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SUBORDINATION CHAINS AND QUASICONFORMAL
EXTENSION OF HOLOMORPHIC MAPS IN C”

J. A. PFALTZGRAFF

1. Introduction

Recently [1] J. Becker showed that a function f(z) analytic in |z| <1
extends to a quasiconformal homeomorphism of C onto C if it satisfies

(1.1) (I — 2P R)If'x) <c <1, [z <1.

In this paper we give the n-dimensional (n > 1) generalization of Becker’s
extension theorem. We shall use results and notation established in [7].
Let 9((B") denote the set of functions

f(Z) = (fl(z)i' '~:fn(z))’ 2= (21,.. .,Zu),

that are holomorphic in B" = {z € C": |2|| < 1} with values in C". We
consider C" with the usual inner product, {,», and Euclidean norm || |.
The second derivative of a function f€ 9{(B") is a symmetric bilinear
operator D%(z)(,*) on C"xC", and D?3f(z)(z,') is the linear operator
obtained by restricting D2f(z) to zxC"

We shall prove (Theorem 3.1) that if f € 9((B") is quasiregular in B"
and if there is a constant ¢ < 1 such that

(1.2) (1 — DDA D@, ) < ¢, z€B,

then f extends to a quasiconformal homeomorphism of R*™ onto R™.
As in [1] the extension is given explicitly in terms of an appropriate sub-
ordination chain ((3.3) below) already considered in Theorem 2.4 of [7].
In (1.2) || || is the usual operator norm

4] = sup {||4z|| : Jl2ll < 1}

for A € 4(C"), the continuous linear operators from C" to C™
The matrix representation for D% (z)(z,:) is
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D?f(z)(z,-)=(i ), ) 1 <j.k<n.

m=1 0z;0z,, ™

For n =1, this reduces to zf"(z) and (1.2) reduces to Becker’s condition
(1.1).

In Section 2 we prove some preliminary results on Lipschitz continuous
extension to the closed ball, B". These results are independent of the
theory of subordination chains.

2. Lipschitz continuous extension

Our first result (Lemma 2.1) is an n-dimensional version of classical
theorems of Hardy and Littlewood [3, pp. 361—363]. We then apply this
result in Theorem 2.1 to the problem of continuous extension to B" of
a locally biholomorphic quasiconformal mapping on B".

We say that a holomorphic mapping f(z) = (fi(2), ..., f.(?)) from a
domain G € C" into C" is quasiregular in G if
(2.1) IDf(2)II" < K|det Df(z)]

for some K < o« and all z € G. It is known that a sufficiently smooth
quasiregular mapping is a local homeomorphism. Hence a quasiregular
holomorphic mapping has nonsingular Df(z) and is automatically locally
biholomorphic. Note that » in (2.1) is the complex dimension, but the
holomorphy of f makes it easy to interpret (2.1) as a condition on mappings
in R™ in the notation of [9]. We shall return to this point in Section 3
below.

Lemma 2.1. Suppose that ¢ € [0, 1) andthat g(z) s a complex valued
holomorphic function for z € B", such that

9g(z)

(2.2) —— | < M) — &), j=1,...,n, z€B".
62,-

Then ¢(z) has a continuous extension to B" and
I9(z) — g(w)| < Allz — w|'™*, =z,w€B".

Proof. Note that Dg(z) = (99(2)/dz, , . . . , dg(2)/0z,) and the conditions
(2.2) imply

1Dyl < M1 — el s = €B", M ={3 M.
=
Fix a point @ € C" on the sphere |jal] = 1 and consider the slice function

G,(8) =g(la), (€B. Then G, ) is holomorphic in [{] <1, and
satisfies
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(2.3) IGL(0)| = [KDg(ta), a)| < ||Dg(La)| <
< M1 — |Lal))* = M/(1 — (2], 1¢I<1,

(recall that (z,w) = Z 2;, z,w €C"). Hence G,({) is continuous in

the closed unit disk (Satz 3 [3, p. 361]) and satisfies a complex Lipschitz
condition

(2.4) G(0) — G (&) < kiE— 1", ¢, U €B,

in the closed disk [3, pp. 361—364]. An examination of the proofs of Satz 3
and Satz 4 in [3, pp. 361—364] shows that the constant k in (2.4) depends
only on M and ¢, and is independent of the choice of a € C", Jla|| = 1.
We extend g to the boundary of B" by defining g(z) = G,(1) for each z
n 2] = 1.
Welet z€B", 0 <h <1 and apply (2.4) with a =z/|lz|, { = |2
to obtain

(2.5) l9(2) — g(ha)| < k|2l — hl2l| '™ < k(1 — B)'=".

