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PIECEWISE QUASICONFORMAL MAPS ARE
QUASICONFORMAL

JUSSI VAISALA

1. Introduction. We use the notation and terminology of [7], except
that we always assume that a quasiconformal map is sense-preserving.
We also extend the concept of a quasiconformal map for arbitrary sets in
the n-space R". Suppose that 4 ¢ R* and that f: 4 — R" is a map. If 4
is open, we say that f is quasiconformal if f|D is quasiconformal for every
component D of A. Furthermore, the outer and inner dilatations of f are
defined by the well-known formulae
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Kolf) = esssup gy Hall) = e85 iy

or equivalently,

Ko(f) = SII;P Ko(fID), Kif) = Sll)lp K,(f|D),

where the suprema are taken over all components D of 4. If 4 is not
open, we say that f is quasiconformal if it has a quasiconformal extension
g : @ — R" to some open neighborhood G of 4, and we set

Ko(f) = inf Ky(9), K,(f) = inf K(g)

over all such extensions g.
The purpose of this paper is to prove the following result:

2. Theorem. Suppose that f:G—@G 1is a sense-preserving
homeomorphism, where G and G’ are domains in R". Suppose also that
G = U{E,|keN} such that Ky(f|E,) < K for all k. Then f is quasicon-
formal, and K,(f) < K. Similarly, if K/(f|E,) <K for all k, then
K,(f) < K.

3. Remarks. A weaker result has been proved by Rickman [3, Theorem
1]. These results can be applied to extension problems. For example,
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let f: G — G be a quasiconformal map which extends to a homeomorphism

f*: G — @ such that f*(x) = « for all boundary points x of G. Then we
can extend f to a quasiconformal map g¢:R"— R" by setting g(x) = =
for x¢G. Furthermore, ¢ and f have the same dilatations. The standard
removability argument [7, 35.1, p. 118] applies only if oG is of o-finite
(n—1)-measure. For another application, see [5, p. 8].

The proof of Theorem 2 is based on a modified version of the analytic
definition of quasiconformality.

4. Definitions. Suppose that ¢ is an open set in B* and that f: G — R"
is a map. We say that f is NL if f satisfies the condition (N) on almost
every line L, parallel to the coordinate axes. In other words, if E c LN G
and if E is of linear measure zero, then also fH is of linear measure zero.
The artificial derivative of f at a point x in G is the linear map f,(z) : B* — R"
defined as follows: If the partial derivative 0,f;(x) exists, then
e * fa@)e; = 0,f;(x). Otherwise e, - fi(x)e; = 0. If f is differentiable at x,
then f,(x) is equal to the ordinary derivative f'(x) of f. The upper volume
derivative of f at x is defined by

) — 1 sy "IE )
#i(w) = lim sup = ) -

5. Theorem. Let f:G— @' be a sense-preserving homeomorphism
such that
(1) f is NL,

(2) Ifa@) " < Kpy(@) ae.

Then f is quasiconformal, and K,(f) < K.

Proof. We first show that f is ACL. Fix ¢ and j in {1, ... ,n}. Let P be
the set of all z in G such that o,f;(x) exists, and let L be a line parallel to
the x;-axis such that (i) f; satisfies the condition (N) on L, (ii) 4/ is locally
integrable on L N G. Since y; is locally integrable in G' [7, 24.2.3, p. 84],
almost every line has these properties. It suffices to show that f; is locally
absolutely continuous on L N G. Let I be a closed line segment on L N G.
Then
| [ 101" dmy < T |fu@) " dmy(e) < K [ g dmy < oo

PNI 1 I
Thus [9;f;]", and hence also o,f;, is integrable over P N I. By Bary’s
theorem [4, p. 285], f; is absolutely continuous on I. Thus f is ACL.

Since |[f'(x)|" < Kuj(x) a.e., f is ACL". As an ACL"-homeomorphism,
J is differentiable a.e. [6, Lemma 3]. Thus u/(z) = J(, f) a.e. Hence (2)
implies K (f) < K.
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6. Proof of Theorem 2. Assume first that K,(f|E,) < K for all k.
Let ¢ > 0. For every k € N choose an extension g, of f|E, to a neighbor-
hood D, of E, so that K,(g;) < K + &. Replacing E, by E’knDk we
may assume that each E, is a Borel set. We shall show that the conditions
of Theorem 5 are satisfied.

