
Annales Academire Scientiarum Fenntee
Series A. I. Mathematiea
Volumen 1,L975,27-37

WORD.FUNCTIOI{S OF STOCHASTIC ANT)

PSBUDO STOCHASTIC AUTOMATA

PAAVO TURAKAINEN

L lntroilucti'on' It is well-known that any word-function p" X* -+ 'E of

finite rank n canbe written in the form

(1) p(P):abuPt(PA(P)+c) YP(X+

rvhere a,,b, c adje constants anrJ ltais a word-function generated by a stochastic

automaton. However, in the existing proofs (cf' Ill], [12], [2], [3])the num-

ber of states of 1 is much larger than za. The purpose of this paper is to

consicler the following problem: what is the minimal value of ft(n) suclt

that any word-functionp of runkn can be written in the form (l) for some

k(n) -state stochastic automaton 1 ?

It is proved that there exists an (n * 2)-state actual doubly stochastic

automaton / such that (l) holds for c =- - (n | Zl-t _and for some_ pg*i:tiYg

"otmtu.tt. 
a, b. This is donä by modifying the method we used in [Il], [12]

rvhere we showed that every pseudo stochastic language is stochastic'

It is proved that there exists an (z * 3)-state actual doubly stochastic

automaton B such that

p(P) - bti.P)@ue) * c) v P (x+

rvhere ö is a positive constant and c : - (n+ 3)-1. Iloreover, B has a

fixecl initial state which is also the only final state. In fact this implies that

every stochastic language .L is quasidefinite in the sense of Paz [6] and that

I/ + {I} is accepted by a stochastic automaton having a fixed initial state

which is the same as the only final state. The last mentioned result has been

known for pseudo stochastic automata (cf. [10]), but it has been open for

stochastic automata.
If lp(i.)l ( l, then (2) holds. even for an (za * 2)-state stochastic autom-

aton E (c depends on the sign of p(I))' In the general case, the problem

concerning the value n * 2 rcmains open. We shory that n and n * I are

not possible.

(2)
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The problem concerning the value z * I for (l) remains open. The
value z is not possible. As a partial result on n + I we show that

p(P) : abt@t(pu,n"r(P) - ptr, p,t(P)) V P € X+

for an (z f l)-state stochastic automaton A and for some initial distribu-
tions 116, po. A comesponding result with 2n f I states is established in [8]
for word-functions of pseudo-Markov chains.
'We also give a connection between the characteristic polynomials of any

stochastic autömaton .C satisfying (l) (for every word P €. X*) and of any
minimal pseudo stochastic automaton generating p.

2. Preliminaries and, the main theorem. By a pseudn stoclwstic autamatom
we mean any ordered quintuple A : (X, S*, lA(x) | r ( Xl, r, f) where X
is an alphabet, Bo + {sr, . . ., s,} is the set of states, each A(r) is un n x n
matrix with real entries, zt is an I X z vector (i,niti,al, vector), and f is an
?, X I vectot (fi,nal vector). In [ll] and [f2] this system was called a, gen-
eralized automaton.

If zs and the matrices A(r) are stochastic, and if I is of the form (81, ..., 8,)i
where 8d ( {0, l}, then z4 is called a stochastic automaton (f corresponds to
the set of final states). rf, in addition, a,lso the column sums of the matrices
A(r) arc equal to l, then z{ is called a iloubly stochastia automnron. x'ollowing
Rabin [9], we say that ,4 is an a,ctual stochastic automaton if the entries of
the matrices A(r) a,re positive.

X'or any word P:atfrz...r,, (fri<X, Ic>0), denote A(P):apry
A(rr) ... A(xo) and define the word-function pt: X* -+ R generated, by A
as follows:

PÅ\): r.I,
pÅPl: rA(P)l VP ( X+.

We write sometimes p6,ul instead of pt. By the notation L(A,I), where
n < R, we mean the pseu,ilo stochasti,c la,nguage

L(A, t) - {P € X* I po(P) }'j}.

Theorem l. Let A: (X, S'
stochastic autornoton .