For any pair of points w,w’ € B" we also have

(2.6) lg(w) — g(w')| < [lw" — ]| fo I1Dg(w + t(w’ — w))|dt
< Mijw' — w||/(1 — max (], [lw’]))° -

To complete the proof we first show that there is a constant L independent
of 7,0 <r <1, such that

(2.7) 19(2) — g(w)| < Lilz — w|'™

when o] = Jwil = r. Let |afl=|w]|=7r<1, 0<h <1, and apply
(2.5) and (2.6) to obtain

(2.8) |g9(z) — g(w)| < Ig(z) — g(h2)| + lg(w) — g(hw)| + |g(hz) — g(hw)|
< 2k(1 — h)' " + Mz — w||/(1 — hr)° < 2k(1 — h)' ™ + M|jz — w||/(1 — R)°.

To prove (2.7) for a fixed r < 1 it is sufficient to do this for |z — w| < L.
Setting h = 1 — |z — w|| in (2.8) we obtain

lg(z) — g(w)| < (2k + M)l — w|'~°

when |zl =|w]| =7 <1 and |z — w| <1. An obvious compactness
argument shows that (2.7) holds for all » <1 with a constant L that is
independent of 7. Finally welet z, w € B* and suppose that |jw| < ||| < 1.
Then
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l9(z) — g(w)| < lg(z) — g(llllw/llwl)] + lglzllw/lw]) — g(w)]
< Lilz — |fellow ] eel] 1I'~* =+ Rl ll2l — lleell '7° < (L2 + B)llz — '~

by (2.5), (2.7) and the triangle inequality. The proof of Lemma 2.1 is
complete.

Prior to the writing of this paper J. Mitchell proved a general version
of Lemma 2.1 for bounded symmetric domains in C" [4]. I am indebted
to J. Mitchell for discussing with me her results in [4].

Lemma 2.2. Let f(z) = (fi(2) - .., fa(2)) € X(B") and suppose that

(2.9) IDf2)| = O /(L — [R2II)) , [l <1, 0<e<T1.
Then f has a continuous extension to B" and
If(z) — f(w)| < Allz — w|*™, z,w€B".

Proof. It suffices to note that (2.9) yields conditions of the form (2.2)
on each of the components fi(z), j=1,...,n and then apply Lemma
2.1 to each of these functions.

Theorem 2.1. Let f(z) € V(B") be quasiregular in B". If ihere is a
constant ¢ < 1 such that

(2100 I(Df(2) D (2)(z , )l < ]—_E%;ﬁ;

for all z € B", then

(2.11) IDf)| = O /(L — |])), =€ B",

and f has a Lipschitz continuous extension to B" that satisfies
(2.12) If(z) — f)| < Mz — w|'™, =z, we€B".

Proof. By Lemma 2.2 it is sufficient to prove (2.11). We fix w € B"
and let A(f), ¢ € B!, denote the holomorphic matrix-valued function
A(f) = Df(wl). An easy computation shows that

2':' 0*fi(wl)

w
m=1 6zj3z,,, m

t4'(f) = ( C) = D¥(wl)(wl, ).

The complex valued function g¢({) = det A({) is a nonvanishing holo-
morphic function of ¢ in the open unit disk. Employing an argument of
M. A. Goldberg [2] we find that

g'(8) = g(2) tr [A7H(5)A"(D)],

where tr denotes the trace, and therefore

(2.13) Lg'(8)/9(8) = tr [(Df(wl)) D (wl)(wl , +)] .
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If E = (E;)€<L(C") then ||E|? = 1, where 4, <1, <...<4, are
the eigenvalues of E*E (E* denotes the conjugate transpose). It is ele-
mentary to show that

b (B*E) = > |Eplf= 4+ ... + A < nko = nl B[,

jok=1

and hence that
n n 12

(2.14) Bl =1 3 Byl < {n 5 lEjjlz} < ).
j= i=

We apply (2.10) and (2.14) to (2.13) to obtain

d
! C&log g(C)t < 2ne/(1 — [wl|?) < 2ne/(1 — [CI)

for || <1, and therefore
(2.15) |det Df(w?)| = 1g(¢)| = O(1/(1 — 1EN™), 1¢1 <1.

