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WORD-FUNCTIONS OF STOCHASTIC AND
PSEUDO STOCHASTIC AUTOMATA

PAAVO TURAKAINEN

1. Introduction. It is well-known that any word-function p: X* — R of
finite rank n can be written in the form ‘

(1 p(P) = ab!®(py(P) +¢) VPCXT

where a, b, ¢ are constants and p is a word-function generated by a stochastic
automaton. However, in the existing proofs (cf. [11], [12], [2], [3]) the num-
ber of states of A is much larger than n. The purpose of this paper is to
consider the following problem: What is the minimal value of k(n) such
that any word-function p of rank n can be written in the form (1) for some
k(n)-state stochastic automaton A4?

It is proved that there exists an (n + 2)-state actual doubly stochastic

automaton A4 such that (1) holds for ¢ =- — (n + 2)~! and for some positive
constants a, b. This is done by modifying the method we used in [11], [12]

where we showed that every pseudo stochastic language is stochastic.
It is proved that there exists an (n + 3)-state actual doubly stochastic
automaton B such that

(2) p(P) = b!P(pg(P) +¢) VPEXTF

where b is a positive constant and ¢ = — (n + 3)~1. Moreover, B has a
fixed initial state which is also the only final state. In fact this implies that
every stochastic language L is quasidefinite in the sense of Paz [6] and that
L + {3} is accepted by a stochastic automaton having a fixed initial state
which is the same as the only final state. The last mentioned result has been
known for pseudo stochastic automata (cf. [10]), but it has been open for
stochastic automata.

If |p(2)| < 1, then (2) holds even for an (n + 2)-state stochastic autom-
aton B (¢ depends on the sign of p(1)). In the general case, the problem
concerning the value n + 2 remains open. We show that » and n + 1 are
not possible.
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The problem concerning the value n + 1 for (1) remains open. The
value 7 is not possible. As a partial result on n + 1 we show that

p(P) = ab'P(p 4, ) (P) — D4, 00 (P)) VPcX+

for an (n + 1)-state stochastic automaton A and for some initial distribu-
tions 7y, py. A corresponding result with 2n + 1 states is established in [8]
for word-functions of pseudo-Markov chains.

“We also give a connection between the characteristic polynomials of any
stochastic automaton 4 satisfying (1) (for every word P € X*) and of any
minimal pseudo stochastic automaton generating p.

2. Preliminaries and the main theorem. By a pseudo stochastic automaton
we mean any ordered quintuple 4 = (X, S, {A(z) | # € X}, =, f) where X
is an alphabet, S, = {s,, ..., s,} is the set of states, each A(z) is an n X n
matrix with real entries, = is an 1 X n vector (initial vector), and f is an
n X 1 vector (final vector). In [11] and [12] this system was called a gen-
eralized automaton.

If 7 and the matrices 4 (x) are stochastic, and if f is of the form (3, ..., 5,)"
where 3, € {0, 1}, then A4 is called a stochastic automaton (f corresponds to
the set of final states). If, in addition, also the column sums of the matrices
A(x) are equal to 1, then A is called a doubly stochastic automaton. Following
Rabin [9], we say that 4 is an actual stochastic automaton if the entries of
the matrices A(x) are positive.

For any word P =xx,..., (2;€X, k>0), denote A(P)= A(z,)
A(x,) ... A(z;) and define the word-function ps: X* — R generated by A
as follows:

DPa(A) = =f,
pa(P) = nA(P)f VPE€EX+,

We write sometimes p 4, instead of p4. By the notation L(4, n), where
n € R, we mean the pseudo stochastic language

L(4,n) = {P € X* | ps(P)>n)}.

Theorem 1. Let A = (X, 8,, {A(z) |z € X}, w, f) be any n-state pseudo
stochastic automaton. v

(1) There exists an (n + 2)-state actual doubly stochastic automaton B with
one final state such that

(3) Pa(P) = ab!®P(pp(P) — 1/(n + 2)) VPEX*

where a and b are positive constants which can be chosen arbitrarily large.
(ii) There exist an (n + 1)-state actual stochastic automaton B and two
witial distributions w,, po such that, for some positive constant b,
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(4) pa(P) = ab'P(pp,x)(P) — Ppon(P)) VP EXF

where a = 1 if |nf| < 1, and a = |=f| if |=f|>1.