{A(r) I r ( X}, n, il be any n-state psewlo

(i) There er,i,sts an (n * 2)-state antunl, daubly stoch,asti,c automntotu B lr'tth
one fi,nal, stq,te sunh tlmt

(3) pt@):q,[unt(pr(P)-tl(n+z)) VP€X+
where a anil b are positiae constants whi,ch can be chasen arbitrarily large.

(ii) There eui,st an (n * l)-state actunl stochastic autona,ton, B rrrrrf frn,
ini'ti,al d,i,stributi,ons tts, p, su,ch th,at, lor some pos,i,tiae constant b,
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(4) pt@l:qfiet(gt+,n.r(P) -Po,o"r(P)) vP(x+

where a: I il l"ll < L, anil a: lnll i'f lrfl> t'.
(iii) There eri,sts an (n * }l-state actual d,oubly stochasti,c automaton c

with a fi,reit i,ni,ti,at state anil one fi,nal state such that, lor some positiue con-

stant b,

(5) pr€):Uet(ps(P) -t/(a+3)) VP(X+.

Moreouer, the initi'q'l state is the same as the linal state.

(iv) Il l"rll < l, then there erists an (n I 2)-state actuq,l d,oubly stochasti.c

automaton C such that

pe?) - btet(pc?) +c) VP(X+

ll(n*2) i,f 0<rcl <r,anil c-
(6)

where b d,s a' positiue constont, c -
(n * r)l(n + 2l il I < rcl <0.
Prool ol (i). B will be constructed in the followitg steps.

trivialcases rc- 0or l- 0andassumethatn #0, I +0.
Step L There exists a nonsingular n x n matrix D such that Dl :

(1, 0, ..., 0)'. Define Ar: (X,8,,lArlnl l n ( Xl,Tt,lrl where

rEt:ED'I, lt: Dt: (1,0,...,0)', At(*): DA1r7O-r Y te.X.

Then pn,: pa,
Stie"z. (d. Lu**u I in p2l.) Consider any matrix Ar(r) in.4r. There

exist a column vector u(r), a row vector u(r) and a real number a(r) such

that in the matrix

We omit the

[0 o 01

(7) Ar(r):lu@ Ar(Q ol
lr{*) o{*) 0J

all row sums and all column sums equal o (a(r): the sum of the entries

of. Ar(rl). Clearly, fpr any nonempty word P and for some vect'ors u(P),

a(P), the matrix Ar(Pl is obtained from (7) by replacing nby P. Hence, if
we define nz: (0, Tr,.0), lz: (0,1!.,'O)': (0,1,0,...,0) and Ar:(X,5,a2,
lAr(*) | r ( Xl, Tz, f z), then p7,: p1,: Pt..

Step 3. X'or any real number p, denote by If(P) the (n + 2) x (n * 2)-

matrix in which all entries are equal to p. Let a be any number such that
the entries of every matrix A"1r7: Ar(r)* I[(cr) are positive. Since the

row sums and the column sums of each matrix Ar(r) eqaal0, it follows that
the same holds for any matrix Ar(P), P < X+. Henoe -l[(a).4s(P) :
Ar(P) N(ul : 0 whenever P ( X+. Consequently,

(8) A"(P\:Az(P)+il((a+2)'@)-ratP)) VP(X+.
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Let B(*):l@ + Z)a.l-tAr(r) and zco : a-L(rcz+ (d, ..., d)) where a is the
sum of the components of rr* (i1,...,d) and d is so large that these com-
ponents are non-negative. Now define B : (X, S,*r,lB1r1 | r ( Xl, fts, lz).
B is an actual doubly stochastic automaton, because the row and column
sums of every matrix A"(r) equal (z + 2)u. Moreover, fz: (0,1,0, ..., 0)t,
i.e. .B has one final state, only. By (S) we now have

pn?) - a-Ll(n * 2)al-te,po,(P) .+ tl(n * 2) VP(X+
Since pe,: pe, wo obtain the formula (3) where
and d can be chosen arbitrarily large, the same holds
of (i) is now complete.

b - (n * 2) o. Since d.