Next, we let z € B" and apply (2.15) with w = 2/|l2ll, { = |l2]l, to conclude
that

(2.16) det Df(z)| = O(1/(1 — |[2l)™) , = € B'.

Finally, (2.16) and the quasiregularity condition (2.1) imply that (2.11)
holds, and the proof of the theorem is complete.
Example. Let z = (2,,2,) and define

(2.17) f&) = (1,2 + bz), 2€B2,

where h(0) = 0 = &’'(0) and h is analytic in [z;| <1, but otherwise
arbitrary. Then f is univalent throughout B? (not just locally), and easy
calculation shows that

L(f;z) = (Df(z))_lbzf(z)(z ’ .) - (21’&"((’21) g) .

Thus trace L(f;z) = 0, but f may not extend to B for arbitrary h.
However (2.10) obviously restricts A”(z,) enough to render k(z,) extendable
and Lipschitz continuous. We also note that

1 0
Df(z) = (h’(zl) l) ’
det Df(z) = 1, and, by calculating the eigenvalues of (Df)*Df,
IDfE)IE = 271 (z) P+ 2 4 (') + 418 (z) 1)) -

Hence (2.17) is quasiregular only if k(z,) has bounded derivativein |z,| < I.
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3. Quasiconformal extension

In [7] (Theorem 2.4) we showed that if f€ Y((B") is locally biholo-
morphic and (1.2) holds in B" for ¢ < 1 then f is univalent in B". We
now wish to show that if condition (1.2) with ¢ << 1 holds then f is not
only univalent in B", but it extends to a quasiconformal homeomorphism
of R™ onto R®". The extended mapping f = (f;,...,f.) may not be
holomorphic outside B", and hence will be considered as a mapping

(3.1) Fo@p,yy, oo, g (g, 00,00 %, 0,)

of R™ to R™ where 2z, =ua,+1y, and wu,=Ref,, v, =1Imf,,
k=1,...,n Weshall showthat the extension is ACL, (real) differentiable
a.e., and has uniformly bounded dilatation a.e., and is therefore quasi-
conformal according to [9, p. 115]. The (real) derivative (2nx 2n Jacobian
matrix) of the mapping f in (3.1) will be denoted by D(u,v;x,y) and
J(u,v;x,y) will denote the Jacobian determinant of f. At points where
f is differentiable but not complex holomorphic we shall consider the
(outer) dilatation,

ID(w, 052, NI (u,vse,y),

of f, where | || is the standard operator norm for 2n X 2n real matrices.
Concerning notation, if z=(z,...,2,)€C0" and z =ux; + 1y;,
1 <j<mn, then (x,y) will denote the representation (v,y) =

(@ ,Y1,---52,,9,) of z as a row vector in R®™, and <;) will denote

the (real) column vector that is the transpose of (x, y). It will be necessary
to use the real notation rather than the more concise complex notation
when the mappings in question are not complex holomorphic.

Before proceeding to our main theorem we must recall some of the
basic definitions and results from [7]. The notation f(z) =az 4+ ..., a €C,
for f€ 9(B") indicates that Df(0) = al where I = (I,) is the identity
in <£(C". A mapping v(z) € V(B") is called a Schwarz function if
llw(z)l| < |zl for all z € B". A subordination chain ([7], [8]) is a family of
functions {f(z,¢):2 € B", t >0} from B"X[0, o) into C" such that
for each ¢t >0, f(z,f) = ¢z + ... isin 9(B") and there exist Schwarz
functions wv(z,s,t) such that

(3.2) fz,8) =fwz,s, ), ), 0<s<t, z€B",
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for all 0 <s <t < oo.
In [7] (Theorem 2.4) we defined

(3.3) flz 1) = fze™) + (¢ — e \Df(ze™)(z) , ¢t >0,

for locally biholomorphic f(z) =z + ... in 9((B") such that (1.2) holds
for ¢ < 1. From (3.3) we calculated

(3.4) e~'Df(z , t) = Df(ze ) — B(z , 1)]
where for each (z,t) € B"x[0, o), E(z,t) is the linear operator
(35  Bl,t)=—(1-— e~ ¥)(Df(ze™")) ' D*f(ze ") (ze ™", *) .

