Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 1, 1975, 39-47

ON THE METHOD OF SUCCESSIVE APPROXIMA-TIONS FOR VOLTERRA INTEGRAL EQUATIONS

SEPPO HEIKKILÄ

1. Introduction

Walter has in [4] proved an existence and uniqueness theorem for Volterra integral equations of the form

(1)
$$x(t) = y(t) + \int_{0}^{t} k(t, s, x(s)) ds$$

in a Banach space, by the method of successive approximations (see also [3]).

In this paper we shall prove an analogous theorem with more general hypotheses, and derive estimates for the solution of (1), with minimal solutions of the scalar comparison equation

(2)
$$u(t) = v(t) + \int_0^t \omega(t, s, u(s)) ds$$

as estimate functions.

The results so obtained are then applied to the initial value problem

(3)
$$x'(t) = y'(t) + f(t, x(t)), \quad x(0) = y(0),$$

in a Banach space, with the scalar comparison problem

(4)
$$u'(t) = v'(t) + g(t, u(t)), \quad u(0) = v(0).$$

2. Notations

Let X be a Banach space with norm $\|\cdot\|$. Given T > 0, denote J = [0, T], and let C(J) and $C_+(J)$ be the spaces of all continuous mappings from J into X and into the nonnegative reals \mathbf{R}_+ , respectively, with the topology of uniform convergence. For $y \in C(J)$ define $|y| \in C_+(J)$ by

$$|y|(t) = ||y(t)||, \quad t \in J,$$

and for $u, v \in C_+(J)$

 $u \leq v$ if and only if $u(t) \leq v(t)$ for each $t \in J$.

Any constant mapping of C(J) or of $C_+(J)$ is denoted by its value.

Denote by \mathcal{X}_0^+ the class of all functions ω from the set $\{(t, s, r) \in J \times J \times \mathbf{R}_+ | s \leq t\}$ into \mathbf{R}_+ for which $\omega(t, s, r)$ is measurable in $s \in [0, t]$ for each $(t, r) \in J \times \mathbf{R}_+$, continuous in $(t, r) \in J \times \mathbf{R}_+$ for almost every $s \in [0, t]$, and for each M > 0 there is an integrable function $h: J \to \mathbf{R}_+$ such that

(2.1)
$$\omega(t, s, r) \leq h(s)$$

for $0 \leq s \leq t \leq T$ and $0 \leq r \leq M$. Correspondingly, denote by \mathcal{X}_0 the class of all mappings k from $\{(t, s, z) \in J \times J \times X \mid s \leq t\}$ into X for which k(t, s, z)is strongly measurable in $s \in [0, t]$ for each $(t, z) \in J \times X$, continuous in $(t, z) \in J \times X$ for almost every $s \in [0, t]$, and for each M > 0 there is an integrable $h: J \to \mathbf{R}_+$ such that

(2.2)
$$||k(t, s, z)|| \leq h(s)$$

whenever $0 \leq s \leq t \leq T$ and $||z|| \leq M$.

Applying the Dominated Convergence Theorem for Lebesgue integrals one can show that the integral

(2.3)
$$\Omega u(t) = \int_0^t \omega(t, s, u(s)) ds$$

exists in the Lebesgue sense for $\omega \in \mathcal{K}_0^+$, $u \in C_+(J)$ and $t \in J$, and that (2.3) defines a mapping $\Omega: C_+(J) \to C_+(J)$. Respective properties of Bochner integrals ensure that for $k \in \mathcal{K}_0$,

(2.4)
$$Kx(t) = \int_{0}^{t} k(t, s, x(s)) ds, \quad t \in J, \quad x \in C(J),$$

defines a mapping $K: C(J) \to C(J)$.

Via the definitions (2.3) and (2.4) the integral equations (1) and (2) may be written in the forms

$$(1') x = y + Kx,$$

$$(2') u = v + \Omega u$$

respectively.