for a and ö. The proof

Prool ol (iv), Assume first that 0<nl(1. Thus nt: (rl, | -nl,
0, ..., 0) is a stochastic vector. We show that there is a nonsingular matrix
D such that rsD-1 : rr and Dl : 0,0, ..., 0), : f ,. Denote the rows of D
bY At, ..,, Rn'

If. nl : l, we take any linearly independent vectors 1t2t ...> z, orthogonal
to l. Then choose Rr: tc, R2:'42,..,, Rn:11,. Since fi *0, the resulting
matrix D is nonsingular. It satisfies the above conditions, because rc, :
(1, 0, .. ', 0).

If. nf< l, choose Rz:0 - nl)-r(r - "tBr) where -8, is any vector
such that Rrl : I and -8, # 0. Then Rrl :0 and there exist vectors As, ...,
.8, such that Rr,..., Rn are linearly,independent and orthogonal to f.
The corresponding matrix D is nonsingular and Dl:(1,0,...,0),:l'
rrD : nlRl I Qc - nlRr): zr, i.e. nr: nD-t.

Now define Ar : (X, 5,, lAr(r) | r ( Xl, nt, lr) where Ar(u) : DA@T n-t
for every r ( X. Thenpa, : pa, and we continue by using the constructions
of Steps 2 and 3. In Step 3, we can choose d: 0 and a: I, because n, is a
stochastic vector. In this wa,y we have constructed an actual doubly
stochastic automaton C satisfying the formula (6).

Note that if. rl : l, then the initial and final vectors of C are zco :
rz: (0, 1,0, ...,0), lz: (0, I,0,...,0)t, i.e. the initial state is the same as
the final state.

Finally, consider the case - LSrl(0. Instead of. A, consider ,4.':
(X, Sn, lA(r) lr( X|,rc,- t) for which 0(n(- l)< t. By the above proof,

pÅP) - 6urt(pg(P) - tl(n + 2)) VP ( X+

for some actual doubly stochastic automaton C. But pe, : - pa and.
pc@l : I - pc'(P) where the only difference between C and C' is the final
vector. Consequently,

pe(P) :bue,(pc,(P) - r + rl(n I 2)l vP ( X+

which completes the proof of (iv).
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Prool ol (iii). X'irst replace A by A' : (X, Snnr, {A'(r) | r ( Xl, zt', l')
where c': (1,0,...,0), l' :$,ft)t and, for each r( X,

Then rc'f' : I and pÅPl : pe@) VP ( X+. Now continue asiutheproof
of (iv). Since rr'f' : l, the note we made in that proof implies that the
constructed automaton satisfies the conditions of (iii).

Prool ol (ii). By the symmetry of the condition (4), we may assume that
rcl20, because otherwise rve c&n replace Aby Ä: (X,8,, {24(r) lr( X},
n, - l), i.". pn is replaeed by - pn.

Let A':(X,Sn, lA(r)lr(Xl,zr,f') where l':a-tl, and a:tl if
rcl> l, a : I if rl 11. Now 0 {fi' S l, and we construct Aras in the proof
of (iv). Thus zr, : (ztl', | - nl',0, ..., 0) and f, : (1, 0, ..., 0)t. We csntinue
as follows. Define Ar: (X, Bna,lA2(r) | r ( X), r.2,lzl where nz:
(trr, - l),lr: (li, 0)' : (1, 0, ..., 0)t and, for every r ( X,

where u(x) is a column vector such that the row sums of ,4r(r) equal 0.

Clearly p,r": pe,: Fr,. Now form the matrices A"(rl: Az@) * r'f(a) as

in Step 3. Since the sum of the components of zr, and the row sums in every
matrix Ar(P) (P ( X+; equal 0, it follows that

TzAs(P) :rczAze) YP(d+

31

A,(r): t: "I[]]

A,(*):[rå,', T,]

(e)

(10)

Define rro: (2t1,0) and po: (0, ...,0, l). Then n, - 7!o po. Consequently,

bv (e),

(*o- piAs(P) lz:Pe,(P) Y P (X+

Let B: (X, Sn*r, lB(r) I r ( Xl, fr) where B(r) : [(zl * l)or1-lA"(n) for
elfery n < X. B is a stochastic automaton without a fixed initial vector.
Since p,a, : P.*': a-tPt, it follows from (10) that (ii) holds'

The proof of Theorem I is now complete.
Corollary l. For any woril-functi,on p: X* -> R ol li,nite ranlc n,

Theorem L lnl'ds when pn anil *t are repl,aceil by p anil p(7,).

