H.
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A mapping K : EXE — C which satisfies the conditions (i) and (i)
of this definition is called a reproducing kernel of the space H .
An r. k. Hilbert space has one and only one reproducing kernel
(Aronszajn [2: p. 343]).

2. Next we give some results concerning the continuity properties
of the functions of an r. k. Hilbert space.

Let H be an r. k. Hilbert space on a topological space E and let
f€H, then

Ss) =[O = [(f I K — K =< [fi Ki— K, . t € B,

where K is the reproducing kernel of H . Thus the continuity of the
mapping g B —H, i) = K,, t € £, implies the continuity of f.
For later use we state this result as a lemma.

Lemma 1.2.2. Let H be an r. k. Hilbert space on a topological
space E and let K be the reproducing kernel of H . If the mapping
i B—H, 1(t)=K,, t€E. is continuous, then all functions f € H
are continuous.

The next result is an analogue to Lemma 1.1.2.

Lemma 1.2.3. Let H be an r. k. Hilbert space on a topological space
E and let K be its reproducing kernel. The mapping iy : B — H , ix(t) =
K,, t€E , is continuous if and only if K is continuous at all diagonal
points (t,t) € EXE . If K is continuous at diagona! points (¢ ,t) €E EXE,
then K s everywhere continuous.

Proof. The proof is a repetition of the proof of Lemma 1.1.2.

3. The rest of this section is devoted to a generalization of a theorem
by Mercer (see Neveu [16: p. 42—43]). Let H be an r. k. Hilbert space
on a topological space E and let K be its reproducing kernel.
Let f,€ H, ~ €. be an orthonormal basis of the Hilbert space H .
We note, that

(1.2.1) K(s. t) = (K, K) = > [fus)fit), s, t €F.

x€I
Mercer’s theorem states that if A is continuous. then the series (1.2.1)
converges uniformly on every set S .5, where SCE is compact.

In the proof of our generalization we use the approximation propearty
of the Hilbert space H .

We recall that a locally convex topological vector space F is said to
have the approximation property, if the identity operator e of F can
be approximated uniformly on every precompact set in F by continuous
linear operators of finite rank.
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Every Hilbert space has the approximation property. First we note
that in a Hilbert space precompact and relatively compact sets are the
same, thus it suffices to consider compact sets. Let H be a Hilbert
space and let xz, € H, x €1, be an orthonormal basis of H . Then

o= (x| ay) a,, r € H.

ax€l

Let J c I be finite. Denote

then the operators e, , J C I, .J is finite, are of finite rank, and converge
uniformly to e on every compact subset of H, the limit being taken
with respect to the filtering increasing family of finite subsets of I
(Schaefer [19: p. 108]).

Next we give the generalization of Mercer’s theorem.

Theorem 1.2.4. Let H be an r. k. Hilbert space on a set E and let
K be its reproducing kernel. Let f, € H, ~x €1, be an orthonormal basis
of H . Then the representation

-K(Sat) = Z fa(s)f;x(t)a s, t € E,

a €I

converges uniformly on every set AXBC EXE, for which ig(d) is
a bounded set and ix(B) is a compact set of H , where iy: E—H s
defined by ix(t) = K,, t€L .

Proof. Denote again

ef) = 2 (fIffe,  f €M,
x€J
when J C I is finite. Let ¢> 0. Since i (B) is compact in H the
approximation property of H implies that there exists a finite J,C I
such that

HeJ(Kt) — K| = Z LBy — K, < e. t € B.

xE€J

for all finite J < I such that J,c .J. Since ((4d) is bounded, we get

| reJ i

I

< K-> fO0f K, < e(sup ..Ks),

aeJ s€A

when s€4, t€B, for every finite J C I such that J,C J, which
proves the theorem.
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1.3. Stochastic mappings and r. k. Hilbert spaces

1. The following theorem gives the connection between r. k. Hilbert
spaces and mappings from an arbitrary set into an inner product space.

Theorem 1.8.1. Let H be an inner product space and let E be a set.
Then for every mapping i: E — H there exists a unique r. k. Hilbert space
H(K) on E such that the mapping K: ExXE—-C, K(s,t)=
(¢(s) | e(t), s, t€EE, is the reproducing kernel of the space H(K) .
The spaces H(K) and the strong dual of sp {i(E)} are isometrically isomorphic.

Proof. Let M be the completion of the linear subspace sp {i(%)}
of H,then M is a Hilbert space. Let M’ be the dual of M equipped
with the norm topology, then there exists an isometric anti-linear bijection
Jj: M — M. The space M’ is a Hilbert space if the inner product is
defined by the relation

@ y) = Gy JU). ¥,y € M.
Let o’ € M’ . we define a mapping 2’ : E—(C by setting
';/(8) — Z’(S’) . .’l'/’\‘ . S e E .

where {i(s),x’> is the value of 2" € M’ at i(s) € M . We show that
the linear space H(K) = {2’ | «' € M’} is an r.k. Hilbert space with
K as its reproducing kernel.

Define a mapping h: M’ — H(K) by setting h(x’) =2, 2’ €M .
The mapping % is linear and well-defined. Furthermore, % is injective.
Let a' ,y €M', ' #y'; since M = sp{i(E)}, there exists at least
one s €K, such that <i(s),a") = (i(s),y’y, thus 2’ #44'. The
mapping h is onto, since by definition H(K) = h(M'), thus % is a bijec-
tion.

Define a mapping By : H(K) < H(K)— C' by setting

BuE . §) = (& P = WF) I RG), ¥, § € HE),
then By isaninner product of H(K) and % isan inner product preserving
bijection. Therefore the space H(K) . equipped with the topology induced
by the inner product By . is a Hilbert space, which is isometrically iso-
morphic to the space /"

Next we show that the space H(A) is an r.k. Hilbert space on E .
First we note that the elements of H(K) are complex-valued mappings

defined on K . Set I;’,' = h(j(i(t))), t € E, then for every s € F
K(s) = K(s,t) = (i(s) i(t)) = <i(s).j(i())> = K(s).

thus K, = ];,' , so K, € H(K) for every t € E. Furthermore, for every
x' € H(K) we have
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T = ), 2 = @) = @K = @ Kk
t €E, since K, = K, . Thus K is the reproducing kernel of the space
H(K) .

The space H(K) is the only r. k. Hilbert space on E with A as its
reproducing kernel as the values of every element of such an r. k. Hilbert
space are uniquely determined in all points of £ by the reproducing
property.

The space H(K) is isometrically isomorphic to the strong dual of the
space sp {i(#£)}, since it is isometrically isomorphic to the strong dual
of the completion M of sp {¢(£)}. The proof of the theorem is complete.

2. Next we consider the connection between positive definite functions
and r. k. Hilbert spaces.

Definition 1.3.2. Let E be a set. 4 mapping K: ExE —( s
called positive definite, if

> 2aia Kt ) = 0
j=1 ko1
forall n€N, €L, ; €C, j=1,...,n.

The next results are immediate.

Corollary 1.3.3. Let K be the reproducing kernel of an r. k. Hillert
space. Then K is positive definite.

Corollary 1.3.4. Let r be the covariance mapping of « stochastic
mapping. Then r is positive definite.

Aronszajn [1] has shown that the converse of (‘orollary 1.3.3 is also
true. i.e., for a given positive definite mapping K : E - E — ¢ . where
E is an arbitrary set, there exists a unique r. k. Hilbert space =p ' K|
on E , such that K is the reproducing kernel of the space =<p !A ;. The
space sp {K} is called the r. k. Hilbert space spanned by K and it consists
of the linear space sp{A} = sp{A, t€E | and of functions. which
are pointwise limits of the Cauchy sequences of the functions of the space
sp{K}. We state this result as a theorem and vive a proof which shows
that the result is a consequence of Theorem 1.3.1.

Theorem 1.8.5. Let E be a set and let K :E - E — (" be a positive
definite mapping. Then there evists « unique r. k. Hilbert space sp (K}
on K, such that K 1is the reproducing kernel of the space sp{K|. The
space sp {K} consists of the space sp{K} = sp! K, t€E | and the
porntwise limits of the Cauchy sequences (in the norm topology) of sp {K} .

Proof. Denote by sp{K} the linear space spanned by the set
{K., t€E}. The space sp{K} is an inner product space with the
inner product defined by the relation
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for f,g9 €sp{K}.

The proof of this fact is a repetition of the proof given by Aronszajn
(1: pp. 143—145]. Define a mapping ¢: E —sp{K}, by setting
i(s) = K,, s€E. Then K(s,t) = (i(s) i(t))z. Thus, the mappings
i: B —sp{K} and K satisfy the conditions of Theorem 1.3.1, which
proves the first part of the theorem. Denote sp {K} = H(K) (see Theorem
1.3.1).

The second part of the theorem follows from the fact that sp {K} is
dense in sp {K} and from the inequality

fm(s) _f'(s) = (fm _“fn : ]{s)1 S “\fm T nti :‘Ks\‘} P €K )

when f.,f. €sp{K}.