If every g, satisfies the condition (N) on a line L, then f also satisfies
the same condition, because for every K c L, fE = U{g,(E N E,)| k e N}.
Thus f is NL.

We let B, denote the set of all z in E, such that (i) « is a point of density
of E,, (ii) # is a point of linear density of E, in the direction of every co-
ordinate axis, (iii) ¢g,(x) is a point of density of g¢,E, = fE,, (iv) g, is
differentiable at x. Then m(E,\ B,) = 0. For (i), (ii), and (iii) this follows
from standard density theorems and from the fact that g;' satisfies the
condition (N). For (iv) this follows from the quasiconformality of g,. Set-
ting A = U{E,\ B,|k e N} we have m(4) = 0. We shall show that
|fi(@)|" < Kyuj(x) for every x in G\ A and for K, =n"(K + ¢).

Let # € G\ _A. Then z € E,\ 4 C B, forsome k. If 0,f;(x) exists, then
(i) and (iv) imply 0f(®) = 0,(g.)@). Thus |3,f@)| <|gi(x)|. Hence
|fi@)] < nl|gi(@)|, which yields |f.(x)|" < K,J(, g;). Consequently, it
suffices to show that J(x, g,) < u/(x). Using the standard notation (see e.g.
[7, p. 78]) we set y = f(x) = g,(x), L = L(x, g,, 7), | = U(x, g, 7), where r
is so small that B"(z, r) c D,. Then

m(g,(B"(@,r) \ E}))
m(B"(x,r))

J(, gi) = s (®) < py() + lim sup

r—>0

Here

" m(B"(y,L) \ 9:8;) (L\" "
m(gy(B"(x,r) \ By)) < (B (L)) <7> m(g,B"(x,r)) .

By (iii), the first factor on the right tends to zero as r — 0. The second
factor remains bounded by quasiconformality. Since the third factor is
asymptotically equal to J(x,g,)m(B"(x,r)), we obtain J(z,g;) < p(x). By
Theorem 5, f is quasiconformal with K,(f) < K.

Let z bea point in G\ 4 a twhich f is differentiable. Then z € B, for
some k, and (iv) together with (i) or (ii) implies f'(x) = g(x). Thus
If @) = |gr@)|* < (K+e)J(2,g;,) = (K+¢)J(x,f). Since this holds a.e.
in G, Ky(f) < K+e. Since ¢ is arbitrary, Ky(f) < K.

Finally assume that K,(f| B,) <K for all k. Since K, < Ky it
follows from the first part of the theorem that f is quasiconformal. Repeat-
ing the above argument with K, replaced by K; we obtain

J(@,f) < (K+e)l(f'(x))" a.e. Hence K (f) < K.
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7. Quasiregular maps. The above result can easily be extended to
quasiregular maps. For the definition and the basic properties of these
maps we refer to [1]. If 4 is any set in R”, we say that a map f: 4 — R" is
quasiregular if it has a quasiregular extension to some neighborhood of 4.
Then a slight modification of the above proof yields:

8. Theorem. Suppose that f:G — R" is a sense-preserving discrete
open map of a domain G c R". Suppose also that G = U{E,|ke N} such
that Ko(f| E,) < K for all k. Then f is quasiregular and K,(f) < K. Similarly,
if K,(f|E,) <K for all k, then K,(f) < K.

9. Open questions. 1. Is Theorem 8 true for all (continuous) maps, with-
out any condition on discreteness or openness? A positive answer would
give as a very special case a theorem of Radé [2]: If f: G — R? is con-
tinuous and if f is analytic in G\ f7(0), then f is analytic.

2. Suppose that f:G — R" is sense-preserving, discrete, and open,
and suppose that f is locally K-quasiconformal outside the branch set B,.
Is f K-quasiregular? The answer is known to be affirmative if B, is of
o-finite (n— 1)-measure. We remark that Theorem 8 can be sometimes used
if we know something about f|B,. For example, if f(x) = 2 for all x in
B,, then f is K-quasiregular.
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