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ON THE METHOD OF SUCCESSIVE APPROXIMA-
TIONS FOR YOLTERRA INTEGRAL EQUATIONS

SEPPO HEIKKILA

1. Introduction

Walter has in [4] proved an existence and uniqueness theorem for
Volterra integral equations of the form

(1) x(t) = y(t) + (j:'k(t, s, z(s))ds

in a Banach space, by the method of successive approximations (see also
(3D)-

In this paper we shall prove an analogous theorem with more general
hypotheses, and derive estimates for the solution of (1), with minimal
solutions of the scalar comparison equation

(2) u(t) = o(t) + ftw(t, s, u(s))ds
0

as estimate functions.
The results so obtained are then applied to the initial value problem

(3) a'(t) = y'(t) + [t x(t)),  2(0) = y(0),
in a Banach space, with the scalar comparison problem
(4) w'(t) = v'(t) + g(t, u(t)),  w(0) = (0).

2. Notations

Let X be a Banach space with norm || - |. Given T'>0, denote J =

[0, T], and let C(J) and C,(J) be the spaces of all continuous mappings
from J into X and into the nonnegative reals R, respectively, with the
topology of uniform convergence. For y € C(J) define |y| € C,(J) by
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lylt) = ly@®l, ¢€J,
and for u, v € C_(J)
u < if and only if u(t) <v(t) for each ¢ € .J.

Any constant mapping of C(J) or of C,(J) is denoted by its value.

Denote by X% the class of all functions o from the set {(¢, s,7) € J X
J xR, |s<t} into R, for which w(t, s, r) is measurable in s € [0, ¢] for
each (¢, r) € J X R,, continuous in (¢, r) € J x R, for almost every s € [0, ¢],
and for each M > 0 there is an integrable function A: J — R, such that
(2.1) o(t, s, r) < h(s)
for 0=s=<t<7T and 0<r < M. Correspondingly, denote by X, the class
of all mappings k from {(¢, s, z) € J x J X X | s <t} into X for which k(t, s, 2)
is strongly measurable in s € [0, {] for each (f,2) € J X X, continuous in
(t,2) €J x X for almost every s € [0,t], and for each M >0 there is an
integrable h: J — R, such that
(2.2) [k, s, 2)Il = h(s)

whenever 0 <s<¢t<7T and || < M.
Applying the Dominated Convergence Theorem for Lebesgue integrals
one can show that the integral

(2.3) Qu(t) = fw(t, s, u(s))ds
0

exists in the Lebesgue sense for w € Xj, w € C_(J) and ¢ € J, and that (2.3)
defines a mapping Q: C (J) — C_(J). Respective properties of Bochner
integrals ensure that for k € X,

(2.4) Ka(t) = [k(t, s, x(s))ds, t€J, x€C(J),

S

defines a mapping K: C(J) — C(J).
Via the definitions (2.3) and (2.4) the integral equations (1) and (2)
may be written in the forms

(1) x =y + Ku,
(2) uw=uv+ Qu,
respectively.

3. Existence and uniqueness theorems

Making minor modifications to the proof of Theorem I.7.XII in [4] we
obtain



On the method of successive approximations for Volterra integral equations 41

Theorem 3.1. Assume that k € X,, and for 0<s<t<T, 2,2¢ X,
(31) ”k(t’ S, 2) - k(t’ S, Z-)” éw(t’ S, “Z - 2-”),
where w € X} such that

(i) w(t, s, r) is nondecreasing in r € R, for 0 =s <t = T,
(ii) the mapping Q, defined by (2.3), has u = 0 as the only fixed point;
(iii) for each C >0 there is w € C(J) satisfying

(3.2) w=C + Quw.
Then for y, x, € C(J) the successive approximations
(3.3) Ty =y+ Kzx,, n€N=12 ..

with K given by (2.4), converge on J uniformly to a unique solution of (1).
Proof. From (i) it follows that € is nondecreasing, and from (3.1) that

(3.4) |Kx — Kz| < Q(|x — z|), =,z€C(J),
whence
7 2,1 — 21| S|y — 24| + |Kay| + (2, —24]), n€N
These properties, together with (iii), imply by induction that
(3.5) |z, — x| Sw, nEN,
for any w € C,(J), satisfying (3.2) with
Cz=ly— =+ [Key
From (3.3), (3.4) and (3.5) it follows by induction that

(3.8) | —z,|Zu,, n,mEN,

n+m

where the functions u,, are defined by
Uy = W, Uppq = Ru,, mEN.

The sequence (u,,) is nonincreasing and nonnegative, whence by (ii) it can
be shown to converge to O-function (see the proof of Theorem I1.7.XII in
[4]), uniformly on J. From (3.6) it then follows that (x,) converges in C(J).
The conditions given for X, together with the Dominated Convergence
Theorem for Bochner integrals, ensure that the limit mapping of (z,) is a
solution of (1).

The uniqueness can be proved as in Theorem 1.7.XII of [4].