Remark 1.3.6. Let H be an mner product space and let £ be a set.
Let i: E— H be a mapping. Then the mapping K: ExE —C,
K(s,t) = (i(s) | i(t)), t € E, is positive definite. Let sp {K} bz the r. k.
Hilbert space spanned by K . By Theorem 1.3.1 there exists a unique r. k.
Hilbert space H(K) on K, for which K 1is the reproducing kernel. It
follows that sp{K} = H(K), since K is the reproducing kernzl also
of the space sp {K}.

2. Stochastic measures

In this paper we shall cousider stochastic measures as vector measures
taking values in the space Li(P). We shall define a vector measure as
a continuous linear mapping from a suitable function space into a topological
vector space. We shall use the integration theory of vector measures given
by Thomas [20]. It is closely related to the one given by Bourbaki
[5: Ch. 6, § 2]. In fact. in the case of a stochastic measure the integrable
functions are the same. We prefer Thomas’s integration theory, because
we want to show how the integration of a stochastic measure is related to the
integration of its covariance mapping, when the covariance mapping is
interpreted as a bimeasure.

We note that one very often defines a vector measure as a compietely
additive vector-valued set function, defined on an o -algebra or a o -ring
of subsets of a space S (see for example Dinculeanu [7]).

In the works of Karhunen [11], Loéve [13], Cramér [6], Bochner [4]
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and Rozanov [18], mentioned in the Introduction, a stochastic measure
is defined as a completely additive set function taking values in the space
Li(P) .

Our aim is first to give the definition of a vector measure and of the
integral with respect to it. Then we collect some general results about
vector measures. After that we consider vector measures taking values
in a Hilbert space. In our applications the Hilbert space is either the
space Li(P) or an r. k. Hilbert space. As noted above, in the first case
the vector measure is called a stochastic measure. In section 2.3 we
introduce the notion of a bimeasure. The rest of chapter 2 is devoted to
stochastic measures and to their covariance mappings.

We begin with a short review of complex Radon measures. The
integration of complex Radon measures is similar to the integration of
vector measures taking values in a normed space. We consider only the
latter case. TFor reference on the complex-valued case see Bourbaki
[5: Ch. 3—5].

Note that in this paper we consider essential integrals and we use the
same terminology as Thomas, that is, we use the terms integral and integrable.
when Bourbaki uses the terms essential integral and essentially integrable.

2.1. On Radon measures

1. Al results given here are proved in Bourbaki [5: Ch. 3]. Let T
be a fixed locally compact Hausdortf space. By ‘X (T) we denote the
vector space of all continuous mappings f: 7 — (', for which the support
of f. supp(f). is compact. Let A € T be compact. Set

KT :K) = {f€XKT) supp(f)c K .

then the spaces ‘X (7' ; K) are Banach spaces if the topology is defined by
the supremum norm. The topology of N (T) iz the inductive limit of
spaces ‘Ko(T; K) relative to the canonical injections j,: No(T :K)
—KT), KcT, K compact. We recall that the space K T) is
barreled.

2. In the following the dual of N(7T) is denoted by “/{(T) and
its elements are called complex Radon measures on T or in short Radon meas-
ures, if no confusion with respect to the domain is possible. A Radon meas-
ure p is real valued if it coincides with its complex conjugate, that is if u(f)
= w (f) forall f€ 'K (T). Areal valued Radon measure is positive if u(f) >
0 for all f€K(T), f > 0. The absolute value of a Radon measure p is
the positive Radon measure |u|, for which
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wl(f) = sup ju(g)|,  where g €'X¢(T),

gl =f
for f €K (T), f > 0. Wenote that |u(f)| < |u|(|f]) for all fe€ X (T),
when u € N (T) .

The elements of the dual of ‘K (T), when the space ‘K (T) carries
the topology defined by the supremum norm, are called bounded Radon
measures on. T . In the following “V(T) denotes the space of all bounded
Radon measures on 7.

Let Gc T be open, then G is, as a topological subspace of T,
a locally compact Hausdorff space. We may identify the space K (G)
with a linear subspace of ‘K¢(7'). Let u € NI (T), then the restriction
of u to ‘K (G) is an element of N (G).

2.2. On vector measures

1. :As mentioned above, we begin this section by giving the definition
of a vector measure and of the integral with respect to it. Ours is an obvious
generalization of the definition given by Thomas [20], who had the scalar
field R . In the following the scalar field of the topological vector spaces
in which the vector measures take their values is C'.

Let T be a fixed locally compact Hausdorff space.

Definition 2.2.1. Let F be a locally convex topological wvector space.
An F -valued vector measure on T or in short a vector measure is a continuous
linear mapping u: K (T)—F .

Next we shall define the set of integrable functions for a vector measure.
First we consider the case of a normed space F and then give the gener-
alization to the case where F is an arbitrary locally convex vector space.

2. Let F be a fixed normed space. We begin with the definition of
the semi-variation of a vector measure. Let us denote the norm of F by
Il and by °)(T) the set of the lower semi-continuous nonnegative
functions f: T —R~, where R~ ={2x€R v >0}U{-x}.

Definition 2.2.2. Let u be an F -valued vector measure. We define
a mnonnegative, not mnecessarily finite number u®(f) for every nonnegative
function f: T — R+ by setting
i) wu'(f) = SquH/t(g)H where g € Ke(T) . if f€1(T).

gl <
(i) u*(f) = infu®(g) where g € ).(T) , if supp (f) is compact, and
gzf
(i) u*(f) = sup u’(g) where g > 0 s such that supp (g) is compact,
g<f
if [ s an arbitrary nonnegative function.
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The mapping p° is called the semi-variation of .

Let Ac T . We denote its characteristic function by y, and define
u(A) = pu®(x4), when p is an F -valued vector measure.

Remark 2.2.8. For a complex Radon measure u, that is, in case.
F = C, the definition of u® coincides with the definition of the essential
upper integral of |u| given by Bourbaki [5: Ch. 5, p. 2].

Let x4 be an F -valued vector measure. In the following we use the
notation u, = a’ou, 2" € F'. Note that u,. € M (T) for all »" € F'.

Let u be an F -valued vector measure and let f€°)_ (7). then

u*(f) = sup ju(g) = sup sup u.(g)

g <f g =f v <1
- Sup Sup ;/ux(g) - Sup /ux' .(f) B
<1 g < f X <1

where g € ‘K (7). For later use we state this result, due to Thomas.
as a lemma.

Lemma 2.2.4. Let u be an F -valued vector measure. Then

#(f) = sup u.*(f)
W<

for all f€°)(T).

Let u be an F -valued vector measure. Then for all 1 € (' and for
all complex-valued functions f, ¢ and %, defined on 7, we have

ptUAf) = Aut(f) . w(f+g) < w°0f) +u'(g).
prf) < wth) O f < R

The set of all functions f: 7 — (', for which u*( f) < = is denoted
by J2(u). The mapping N(f) = u"( f). f€ 7(u). is a semi-norm
of J2(u). We define the topology of 7&(u) as the locally convex
topology defined by the semi-norm X, . Obviously NoT)c 72 (u).

Definition 2.2.5. Let w be an F -valued vector measure. The set
Li(u) of w-integrable functions f: T —C is the closure of N(T)
in Je(u) .

Let u be an F -valued vector measure. In order to define the integral
of the functions of <£i(u) with respect to the vector measure u . we
note that |u(f)| < u®(f). when f€ X, T): that is. the mapping
u: Ke(T)—F is continuous, when "N (7) carries the topology induced
by Le(u) -

Definition 2.2.8. Let u be an F -valued vector measure. Then the integral
of a function f€ Ly(u) with respect to u is the value u(f) € ff', of the
extension by continuity of the mapping u: N (T)—F to a mapping
we Lhu) .



Haxxv NiEMI 17

We use the notation

wh = [re. e L.

Let o’ € F', then Lp(u) C Li(u,) and

(2.2.1) <[fdﬂ,x/> = ffd/«t,/v\ [ € L) .

Let F be a Banach space and let u: ‘K (7') — F be a vector measure,
then

for all f € Li(u) .

3. We go on to the case where F is an arbitrary locally convex
vector space.

Let F be a locally convex vector space and let x4 be an F
-valued vector measure. Let p be a continuous semi-norm of F and
let F, be the quotient space F  Ker (p). when F carries the locally
convex topology defined by the semi-norm p. Set wu, = 7, o u, where
mp, denotes the canonical mapping from F into F,, then y, is an F,
-valued vector measure. Let < be the collection of all continuous semi-
norms of F . We denote

o) = N Tew,)
peSP
and define the topology of ¢ (u) as the projective locally convex topology
with respect to the canonical injections j,: Y& (u) —7&(u,), p €
(the topology of 72 (u,) is defined by the semi-norm u; for all p €P).
Note that ‘Ko (T) C 78 (u) .