From (1.2) we have ||E(z, )| < ¢ and then ||E(z,t)|| < c|zl| by the general
Schwarz lemma (E(z, ¢) is a bounded holomorphic mapping into <£(C")).
The functions (3.3) satisfy the generalized Loewner differential equation

((7], [6])

of
(3.6) o E ) =fG. 0k, 1), 120, 2€B",
where
(3.7 h(z,t)= (I — E(z, ) + Ez,t)(z),

and as a consequence ([7], Theorem 2.2), (3.3) is a subordination chain with
v(z,s,t) in (3.2) being univalent Schwarz functions generated as the
unique solutions to the initial value problems

o0v(z,s,t)
(3.8) —Tz—h(v(z,s,t),t), t>s, v(z,8,8)==z.

We will also need the following bounds established in [7]:
(3.9) Az, O < IRl(L + cllzi)/(X — ell) , = € B,
(3.10) 2L — cllzl)/(X + clizl) < Re<h(z,t),z), z€B".

Theorem 3.1. Let f(z) =z + ... be holomorphic and quasiregular in
B". If there is a constant ¢ < 1 such that

(3.11) (1 — [IPIDf ) D)=, )l < ¢

for all z € B* then f can be extended to a quasiconformal homeomorphism
of R™ onto R™. The extension is given by

flz,0), [&f <1
f@&[lEll, logllzl) =l > 1

where {f(z,t)} 1is the subordination chain

(3.12) F(z) = {
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(3.13) flz,t) = fze™") + (¢ — e ")Df(ze™")(z), t =0.

Proof. We imbed f(z) as the initial element in the chain (3.3). The
condition (3.12) and our univalence results in [7] (Theorem 2.3) yield that
each f,(2) = f(z,¢) (¢ > 0) is univalent in B". Furthermore, for ¢ > 0,
f(z ,t) is obviously holomorphic in B", and f(z,0) = f(z) is continuous
in B" by (8.11) and Theorem 2.1 on Lipschitz extensions. We shall show
that f(z,f) (¢ >0) is univalent in B", and that f,(B") C f,(B") when
0 < s <t. Then it will be obvious that the extension F(z) in (3.13) is
univalent in C" (R™).

In [7] we showed that the Schwarz functions » = v(z,s,?) in (3.8)
satisfy

|[vl| 9llvl|/0t = — Re <{h(v, 1), v)
and hence
(3.14) lo(z , s, )0z, s, B)|/0t < — (1___2 , s <t
(I +¢)

by (3.10). An elementary integration and the initial condition »(z,s,s) =z
yield the inequality

oGz, s, ) < llzll exp {— (L — e)(1 + ¢)7H(t — 8)}, 0 <s <.

Hence »(B",s,t)c B* (0 <s <t), and this combined with the con-
tinuity of f,(2) in B", f(z) in B", and the relation f,(z) = f,(v(z, s, 1))
shows that f,(B") cf(B"), 0 <s <t (cf. [1, p. 32]). The continuity of
f.(z) in B" enables us to define the continuous extension v(z,s,t) =
—1(f(2)) (2€B", 0<s<t) of v(z,s,t) to B". To show that f, is
univalent in B" we first note, for z € B* and 0 <s <, that

fhzsr),)

<f o1 + eflel)/(1 — cllel)dr < (1 + e)(1 — ¢)7}(t — s)

(3.15) Iz — v(z, s, t) .

(by (3.8) and (3.9)). It is easy to show that (3.15) is valid in B" for the
extended v(z,s,t). The univalence of f,(z) (s >0) in B" now follows
from (3.15) by a brief argument given in [1, p. 32].

Having established the univalence of F in C", we now turn to the
question of continuity in C". The continuity of F in C" will follow from
the Lipschitz conditions

(3.16) e7f(z, t) — fw, )| < Mz — w|'™, z,w€B", t>0,
(3.17) Ifz, t) — f(z, 8)| < Lei(t — )", z€B", 0<s <t
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(M and L are constants independent of s and ¢.) To prove (3.16) we
begin with (3.4). The quasiconformality of f(z), (3.11), and Theorem 2.1
((2.11)) then yield that

le™'Df(z , t)| < IDf(ze™)I(1 + ¢) < M'[(1 — Jlll)° ,

for all 2 € B and ¢t > 0, where M’ is a constant independent of ¢.
Hence the functions e~'f(z,¢) (¢ > 0) satisfy (2.9), and (3.16) follows
from Lemma 2.2. To prove (3.17) we first observe that |f(z,?) — f(z, s)]| =
Ifz,t) — fo(z,s8,1),8) < Me'|lz — v(z,s, t)'™, for zEB*, 0<s <t
and then apply (3.15). The continuity in C" of the extension (3.13) follows
since (3.16) and (3.17) show that f(z,¢) is continuous in B"X[0, o).