Corollary 2. Ior any pseud,o stoclmsti,c language L accepteil by an

n-stute pseuilo stochq,stic automaton, there eri,sts an actunl (n * 4)-state iloubly
stochastic automnton C suclt,that L + h) : L(C,ll(n | 4)). Moreoaer,C has a

lireil ini,ti,al state whi,ch is the same as the only li'nnl state. Consequently, ang

stochast'i,c l,anguage L is quasidefi'nite in the sense of 16l, an'il I + {i'} is e-

approri,mable by a li,nite langtnge i,f the aboue automaton C i,s useil.
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Proof. If z4 is an n-state pseudo stochastic automaton, lhen L(A,r)
can be given in the fo_rm L(A' , 0) where the number of states in /.' is n + l.
(If :4 is stochastic, then n is sufficient.) Now the part (iii) of Theorem I
gives the desired automaton C.

Remarlc. Paz l7l has shown that there exist a stochastic automaton B
and a cut-point 1 such lhat L(8,1) is not e-approximable by any regular
language. Bertoni pl and Kosaraju [5] proved that the same holds even for
context-free languages.

Carlyle and Paz [2] have considered pseudo stochastic automata A
having several final vectors lr, .. .,lr @>0). Let plt be the word-function
corresponding to f n. They showed that

py,(P):abuPt(pa)(P) +c) Y P<X+
lor a 2(k { l)a-state stochastic automaton B. We show now that the same
holds for -B with less than n * Ic + 2 states.

Theorem 2. Let A:(X,5,,lA(*)lx(Xl,n,llt,...,lol) be any
pseud,o stochasti,c automaton with k linal aectors. There erists an (n I lc - r a 2)-
state d,oublg stochastic automaton B: (X, B, {B(r) lr( Xl,*o,l{lr,...,gr,l)
such that, lor euery i,,

pYt(P):abuP,(pGt(P) - rl(n + k - r * 2)) VP € X+

where a>0, b)0, r i,s the mari,mum number of linearly inilependent aectors
in llr,...,lol,anil eaery gnis ol the lorm (0,..,,0, 1,0,...,0)t.

Prool. We may &ssume that fr, ..., f , are linearly independent. Clearly,
there is a nonsingular nXn matrix D suoh that Dlr: er (i:1,,..,r)
where the dth component of en is t and other components equal 0. Let
TL: rcD-r and Ar(r) : DA(r) D-1. Define Az: (X, Bn+&_,, lAr(r) | r ( Xl,
zcy, lgt, ,.., 0,rl) where

A r1r]' -
and 9t: etr,,,,(l 7: ap 0r+L: €ntLt.,,rgx: an+b-r, Clearly erl"(P):
pNt(P) for every P ( X+. Hereafter, proceed as in Steps 2 and 3.

3. Impossibi,lity ol the bound, n | 1 lor tormula (2). In this section we
want to show that there exist n and an z-state pseudo stochastic automaton
/ such that the formula

[r,J", 
A,(r) Dt,*, 

: : : 
o *.]o, rf

(ll) pe€) -bt@)(pa?) + c; Y P ( x+

is impossible for every (n f l)-state stochastic automaton even if b is
allowed to be negative.
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The formula

(r2) ' p,E@):abuP,(pn(P)+c) vP(x+,
where .d has z states, is not generally valid for any n-state stochastic
automaton B. This follows, for example, from the well-known result that
two-state stochastic automata over one letter accept regular languages,
only, but this does not hold for all two-state pseudo stochastic automata
and for the cut-point 0. Consequently, n * 2 is the only open value for (ll),
and so is ?0 * f for (12) (see Theorem 1, (ii), (iv)).