3. Existence and uniqueness theorems

Making minor modifications to the proof of Theorem I.7.XII in [4] we obtain

Theorem 3.1. Assume that $k \in \mathcal{X}_0$, and for $0 \leq s \leq t \leq T$, $z, \bar{z} \in X$,

(3.1)
$$||k(t, s, z) - k(t, s, \bar{z})|| \leq \omega(t, s, ||z - \bar{z}||),$$

where $\omega \in \mathcal{X}_0^+$ such that

(i) ω(t, s, r) is nondecreasing in r ∈ R₊ for 0 ≤ s ≤ t ≤ T;
(ii) the mapping Ω, defined by (2.3), has u = 0 as the only fixed point;
(iii) for each C > 0 there is w ∈ C₊(J) satisfying

$$(3.2) w \ge C + \Omega w.$$

Then for $y, x_1 \in C(J)$ the successive approximations

$$(3.3) x_{n+1} = y + Kx_n, n \in \mathbb{N} = 1, 2, ...,$$

with K given by (2.4), converge on J uniformly to a unique solution of (1).

Proof. From (i) it follows that Ω is nondecreasing, and from (3.1) that

$$(3.4) |Kx - K\bar{x}| \leq \Omega(|x - \bar{x}|), \quad x, \ \bar{x} \in C(J),$$

whence

$$|x_{n+1} - x_1| \leq |y - x_1| + |Kx_1| + \Omega(|x_n - x_1|), \quad n \in \mathbb{N}.$$

These properties, together with (iii), imply by induction that

$$|x_n - x_1| \leq w, \quad n \in \mathbf{N},$$

for any $w \in C_+(J)$, satisfying (3.2) with

$$C \ge |y - x_1| + |Kx_1|.$$

From (3.3), (3.4) and (3.5) it follows by induction that

$$|x_{n+m} - x_m| \leq u_m, \quad n, m \in \mathbf{N},$$

where the functions u_m are defined by

$$u_1 = w, \ u_{m+1} = \Omega u_m, \quad m \in \mathbb{N}.$$

The sequence (u_m) is nonincreasing and nonnegative, whence by (ii) it can be shown to converge to 0-function (see the proof of Theorem I.7.XII in [4]), uniformly on J. From (3.6) it then follows that (x_n) converges in C(J). The conditions given for \mathcal{K}_0 , together with the Dominated Convergence Theorem for Bochner integrals, ensure that the limit mapping of (x_n) is a solution of (1).

The uniqueness can be proved as in Theorem I.7.XII of [4].

Denote by \mathcal{X} the class of those $k \in \mathcal{X}_0$ for which (2.2) holds for some integrable $h: J \to \mathbb{R}_+$ and for all $(t, s, z) \in J \times J \times X$, $s \leq t$.

Corollary 3.1. Let $k \in \mathcal{K}$ satisfy (3.1) with $\omega \in \mathcal{K}_0^+$ such that the hypotheses (i) and (ii) of Theorem 3.1 hold. Then (1) has for each $y \in C(J)$ a unique solution on J.

Proof. Define

 $\overline{\omega}(t, s, r) = \min\{\omega(t, s, r), 2h(s)\}, \quad 0 \leq s \leq t \leq T, \quad r \geq 0,$

where h is the majorant of k in (2.2). Then $\overline{\omega} \in \mathcal{K}_0^+$, (3.1) holds with ω replaced by $\overline{\omega}$, and $\overline{\omega}$ satisfies the hypotheses (i) and (ii) of Theorem 3.1. Also (iii) holds, because

$$w(t) = C + \int_0^t 2h(s) ds$$

satisfies (3.2). Thus the assertion follows from Theorem 3.1.

Remark 3.1. Corollary 3.1 simplifies the Existence and Convergence Theorem I.7.XII of [4] in the sense that the hypothesis (γ) for each C > 0 there is $\varrho \in C_+(J)$ satisfying

$$\varrho \geq C$$
 and $\varrho \geq \Omega \varrho$,

of the Theorem is not specified in the Corollary. In Theorem 3.1 we use the stronger condition (iii) in place of (γ) , also to show the boundedness of (x_n) (see (3.5)), whence we may assume that $k \in \mathcal{X}_0$, instead of $k \in \mathcal{X}$. Furthermore, (iii) (but not (γ)) is sufficient for the considerations of the next section.

An essential point where the method of Walter, used in the proof for the uniform convergence of (x_n) , differs from other methods (see for ex. [2]) is that the equicontinuity of (x_n) is not needed.