In [7] we showed that the Schwarz functions » = v(z,s,%) in (3.8)
satisfy the inequalities:

ellv(z, s, DI/(L — cllvz, s, D) < € Jll/(1 — cll)?,
and
ellzll/(1 + clizl)® < €llv(z, s, Oll/(L + clloz, s, D),

and that e'v(z,s,t) converges to f(z,s) as t— oo with s fixed. Thus
we let t— oo to obtain

(3.18) ellzll/(1 + cll2ll)® < [If(z » 9l < €lall/ (1 — ellz))? -

The left-hand inequality (3.18) shows that F(2) —> o as z— o, and
hence that F(z) in (3.13) is a homeomorphism of R U {0} onto itself.
It remains to show that F is quasiconformal in R*. We shall do this with
an approximation argument similar to Becker’s [1, pp. 33—34].

We let » > 1 and define the functions f,(z,?) = f(z/r,t) (¢t >0),
h(z,t) = rh(z/r ,t) and

fr(z ’ 0) ’ HZH S 1
fi(z/Ilz]l , log l2ll) , Izl = 1.

Clearly, f.(z,t) satisfies the differential equation
(3.20) of.(z , 1)/t = Df(z, hh,(z , 1), t >0,

(3.19) G,(z) = {

for all |z|| <r, and hence |z|| < 1. Furthermore one can use (3.16) and
the right-hand side of (3.18) to show that f,(z,t) — f(z , #) uniformly in
Il <1, 0<t<T, as r decreases to 1. Hence G,(z) converges to F(z)
uniformly on compacta in R®" as r decreases to 1. We shall show that
G.(z) (as a mapping from R™ to R™) is ACL, differentiable a.e., and
has outer dilation bounded a.e. by a bound independent of r. Then it
will follow (see 21.3 and 37.4 in [9]) that F is quasiconformal.
Clearly e~'f,(z,t) satisfies a Lipschitz condition
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(3-21)  efilz,t) = flw, )| < Mz — wl, z,w€B", t>0,

where M,> 0 depends only upon r > 1, since |e 'Df,(z,t)] =
lle~*Df(z/r , t)|| < ||IDf(e~*2/r)l(1 4+ ¢) and this last quantity (for fixed
r > 1) is uniformly bounded for all z € B" and t > 0. Moreover, similar
to (3.17), we have that

(3.22) Iz, 8) — fi(z, o)l < €Lt —s), z€B", 0<s<t,

where we have used (3.21) and (3.15). With (3.21) and (3.22) it is easy to
show that G,(z) satisfies a local Lipschitz condition (with exponent 1)
in C". Hence G.(z) is ACL in R®", and by the Rademacher-Stepanov
theorem [9, p. 97] it is (real) differentiable a.e. in R

Throughout the remainder of this proof we shall simplify notation by
dropping the subscript r and letting G(z) = G.(z) for fixed r» > 1. We
let z=(x,y), |2 >1, be a point where the mapping G = (U, V),

(3.23) G:(@ Y1, s ZusYn)—> (U, Vi, .., Un, Vi),
Ur=Uky,Y1, - 2n,Yn) =Re Gz ,y), Vi=ImGz,y),
k=1,...,n, is differentiable. We shall complete the proof by showing

that

1 + c 4n—1
(3.24) I!D(U,V;w,y)ll2"SK2<l_c) (U, Ve, y)l.

To compute the (real) derivative of (3.23) one uses the chain rule ou
the composed mapping (see (3.19))

(xl’yl’ . "!x"!y")H(El’ﬂl» * "!E"’ n » log|]z|{)r—>r(u1,v1, s ’u"svn)’
where (p = & + ope = 2/(rl2]) , = 2/(r|2l) , v and v, are the real
and imaginary parts of fi(¢,?), and Uk(x,y) = ruw(é,n,t), Vilx,y) =
ro(§,m,8) with ¢ = log|z||. Elementary computations yield that

0 (uw(l,t)
D(U,V;x,y)=r{D(u,v;5,n)D(§,n;x,y)+&(v(c t))gradlogllzil}
Re h({ , ¢)
=rD(uw,v;&,7)1DE,n;2,y) + Tm (¢, #) grad log [zl ,

where we have used (3.20), and the Cauchy-Riemann equations which are
valid since ||{|| < 1. Further calculation leads to the formula