Let us first consider a general two-state stochastic automaton -B:
(lr, Al, {s1, sz}, lB(r), B(y)l,rro, fo) whero uts : (pv pz),lo : (0, l)t and

r ? u,f, B(v): [t u,o' ,Yö,]'

B(rk) - [ål ;i] . [- äl

B(r*a\: tft ::l+ l;;_ii::-::lp* + [- ;; 
- 

äll ^-n-
and

B(v*r*) :til;l] +[;l -::::-::] *+[-ä; -ä:]],*p*

( 13)

( 14)

(15)

(16)

( 17)

B(*): It uro'

Let ), : I - (ar * Ö1) and F : I - (arf b2). Then the eigenvalues of B(r)
and B(y) are l, ). and l, p, respectively. If ar l br) 0, then

- 
äl] ^-

Y k>0

where &L: atl@t * Ör) and 9r : btl@t
&z: arl@, * br) and 9z: brl@, * br) we
formula for B(y*), m) 0, assumirg that
er * br) 0 and ez * br> 0, we have

+ br) : I - o(1. By denoting
can write the corresponding
az * ö, ) 0. Consequently, if

From the above formulas it follows that

pa@\-q.r*(9r-pt)\r,
pn(y*) -dz*(9r-p)V*,

pa@oA*) : ez * (o, - a) W* * (p, - pt))roy*,

pn(y*r*): dr * (or- a1)),k * (9, - pr))r*v*

for any k> 0, m> 0 assuming that a, * ö, ) 0 and az + bz> 0.

Theorem 3. Ior an n:state pseuilo stochastic autematon A there d,o not
always erist an (n t l)-state st;ochastic automaton B anil constants b, c sttch

thnt
pt(P):buPd(pa@) + cl VP ( X+.
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Proof. fn our counterexample, we use the one-state pseudo stochastic
automaton A : (lr, yl, lsrl, lA(rl, A(g)1, r, f) where tc : (l), I : (l),
A(s) : (- 3), and A(yl: (2). Now

P,'El : (- g)h@tztilP' Y P C lr, Yl+

where l"(P) and lr(P) denote the numbers of the occurences of r and y in P.
fn order to prove the theorem, we have to show that

(18) (- 3)tatPt2t"1p1 :6uetg"1P) * c) Y P ( lr,gl+
is impossible for all two-state stochastic automata and for all values of å

and c. Therefore, let B : (lr, yl, {sr, sz}, lB(*), B(y)}, ro, fo) be an arbitrary
two-state stochastic automaton. We use the notations (13). We may assume

that fo: (0, 1)t, because (1, l)' is not possible. Consequently, formulas
(14)-(17) hold if a, * b1) 0 and a, * br> O.

It is easy to see that, if ar*br:az* öe:0, then (18) cannot hold.
Hence, we assume that either a, lb1 )0 or ar*brlO.

Case l. Assume that a, * ör : 0 and a, * br) 0. Now pn!) does not
depend on the number of the letters r in P. Hence, by (15), the condition
(f8) gets the form

2n(-})tc:bk+n(c * ae * (92- Pr)v*) for all fr)0, m)0.
Thus

(- slb)o : (bl2)^(c * aa * (gz - p)v^).

Since the right hand side does not depend on k, it follows that å : - 3.

Thus c*ca* (92-pt)V*:(-zPYn for every m>0. This is possible
only if c* az: 0, F : - 213 and p, - pt:I. But if Pr-?r: l, then
necessarily 9z : 1, which mea,ns lhat ar: 0. Thus F: I - br)-[, which
is a contradiction, because p: - 213.

Case 2. 'Assume thal a, t ör ) 0 and a, * br: 0. This is analogous to
Case l.