Denote by X the class of those & € X, for which (2.2) holds for some
integrable k: J — R, and for all (t,s,2) €J X J X X, s=t.
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Corollary 3.1. Let k € X satisfy (3.1) with w € X such that the hypotheses
(i) and (ii) of Theorem 3.1 hold. Then (1) has for each y € C(J) a unique

solution on J.
Proof. Define

o(t, s, r) = min{w(t, s, 7), 2h(s)}, O0Zs<t<T, r=0,

where % is the majorant of k£ in (2.2). Then o € X%, (3.1) holds with
replaced by », and @ satisfies the hypotheses (i) and (ii) of Theorem 3.1.
Also (iii) holds, because

satisfies (3.2). Thus the assertion follows from Theorem 3.1.

Remark 3.1. Corollary 3.1 simplifies the Existence and Convergence
Theorem I.7.XII of [4] in the sense that the hypothesis
(y) for each C'> 0 there is p € C,(J) satisfying

o =C and p =0y,

of the Theorem is not specified in the Corollary. In Theorem 3.1 we use
the stronger condition (iii) in place of (y), also to show the boundedness of
(x,) (see (3.5)), whence we may assume that k€ X,, instead of k € X.
Furthermore, (iii) (but not (y)) is sufficient for the considerations of the
next section.

An essential point where the method of Walter, used in the proof for
the uniform convergence of (x,), differs from other methods (see for ex.
[2]) is that the equicontinuity of (z,) is not needed.

4. Integral inequalities

The estimates derived in the present section for solutions of (1) are
based on

Lemma 4.1. Let w € X7, satisfy the hypotheses (i) and (iii) of Theorem 3.1.
Then given v € C(J) the equation

(2" u=v+ Qu,

with Q given by (2.3), has the minimal solution w on J. If (y,) is a convergent
sequence tn C(J) such that

(4.1) il =vand |y, | =v+ Qy,l), n€EN,
then the limit mapping § of (y,) satisfies
(4.2) 7 <.
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Proof. From (i) it follows that £ is nondecreasing, whence the sequence
(w,) defined by

(4.3) Uy =V, Upyy =0+ Qu, nEN,

is nondecreasing and bounded above by any w satisfying (3.2) with C =|v]|.
Since (u,) is also equicontinuous (cf. the proof of Theorem I.2.IT in [4]),
it converges uniformly on J. The continuity of w(t, s, r) in 7, together with
the Dominated Convergence Theorem, implies that the limit » of (u,) is a
solution of (2'). The solution % is minimal, since

u, <4, n€N,
for any solution @ of (2').
The last conclusion of lemma is a consequence of
Yul Sw,, nEN,

which follows from (4.1) and (4.3) by induction.

Theorem 4.1. Let k and w satisfy the hypotheses of Theorem 3.1, and
let x be the solution of (1) with a given y € C(J). Assume further that z € C(J)
and v € C(J) satisfy

(4.4) |z —y — Kz| =v.
Then
(4.5) e —x|=u

where u is the minimal solution of (2').

Proof. Let (x,) be the sequence of successive approximations, with
x, = y + Kz as the first approximation, converging to @. Then it is easy
to see that

|z — 2, v and |z — 2,4 S0+ 2|z — 2,]), n € N.

Thus (4.1) holds for y, = z — x,, which by Lemma 4.1 implies the assertion.
Corollary 4.1. With the hypotheses of Theorem 3.1,

(4.6) lz —yl=u,

where u is the minimal solution of (2') with v = |Ky|. If & is the solution of (1)
with y replaced by another mapping § from C(J), then

(+.7) &zl <,

where u is the minimal solution of (2') with v = |§ — y|.
Proof. Choose first z = y and then z = Z in Theorem 4.1.
As another consequence of Theorem 3.1. and Lemma 4.1 we obtain
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Theorem 4.2. Assume that k satisfies the hypotheses of Theorem 3.1,
and that for (t,s,2) €J xJ x X, s<t,

k(E, s, 2)l| = w(t, s, [l2])),

where @ € Xg such that the hypotheses (i) and (iii) of Theorem 3.1 hold for
® = o. Then the solution of (1) with a given y € C(J) satisfies

(4.8) | <,

wheré 4 is the minimal solution of

(4.9) @=ly| + Qu

with

(4.10) Qu(t) = fa(t, s, w(s))ds, t€J, @€C,(J)
0

Proof. Let (x,) be the sequence of the successive approximations given
by (3.3) with z, = y. Then (4.1) holds for y, = z,, v = |y| and 2 = @, so
that (4.8) follows from (4.2). 4

The first conclusion of Corollary 4.1 yields the following local version of
Theorem 3.1:

Corollary 4.2. Let B be an open subset of X, and let k: {(t, s, z) € J X
J X B|s<t}—> X satisfy the hypotheses of Theorem 3.1 for all (¢, s, z),
(t,8,2) €J X J X B, s<t. Then for each continuous mapping y: J — B, the
integral equation (1) has a unique solution on [0, T) with

(4.11) T,=supft €J | u(s)<d(y(s), B°) for 0 <s<t},

where w is the minimal solution of (2') with v = |Ky|, and d(y(t), B°) denotes
the distance between y(t) and the complement B° of B in X.