(iii) There exists an (n + 3)-state actual doubly stochastic automaton C
with a fixed initial state and one final state such that, for some positive con-
stant b,

(5) pa(P) = b (po(P) — 1/(n + 3)) VPEXT

Moreover, the initial state is the same as the final state.
(iv) If |nf| < 1, then there exists an (n + 2)-state actual doubly stochastic
automaton C such that

(6) pa(P) =P (pe(P) +-¢) VP EXT

where b is a positive constant, ¢ = — 1/(n + 2) if 0==f<1, and c=
—(n+ 1)/(n+ 2)if —1=xf<O.

Proof of (i). B will be constructed in the following steps. We omit, the
trivial cases © = 0 or f = 0 and assume that = #0, f #0.

Step 1. There exists a nonsingular n X n matrix D such that Df =
(1,0, ..., 0)%. Define 4, = (X, 8,, {4,(x) | x € X}, =,, f;) where

n,=nD"1, f,=Df=(1,0,...,0), Ay(x) = DA@x)D' VatcX.

Then p4, = pa.

Step 2. (Cf. Lemma 1 in [12].) Consider any matrix 4,(z) in 4,. There
exist a column vector u(z), a row vector v(x) and a real number a(x) such
that in the matrix

0
(7) Ay(x) = |u(x) Ay(x) 0
0

all row sums and all column sums equal 0 (a(z) = the sum of the entries
of A,(x)). Clearly, for any nonempty word P and for some vectors u(P),
v(P), the matrix 4,(P) is obtained from (7) by replacing x by P. Hence, if
we define 7, = (0, 7, 0), f, = (0, f{,0)* = (0,1,0, ..., 0) and 4, =(X, S,.,,
{4y(z) | » € X}, my, f,), then pu, = P4, = pa.

Step 3. For any real number B, denote by N(B) the (n + 2) X (n + 2)-
matrix in which all entries are equal to . Let « be any number such that
the entries of every matrix Ag(x) = A,(x) + N(a) are positive. Since the
row sums and the column sums of each matrix 4 ,(x) equal 0, it follows that
the same holds for any matrix A,(P), P € X+. Hence N(x)4,(P)=
A,(P)N(a) = 0 whenever P € X+. Consequently,

(8) A4(P) = Ay(P) + N((n + 2)®)-1P)) VP € X+,
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Let B(x) = [(n + 2)a]"'4,4(z) and =y = aY(ny, + (d, ..., d)) where a is the
sum of the components of n, + (d, ..., d) and d is so large that these com-
ponents are non-negative. Now define B = (X, S, ,,, {B(z) | z € X}, =, f,).
B is an actual doubly stochastic automaton, because the row and column
sums of every matrix A4,(x) equal (n + 2)a. Moreover, f,=(0,1,0,...,0)t,
i.e. B has one final state, only. By (8) we now have

P(P) = a=Y[(n + 2)a]Pp,(P) + 1/(n +2) VP EX*

Since p4, = p4, we obtain the formula (3) where b = (n + 2)«. Since «
and d can be chosen arbitrarily large, the same holds for @ and b. The proof
of (i) is now complete.

Proof of (iv). Assume first that 0 <nf<1. Thus =, = (xf, 1 — =f,
0, ..., 0) is a stochastic vector. We show that there is a nonsingular matrix
D such that #D-! = x; and Df = (1, 0, ..., 0)! = f,. Denote the rows of D
by Ry, ..., R,.

If =f = 1, we take any linearly independent vectors u,, ..., u, orthogonal
to f. Then choose R, = &, R, = u,, ..., R, = u,. Since nf #0, the resulting
matrix D is nonsingular. It satisfies the above conditions, because =, =
(1,0, ..., 0).

It nf <1, choose R, = (1 — nf)~1(m — nfR,) where R, is any vector
such that R,f = 1 and R, 0. Then R,f = 0 and there exist vectors Ry, ...,
R, such that R,, ..., R, are linearly.independent and orthogonal to f.
The corresponding matrix D is nonsingular and Df = (1,0, ..., 0)' = f,,
D = nfR, + (&= — nfR,) = m, i.e. ®; = nD-L,

Now define 4, = (X, S, {4,(2) | z € X}, =, f,) where 4,(x) = DA(x) D!
for every x € X. Then p,, = p4, and we continue by using the constructions
of Steps 2 and 3. In Step 3, we can choose d = 0 and a = 1, because T, is a
stochastic vector. In this way we have constructed an actual doubly
stochastic automaton C satisfying the formula (6).