As in the case of a normed space, we denote by “L¢(u) the closure
of K (T) in 7&(u) and call the functions f€<Ly(u) u -integrable.
We see that

§£1C(‘u) = N gllc(yp).
pe(f
Furthermore, the topology of “(u) is the projective locally convex
topology with respect to the canonical injections j, : “Le(u) — Le(u,) .
p €L,

As in the case of anormed space, we see that the mapping w: X (T)—F
is continuous if ‘K (T') carries the topology induced by “L¢(u) . Suppose
that the space F is a Hausdorff space, then we define the integral of

2
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a function f € Lg(u) with respect to the vector measure u analogously to
the case of a nmormed space (see Definition 2.2.6). The equation (2.2.1)
is still valid.

Let F be a locally convex vector space and let u: ‘Ko (T)—F be
an F -valued vector measure. Denote by F, the Hausdorff space F | {T}
associated with F and let w: F — F, be the canonical mapping, then
Li(u) = Lo p). Thus it is no restriction to consider only locally
convex Hausdorff spaces.

4., Next we consider how Bourbaki's definition of the integral of
a vector measure [5: Ch. 6, § 2] is related to Thomas’s.

Let F be a locally convex vector space and let F’ be its dual.
Let u: ‘Ko(T)—F be a vector measure, then the mapping u is still
continuous if we equip the space F with the weak topology o(F . F’).

Definition 2.2.7. Let F be «a locally convex wector space and let F’
be its dual. Let u be an F -valued vector measure. Then the (continuous)
mapping p,: K(T)—F ., wf) = w(f), fE€XT), with the topology
o(F , F’) on F ,is called the weak vector measure defined by u .

The following lemma is needed to show how to get the set of integrable
functions of a weak vector measure.

Lemma 2.2.8. Let F and F, x €1, be locally convex vector spaces.
such that the topology of F s defined as the projective locally convex topology
with respect to the given linear mappings u,: F—F, ,x €. Let w be
an F -valued vector measure and let p, = uyou, x €I1. Then

<L = N Lelu
x€l
and the topology of “Le(u) is the projective locally convex topology with
respect to the canonzcal szesz'ons Juo Le(u) —Le(uy) . NET.

Proof. The proof given by Thomas [20: pp. 77— 78] is also valid. when
the scalar field of F is (.

Let F be a locally convex vector space and let w: No(T)—F be
a vector measure. By Lemma 2.2.8 we get

L) = N Leu,) -
X EF
Since the completion of the space F . when it carries the topology o(F , F'),
is the space F’'* (i.e. the algebraic dual of F’). we have

jfdyweF’* for all f € <LL(

By (2.2.1) we have



Haxxu Niemr 19

<ffd/‘u- , 'ty = ffd#x' for all 2" € F’,
when f€<L¢(u,) . Since

\'LI}'(H) C n (;L/::(lbtx') - (’['/é(/uu')

ver
we get

[raw = [rin it 5 sig.

In the following we call the functions f € L¢(u,) weakly u -integrable
and the integral of f€<Ly(u,) with respect to u, is called the weak
wntegral of f with respect to .

We note that the above definition of the weak integral is equivalent
to Bourbaki’s way of defining the integral of a vector measure [5: Ch. 6, § 2].

5. Let F be a locally convex Hausdorff space and let x4 be an F

-valued vector measure, then in general /[fdu € F . when fe€Li(n),
if the space F is not complete. The following theorem gives a sufficient
condition for [fdu € F to be valid for all f€ “Li(u). The theorem
is an obvious generalization of Thomas’s corresponding result [20: pp.
80—81].

Before stating the theorem we recall that a topological vector space
is said to be quasi-complete if its every bounded and closed subset is complete.

Theorem 2.2.9. Let F be a quasi-complete locally convex Hausdorff
space and let u be an F -valued vector measure. Then [fdu € F for all
f €L .

Remark 2.2.10. Let F be a barreled locally convex Hausdortff space,
then the space F’ equipped with the topology o(F’, F) is a quasi-complete
locally convex Hausdorff space. since in the topology o(F'.F) every
bounded set of the space F’' is relatively compact (Schaefer [19: p. 141]).

Let F be a semi-reflexive locally convex Hausdorff space. then the
space F equipped with the topology o(F . F’) is a gquasi-complete locally
convex Hausdorff space (Schaefer [19: p. 144]).

6. In studying the connection of stochastic measures and their
covariance mappings we use a result proved by Thomas [20: pp. 106—107].
The proof given by Thomas is valid also in the case of the complex scalars.
Before stating this result as a theorem we give a definition.

First we recall that a function f: 7 — (' is said to be a Borel function
if f~Y(@) is a Borel set of T for every open set G C (.

Definition 2.2.11. Let F be a locally convex vector space. An F -valued
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vector measure u is said to be extendible if for every bounded Borel function
f: T —C with compact support we have f€“L(u).

Theorem 2.2.12. Let F be a Banach space and let u be an extendible
F -valued vector measure. Then a weakly u -integrable function f is u
-integrable if and only if Jf yodu, €F for all open sets G T .

For later use we still state one lemma concerning a condition for a vector
measure to be extendible. As above, the proof given by Thomas [20: p. 101]
is valid also in the case of the complex scalars.

Let F be a locally convex Hausdorff space and let u: ‘K¢(T)— F
be an F -valued vector measure. Suppose that G C 7 is an open rel-
atively compact set. As noted above, the space ‘K((¥) can be considered
as a linear subspace of ‘N(T). If p is a continuous semi-norm of F .
then using the notation introduced in 2.2.3, we have

sup p(u(g) = w4y (@) < ©.
gég 75{:(10)
Thus the restriction of u to ‘K (G) is continuous if the space ‘N ()
carries the norm topology defined by the supremum norm.

In the following C\y(7") denotes the space of all continuous functions
f: T — C wvanishing at infinity. The topology of Cy(T) is defined by the
supremum norm.

Lemma 2.2.13. Let F be a locally convexr Hausdorff space and let u
be an F -valued vector measure. Then u is extendible if and only if the restric-
tion of u to ‘N (@), where G is an arbitrary relatively compact open set
contained in T , can be extended by continuity to a weakly compact mapping

from Cy(G) into F.

2.3. Bimeasures

1. In this section we present the basic results on the integration of
bimeasures. We note that bimeasures are studied especially in the papers
of Morse and Transue [15] and Thomas [20: pp. 144—147].

Let 8 and T be fixed locally compact Hausdorff spaces.

Definition 2.3.1. A continuous bilinear mapping B : X (N) < NA(T)
— C' is called a bimeasure on SxT .

We remark that every separately continuous bilinear mapping
B: Ko(8)x Ke(T)— € is continuous.

Let B be a bimeasure on SXT and let g € X (T) be fixed. We
define a linear mapping B(.,q): ‘K(S)— ' by setting B(.,g)(f) =
B(f,q), f€XS). Let f€KS) be fixed. As above, we define a linear
mapping  B(f..): K(T)—C by setting  B(f..)g) = B(f.9).
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g €' Ko(T). Since the bilinear mapping B: ‘K(S)x ' K(T)—C s
continuous, we have B(..,g) €M S) and B(f,.) € M T) for all
q € X(T), f€ X,

Let ‘7114(5’) carr; t‘he topology  a(‘M¢(8), ' N¢(S)), then the linear
mapping up : Ke(T) — Me(S)

(2.3.1) Helg) = B(..g). g € Ke(T),

is continuous, i.e., the linear mapping wup is an “1{:(S) -valued vector
measure on 7' . By Lemma 2.2.8 we get
Loluy) = N LB ),
€ Xc(S)
since {f,uylg)> = B(f.g) for all f€'K.S), g€ KX T).
Similarly, let “M(T) carry the topology o(‘M(T), K(T)), then
the linear mapping uy: ‘Ke(S) — M (T) ,

(2.3.2) we(f) = B(f..). f € Ked),
is an ‘M (T) -valued vector measure on S . As above, we have

Le(us) = N LeB(..9).
g€ Xc(T)

Definition 2.8.2. Let B be a bimeasure on SxT . Then the “1(S)
- valued vector measure up on T (defined by (2.3.1)) is called the right
measure defined by B and the functions h: T —C, h € L(uy) are
called right integrable with respect to B . Similarly, the N (T) -valued
vector measure uy on S (defined by (2.3.2)) is called the left measure
defined by B and the functions h: S —C, h€<Li(uy) are called left
integrable with respect to B .

The following lemma is due to Thomas [20: pp. 144—145].

Lemma 2.3.3. Let B be a bimeasure on S =T . Then [ h duy € “1(S)
forall h: T —C, h€Li(uy) and [hduy € MT) forall h: S—
C, h€Li(uy).

Proof. We consider only the former assertion. the latter’s })IOOf being
similar. The space . (S) carrying the topology o(“H(S) . K(S))
is a quasi-complete locally convex Hausdorff space. as noted in Remark
2.2.3, since the space ‘K (S) is barreled (Bourbaki [5: Ch. 3. p. 42]).
Thus, the lemma follows by Theorem 2.2.1.

Let B be a bimeasure on Sx7 and let A: T — (' be such that
h € <Li(up), then by Lemma 2.3.3 Jhdupy € 11:(S). In the following
we use the notation B(.,h) = [hdup, that is

Be.() = <f [nduy = [rasy.f e Kas).,
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Similarly, let h: S — C be such that h €<L{(uy). As above, we use
the notation B(k,.) = jhduy , then by Lemma 2.3.3 B(h,.) € N (T) .

