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ON THE IVIETHOD OF SUCCESSIVE APPROXIMA.
TroNS FOR YOTTERRA I|ITEGRAL EQUATIONS

SEPPO HEIKKTLÄ

1. Introiluction

Walter has in [4] proved an existence and uniqueness theorem for
Volterra integral equations of the form

(r ) n(t\ : y(tl + t n1r, ,, r(sl)ile
0

in a Banach spa,ce, by the method of successive approximations (see also

t3l).
In this paper we shall prove an analogous theorem with more general

hypotheses, and derive estimates for the solution of (r), with minimal

solutions of the scalar comparison equation

(2) u(t) : t:(t) + ier(t, s, u(el\ils
0

as estimat€ functions.
The results so obtained are then applied to the initial value problem

(3) n'(t) : g'(t\ + l(t, x(t)), r(0) : Y(0),

in a Banach space, with the scalar comparison problom

(4) u'(t) : t)'(t\ + g(t, u(t))' a(0) : o(0).

,

2. Notations

Let X be a Banach space with norm ll 'll. Given T'>0, denote .I:
l0,T), and let C(,/) and C*(J) be the spaces of all continuous mappings

from ,I into X and into the nonnegative reals R*, respectively, with the
topology of uniform convergence. X'or y < C(Jl define lyl < C*(JI by
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lvlD:llv@ll, t<J,
and for u, a ( C*(J)

u 1o if. and only if. u(t) <o(i) for each t ( J.

Any constant mapping ot C(J) or of C*("I) is denoted by its value.
Denote by 7$ the class of all functions co from the set {(f, s, r) ( J x

,I x R* I s <tl into It* for which a(t, s, r) is measurable in s ( [0, t] for
each (f, r) ( J xll*, continuous in (t, r) €"I x R* for almost every s € [0, 4,
and for eaeh M > 0 there is an integrable function h: J -+ R* such that
(2.1) a(t, s, r) < å(s)

for 0(s <t<f and 01r{M. Correspondingly, denote by 7(o the class
of all mappings /c from l1t, s, zl ( J x J x X I s {f} into X for which k(t, s, z)
is strongly measurable in s € [0, t] for each (f, zl ( J x X, continuous in
(t,z)(JxX for almost every s€[0,4, and for each M)0there is an
integrable h: J --> It* such that
(2.2) llk(t, s, z)ll<h(s)

whenever 0 <s <f ( ? and llzll< M.
Applying the Dominated Convergence Theorem for Lebesgue integrals

one can show that the integral
t

Au(t) - J @(t, s, z(s) )ds
o

exists in the Lebesgue sense for ar ( J{i,u<C*(J) and I (,1, andthat (2.3)
defines a mapping Q: C*(J) --> C*(J). Respective properties of Bochner
integrals ensure that for k ( Jto,

(2.3)

(2.4)

defines a mapping K: C(J) --> C(J).
Via the definitions (2.3) and p.$ fhe integral equations (t) and (2)

may be written in the forms

(r') a:y*Krt
(2') 6: 1s I Qu,

respectively.

3. Existence and uniqueness theorems

Making minor modifications to the proof of Theorem I.?.XII in [4] we
obtain
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Theorem 3.I. Assume that k ( J{o, anil, lor 01s<t<T, 2, Z < X,

(3.1) llk(t, s, z) - k(t, s,Z)lll.;o(t, s' llz - zll),

where a ( J(l such tlmt

(i) ar(t, s, r) is nonilecreas'i,ng i,n r ( R* for 0 1s lt 1T;
(ii) the mappi,ng Q, il,efi,neil bg (2.3), has u : 0 as the only li'red' point;

(iii) lor each C > 0 there i,s w ( C*(J) sati,sfyi'ng

(3.2) w)-C I Qw.

Then lor U, nt( C(J) the slrccessi;ue appronimations

(3.3) nn+L:A*Krn, n(N:!,2,.'
with K giaen by (2.4), conoerge on J uni,formly to a unique solution ol ( I ).

Proof. From (i) it follows that Q is nondecreasing, and from (3.1) that

(3.4) lK*-Kftl<Q(lr-nl), r,ECC(J),

rvhence

t+ - + t <ly - nLl + lKrtl t- Q(lx,- trrl), n ( ^r[.ltun+l all == tV -It r t4-wlt I

These properties, together with (iii), imply by induction that

(3.5) lrn - rrllw, n, ( N,

for any w ( C*(J), satisfying (3.2) with

C>ly -#rl * lKxrl.