Note that if =f = 1, then the initial and final vectors of C' are w, =
m,=(0,1,0,...,,0), f, =(0,1,0,...,0), ie. the initial state is the same as
the final state.

Finally, consider the case — 1 <nf< 0. Instead of A, consider 4’ =
(X, S,, {A(x) | € X}, 7, — f) for which 0 < =(— f) < 1. By the above proof,

pa(P) = b (po(P) — 1f(n + 2))  VPEXH

for some actual doubly stochastic automaton C. But p, = — p, and
pc(P) = 1 — pe(P) where the only difference between C' and C’ is the final
vector. Consequently,

Pa(P) = bUP(pedP) — 1 + 1f(n + 2)) VP EX+

which completes the proof of (iv).
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Proof of (iii). First replace 4 by A’ = (X, 8,,,, {4'(x) |z € X} =1
where ' = (1,0, ..., 0), /' = (1, f*)! and, for each x € X,

ooy [0 mA(x)
e =g ]

Then ='f’ = 1 and p4(P) = p4(P) VP € X*. Now continue as in the proof
of (iv). Since w'f’ = 1, the note we made in that proof implies that the
constructed automaton satisfies the conditions of (iii).

Proof of (ii). By the symmetry of the condition (4), we may assume that
7f =0, because otherwise we can replace 4 by 4 = (X, S,, {4(x) | x € X},
w, — f), i.e. p4 is replaced by — p,.

Let A" =(X,S,, {A(x) |z € X}, n,{') where f'=a7!f, and a = =«f if
nf>1,a = 1if if <1. Now 0 <nf’ <1, and we construct 4, as in the proof
of (iv). Thus =, = (nf’, 1 — =f’, 0, ..., 0) and f, = (1,0, ..., 0)®. We continue
as follows. Define A, = (X, 8, {4sx) |z € X}, 7, f;) where m, =
(g, — 1), fa = (f{, 0)! = (1, 0, ..., 0)! and, for every x € X,

Ayz) = [A(;(x) u(()x)]

where u(z) is a column vector such that the row sums of A4,(x) equal 0.
Clearly p4, = p4, = ps- Now form the matrices Ay(x) = 4,(x) + N(«) as
in Step 3. Since the sum of the components of 7, and the row sums in every
matrix 4,(P) (P € X*) equal 0, it follows that

9) mpdy(P) = myAy,(P) VY PEXT,

Define w, = (x;, 0) and p, = (0, ..., 0, 1). Then n, = 7y — p,. Consequently,
by (9),
(10) (7o — po) A3(P)fs = pa(P) VPEXH

Let B=(X,S,,;, {B(x)|x€X},f,) where B(x) =[(n+ 1)a]'4,(x) for
every x € X. B is a stochastic automaton without a fixed initial vector.
Since py, = p4r = a~1py, it follows from (10) that (ii) holds.

The proof of Theorem 1 is now complete.

Corollary 1. For any word-function p: X* — R of finite rank n,
Theorem 1 holds when p,4 and wf are replaced by p and p(\).

Corollary 2. For any pseudo stochastic language L accepted by an
n-state pseudo stochastic automaton, there exists an actual (n + 4)-state doubly
stochastic automaton C such that L + {\} = L(C, 1/(n + 4)). Moreover, C has a
fized initial state which is the same as the only final state. Consequently, any
stochastic language L is quasidefinite in the sense of [6], and L + {A} is e-
approximable by a finite language if the above automaton C' is used.
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Proof. If A is an n-state pseudo stochastic automaton, then L(4, x)
can be given in the form L(4’, 0) where the number of states in 4’ is n + 1.
(If A is stochastic, then # is sufficient.) Now the part (iii) of Theorem 1
gives the desired automaton C.

Remark. Paz [7] has shown that there exist a stochastic automaton B
and a cut-point v such that L(B, ») is not s-approximable by any regular
language. Bertoni [1] and Kosaraju [5] proved that the same holds even for
context-free languages.