This corollary shows an advantage of minimal solutions of (2') as
estimating functions, compared to corresponding maximal ones, obtained
by other methods (see for ex. [4], 1.4.I).

5. Consequences for differential equations

Denote by AC,(J) the class of all absolutely continuous functions w:
J — R, and by AC(J) the class of those u € C(J) which are strongly dif-
ferentiable almost everywhere on J, and for which |u| € AC,(J). Let F,
denote the class of such mappings of X, which do not depend on ¢, and
Fo the respective subclass of X+.

From the properties of Bochner integrals (see [1] Chapter 3) it follows
that for each y € AC(J) the formula
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(5.1) y(t) = y(0) + [y'(s)ds

¢

holds on J, and that the mapping & — [f(s, 2(s))ds, ¢t € J, belongs to
0

AC(J) whenever f € F, and « € C(J). Analogous properties hold trivially

in the scalar case. These facts imply that the initial value problem

3) '(t) = y'(t) + f(t, x(t)),  %(0) = y(0),

with y € AC(J) and f € F,, is representable in the form

3) 2(t) = y(t) + 15, w(s))ds,

0

and similarly,
(4) w'(t) = ') + g(t, u(®)),  u(0) = (0),

with » € AC,(J) and g € F¢, in the form
¢
(4) u(t) = o(t) + Jgls, u(s))ds.

Thus the results of Sections 3 and 4 are applicable for (3). From Theorem 3.1

we have
Theorem 5.1. Assume f € F, and for (s,2), (s,2) € J x X

If(s, 2) — f(s, B =g(s, lIz — 2],
where g € F} satisfying

(i) for each s € J, g(s, r) is nondecreasing in r € R;
(ii) u(t)=0 is the maximal solution of

w'(t) = g(t u(t)), u(0)=0;
(iii) for each O >0 there is w € C(J) for which

w(it)=C + fg(s, w(s))ds, t€J.
0

Then given y € AC(J), (3) has a unique solution z (a. e.) on J, and x can be
obtained as the uniform limit of successive approximations with any mapping
of C(J) as the first approximation.

The results of Section 4 and formula (5.1) yield

Theorem 5.2. Let f and g satisfy the hypotheses of Theorem 5.1, and
let x(t) = x(t, y'(t), y(0)) denote the solution of (3), and u(f) = u(t, v'(t), v(0))
the minimal solution of (4). If z € AC(J) and v € AC (J) satisfy
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2() = y(0) — {16, z(s))ds“ <o), t€J,

then
llz(t) — @) = u(t), ¢t€J.
In particular,

ly(6) — (@)l < u(t, I, y(¢))ll, 0)
and

ly(0) — (@)l = u(t, lly'(¢) + f(£, y(0))], 0).
If z(t) = x(t, §'(t), §(0)) is another solution of (3), then
t)

() — @)l < u(t, 7)) — y' (@), 17(0) — y(0)]))
and

2(8) — a(t) — F(0) + y(O)I = u(t, l7"(t) — y'(B), 0).

If there is g € F} satisfying the hypotheses (i) and (iii) imposed on g in Theorem
5.1, and if
IfE 2 =g, lzl),  (s,2) €J X X,
then
le@ll = a), ted,

where @ 1s the minimal solution of
@'(t) = lly' Ol + (¢, a(t)),  a(0) = |ly(o).
Examples 5.1. The Osgood function
gt, r) = pO)y(r), (1) €JXR,

where p:J — R, is integrable and y: R, —~ R, a continuous and non-
decreasing function for which the integrals j} drfy(r) and Fd?‘/lp(?‘) diverge,
belongs to F% and satisfies the conditions (i)0 and (ii) of Tlheorem 5.1. Also
(iii) holds with any w satisfying

) dr

w(f] t
cf ) = ({ p(s)ds, tE€J.

To get an example of (4) with nonunique solutions, define
git,r) =r for0r<et, t€J;
git,r) =et fore?<r<3—2t t€J;
g, r) =et+ (r — 3+ 2 )t forr=3 — 2, ¢t€J.

this g belongs to F} and satisfies the hypotheses (i)—(iii) of Theorem 5.1,
and the initial value problem
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w'(t) = et +g(t, u®)), u(0)=1,
has

2
Uy (t) = 3 — 2¢~t and u*(t) =3 — 2¢~* +a_

as the minimal and maximal solutions, respectively.

Remark 5.1. The closed interval J = [0, T'] can be replaced in above
considerations by [t,, T'), — oo <t, < T < oo, the convergence of the succes-
sive approximations being uniform on every compact subset of [t,, T). In
case T' =oo, the example above shows that the minimal solutions of (3.2),
which are as estimators in (4.5)—(4.8), may be bounded, whereas the corre-
sponding maximal solutions may be unbounded.
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