Definition 2.3.4. Let B be a bimeasure on SXT . We suppose that
the functions f: S—C and g: T — C satisfy the conditions

i) f € “Lelup), g € Lilup)

(the Radon measures B(f,.) € M. (T) and B(.,g) € M(S) are thus
defined ),

(i) f € LuB(.,9) and g € LYB(f..)).

(iii) fde(.,g) = fgdB(f,.);

then we say that the pair (f,q) tis integrable with respect to the bimeasure
B and denote

B(f.g) = f.qu(f,.) = [ranc.g.

2. In the following we call a bimeasure B bounded if the bilinear
mapping B: ‘K (S)x 'K (T) — C is continuous, when the spaces "X (S)
and ‘K(T') carry the topology defined by the supremum norm. Let B be
a bounded bimeasure. Since the space ‘K(S) (resp. ‘K (T)) is dense in
Cy(S) (resp.in Cy(T) ) we can extend the bilinear mapping B by continuity
to a continuous bilinear mapping B : Cy(S)xCy(T)— C . Obviously,
every pair (f,g) € Co(S) < Cy(T) is integrable with respect to B and
B(f.g) = l?(f . g), where é(f, g) is the value of the extension (by conti-
nuity) of B.

Asabove, we introduce the (bounded) right measure ujp : Co(T) — )L(S)
(vesp. the (bounded) left measure uy: Cy(S)— N(T)) defined by B .
Clearly

Lrih) = N LUBG )
FeCy(5)
and
Lo(up) = N LuB(..9).
gEC(T)
Analogously to Lemma 2.3.3 we have [hduy € (S) for all
h € Ly(uy) and  [hduy € MYT) for all h €<LLuy). Thus the
bounded Radon measures

B(., k) = fhl dugy and Bh,..) = /h._, duly

can be defined for all h, € Ly(up), hy € Li(uh) . as above.
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Let B be a bounded bimeasure on S x 7 . Suppose that the functions
f: 8—C, g: T—C satisfy the conditions
@) f€ N LB k), g€ N LBM..)),

he Cy(T) h € Cy(S)

(i) f € LuB(.,9), g € LB ),

ity [ ranc..0) = [oasi.).

then we say that the pair (f,g) is »strongly» integrable with respect to the
bounded bimeasure B .

8. Let E (resp. F) be a linear space of functions f: U — (' (resp.
of functions g: V — ('), where U (resp. V') is an arbitrary set. We
remark that in this paper the tensor product EX F of the spaces E and
F is considered as the linear space spanned by the functions f&g: UxV
—C,

(fegu.v) = fu)g(r). w€U,ve€ETV.

Let B be a bimeasure on Sx 7T, then there does not always exist
a Radon measure up on Sx7T such that

(2.3.3) B(f,9) = ws(f@9), [ € K8, g € Ke(T)

(see Example 3.3.4). A simple condition for the existence of a unique
Radon measure uy on Sx7 such that (2.3.3) is satisfied, is given in the
following lemma.

Let B be a bimeasure on Sx 7 . We denote by B the unique linear

mapping B: K (S)@K(T)—C , for which
(2.34)  B(fTg) = Bif.9). f € KeS). g € Ke(T).

Lemma 2.3.5. Let B be a bimeasure on ST . If the linear mapping
B: K(S)&KT)— C is continuous. when “Ke(S)Z K(T) carries the
topology induced by Ko(SxT), then there exists a unique Radon measure
ug on SxT such that (2.3.3) is valid.

Proof. First we mnote that the tensor product Ko(S)Z Ke(T) is
dense in ‘Ko(SxT) (Bourbaki [5: Ch. 3, p. 83]). The rest of the proof
is then immediate.

Definition 2.3.6. Let B be a bimeasure on SxT satisfying the
hypothesis of Lemma 2.3.5, then we say that B can be extended to a Radon
measure and the unique Radon measure pg satisfying (2.3.3) is called the
Radon measure induced by the bimeasure B .

Remark 2.3.7. Let B be a bounded bimeasure on Sx7 . Suppose



24 Ann. Acad. Sci. Fennicae AL 591

that the linear mapping B: Co(S)QCo(T) — €', defined by the extended
bilinear mapping B : (y(S)x Cy(T) — C', is continuous, when the space
Co(S)QCy(T) carries the topology induced by the space Cy(Sx 7). Then
there exists a unique bounded Radon measure uz on Sx7 such that

us(f®@g) = B(f.g9), forall f € CyS), g € Cy(T),

and we say that the bounded bimeasure B can be extended to a bounded
Radon measure.

2.4. Stochastic measures

1. In this section we shall develop the integration theory of stochastic
measures and show how the integration of stochastic measures is related
to the integration of their covariance mappings, when the covariance
mappings are interpreted as bimeasures.

We begin with the definition of a stochastic measure.

Definition 2.4.1. A wvector measure u: ‘K(T)— L3(P) is called «
stochastic measure.

In the following we shall also consider vector measures u: ‘X (T')
—sp {Q} , where the space sp{Q} is an r.k. Hilbert space spanned by
a positive definite mapping @ . For that reason we here state the results
for vector measures u: ‘K¢(T)— H, where H is an arbitrary Hilbert
space. Of course, the results are then valid also for stochastic measures.

We recall that in general, if F is an arbitrary locally convex vector
space and u is an F -valued vector measure, we have

Liw € Lim) = M) L)
We shall show that for a vector measure pu taking values in a Hilbert
space, Le(u,) = Le(u). For more general results of this tvpe see
Thomas [20: pp. 134—139].

We shall also consider the following case. Let H be a Hilbert space
and let A be a linear subspace of H'. Let u be an H -valued vector
measure. Then the mapping u : ‘No(T)— H is continuous, also if H
carries the topology o(H , A). Define a mapping u,: K (T)— H ,
when H carries the topology o(H , A), by setting

(2.4.1) i) = ulf),  fENRUT).
We recall that by Lemma 2.2.8 we get
Lolpa) = N “Le(u) -
€
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Suppose that A is dense in j(sp {u}) € H', in the norm topology of H’,
where j: H — H’ is the canonical anti-linear bijection. In Theorem 2.4.8
we give a (necessary and) sufficient condition for a function f€ Lg(u,)
to be u -integrable.

2. First we consider weakly integrable functions.

Lemma 2.4.2. Let H be a Hilbert space and let w be an H -valued
vector measure. Then [fdu, € H for every f€ Lg(u,) .

Proof. First we note that the weak vector measure y, , defined by the
H -valued vector measure u, is an H -valued vector measure, when H
carries the topology o(H , H') . By Remark 2.2.3 the space H carrying
the topology o(H ,H') is a quasi-complete locally convex Hausdorff
space, since H is as a Hilbert space barreled. Thus, the lemma follows
by Theorem 2.2.9.

Lemma 2.4.3. Let H be a Hilbert space and let pu be an H -valued
vector measure, then p is extendible.

Proof. Suppose that (¢ € 7' is an open relatively compact set. Denote
by p the restriction of u to ‘K¢ (@) and let ug be the extension by
continuity of u; to a continuous linear mapping i : Co(G) — H .
Then ug is a weakly compact mapping as a continuous linear mapping
from a normed space to a Hilbert space. Thus, the lemma follows by
Lemma 2.2.13.

Theorem 2.4.4. Let H be a Hilbert space and let u be an H -valued
vector measure, then Lg(u) = Le(uy,) -

Proof. Suppose that G c T is an open set. Let f€ “£g(u,), then
frc € Le(uy) for all 2’ € H' . Thus fy; € Le(u,). By Lemma 2.4.2
we have

/fx(;duw € H.

Furthermore, by Lemma 2.4.3, the vector measure u is extendible. Thus,
the theorem follows by Theorem 2.2.12.
Let H be a Hilbert space and let x4 be an H -valued vector measure.
Denote
spiu} = sp{ulf) fE€XAT)},

then /[fdu €sp{u} for all f€ <Ly(u). The following corollary shows
that only the Radon measures u,, x' €sp{u} are essential in studying
the integrability with respect to the vector measure u.

Corollary 2.4.5. Let H be a Hilbert space and let u be an H -valued
vector measure, then

L) = Low) = N Lhw) .
x €5piuy
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Proof. The inclusion
Low) = Lew) = N Leue) © N Lelu)
x €H X €Spiuy
is immediate. On the other hand, denote by x;—P{”} the restriction of
x' € H' to the space sp{u}. Since
welf) = uf). 2> = we_ (f), f € KT),

splut

for all a' € H and since sp{u} ={a, . | o' €EH } we get

splu} !
x€H « €5piuy
Remark 2.4.6. Let H be a Hilbert space and let u be an H -valued
vector measure. Then by Corollary 2.4.5 and by the remarks made before
it we can consider u as a vector measure with values in the space sp {u}.