4. Integral inequalities

The estimates derived in the present section for solutions of (1) are based on

Lemma 4.1. Let $\omega \in \mathcal{K}_0^+$ satisfy the hypotheses (i) and (iii) of Theorem 3.1. Then given $v \in C_+(J)$ the equation

$$(2') u = v + \Omega u,$$

with Ω given by (2.3), has the minimal solution u on J. If (y_n) is a convergent sequence in C(J) such that

$$(4.1) |y_1| \leq v \text{ and } |y_{n+1}| \leq v + \Omega(|y_n|), \quad n \in \mathbb{N},$$

then the limit mapping \tilde{y} of (y_n) satisfies

$$(4.2) |\tilde{y}| \leq u.$$

 $\mathbf{42}$

Proof. From (i) it follows that Ω is nondecreasing, whence the sequence (u_n) defined by

$$(4.3) u_1 = v, u_{n+1} = v + \Omega u_n, n \in \mathbf{N},$$

is nondecreasing and bounded above by any w satisfying (3.2) with $C \ge |v|$. Since (u_n) is also equicontinuous (cf. the proof of Theorem I.2.II in [4]), it converges uniformly on J. The continuity of $\omega(t, s, r)$ in r, together with the Dominated Convergence Theorem, implies that the limit u of (u_n) is a solution of (2'). The solution u is minimal, since

$$u_n \leq \bar{u}, \quad n \in N,$$

for any solution \bar{u} of (2').

The last conclusion of lemma is a consequence of

$$|y_n| \leq u_n, \quad n \in \mathbf{N},$$

which follows from (4.1) and (4.3) by induction.

Theorem 4.1. Let k and ω satisfy the hypotheses of Theorem 3.1, and let x be the solution of (1) with a given $y \in C(J)$. Assume further that $z \in C(J)$ and $v \in C_+(J)$ satisfy

$$(4.4) |z-y-Kz| \leq v.$$

Then

$$(4.5) |z-x| \leq u$$

where u is the minimal solution of (2').

Proof. Let (x_n) be the sequence of successive approximations, with $x_1 = y + Kz$ as the first approximation, converging to x. Then it is easy to see that

$$|z-x_1| \leq v$$
 and $|z-x_{n+1}| \leq v + \Omega(|z-x_n|), \quad n \in \mathbb{N}.$

Thus (4.1) holds for $y_n = z - x_n$, which by Lemma 4.1 implies the assertion. Corollary 4.1. With the hypotheses of Theorem 3.1,

$$(4.6) |x-y| \leq u,$$

where u is the minimal solution of (2') with v = |Ky|. If \bar{x} is the solution of (1) with y replaced by another mapping \bar{y} from C(J), then

$$(4.7) |\bar{x}-x| \leq u,$$

where u is the minimal solution of (2') with $v = |\bar{y} - y|$.

Proof. Choose first z = y and then $z = \overline{x}$ in Theorem 4.1.

As another consequence of Theorem 3.1. and Lemma 4.1 we obtain

Theorem 4.2. Assume that k satisfies the hypotheses of Theorem 3.1, and that for $(t, s, z) \in J \times J \times X$, $s \leq t$,

$$||k(t, s, z)|| \leq \overline{\omega}(t, s, ||z||),$$

where $\overline{\omega} \in \mathcal{K}_0^+$ such that the hypotheses (i) and (iii) of Theorem 3.1 hold for $\omega = \overline{\omega}$. Then the solution of (1) with a given $y \in C(J)$ satisfies

$$(4.8) |x| \leq \bar{u},$$

where \bar{u} is the minimal solution of

with

(4.10)
$$\overline{\Omega}\overline{u}(t) = \int_{0}^{t} \overline{\omega}(t, s, \overline{u}(s)) ds, \quad t \in J, \quad \overline{u} \in C_{+}(J).$$

Proof. Let (x_n) be the sequence of the successive approximations given by (3.3) with $x_1 = y$. Then (4.1) holds for $y_n = x_n$, v = |y| and $\Omega = \overline{\Omega}$, so that (4.8) follows from (4.2).