From (3.3), (3.4) and (3.5) it follows by induction that

(3.6) lfrn*^- fr*l 311*, n, m (N,

where the functions u,mare defined by

UL: 'lD, 'u,^*r: d)U,^, na € N.

The sequen ce (u^) is nonincreasing and nonnegative, whenge by (ii) it can

be shown to converge to 0-function (see the proof of Theorem I.7.XII in
[4]), uniformly on ,I. X'rom (3.6) it then follows t'hat (t^) convepges in C(J)'
The conditions given for 7(0, together with the Dominated Convergence

Theorem for Bochner integrals, ensure that the limit mapping of (r,) is a
solution of (l).

The uniqueness can be proved as in Theorem I.7.XII of [a]'
Denote by 7( the class of those /c € 7{o for which (2.2) holds for some

integrable h,:J --> R* and for all (t,s,z)CJ xJ X X, sSf.
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Corollary 3.I. Let k ( J( satislg (3.1) with * 6 ?{;t suchthatthehypotheses
(i) and, (ii) ol Theorem 3.1 hpld. Then (l) lns lor ea,ch y < C(J) a uni,que
solution on J.

Prool. Define

6(t,s,r) : min{co(t,s,r), 2h(s}1, 0{s{t37, r}0,
where å is the majorant of ft in (2.2). Then ,<J(i, (3.1) holds with ar

replaced by ö, and d satisfies the hypotheses (i) and (ii) of Theorem 3.1.
Also (iii) holds, because

w(t):c+tzn61as
0

satisfies (3.2). Thus the assertion follows from Theorem 3.1.
Rem,ark 3.1. Cd4gllary 3.1 simplifies the Existence and Convergence

Theorem I.7.XII of [a] in the sense that the hypothesis
(y) for each C ) 0 there is g ( C*("/) satisfying

plC and QZQs,

of the Theorem is not specified in the Corollary. fn Theorem 3.1 rve use
the stronger condition (iii) in place of (1), also to show the bounded.ness of
(2,) (see (3.5)), whence we ma,y &ssume that k ( J(0, instead of å ( 7(.
X'urthernrore, (iii) (but not (1)) is sufficient for the considerations of the
next section.

An essential point where the method of Walter, used in the proof for
the uniform convergence ol (r^), differs from other methods (see for ex.
[Z]) is that the equicontinuity of. (r,) is not needed.

4. Integral inequalities

The estimates derived in the present section for solutions of (l) are
based on

Lemma 4.1. Let . < ](i sati,sfy the hypotheses (i) and, (iii) ol TheoremS.l.
Then gi,aen o ( C*(J) the equati,on

(2') u:a*Qu,
wi,th 9 giuen by (2.3), lws the ruinimal solution u on J. Il @ ) i,s a conuergent
sequence in C(J) such that

(4.1) lyrl Sa and, lyn*rl1u * Q(ly"D, n ( N,

then the lim,i,t mapping g ol (y,) satislies

(4.2) lill<u.
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Proof. x'rom (i) it follows lhat Q is nondecreasing, whence the sequence

(tz,) defined by

(4 3) %!: 0, %n+L: a * Qun, rt, ( N,

is nondecreasing and bounded abovo by any ur satisfying (3.2) with c >lal.
since (u,) is also equicontinuous (cf. the proof of Theorem I.2.II in [a]),

it converges uniformly on "I. The continuity of a(t, s, r) in r, together with

the Dominated convergence Theorem, implies that the limit z of (41) is a

solution of (2'). The solution a is minimal, since

un3fr,, n( N,

for any solution 'te of. (2"1,

The last conclusion of lemma is a consequence of

lY,l{un, n' ( N,

which follows from (4.1) and (4.3) by induction.
Theorem 4.t. Let k anil a sati,sfy the hyptotheses ol Theorem 3.L, anil

let r be the solution ol (I) with a g,i,uen y < c(J). Assume lurther tld z e cQ)
anila(C*(J)sati'sfy

(4.4)

Then

(4.5)

Thus (4.1) holds
Corollary

(4.6)

lz - y - Kzl{u.

lz - nl 1u
ra-

where u ås the minimnl sotruti,on ol Q').
Proof. Let (r,) be the sequence of successive approximations, wit'h

nr:A + Kz as the first approximation, converging to r' Then it is easy

to see that

lz-ntlSu a,nd. lz-nn*l l<a+ 12( lz-n,0, n(N'

for y,- z - frnswhich by Lemm& 4.l implies the assertion.