(3.25) DU,V ;x,y) =

e (h(C, 1) )>(§, )},

=|l2ll"* D(u , v ; &, 1) {I + "2<1m (h(L,t) —0)
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where I denotes the 2nx2n identity matrix.
It is easy to verify that the matrix

Re (W , ) — )
4= ”2(Im (E 1) — m) (€. m)

has proportional columns, and hence rank 4 = 1. This implies that
det (I + A) = 1 + trace 4, and (3.10) yields that

det (I + A) =1+ rReh(l,t)— ¢, =rReh(l,t), O

I—CHCII)>1—C
T+oelldl) =1 +e

Applying this to (3.25) we obtain

= r”lICHz(

1 —c¢

1+c¢

(3.26) (U, Vi, y) ZHZII'“( )IJ(u w3 &l =

1 —c¢
fl2]| 2" (]—_;—C> |det Df(C, t)[>.

The last equality holds because ¢ € B" and f({,t) is holomorphic in B".
For the subordination chain (3.3) we have

(3.27) Df(¢ ,t) = e Df(Le™ ) — B(L, 1)), t=logle,
and this with the quasiconformality, (2.1), of f yields
(3.28) K|det Df(L, t)| > [l2I"|Df(Ce™ )" |det (I — E(C . 1)) .

The inequalities 1 — ¢ < [|[I — E(¢, t)ll <1 + ¢ and familiar results about
the distortion of linear operators lead to

1+ c\*?
(3.29) M — B¢ O/ det (I — E(C, 1)< (1 — c) .

From (3.26) — (3.29) we obtain the inequality

1 — c)z"—‘ IDAC , o)l
1+e l2l*"
We return to (3.25) and observe that

(3.30) 1J(U,V;x,y)i2K‘2(

(3.31) DU, Vix, 9l <la2YD,v; &, I + Al
= ||| DS , )l | + Al .

The equality [[D(w,v;&,9)| = |[Df(¢, ¢)| between the operator norm in
<£(R®™) of the 2nx2n real matrix on the left and the <£(C") norm of
the nxmn complex matrix on the right follows from the holomorphy since
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{ € B". (Thisis an easy calculation involving the Cauchy-Riemann equations
and the two operators with their respective norms.)

Next we derive an upper bound for the <4(R*) norm |I + A|. Let
a=(a,...,a,)€R™" and observe that

('Ll Re (B(C,t) — &)
A . — 92 ’ E y ’ PR 2 I
<¢;’2n> ' (Im (h(E, 1) — C))<( n), (a a5)>

With the Schwarz inequality we obtain

I + A)all < (1 + rllR(C, &) — Cllall
where we have also used the fact that ||| = 1/r. The form, (3.7), of A({,?)
enables us to write
R, t) — ¢ =2E(, ) — B, t)7(),
from which we infer that
R(C, 8) — &Il < 2¢/((1 — c)r) .
It follows that

(3.32) I+ A < (14 o)1 — o).
Finally, (3.24) follows from (3.30)—(3.32) and the proof of Theorem 3.1 is
complete.

Remarks. A difficulty that arises when one attempts to check the
condition (3.11),

(1 — [RIPIDF N D)=, )l < ¢,
is the problem of estimating the norm of the inverse (Df(z))~!. However,

a result by Kato [5] shows that |(Df)-Y| < ||Df||""/|det Df|. Hence if f
satisfies (2.1) and the condition

(3.33) (L — [&PID (=)= , /IDf (=)l < /K,

holds for some ¢ <1 then (3.11) will follow.

Example. If we let h(z,) = z,(e"™ — 1) in the example (2.17) then the
resulting map f(z) is holomorphic and univalent in C2. Clearly f is
quasiregular in B" since k'(z;) is bounded in |2,| < 1. Furthermore for
la| sufficiently small f will satisfy (3.11) for some ¢ < 1 since

(D) DY)z, ) = lali(2 4 az)ze™| .
Thus f admits a quasiconformal homeomorphic extension to R?, but
the extension cannot agree with the original holomorphic f throughout
C*. This follows from a result of A. Marden and S. Rickman (Proc. Amer.
Math. Soc. 46, 1974, 226 — 228) that says a nonlinear holomorphic mapping
of C" (n > 2) cannot be quasiregular in a neighborhood of infinity.
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