Case 3. Assume lhal ar*ör)0 and ar*br>0.By taking the dif-
ference of both sides of (17) and (tG) it follows from (18) that

(q- uz) (l - I*) (l - t-r-) : 0 for all lc>$, mty.
Here ), * I and p. *1, because a, * b1> 0 and a, * b2) 0. Consequently,
&t - &z must be equal to 0, i.e. a, : ca, which implies that pt : pr. The
condition (18) implies now that

2n1- g7* - bb+n(c * ar * (Pr - ?r)trop-),
which implies

(zlb)^(- }lb)k : c * ar * (Pr - P)\ktt*.
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This is possible only if c * ar: 0, Pr. - Pr: l, ), : - 3/ö and V:21b.
Thus pr: I and Ip,(0. On the other hand, 9r:92, so that 9r:92: 1,

which implies that )r 2 0 and p ) 0. This is a contradiction, because l.p, ( 0.

The proof of Theorem 3 is now complete.

4. Clwracteri,stic pol,yrwmi,als. Let A: (X, S*, lA(r) | x C X|, n, f) be

any pseudo stochastic automaton. Let' Vl be the reaclnble part of R^, i.e.
Z, is the linear space spanned by the vectors rA(P), P<X*. Let - be

an equivalence relation over V, defined as follows:

,tL - u if and only if uA(P) l-aA(P)I VP€x*
'Ihen the number of states in any minimal pseudo stochastic automaton
generating pa is equal to dim(Vtl- ) (cf. [3]). Assume now that.z4 is in
minimal form. This implies that Vt: Ä- and dim(.B-/-):m. Con-
sequently, it can be verified that every equivalence class in A-/ - contains
one element only. We shall use this fact in the proof of the following theorem.

Theorem 4. Let A : (X, B*, lA(r) | r ( Xl, n,f) be a pseud,o stoclwstdc

autom,aton i,n mini,mal form. Let B: (X,8,, {B(a) lu( Xl,ro,li be any
stochastic automaton such tlmt

p,t(P):a$uet(pu(P) + c) YP ( X,F

lor some constants a, b, c. Th,en, lor any P ( X+, the characteri'st'i,c polynomi'als

9,ttpt, gaet oL A(P) and B(P) satisfy the formula

g n et?l : I a p/bt@tz) *rQ)

where {p(z) is a polynomial.
Proof. Let C : (X, 8,, {C(*) I n.( Xl, rrs, lr) where, for each r ( X,

C(u):bB(r), and fr:a(loi (c,...,c)t). Then pa:ps. Let Zt be the
reachable part of R" in C. Take any basis {noC(P1),...,*oC(P,)l for Vr,
and define a linear mapping T: V r--> R* as follows:

noC(P)T : nA(Pr) (d : l, ..., r).

(We write the mappings on the right hand side of the vectors.) We show
that T is surjective and that the equality C(r)T: TA(r) holds in Vrfot
every r ( X.

Since pa : pc, we have for any words P, Q lhe equations

EA(P) A(Q)I - rcaC(P)C(Q)1,

(,2 r",rP) 
nrc(P,)) c @) l,

(,å,r,, P) rca(P,)) A@) I
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where 2ao(P)noC(P): noC(P). Consequently, the vectors rcz4(P) and

åan(P)nA(Pn) are in the same equivalence class of the relation -. Bythe
remark we made before Theorem 3, this implies tlnat nA(P) : åar(P)rA(Pr).
Hence,

nA(P) :2ai(P)noC(PölT : nsC(P)T'

Consequently, ? is a surjective mapping, because, by the minimality of .24,

the vectors nA(P) span the space .B-. X'urthermore,

no9 (P ul C (r) T : nA(P a) A(r) : noC (P ) T A(rl

for every r ( x. Thus the equality c(n)T : TA(r) holds in 7r. This implies

that, for any P < X+, C(P)f : TA(P) in 7r. X'rom this equalrty it follows

that g[p.,(z): qtet@){/(z) where r!1(z) is some polynomial and qöet@)

is the characteristic polynomial of C(P) considered as a mapping of. V y.

Since Z, is a subspace of R", it follows lhat g[p1@) is a factor of gs1py(z).

Therefore, we have qcet@): Vun@)*[(z) for some polynomial r[f(z). By
the definition of the matrices C(r), this implies

q un(bt@) z) * fi(bueb) : bnt@t P s et(z),

which gives the required formula.
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