4.1. With the hypotheses ol Theorem 3.1,

lr - alSu,
*i,hrrc u i,s the mi,ni,mnl soluti,on ol Q') wi,th a : lKyl. Il a is the solution ol (l)
wi,th y replaceil by another mappi,ng fi lrom C(J), then

ln - rl{u,(1.7)

where u is the mi,ni,mnl, solution ol Q'l wi,th a : ly - yl.
Prool. Choose first z : y andthen z: fr in Theorem 4'l'
As another consequence of Theorem 3.1. and Lemma 4.1 we obtain
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Theorem 4.2. Assume that lc sati,sli,es the hypotheses ol Theorem B.I,
anil thnt lor (t, s, z) C J x "I x X, s {t,

llk(t, s, z)ll<a(t, s, llzll),

wlrcre 6 € Jlt such tlwt the hypotheses (i) and, (iii) ol Theorem 3.t holil, lor
a : -at. ?hen the solution of Q) with a giaen y < C(J) sati,sfies

(4.8) lrl{d,
wherö d, is the minimal solution ol

(4.e) d: lyl + oa

with

(4.10)
t

Ail(tl - J *(t, s, tl(s) )ds, t ( J,
0

il ( c*(J).

Proof. Let (a,) be the sequence of the successive approximations given
by (3.3) with rr:y. Then (a.f) holds Lor yn:nn,1): lyl and O: O, so
that (a.S) follows from (4.2).

The first conclusion of corollary 4.1 yields the following local version of
Theorem 3.1:

Corollary 4.2. Let B be an open subset ol X, anil lct k: l(t,s,z) ( J x
JxB lu<i) ->X sotisly the hypotheses ol Theorem 3.t lor att (t,s,z),
(t,s,2) ( J xJ x B, s{t. Then lor ea,ch continuotts rn&pping y: J --> B, the
i,ntegral equation (I) Ims a un'i,que solution on lO, T r) wi,th

(4. I t) Tt: sup{t<J lzr(s) Sd(y(s), B') for 0<s<r},

where u i,s the mini,mal, eolution ol Q') with a : lKyl, anil il(y(t), Bo) ilenotes
the ilistance between g(t) anil the complement B" ol B in X.

This corollary shows an advantage of minimal solutions of (21) as
estimating functions, compared to corresponding maximal ones, obtained.
by other methods (see for ex. [4], I.4.I).

6. Consequenees lor dilterential equations

Denote by AC*(J) the class of all absolutely continuous functions u:
of -> R*, and by AC(J) the class of those u ( C(J) which are strongly dif-
ferentiable almost everywhere on ,/, and for which lul ( AC*(J). Let 3o
denote the class of such mappings of 7(o which do not depend on f, and
Jt ttre respective subclass of J(t.

X'rom the properties of Bochner integrals (see [t] Chapter 3) it follows
that for each y < AC(J) the formula
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(5.1)

(4')

t

y(t)-aP)+JY'@)ds
0

t

holds on ./, and. that the mapping t'->!l(s, o(s))ds, f ("I, belongs to
0

AC(J) whenever I ( 7o and. r < c(J). Analogous properties hold trivially
in the scalar case. These facts imply that the initial value problem

(3) r'(t) : Y'(t) + l(t, r(t) ), r(0) : Y(0),

with gr C. AC(J) and I ( 7q, is representable in the form

(a') n(t') : y(t) +jl(s, r(");dr,
0

and similarly,

(4) u'(t) : o'(t) + g(t, u(t)), a(0) : u(0),

with o < AC+(J) and g ( 76F, in the form

t

u(t) : a(t) + J s@, u(s) )dt.
0

Thus the results of sections 3 and 4 are applicable for (3)' x'rom Theorem 3.1

we have
Theorem S.L Assume ! ( Ts and, lor (s, z), (s, z) ( J x X

lll(s, z) - l@, z)llSs(s,llz - zll),

wheregCJlsatielyi'ng

(i) lor each s ( J, g(s, r'1 i,s nond,ecreasi'ng i,n r ( Pn*;

(ii) u(f):0 is the magi,mal solution ol

u' (t) : g(t, u(t)), z(0) : 9'