Carlyle and Paz [2] have considered pseudo stochastic automata A
having several final vectors f,, ..., f, (> 0). Let p’ be the word-function

corresponding to f;. They showed that
PPO(P) = ab®P(pP(P) +¢c) VPEXH

for a 2(k + 1)n-state stochastic automaton B. We show now that the same
holds for B with less than n + k + 2 states.

Theorem 2. Let A= (X,S,{4@)|x€X},n {f, .. [:}) be any
pseudo stochastic automaton with k final vectors. There exists an (n + k — r + 2)-
state doubly stochastic automaton B = (X, S, {B(z) |z € X}, 7, {91, - > 91})
such that, for every 1,

PPQP) = abtP(p@(P) — 1/(n + k —r+2) VPEX+

where a>0, b> 0, r is the maximum number of linearly independent vectors
in {fy, ..., fr}, and every g, is of the form (0, ..., 0,1, 0, ..., 0).

Proof. We may assume that f,, ..., f, are linearly independent. Clearly,
there is a nonsingular » X n matrix D such that Df,=e¢, (i=1,...,7)
where the ith component of e, is 1 and other components equal 0. Let
7, = nD-land 4,(x) = DA(x) D~'. Define A, = (X, S, x_. {4a(2) | x € X},
T {gl’ ten gk}) where

A,(x) = [Aléx) Al(x)ODfrH Al(“ngk]

and gl = 81, ooy gr = 6,, gr—f—l = en+1’ LR gk = en+k—r' Clea’rly pXZ(P) =
p'{(P) for every P € X+. Hereafter, proceed as in Steps 2 and 3.

3. Impossibility of the bound n + 1 for formula (2). In this section we
want to show that there exist » and an n-state pseudo stochastic automaton
4 such that the formula

(11) pa(P) = b"P(pp(P) +¢) VPEXT

is impossible for every (n + 1)-state stochastic automaton even if b is
allowed to be negative.
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The formula
(12) pa(P) = abl®P(py(P) +¢) VPEXH

where A has n states, is not generally valid for any n-state stochastic
automaton B. This follows, for example, from the well-known result that
two-state stochastic automata over one letter accept regular languages,
only, but this does not hold for all two-state pseudo stochastic automata
and for the cut-point 0. Consequently, n + 2 is the only open value for (11),
and so is n + 1 for (12) (see Theorem 1, (ii), (iv)).

Let us first consider a general two-state stochastic automaton B =

({x: ?/}, {81, 32}; {B(x)’ B(?/)}: s fo) where Ty = (P15 Da), fo = (0, 1)t and

l—a;, a 1—a,

w Bw=['0 0 B[ )

Let A=1—(a; +b;) and p =1 — (a, + by). Then the eigem-falues of B(x)
and B(y) are 1, } and 1, y, respectively. If a; + b, > 0, then

Bl B i ERT S

where o, =a,/(a; +b;) and B; =b,/(a; +b,)=1—«a;. By denoting
®y = ay/(ay + by) and B, = b,/(a, + by) we can write the corresponding
formula for B(y™), m >0, assuming that a, + b,>0. Consequently, if
a; +b,>0and a, + b, >0, we have

Bka:[52°‘2]+[°‘2“‘°‘1“1_°‘2] m+[ % = ])\k
=y™) Bo “2‘“1“1‘“2“ — By B: w"
and

B(yma") = B1 O‘1] + [“1 — &g Og — “1] A [_ %y — ]wc“

B1 oy %y — g g — Oy Be B

From the above formulas it follows that

(14) Pr(") = oy + (B; — P,

(15) Pr(Y™) = oy + (B2 — py)p”

(16) PEFY™) = oy + (2 — o)™ + (By — PN,
(17) PrY"EF) = oy + (2p — o)A + (By — py) A"

for any k>0, m > 0 assuming that @, + ;>0 and a, + b,>0.