The first conclusion of Corollary 4.1 yields the following local version of Theorem 3.1:

Corollary 4.2. Let B be an open subset of X, and let $k: \{(t, s, z) \in J \times J \times B \mid s \leq t\} \rightarrow X$ satisfy the hypotheses of Theorem 3.1 for all (t, s, z), $(t, s, \bar{z}) \in J \times J \times B$, $s \leq t$. Then for each continuous mapping $y: J \rightarrow B$, the integral equation (1) has a unique solution on $[0, T_1)$ with

$$(4.11) T_1 = \sup \{t \in J \mid u(s) \leq d(y(s), B^c) \text{ for } 0 \leq s \leq t\},$$

where u is the minimal solution of (2') with v = |Ky|, and $d(y(t), B^c)$ denotes the distance between y(t) and the complement B^c of B in X.

This corollary shows an advantage of minimal solutions of (2') as estimating functions, compared to corresponding maximal ones, obtained by other methods (see for ex. [4], I.4.I).

5. Consequences for differential equations

Denote by $AC_+(J)$ the class of all absolutely continuous functions u: $J \to \mathbf{R}_+$, and by AC(J) the class of those $u \in C(J)$ which are strongly differentiable almost everywhere on J, and for which $|u| \in AC_+(J)$. Let \mathcal{F}_0 denote the class of such mappings of \mathcal{K}_0 which do not depend on t, and \mathcal{F}_0^+ the respective subclass of \mathcal{K}_0^+ .

From the properties of Bochner integrals (see [1] Chapter 3) it follows that for each $y \in AC(J)$ the formula

(5.1)
$$y(t) = y(0) + \int_0^t y'(s) ds$$

holds on J, and that the mapping $t \to \int_0^t f(s, x(s)) ds$, $t \in J$, belongs to AC(J) whenever $f \in \mathcal{F}_0$ and $x \in C(J)$. Analogous properties hold trivially in the scalar case. These facts imply that the initial value problem

(3)
$$x'(t) = y'(t) + f(t, x(t)), \quad x(0) = y(0),$$

with $y \in AC(J)$ and $f \in \mathcal{F}_0$, is representable in the form

(3')
$$x(t) = y(t) + \int_{0}^{t} f(s, x(s)) ds,$$

and similarly,

(4)
$$u'(t) = v'(t) + g(t, u(t)), \quad u(0) = v(0),$$

with $v \in AC_+(J)$ and $g \in \mathcal{F}_0^+$, in the form

(4')
$$u(t) = v(t) + \int_{0}^{t} g(s, u(s)) ds.$$

Thus the results of Sections 3 and 4 are applicable for (3). From Theorem 3.1 we have

Theorem 5.1. Assume $f \in \mathcal{F}_0$ and for $(s, z), (s, \overline{z}) \in J \times X$

$$||f(s, z) - f(s, \bar{z})|| \leq g(s, ||z - \bar{z}||),$$

where $g \in \mathcal{F}_0^+$ satisfying

(i) for each s ∈ J, g(s, r) is nondecreasing in r ∈ R₊;
(ii) u(t) = 0 is the maximal solution of

$$u'(t) = g(t, u(t)), \quad u(0) = 0;$$

(iii) for each C > 0 there is $w \in C_+(J)$ for which

$$w(t) \ge C + \int_0^t g(s, w(s)) ds, \quad t \in J.$$

Then given $y \in AC(J)$, (3) has a unique solution x (a. e.) on J, and x can be obtained as the uniform limit of successive approximations with any mapping of C(J) as the first approximation.

The results of Section 4 and formula (5.1) yield

Theorem 5.2. Let f and g satisfy the hypotheses of Theorem 5.1, and let x(t) = x(t, y'(t), y(0)) denote the solution of (3), and u(t) = u(t, v'(t), v(0))the minimal solution of (4). If $z \in AC(J)$ and $v \in AC_+(J)$ satisfy