3. Let H be a Hilbert space and let u be an H -valued vector
measure. Let 4 C H' be a linear subspace which is dense in j(sp {u})
(in the norm topology), where j: H — H' is the canonical anti-linear
bijection. Let u,: ‘K (T)— H be defined as in (2.4.1). As noted above,
we can consider u as a vector measure with values in the space sp {u}.
Since 4 € sp {u}’ is dense (in the norm topology), the pairing (sp {u}, 4)
separates the points of sp {u}, thus the topology o(sp {u}, ) of the
space sp {u} is a locally convex Hausdorff topology.

In Theorem 2.4.8 we give a (necessary and) sufficient condition for
a function f€ “Li(u,) to be u -integrable. The following example shows
that the inclusion

Lew) = N Lew) © N Lolpe) = Lol
x €H x’ €A
can be strict.

Example 2.4.7. Suppose that the probability space (2,7, P)
is so large that the space Lj(P) contains a countable orthonormal set
{&)en, and let 7 = R. Define a mapping u: ‘No(R)— Li(P) by
setting

u(f) = Ezwfm) E.. € ReR).
The mapping u is linear. We show that it is continuous. Let K C R
be a compact set, then K NN is afinite set { ny,...,n,, } (or empty)
and

lwHIF = 2 [f(n)* < mg(sup f1)?,

nenN

if f€KiR;K). Thus, u 1is a stochastic measure on R . Let
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j: LiP)— LyP) be the canonical anti-linear bijection. Denote
A = sp{j() n€N}, then A is dense in the space j(sp{u}) =
Jep L&, &, ... ). We show that for the constant function 1 we have
1 €Ly(uy) but 1¢<Lg(u).
As noted above
Lelia) = N Leluy) -
€A
Let 2’ € A, then 2’ can be represented in the form

n

-'):,: za’mj(gkm)’ amecﬁlrn’:]‘?""n’

m==1

thus

Therefore

wl) = sup wlf)l = sup 3 i flkn)

< > a, < x (where f € X (R)).

m=1

Thus 1 € Lg(u,), since the constant function is continuous, so that
1 € Li(py) . Furthermore, [1du, is a linear mapping from A4 into
', for which

o [raiy = 3 o
m=1
when

’

xr =

3
M=

A j(gkm) € 4.
1
We see that /1du, €sp{u}, so by Lemma 2.4.2 we get 1 & “L(u,) =
Le(u) -

The following theorem gives a (necessary and) sufficient condition for
a function f € <Lg(u,) to be u -integrable. For the proof of the theorem
we note that Thomas [20: Lemme 3.14] proved (in the real-valued case,
but the proof is valid also in the complex-valued case): For a sequence
{(Vohven © NUT) with the property

> w(f) < o for all f € ‘X(T).

neN

one has ¢ € <L1(v),if g €<L1(»,), n €N, and if

Z i/ngdvn < ®©
ne N | |
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for every open set G € T, where

Theorem 2.4.8. Let H be a Hilbert space and let u be an H -valued
vector measure. Let A C H' be a linear subspace, which is dense in j(sp {u})
(in the norm topology of H' ), where j: H — H' is the canonical anti-linear
bijection. If py: ‘K(T)—H is defined as in (2.4.1), then a function
g € Ly(py) is p-integrable if and only if [g ycdus €5p{u} for every
open set G T .

Proof. The condition is necessary. Suppose that ¢ € <£g(u), and
let @C T be open. Then g y. € “Li(u,) for all 2" € H . Therefore
976 € “Li(u), thus

fg ).’Gd[u = fg s du € *5{,“}

Next we show the sufficiency of the condition. Suppose that g € “L¢(u,)
is such that /g y;du, €sp{u} for every open set ¢ c T . In proving
that

g € Lew = N Leluy)
X €3pu’
we use an idea due to Thomas [20: pp. 110—111].
Suppose that y' € sp{u} is such that 3’ € 4, then by assumption

x €A
Suppose that y" € sp {u}’ issuchthat y’ € A . Then there exists a sequence
{2} evC A such that

z Hx;H < o and ¥y = z x,’l

neN neN

in the norm topology of H’. The sequence M fnen C M (T) and the

function g satisfy the conditions of Lemme 3.14 of Thomas [20: p. 109]
mentioned above, since

2 g = rmf)'( Z\_:d) < .

if f€°X(T), and by assumption

z§fglcdl‘x’"f§ fgxcdfm (Z ~l‘;)< Y
neN| G\nexN

for all open sets ¢ € 7. Thus g € “L¢(u,), where
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fy = 2
neN
So g € Li(u,) for all x" €sp{u}, which proves the theorem.

The next example points out the character of the assumptions of
Theorem 2.4.8.

Example 2.4.9. Suppose that the probability space (2,7 ,P) is
so large that the space Li(P) contains a countable orthonormal sequence
{E).en, and let T = R . Define a linear mapping u: ‘Ko (R)— Li(P)
by setting

u(f) = eZ\r(f(2 n) —f2n+1)& ., f € K(R).
As in Example 2.4.8 we see that u is a stochastic measure on R . Let
j: Liy(P)— Ly(P) be the canonical anti-linear bijection. Denote again
A = sp{j&,)| n€N}. Then A is dense in sp{u} (in the norm
topology). As in Example 2.4.7 we see that 1 € L¢(u,) . Furthermore.

fld[tA = 0 € spiu}.

but using Lemma 2.4.4 we get u°(1) = x . The assumptions of Theorem
2.4.8 are not satisfied. Choose, for example. an open set G C R such
that GNN = {2n»n n€XN}. then /1y du, &sp{u}.

3. Next we consider the covariance mapping of a stochastic measure.
Let u: ‘Ng(T)— Li(P) be a stochastic measure, then its covariance
mapping @ : ‘K(T)x ' K(T) —C',

QUf.9) = () lug), f.g € XdT),

is a continuous sesquilinear mapping. We make a small modification,
which allows us to interpret the covariance mapping ¢ as a bimeasure.

Definition 2.4.10. The covariance bimeasure of a stochastic measure
w: Ko(T)— Ly(P) is the bilinear mapping B: K (T) < K(T)—C
defined by

B(f.g) = (u(f) w@). f.g € NT).

Our aim is to show how the integration of a stochastic measure is related
to the integration of its covariance bimeasure.

First we show that the integrability with respect to a stochastic measure
implies the integrability with respect to its covariance bimeasure.

Theorem 2.4.141. Let pu: ‘K (T)— L;(P) be a stochastic measure
and let B be its covariance bimeasure. If f.g € “Li(u), then the pair
(f,g) is integrable with respect to the bimeasure B and B(f,§) = (u(f) | u(g)).
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Proof. Let f,qg € Ly(u) and let ujy (resp. wp) be the left (resp.
the right) measure defined by B (see Definition 2.3.2). Then

Li(ps) = N LeB(.,h) = N LuB(., k).
he Xc(T) h€ Kc(T)
Since f € <Ly(u), we have f€ <Li(u,) for all 2’ €sp{u}, especially
f€Li(u,) for all ' = j(u(h)), h € K T), where j: Liy(P)— Ly(P)
is the canonical anti-linear bijection. It follows that f € <L{(uy), since
Hiwy = B(- k), h € K(T) . Furthermore,

B(.,B)f) = (u(f) | p(h))  forall h € KT).

Similarly we get § € £i(uy) and B(h,.)(d) = (u(h) | u(g)) for all
h € X(T). Thus

and
B( [ g-)(h) - (lu(h) ,u(g)) - luj(uig))(h) .

when h € 'K (T). Since g€ <Li(u,) for all 2 €sp{u} we have
GELUB(f,.)) . Similarly f€<LyB(.,q)). Furthermore,

B(f, )9) = twn@) = W) @) = wunf) = BC.. D).

thus B(f, 9) = (u(f) | u(9)) -
The converse of Theorem 2.4.11 is not valid as the following example

shows.
Example 2.4.12. Consider the stochastic measure u defined in
Example 2.4.7, ie.,

u(f) = > fm)&,, € KyR),

ne.\N

where {£,}.cx C Li(P) is an orthonormal sequence. Let j: Li(P)
— Li(P)" be the canonical anti-linear bijection. Then

A = sp{j) | n €N} = {juh) he€N(R);.
Since 1 € <Ly(u,) for all 2" € A, we have
Le N LeB(.,h) = N LB, .).

he Xc®) heXc(R)

Therefore, 1€ Ly(up) and 1 €<Li(uy), but 1e<LyB(l,.)), l¢
LUB(., 1) and 1€ <Liu).

Consider then the stochastic measure u defined in Example 2.4.9, i.e.,

u(f) = > (f@n)—f@n+1)&, f € XyR),

neN
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where {&,}.,cn C Lg(P) is an orthonormal sequence. As above, we have
1 €<Ly(uy) and 1€ <Ly(uy). Furthermore, B(1,.) = B(.,1)=0,
thus the pair (1, 1) is integrable with respect to B and B(1,1) =0,
but 1 € “L(u) .

The following theorem is an analogue to Theorem 2.4.11.