Theorem 3. For an n-state pseudo stochastic automaton A there do not
always exist an (n + 1)-state stochastic automaton B and constants b, ¢ such
that

pa(P) = b (pp(P) +¢) VP EXH
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Proof. In our counterexample, we use the one-state pseudo stochastic
automaton 4 = ({z, y}, {s;}, {4(z), A(¥)}, =, f) where = = (1), f = (1),
A(z) = (— 3), and A(y) = (2). Now

pa(P) = (— 3)k(P) 2(P) VPE€ {x, y}+

where 1,(P) and [ (P) denote the numbers of the occurences of x and y in P.
In order to prove the theorem, we have to show that

(18) (— 3)=P2W® = PP py(P) + ) VP E (a,y)*

is impossible for all two-state stochastic automata and for all values of b
and c. Therefore, let B = ({z, y}, {s,, 82}, {B(z), B(%)}, my, f,) be an arbitrary
two-state stochastic automaton. We use the notations (13). We may assume
that f, = (0, 1)}, because (1, 1)¢ is not possible. Consequently, formulas
(14)—(17) hold if @; + b;>0 and a, + b, >0.

It is easy to see that, if a; + b, = @, + b, = 0, then (18) cannot hold.
Hence, we assume that either @, + ;>0 or a, + b, > 0.

Case 1. Assume that a; + b, = 0 and a, + b, > 0. Now pp(P) does not
depend on the number of the letters x in P. Hence, by (15), the condition
(18) gets the form

2™(— 3)F = b¥+™(c + ay + (By — py)p™) forall k>0, m>0.
Thus
(= 3/b)F = (b/2)"(c + ag + (By — Py)1™)-

Since the right hand side does not depend on k, it follows that b = — 3.
Thus ¢ + ay + (By — )™ = (— 2/3)™ for every m >0. This is possible
only if ¢ + ay =0, p = — 2/3 and B, — p, = 1. But if B, — p, =1, then
necessarily B, = 1, which means that a, = 0. Thus u =1 — b, =0, which
is a contradiction, because u = — 2/3.

Case 2. Assume that ¢, + b, >0 and a, + b, = 0. This is analogous to
Case 1.

Case 3. Assume that a, + b,>0 and a, + b,>0. By taking the dif-
ference of both sides of (17) and (16) it follows from (18) that

(g =) (1 =2%) (1 —pm) =0 forall k>0, m>0.

Here A #1 and p #1, because @, + b, >0 and a, + b, > 0. Consequently,
®; — «, must be equal to 0, i.e. a; = ay, Which implies that B, = B,. The
condition (18) implies now that

2M(— 3)* = b**"™(c + oy + (B — PN ™),
which implies

(2/b)™(— 3[b)* = ¢ + &y + (B — Po)Nu™
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This is possible only if ¢ + a; =0, B; —p; =1, A= —3/b and p = 2/b.
Thus B, = 1 and Ap. < 0. On the other hand, B, = 8,, so that §, =8, =1,
which implies that A =0 and p. = 0. This is a contradiction, because Aux < 0.
The proof of Theorem 3 is now complete.

4. Characteristic polynomials. Let A = (X, S, {A(x) |z € X}, =, f) be
any pseudo stochastic automaton. Let V', be the reachable part of R™, i.e.
V, is the linear space spanned by the vectors mwA(P), P € X*. Let ~ be
an equivalence relation over V, defined as follows:

u~v ifandonlyif wAP)f=vAP)f VPCX*

Then the number of states in any minimal pseudo stochastic automaton
generating p4 is equal to dim(V,/~) (cf. [13]). Assume now that A4 is in
minimal form. This implies that ¥V, = R™ and dim(R™/~) = m. Con-
sequently, it can be verified that every equivalence class in ™/~ contains
one element only. We shall use this fact in the proof of the following theorem.

Theorem 4. Let A = (X, S,, {A(z) | x € X}, =, f) be a pseudo stochastic
automaton in minimal form. Let B = (X, S,, {B(z) |z € X}, m,, f,) be any
stochastic automaton such that

pa(P) = ablP(pp(P)+¢c) VPEX*
for some constants a, b, c. Then, for any P € X+, the characteristic polynomials
94p), Pnp) of A(P) and B(P) satisfy the formula
oB(@)(2) = pap)(B"7'2) 4p(2)

where {p(z) is a polynomial.

Proof. Let C = (X, 8,, {C)|z€ X}, r, f,) where, for each z¢ X,
C(x) = bB(xz), and f, =a(fy + (¢, ..., ¢)!). Then py = pc. Let V,; be the
reachable part of R" in C. Take any basis {n,C(P,), ..., ,C(P,)} for V,,
and define a linear mapping 7: V,— R™ as follows:

T C(P)T =wd(P,) (=1,..,7).