(iii) lor each C > O there is w ( C*(J) lor whi,ch

w(t\>c + isG,w(s\\its, t < J.
0

Then giaen g C AC(J), (Sl has a uni,que solution r (a. e'l on J, anil r wn be

obni,niil o, ih" uni,form timi,t ol successi,ae apgnorimati,ons wi,th ang mapping

ol C(J) as the lirst approrimn'ti,on.
The results of Section 4 and formula (5.1) yield
Theorem 6.2, Let I anit, g eatisly th,e h,ypotheses ol Theorern 5'1, anil

l,et r(t): s(t, g'(t),g(0)l ilenote the eol,uti,on ol p), anil u(tl: u(t, o'(f)' tr(0))

the mi,ndmal solution ol $). Il z < AC(J) anil a e. AO+(JI satisly
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llE, - y(t) - t16,z1aylalls,r,l, t ( r,ll' o ll-"'
then

llz(t) - r(t)llSu(t), t < J.
In particula,r,

lly@ - a(t)ll3u(t,llf(t, y(t))ll, ol
and,

lly(o) - r(t)ll{u(t,lly'$l + l(f, y(0))ll,0).

Il fr(t) : s$, A'$'), i(0)) de another solut'i,on ol (3), then

I lt(t) - r(tlll 3 u(t, llg' $) - s' (t\ll, llg Q) - y(0) 
I I )

anil

llt(,) - n(t) - g(0) + y(o)ll= u(l,llg'$) - u'(t)11,0).

Il there is 0 < fi satislying the hypotheses (il anil (iii) i,mposeil on g i,n Theorem
5.1, anil il

lll$, z)ll<0$,llzll), @, z) ( J x x,
then

llr(t)ll<,a,@, t < J,

where d, i,s the rni,nimnl soluti,on ol

Ii'(t) : llA,@ll + 0(t, il(t)), ?z(0) : lly(o)ll.-

Emmples 5.1. The Osgood function

g(t, r\ : p(t)V|l, Q, r) (,/ x R*

where p: J --> R* is integrable and g: R* * R* a continuous and non-

decreasing function for which the integral" larpgy unaiArpplr) diverge,
01

belongs to ft and satisfies the conditions (i) and (ii) of Theorem 5.1. Also
(iii) holds with any ar satisfying

*(tl ilr t

! ,V,,/ lrt(s)its, t(J'

To get an example of (a) with nonunique solutions, define

g(t,rl :r for 03r1e-t, t(J;
!(t, r) : s-t for e-t 3r < 3 - 2e-t, t C J;
!(t,rl : e-t * (r - 3 + ze-t)t forr)3 - 2e-', t(.J.

this g belongs to 3\ and satisfies the hypotheses (i)-(iii) of Theorem 5.1,
and the initial value problem
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u'(t\ : e-t + g(t, u(t)), ?r(0) : I,

has

u*(t) :3 - 2e-t and a*(l) : 3 - 2e-' +t;

as the minimal and maximal solutions, respectively'

Remnrk 5.1. The closed interval J : l0,T) cem be replaced in above

considera,tions by [to, T\, -*(to( T 1oc., the convergence of the succes-

srve approximations being uniform on every compact subset of po, ?). In
case ? : oo, the example above shows that the minimal solutions of (3.2)'

which &re as estimators in (a.5)-(a.8), may be bounded, whereas the corre-

sponding maximal solutions may be unbounded.

Belerenoes

[l] Hrr,r,r, E., and R. s. Pllrr,r,rps: Functional a,nalysis and semi-groups. - Amer.

Math. Soc. Colloquium Publications Vol. 31, Providence, R' I', 1967'

[2] Vroossrcs, Gl.: Global convergenco of successive Approximatione. - J. Math.

Anal. Appl. 45, 1974,285-292.
[3] Wer,rnn, W.: Uber sukzessivo Approximation bei Volterra-Integralgleichungen

in, mehreren Verönderlichen. - Ann. Acad, Sci. Fenn. Ser. A I 345, 1965'

r-32.
[4] - I - Differential and Integral Inoqualities. - Ergebnisse der Mathematik und

ihrer Grenzgebiete 55, springer-verlag, Berlin - Heidelberg - New York,
1970.

University of Oulu
Department'of Mathematics
SX'-90r00 Oulu l0
X'inland

Received 19 September 1974


	IMG
	IMG_0001
	IMG_0002
	IMG_0003
	IMG_0004
	IMG_0005
	IMG_0006
	IMG_0007
	IMG_0008