Theorem 2.4.18. Let u: ‘K (T)— Ly(P) be a bounded stochastic
measure and let B be its covariance bimeasure. If f,g € Lg(u), then
the pair (f,J) tis »stronglyr integrable with respect to B and B(f,J) =

(u(f) | u(g)) -

4, Let u: K (T)— Lg(P) be a stochastic measure and let B be
its covariance bimeasure. Our aim is to give a (necessary and) sufficient
condition for the functions f: 7'— C and g: 7 — C to be u -integrable,
if the pair (f,g) is integrable with respect to B. We have included
these considerations for the sake of completeness. The results in this
subsection are not used in the sequel.

First we make some preliminary considerations.

Let u: ‘K(T)— Ly(P) be a stochastic measure and let @ be its
covariance mapping. Define a mapping uy: ‘No(T) — sp {Q} by setting

pAUf) = Q. f € KT
The mapping u? is linear, since

Qrmh) = QU xf+ g = xQU.J)+ 3 Q. J)
— xQf(h) + pQ;(h)  forall h € KT,

when x, B €C and f,g €K, (T). Moreover, u? is continuous, since
for every compact K C 7T there exists an Mg > 0 such that

Wl = 1G5l =l < Mygsup |f],

if fe€ XKy K;T). Thus u? isa vector measure with values in sp {Q}.
In the following u? is called the 7. k. vector measure defined by u .

Lemma 2.4.14. Let wu: K (T)— Ly(P) be a stochastic measure and
let Q be its covariance mapping, then <Ly(u) = Le(u?) .

Proof. Let f€°)_(T). then

W)*(f) = sup u%g). = sup u%yg)

g =f g =f
= supf ulg) = u'(f).

where g € ‘K (T), which proves the lemma.

The following lemmas show the connection between the r. k. vector
measure u?, defined by a stochastic measure u, and the covariance
bimeasure B of u.
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Lemma 2.4.15. Let u: ‘K (T)— Li{(P) be a stochastic measure and
let @ be its covariance mapping. Then the topology o(sp {Q},j(sp{Q}))
of the space sp {Q} € N (T), where j: sp{Q} —sp {Q} is the canonical
anti-linear bijection, is identical with the topology of sp{Q} induced by the
topology o(N(T) , ' K(T)) of the space M (T) .

Proof. The topology o(“M(T), K(T)) of M (T) is the projective
locally convex topology of “V¢(T) with respect to the mappings u;: M (T)
—C, w@) =v(f), v€NMLT), f€KT). On the other hand, the
topology o(sp {@} , j(sp {@})) of sp{Q} is the projective locally convex
topology with respect to the mappings v, : sp{Q}—C, v,(0) =<0,z .
6 €DIQ}, =~ €jsp{Q)) .

Let 2" € j(sp {@}), then it can be represented in the form

=2 a, Q) a, €C, f, € K(T), m=1,....n.

m==1

Suppose that 6 € sp {Q}, then

O,z = (9 2 Qfm> = (0 Q) = biy).

where

Thus  v,(0) = u,(0) , ie. the semi-norms defining the topology
a(sp {@}, j(sp {@})) and the topology of sp {Q} , induced by the topology
o(M(T), K(T)) of NM(T), are the same.

Lemma 2.4.16. Let u: ‘K(T)— Ly(P) be a stochastic measure and
let @ be its covariance mapping. Denote A = j(sp{Q}), where j: sp {Q}
—sp {Q} is the canonical anti-linear bijection. Then <LL(u%) = LL(uy) =
Le(up) , where B is the covariance bimeasure of . A function f € “LL(uk)
s u -integrable if and only if B(..f y;) €sp{Q} for all open sets G c T .

Proof. The statement <L(ufy) = “Li(uf) is immediate, since

(us(fNg) = B(..flg) = B(f.§) = B(f. )G = (us(H)G)
forall f,g € ‘K¢(T). Moreover, for a fixed f€ X (T)

@D = W) = QFg) = B(..f)lg). g€ XT).

Therefore u%(f) = wp(f), f € Ko(T). Thus, the first part of the lemma
follows by Lemma 2.4.15.

If f€<Lt(up) is such that B(.,f y5) €5p{Q}. then 2%(f ) €sp {Q} .
By assumption this is valid for all open sets < 7', thus by Theorem
248 f€<Ly(u'). By Lemma 2.4.14 <Li(u%) = <Li(u), which proves
the lemma.
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For the sake of completeness we collect the above results into a theorem.

Theorem 2.4.17. Let u: ‘K (T) — Ly(P) be a stochastic measure and
let Q be its covariance mapping. Suppose that the functions f: T — C,
g: T —C are such that the pair (f,g) tis integrable with respect to the
covariance bimeasure B of u. Then f, g € Li(u) if and only if B(.,f yc) €
sp{Q} and B(.,g y;) €sp{Q} for all open sets GC T .

5. Next we consider a special way to define a stochastic measure.

Let v: K (T)— C be a Radon measure and let S be a topological
space. We recall that a mapping f: 7'— S is said to be » -measurable
if forevery ¢ > 0 and for every compact set K C 7T there exists a compact
set K, C K, such that »|(yx k) <é& and the restriction of f to
K, is continuous.

Let »: X T)—C be a Radon measure and let x: 7T — Ly(P)
be a stochastic mapping of 7. We call x scalarly v -measurable (resp.
scalarly v -integrable) if the mapping x,: T —C, . (t) = {x(t),2") .
t €T, is v-measurable (resp. » -integrable) for all z' € Ly(P) .

Suppose that a: 7 — Lj(P) is scalarly »-measurable and that for
all 2’ € LY(P) we have »*(x, yx) < o for all compact sets KcC T .
Then x, f € “Ly(v) for all f€ 'K (T) (Bourbaki [5: Ch. 5, pp. 41—42]).
Let f €K (T). If the mapping [afdv: LyP) —C .

«{z’,f:cfdv)/ = fx,fdv, € LyP),

is continuous, when Lg(P) carries the norm topology, then /[ fdv €
Li{P) =~ Ly(P). In the following we consider /a fdv as an element of
the space Li(P) if Jafdv€ Ly(P)". Suppose that [ fdv € Ly(P)
for all fe€ XKy (T). 1f the mapping wu: K(T)— Lg(P), u(f) =
Safdv, f€XT), is continuous, we call u the stochastic measure
defined by x and v.

Lemma 2.4.18. Let u: ‘K(T)— Ly(P) be a stochastic measure defined
by a stochastic mapping x: T — Lg(P) and a Radon measure v: X (T)
— ', Then

( [ fu f gd#) - f f(s)( f g(0) (1) x(s))rn(r))dv(s)

forall f, g€ <Leu).
Proof. First we note that [fdu, [gdu € Ly(P) for all f, g € “Li(u).
Moreover,

( / gdux(S)) = [ovwn oo, ser.
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(ffdﬂéfgdﬂ> ff ( ;/gd,u)dv()
= [ ( [ )tx(s))dv(t))dv<s>.

3. V -bounded and harmonizable stochastic processes

Thus

3.1. Classification of stochastic processes

1. Our aim is to characterize the class of (weakly) continuous
V -bounded stochastic processes and the class of harmonizable stochastic
processes.

We begin with the definitions. The definition of a T~ -bounded stochastic
process is due to Bochner [4: p. 18]. Our definition differs slightly from
that of Bochner, because we use the weak integration technique developed
in 2.4.5.

Before stating the definition we note that in the following the Lebesgue
measure of R is denoted by m . Let p € <L{(m), then its Fourier transform
is denoted by 7 p, ie.,

(T p)t) = fp(/'.) e dm(2) , t € R.

Furthermore, in the following we call a stochastic process x: R — Lj(P)
bounded, if there exists a 3 > 0 such that |jx(t)] <M for all tE€R.

Let x: R— Ly(P) be a bounded scalarly m -measurable stochastic
process. Then one gets

1

/ xz,hdm§ < M Uz’\i/ hidm forall 2z € LyP) , h € K R),

where M > 0 is such that |[x(f)] < M for all ¢ € R. Thus the stochastic

measure u defined by x and m exists and <L{(m) C LE(u) .
Definition 3.1.1. A4 bounded scalarly m -measurable stochastic process

x: R — Ly(P) iscalled V -bounded if there exists a constant ¢ > 0 such that

:;/xp dm; < csup |7 p| forall p € <Li(m).

The definition of a harmonizable stochastic process (or a harmonizable
covariance function) is due to Loéve [13: p. 474]. Note that Loéve considers
stochastic and scalar-valued measures as completely additive set functions.
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Definition 3.1.2. A stochastic process x: R— Ly(P) s called har-
monizable if its covariance function can be represented in the form

r(s,t) = v~ Qe ") = f etem " dy(Ad,0), s, t €R,

where v is a bounded Radon measure on RX R, for which v(f& f) >0
for all f € Cy(R)

3.2. V -bounded stochastic processes

1. We begin with a result which shows that every weakly continuous
V -bounded stochastic process is the Fourier transform of a bounded
stochastic measure. The result is analogous to Theorem 2 of Kluvanek [12].