(We write the mappings on the right hand side of the vectors.) We show
that 7' is surjective and that the equality C(x)T = T A(x) holds in ¥V, for
every z € X.

Since p4 = p¢, we have for any words P, @ the equations

n A(P)AQ)f = m C(P)0(@)f,

=(i ai(P)‘rcoC'(P.))C(Q)fl

=(i

I M=

1

ai(P)wA(Pi))A(Q)f

I M

1
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where 2 a,(P)w,C(P,;) = 7,C(P). Consequently, the vectors mwA(P) and
Y a,(P)=A(P,) are in the same equivalence class of the relation ~. By the
remark we made before Theorem 3, this implies that t4(P) = Za,(P)rA(P,).

Hence,
nA(P) = Za,(P)n,C(P,)T = m,C(P)T.

Consequently, 7' is a surjective mapping, because, by the minimality of 4,
the vectors w4 (P) span the space B™. Furthermore,

7 0(P) O(x) T = mA(P,) A(x) = mC(P,) TA(x)

for every € X. Thus the equality C(z)T' = T A(«x) holds in V. This implies
that, for any P € X+, C(P)T = TA(P) in V,. From this equality it follows
that odp)(2) = 94p)(2) Yp(2) where p(z) is some polynomial and ¢¢p)(2)
is the characteristic polynomial of C(P) considered as a mapping of V.
Since V, is a subspace of R", it follows that ¢dp)(2) is a factor of ¢o(p)(2).
Therefore, we have g p)(2) = ¢4 (p)(2)¥p(2) for some polynomial {5(z). By
the definition of the matrices C(x), this implies

n (p)(bl(P)Z) Ig(bl(P)z) —_ bnl(P)CPB(P)(Z)y

which gives the required formula.

Acknowledgement. This work has been done during my visit in the Center
for Mathematical System Theory, Department of Mathematics, University
of Florida. I want to express my gratitude to Professor R. E. Kalman for
offering me the opportunity to work in his Center.

References

[1] Berront, A.: Complexity problems related to the approximation of probabilistic
languages and events by deterministic machines. - Résumés des communi-
cations, Colloques IRIA, Théorie des automates des langages et de la
programmation 3—7 juillet 1972.

[2] CarLYLE, J. W., and A. Paz: Realizations by stochastic finite automata. - J.
Comput. System Sci. 5, 1971, 26—40.

[3] Craus, V.: Stochastische Automaten. - Teubner Studienskripten, B. G. Teubner,
Stuttgart, 1971.

[4] Inacakr, Y., and T. FukumUurA: Some aspects of linear space automata. - In-
formation and Control 20, 1972, 439—479.

[5] Kosaragu, S. R.: Probabilistic automata — A problem of Paz. - Information
and Control 23, 1973, 97—104.

[6] Paz, A.: Some aspects of probabilistic automata. - Information and Control 9,
1966, 26—60.

[7] —»— Fuzzy star functions, probabilistic automata and their approximation by
nonprobabilistic automata. - J. Comput. System Seci. 1, 1967, 371—390.

[8] —»— Word-functions of pseudo-Markov chains. - Manuscript 1972.



Word-functions of stochastic and pseudo stochastic automata 37

[9] RaBiN, M. O.: Probabilistic automata. - Information and Control 6, 1963,

230—245.

[10] RicHARD, J.: Représentations matricielles des séries rationelles en variables non
commutatives. - C. R. Acad. Sci. Paris 270, Série A, 1970, 224—227.

[11] TURAKAINEN, P.: On probabilistic automata and their generalizations. - Ann.
Acad. Sci. Fenn. Ser. A T 429, 1968, 1—53.

[12] —»— Generalized automata and stochastic languages.- Proc. Amer. Math.
Soe. 21, 1969, 303—309.

[13] —»— On the minimization of linear space automata.- Ann. Acad. Sci. Fenn.

Ser. A I 506, 1972, 1—15.

University of Oulu
Department of Mathematics
SF-90100 Oulu 10

Finland

Received 5 September 1974



	IMG
	IMG_0001
	IMG_0002
	IMG_0003
	IMG_0004
	IMG_0005
	IMG_0006
	IMG_0007
	IMG_0008
	IMG_0009
	IMG_0010