$$\left\|z(t)-y(t)-\int_0^t f(s, z(s))\,ds\right\|\leq v(t), \quad t\in J,$$

then

$$||z(t) - x(t)|| \leq u(t), \quad t \in J.$$

In particular,

$$||y(t) - x(t)|| \leq u(t, ||f(t, y(t))||, 0)$$

and

$$||y(0) - x(t)|| \leq u(t, ||y'(t) + f(t, y(0))||, 0).$$

If $\bar{x}(t) = x(t, \bar{y}'(t), \bar{y}(0))$ is another solution of (3), then

$$\|\bar{x}(t) - x(t)\| \leq u(t, \|\bar{y}'(t) - y'(t)\|, \|\bar{y}(0) - y(0)\|)$$

and

$$\|\bar{x}(t) - x(t) - \bar{y}(0) + y(0)\| \le u(t, \|\bar{y}'(t) - y'(t)\|, 0).$$

If there is $\bar{g} \in \mathcal{F}_0^+$ satisfying the hypotheses (i) and (iii) imposed on g in Theorem 5.1, and if

$$||f(t, z)|| \leq \overline{g}(t, ||z||), \quad (s, z) \in J \times X,$$

then

$$||x(t)|| \leq \bar{u}(t), \quad t \in J,$$

where \bar{u} is the minimal solution of

$$ar{u}'(t) = \|y'(t)\| + ar{g}(t, \, ar{u}(t)), \quad ar{u}(0) = \|y(0)\|.$$

Examples 5.1. The Osgood function

$$g(t, r) = p(t)\psi(r), \quad (t, r) \in J \times \mathbf{R}_+$$

where $p: J \to \mathbf{R}_+$ is integrable and $\psi: \mathbf{R}_+ \to \mathbf{R}_+$ a continuous and nondecreasing function for which the integrals $\int_0^1 dr/\psi(r)$ and $\int_1^{\infty} dr/\psi(r)$ diverge, belongs to \mathcal{F}_0^+ and satisfies the conditions (i) and (ii) of Theorem 5.1. Also (iii) holds with any w satisfying

$$\int\limits_{C}^{w(t)} rac{dr}{\psi(r)} \geq \int\limits_{0}^{t} p(s) ds, \qquad t \in J.$$

To get an example of (4) with nonunique solutions, define

$$\begin{array}{ll} g(t,r) = r & \text{for } 0 \leq r < e^{-t}, & t \in J; \\ g(t,r) = e^{-t} & \text{for } e^{-t} \leq r < 3 - 2e^{-t}, & t \in J; \\ g(t,r) = e^{-t} + (r-3+2e^{-t})^{\frac{1}{2}} & \text{for } r \geq 3 - 2e^{-t}, & t \in J. \end{array}$$

this g belongs to \mathcal{F}_0^+ and satisfies the hypotheses (i)—(iii) of Theorem 5.1, and the initial value problem

$$u'(t) = e^{-t} + g(t, u(t)), \quad u(0) = 1,$$

has

$$u_*(t) = 3 - 2e^{-t}$$
 and $u^*(t) = 3 - 2e^{-t} + \frac{t^2}{4}$

as the minimal and maximal solutions, respectively.

Remark 5.1. The closed interval J = [0, T] can be replaced in above considerations by $[t_0, T)$, $-\infty < t_0 < T \leq \infty$, the convergence of the successive approximations being uniform on every compact subset of $[t_0, T)$. In case $T = \infty$, the example above shows that the minimal solutions of (3.2), which are as estimators in (4.5)—(4.8), may be bounded, whereas the corresponding maximal solutions may be unbounded.

References

- HILLE, E., and R. S. PHILLIPS: Functional analysis and semi-groups. Amer. Math. Soc. Colloquium Publications Vol. 31, Providence, R. I., 1957.
- [2] VIDOSSICH, G.: Global Convergence of Successive Approximations. J. Math. Anal. Appl. 45, 1974, 285-292.
- [3] WALTER, W.: Über sukzessive Approximation bei Volterra-Integralgleichungen in' mehreren Veränderlichen. - Ann. Acad. Sci. Fenn. Ser. A I 345, 1965, 1-32.
- [4] -»- Differential and Integral Inequalities. Ergebnisse der Mathematik und ihrer Grenzgebiete 55, Springer-Verlag, Berlin - Heidelberg - New York, 1970.

University of Oulu Department of Mathematics SF-90100 Oulu 10 Finland

Received 19 September 1974