Theorem 38.2.1. A weakly continuous stochastic process x: R — Ly(P)
is V -bounded if and only if there exists a bounded stochastic measure p on
R such that

(3.2.1) a(f) = f W qu(i), t € R,

If x can be represented in the form (3.2.1), then it is uniformly continuous.
Proof. Let x: R— Li(P) be weakly continuous and V" -bounded.
Define a stochastic measure p* on R by setting

wih) = thdm, h € ‘K(R).
Since a is V -bounded Li(m)c Ly(u*), and there exists a ¢ > 0
such that
[«(p)l < csup 7 p| forall p € <Lg(m) .
Define a linear mapping u: Co(R)— Li(P) by setting pu(f) = p*(p)
if f€Cy(R) issuchthat f = 7 p forsome p€ <Li(m) . The definition

is unique since for functions p,q € “L¢(m) such that f = Tp = Jq.
we have

u(p) .2 = f la(t), 2 p(t) dm(t)
- f(l‘(f) J2 )y dm(t) = <u(q), 7))
for all 2z’ € Ly(P)' , thus ,u ( ). The mapping w is linear on the

) = u(g
linear subspace 7 (Lg(m)) = {fE oR) f=Fp, peLim)} of
Co(R) and pu: C_(iﬁ (m )) — LX(P) is continuous if 7 (“Lg(m)) carries
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the norm topology induced by C,(R). Since Lg(P) is complete, the
mapping u can be extended by continuity to a continuous linear mapping
w: Co(R) — Li(P), i.e.

WDl < esup if|  forall f € CyR).

Thus u is a bounded stochastic measure on R . Our aim is to show that
v is the Fourier transform of u. Let 2z’ € Li(P)" and p € <£L(m), then

-/ ( [ pye dm(t)) sl 2)
— fp(t) (/ et (1/4:,(/'.)) dm(t) .

Thus, by the continuity of the functions x, and /e* du,. (1) we get

a(t), 2> = / e du(i), 2 forall t € R.
Therefore

x(t) = fe""'~ du(i), t € R.

Suppose then that the stochastic process x: R — Li(P) is such that
it can be represented in the form (3.2.1). Then x is bounded and weakly
continuous. Moreover,

\f.z'p dm , 2" | = ‘f(l':,p dm = f(f et (Ip:,().)) p(t) dm(f)‘

= f Ipdu, < u*(l)ysup Fp) 2 . p€Lliim).

for all 2z’ € Ly(P)' , thus x is T -bounded.

Next we show that x is uniformly continuous if it is representable in
the form (3.2.1), where u is a bounded stochastic measure on R . First
we note that u can extended to a continuous mapping u : Cyo(R) — Li(P) .
The mapping u is weakly compact, since (((R) is a normed space and
Ly(P) is a Hilbert space. Then by Gantmacher’s theorem (Dunford and
Schwartz [8: p. 485]) the transpose u': Li(P) — Cy(R)" (= “MLR))
is weakly compact. Therefore the set { u, € JIg(R) 2 €Ly(P), 2| <1}
is relatively weakly compact. Let & > 0. Then, by a criterion concerning
weak compactness of sets of bounded Radon measures, due to Grothendieck
(see Thomas [20: Condition 4, p. 174]), there exists a compact set K C R
such that
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(k) < e forall 2/ € Ly(P) ., [ < 1.

<
Let s,t € R and |2/ < 1. Then

) a5 = [ — e )

IA

f 1x(2) (€ — &) du (7). + f Lre x(2) (€% — €") du ()
< ept() R + 2¢,

if s — ¢ is small enough, thus a is uniformly continuous.

Remark 3.2.2. There exist V -bounded stochastic processes x: R
— Ly(P) which are not (weakly) continuous. Consider, for example, the
process ¥,

where ¢ EL%(P), E o =1.

Definition 8.2.3. Let a: R — Ly(P) be a (weakly) continuous
V' -bounded stochastic process. Then the bounded stochastic mecsure w appear-
ing wn (3.2.1) is called the spectral measure of a .

Remark 38.2.4. The spzactral measure of a (weakly) continuous
V -bounded stochastic process is unique.

2. The following characterization of (weakly) continuous V -bounded
stochastic processes is similar to the definition of harmonizable stochastic
processes.

First we give a preliminary result.

Corollary 3.2.56. 4 bounded scalarly m -measurable stochastic process
is V -bounded if and only if its covariance function r satisfies the condition

fp(s) (f r(s . t) q(t) dm(t)) dm(s)' < csup Fp sup fg

forall p.q €<Ly(m). for some ¢ > 0.
Proof. Suppose that x is 1" -bounded. then

i(fvl'p d'm/;rqdn?) = ‘/‘(z‘prlm /‘”1 dm < csup Tp osup Jgq
i !

for all p,q €<Lg(m), for some ¢ > 0. Moreover, by Lemma 2.4.18

(fxpdm/qum) = /p(s) (/ r(.s,t)qT)dm(t))dm(s).

which proves the first part of the lemma. The second part of the lemma
is immediate.
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Theorem 3.2.6. A bounded weakly continuous stochastic process x: R
— Ly(P) is V -bounded if and only if there exists a bounded bimeasure
B on RxR such that B(f,f) >0 forall f€Cy(R), the pair (% ,e” ™)
is »strongly» integrable with respect to B for all s, t € R, and the covariance
Sfunction r of x can be represented in the form

r(s,t) = B, e™™), s, t €R.

Proof. Suppose that x is weakly continuous and V -bounded, then
by Theorem 3.2.1 there exists a bounded stochastic measure u on R such
that

x(t) = / “du(d), t € R.

Let B be the covariance bimeasure of u , then B(f,f) = (u(f) | u(f)) =0
for all f € Cy(R), and by Theorem 2.4.13 the pair (¢, e ™) is »strongly»
integrable with respect to B and

(f ’sdy/"(ly)—B( e”™, s,t €R.

Conversely, if « is weakly continuous and 7(s,t) = B(e™,e™ ™),
. t € R, where B isa bounded bimeasure on R x R such that B(f,f) >0
ior all f € Co(R). Then

f p(s) ( / r(s . 1) q(t) dm(t)) dm(s)

_ f (s) (fB =) a() dm(f)) dm(s)

— [ pe ( |/ ( [ an dm(f)) aB( .. >) an(s)
— f(fp(s) o (lm(s)) dB(.,7q) = B(7p,7q),

thus there exists a ¢ > 0 such that

| [ s ( f r(s,t%)dm(t)) i) = 1572, 70)

< csup |[Tplsup [7q|, p,q € Lim),

since B is bounded. The theorem then follows by Corollary 3.2.5.

3. Next we consider a stochastic process constructed by von Bahr [3].
He uses it to show that there exist bounded and continuous stochastic
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processes which are not harmonizable. The same example can be used to
show that the class of bounded and continuous stochastic processes is
strictly larger than that of the continuous V -bounded stochastic processes.
Example 3.2.7. Let & € L}(P), ||§]| = 1. Define a function f: R — R
by setting
® sinmnt

fi)y = 2

b
o nlog n

t € R.

The series is uniformly convergent and f is bounded and continuous
(Zygmund [22: pp. 182—183]). Define a stochastic process x: R — Lg(P)
by setting «(f) = f(()&, t € R, then x is bounded and continuous.
Let us show that « is not V -bounded. If x were V -bounded, there
would exist a unique bounded Radon measure » on R such that

@16 = f0 = [a).  ten.

Moreover, let g € £¢(m) be continuous and such that 7g € <Lg(m).
Then by Parseval’s formula

/ 1 _ sin (— n t)
g@) dva(x) = 5— | (Jg)(t) — o= dm(t) ,

n log n
where
1
"= S ilogn (0, — 9_,)
(0, is the Dirac measure, i.e. 9,(9) = g(n), g € K¢(R)), since

sin nt " A .
= e dv (7). t €R, n €N, n > 2.
n log n

Suppose that supp (7 ¢) is compact. Then, using again Parseval’s formula
(and since the order of the integration and the summation can be changed)

fg(w) dv(@) = 5~ (L 9)(t) f(— ) dm()

e 1 _ sin (— nt)
= > 5 f (7 9)(t) Tlozn dm(t)

Therefore
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P 1
v (1) = > ¥ log & forall p € N, p > 2,

k=2

thus » cannot be bounded. This proves that a is not V -bounded.

3.3. Harmonizable stochastic processes

1. Our aim is to show first that every harmonizable stochastic process
is V -bounded. Then we shall give a characterization of harmonizable
stochastic processes which is related to the definition of V -bounded
stochastic processes. After that we shall construct an example of a con-
tinous and V -bounded stochastic process which is not harmonizable.

Corollary 3.3.1. EKvery harmonizable stochastic process is 1 -bounded
and continuous.

Proof. Let a: R— Lg(P) be a harmonizable stochastic process.
Then the covariance function r of a can be represented in the form

ris,t) = / o= dy(4, 0) s, t € R,

where » is a bounded Radon measure on R x R , for which »(f ® f) > 0,
when f € Cy(R). Since » is bounded, 7 is bounded and continuous.
Thus, x is bounded and by Lemma 1.1.2 continuous. By the continuity
of r we get

fl)(é‘)(fr(s ) q(t) dn ()) dm(s) = f r(s 1) pls) (1) dm & m)(s . 1)
f(/ ist o= ito ([’V( 9)) p(-S‘)q_(_)d(m “ om)(s . t)

Fp(h 0) dv(2 . 0)
< v'(l )sup |7 p|sup 7

for all p,q €<L{(m). Thus, the corollary follows by Corollary 3.2.4.
Theorem 8.3.2. Let x: R — Li(P) be bounded and continuous. Then
x ts harmonizable if and only if there exists a« ¢ > 0 such that

(3.3.1) 1 il (f Xy, dmiv\/‘x qkdm> < ¢ sup i;"pk(/i) 7qk(6)}§,

k=1 j.6€R k=1

or equivalently
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22/ Stl’k()%()(m®m=9t)!

(3.3.1") o
< ¢ sup §Z7Pk(;~) Ta(—0),
1,0 €R| k=1
forall p,,q, € Le(m), k=1,...,n, n €N, where r is the covariance

Sfunction of w .

Proof. The equivalence of the conditions (3.3.1)and (3.3.1") is immediate,
since (7 q)(— 2) = (7 §)(4) forall 2 €R and g € <Ly(m).

Suppose that x is harmonizable, then the covariance function r of
x can be represented in the form

r(s,t) = f =i dy(),0), s, t € R,

where » is a bounded Radon measure on R xR . Moreover,

!kil(‘/\xpkdm;‘/\;vqkdm)i = é/ pi(2) 7 qu(0) dv(2 0)!

<»* <SUP Z il %(m!)

i, 6 €R | k=1

for all p,,q, € Lem), k=1,...,n, n €N, which proves the first
part of the theorem.
Suppose then that a bounded and continuous stochastic process
r: R— LQ(P) satisfies the inequality (3.3.1’). Set 7 (Lg(m)) =
{f € O | f=7p for some p €Li(m)}. Define a bilinear mapping
F( f (m)) 3 F(Lg(m)) — C by setting

2R = f (s, £) pls) q(t) d(m & m)(s , )

for f,g € Cy(R) to which there exist p, ¢ € “L¢(m) such that f= 7p,
g = 7q; here we have written ¢(1) = g(—72), 2€R. The definition
of »*(f,g) is unique. Moreover,

D= | [ e 00 a0 dn S s 1)

< csup [T p(A) 7q(—0)] = csup fisup g,

i, 0ER

thus
v T (Lgm)) x T (Lg(m)) — C

is continuous, when 7 (.£{(m)) carries the norm topology induced by
Cy(R) . Let
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‘;x; T (Lim)) @ F (Li(m)) — C

be the unique linear mapping defined by the bilinear mapping +»* for
which »(f @ g) = v*(f,9), f,g9 €7 (Lm)). The inequality (3.3.1)
implies that »° is continuous, when the space 7 (£y(m)) @ 7 (“Li(m))
carries the norm topology induced by C (R xR). Furthermore, the
space 7 (Lg(m)) @ T (Li(m)) is dense in Cy(R X R) , since Cy(R) @ Cy(R)
is dense in Cy(RxXR) and since 7 (Li(m)) is dense in Cy(R). Thus
the mapping »°: 7 (Lg(m)) @ 7 (Lg(m)) — C can be extended by conti-
nuity to a continuous linear mapping »: Cy(R X R)— C . Furthermore,

f r(s 1 0) (s) ) d(m © m)(s 1) = f T p(3) 7 q(—0) dn(2., 0)

— fp(s) q(t) (/ L TV 0)) d(m @ m)(s, t),

for all p,q €<Li(m). Thus by the continuity of the functions » and
Se* e dy(h, 0) we get

r(s,t) = fe"“" e~ dy(h,0), (s,t) € RxR.
Moreover, let f= 7p, p€<Lym); since (7p)(—21) = (Fp)(A),
L€R, we get

WO J) = f r(s , 1) pls) 2(0) dim © m)(s , 1)

_ (fxpdmgfxde) >0,

thus »(g ® §) > 0 for all ¢ € Cy(R), which proves the theorem.

The following characterization is a direct consequence of Theorem 3.3.2
and Remark 2.3.7.

Theorem 3.3.3. 4 (weakly) continuous V -bounded stochastic process
w: R—Ly(P) is harmonizable if and only if the covariance bimeasure of
the spectral measure of x can be extended to « bounded Radon measure on

RXR.

{
|

2. The following example shows that the class of all continuous
V -bounded stochastic processes is strictly larger than the class of all
harmonizable stochastic processes. The example is a modification of an
example due to Edwards [9: pp. 93—94].

Example 3.3.4. We construct a bounded stochastic measure ux on
R having the property that its covariance bimeasure cannot be extended
to a bounded Radon measure on RXRE. Thus the Fourier transform
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of u is a continuous V -bounded stochastic process which is not har-
monizable.

Let (2,7,P) be a probability space. Denote by Li(P)g, the
real Hilbert space of all real-valued stochastic variables & defined on
(2,7 ,P) such that

(3.3.2) Eé& =0 and Ei? < «,

and denote, as usual, by Lg(P) the complex Hilbert space of all complex-
valued stochastic variables & defined on (2,7, P) satisfying (3.3.2).
Suppose that the probability space (2,7 ,P) is such that Lg(P)g.
is separable and infinite dimensional.

Edwards [9: pp. 93—94] has shown that there exist real numbers
Cmn, m,n €N and a constant M > 0 such that

(3.3.3) > 2 lemm] = ©
meN neN

and
‘ !

(3.3.4) 2> D aibeep < M
j€J kEK |

for all finite J, KC N, where —1 <¢ <1, —1<b <1, j€J,
k € K . In fact
7
2 n [log (n + 1)]*’
sin [z (m — n) | 2]
Cmn = — ) m™ w2 log (m - 1) log (n + 1)’

Cnn n € N,

m=%=n, m, n € N.

As in the case considered by Edwards, there exists a sequence

{l }xeN c Lﬁ(P)Re

njn

such that
(Xm | Xn) = Cun m, n € N.

Define a stochastic measure u: N (R)— Ly(P) by setting

wf) = S fma,. [ € KdR).

neEN

Using (3.3.4) we see that p is bounded. Furthermore, by (3.3.3) the
covariance bimeasure of u cannot be extended to a bounded Radon
measure on R xR . Thus the stochastic process x: R -— Ly(P),

x(t) = fe“l du(2), t € R,

is continuous and ¥V -bounded, but not harmonizable.



44 Ann. Acad. Sci. Fennice A. 1. 591

3.4. Approximation of continuous V -bounded stochastic processes

1. In this section we shall consider a method of approximating a
continuous V -bounded stochastic process by a sequence of harmonizable
stochastic processes. For another method of approximating an arbitrary
continuous and bounded stochastic process by a sequence of harmonizable
stochastic processes see von Bahr [3].

Theorem 8.4.1. Let x: R-—LyP) be a continuous V -bounded
stochastic process. Then there exists a sequence x,: R-—Ly(P), n €N,
of harmonizable stochastic processes such that

x(t) = lim z,(f), t € R,
uniformly on every compact set K C R .

Proof. Let x be a continuous V -bounded stochastic process. By

Theorem 3.2.1 there exists a bounded stochastic measure g on R such that

x(t) = /e”" du(2) , t € R.

Since a is continuous the space sp{x} is, by Lemma 1.1.3, separable.
Let {&}ien ©8p{x} be an orthonormal basis of sp{x}, then
oty = 2 (@) &) &,  t € R.
ke N
Denote
2,(t) = > (x(t) | &) &, t € R, n €N.

E=1

Then the process x,: R— Lg(P) is bounded and continuous for every

n € N . Moreover
o) = [ @i, te R,
where

uf) = él(ﬂ(f) &) &, f € Ke(R), n € N.

The stochastic processes z,: R — Lg(P), n €N, are harmonizable,
since the stochastic measures u, are bounded, and since for every n € N
the covariance bimeasure B, ,

n

B,(f.9) = 2 () &) @ &) . f.g € K(R),

k=1

of u, can be extended to a bounded Radon measure on RX R .
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Let K € R be a compact set, then the set {a(t)| t € K } € sp{x}
is compact. Thus by the approximation property of the space sp {x}
(see 1.2.3 or Theorem 1.2.4)

x(t) = lim x,(t)
uniformly on K .

Corollary 3.4.2. Let x be a continuous V -bounded stochastic process
and let r be the covariance function of x . Then there exists a sequence
x,: R—LyP), n €N, of harmonizable stochastic processes such that

r(s,t) = limr,(s,t)
uniformly on every set K xR (or RxXK ), where K C R is compact
and r, s the covariance function of x,, n €N .

Proof. The corollary is a direct consequence of Theorem 3.4.1 and

Theorem 1.2.4.

University of Helsinki
Department of Mathematics
SF-00100 Helsinki 10
Finland
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