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TENSOR PRODUCTS OF CERTAIN BANACH
MODULES OVER COMMUTATIVE CONVOLUTION
MEASURE ALGEBRAS

KARI YLINEN

1. Introduction and preliminaries

J. E. Kerlin [6] has studied Banach algebra actions of one group algebra
LY (@) of a locally compact abelian topological group G on another such
algebra. In particular, Kerlin was concerned with locally compact
abelian groups K, G,,...,@,, Banach algebra actions of L! (K) on
LY (Gy),...,L*(G,), and the L!(K) -tensor product L' (G))®yx). ..
® k) L' (G,) in the sense of M. A. Rieffel [10] of the resulting Banach
L (K) -modules. The objects of study in the present paper are related to
those of Kerlin. The Banach algebras we consider, namely the com-
mutative convolution measure algebras introduced by J. L. Taylor in [15],
are much more general than the group algebras L!'(G). A convolution
measure algebra is a complex L-space with a Banach algebra product
which is suitably related to the L-space structure. The class of convolution
measure algebras includes e.g. the convolution algebra M(S) of bounded
regular Borel measures on any locally compact topological semigroup S
with a separately continuous multiplication (see [16, Theorem 2.1]), and
the so-called L-subalgebras [16, p. 812] of M(S). But it appears that
in the context of this rather general class of Banach algebras one needs
more restrictions on the algebra actions than those assumed by Kerlin
in the case of group algebra modules. Specifically, we introduce what we
shall call a CCM-action of one commutative convolution measure algebra
on another. This notion generalizes naturally the multiplication in a com-
mutative convolution measure algebra. Before making this statement
precise we review some aspects of the theory of normed tensor products
and convolution measure algebras.

If £ and I are Banach spaces, E ® F denotes their projective tensor
product (i.e. the completion of the algebraic tensor product E® F with
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respect to the greatest cross-morm y of Schatten [13, p. 38]) and E ®F
the completion (called the weak tensor product of H and F in [14, p. 355])
of E® F with respect to the least one, 2, of all cross-norms whose dual
norms are also cross-norms (see [13, p. 32]). In this paper the A -norm
appears in tensor products of spaces C(X)) of continuous complex func-
tions on compact Hausdorff spaces X, ¢ = 1, 2.In this connection the
crucial property is the natural identification C(X; x X,) = O(Xy) ® C(X,)
[14, p. 357]. The y -norm will be used mainly in tensor products of complex
L-spaces. We take as our definition the characterization of a complex
L-space as the predual (see [12, p. 1]) of a commutative W* -algebra as
in [19]. More precisely, a complex L-space M is an ordered Banach space
whose dual, with the order determined by that of M, is a commutative
C* -algebra. We often suppress the word ‘complex”, because all Banach
spaces we consider are over the complex field. If M and N are L -spaces,

M ® N is an L -space whose positive cone is the closed convex hull of the
set{u®v|lueM, u=>0,veN, v =0}, and whose dual can be
identified with the W* -tensor product M*® N*. For details see e.g.
[17, pp. 20—22] and [19, pp. 5—6]. In general the properties of tensor
products of Banach spaces and Banach algebras we use without explicit
mention are elementary and can be found in [19] and the references listed
there. In particular, the projective tensor product of two Banach algebras
will be regarded as a Banach algebra with the product described in [19,
p- 4].

If M isa complex L -space, the W* -algebra structure in M* com-
patible with the norm and order determined by M is by the Banach-
Stone theorem unique. A bounded linear map 7': M — N, where M and
N are complex L -spaces, is called an L -homomorphism, if its transpose
T% . N* — M* is what we shall call a CF -morphism, i.e. a C* -algebra
homomorphism which maps the identity of N* to that of M*. A con-
volution measure algebra (abbreviated as CM-algebra in the sequel) is a
complex L -space M with a Banach algebra product (u, ¥) > uv such
that the bounded linear map 6@ : M ® M — M for which Ou® ») = uv,
u,v€M, isan L-homomorphism. In this paper we limit our attention
to commutative CM-algebras. A central position in their theory is occupied
by the structure semigroup constructed by J. L. Taylor in [15]. We shall
not go into details in this introductory section, but refer the reader e.g.
to [17] for an exposition.

The Banach modules we are considering in this paper generalize com-
mutative CM-algebras in the following sense. If C and A4 are com-
mutative CM-algebras and 6@ : C ® A—A is an L -homomorphism, we
say that © isa CCM-action and 4 isa CCM-module over C, provided that
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the bilinear map from C x 4 to A defined by O satisfies the
natural algebraic conditions postulated in [6, p. 3], i.e. O((cc)® a) =
Oc® Oc’®a)) and O(c® (aa’)) = Oc®a)a’ =aB(cea’), c,c’ eC,
a,a €d.

The main results of Section 3 concern the C -tensor product 4 ®;B
(in the sense of [10] and [6]) of two commutative CM-algebras 4 and B
which are CCM-modules over a commutative CM-algebra C. It is shown
that 4 ®. B is also a commutative CM-algebra (Theorem 3.1). In Section
4 the structure semigroup of 4 ®, B is given a characterization (Theorem
4.2) which generalizes Theorem 4.3 in [19]. Section 5 concerns mainly
group algebras which are CCM-modules over group algebras. Specifically,
it is shown that if K and G are locally compact abelian topological groups
and O : LY(K) ® LY(@) — LY@) is a CCM-action, then O(L! (K) ® LYG)) =
LY(@) if and only if there is a continuous homomorphism ¢ : K — @ such
that O(v® u) = p(»)* u, ve LK), ue L{G), where 9o : M(K)— M(G)
is the algebra homomorphism canonically induced by ¢ .

Notations. For any commutative (complex) Banach algebra 4, A4(4)
denotes the spectrum of A, i.e. the set of nonzero multiplicative linear
functionals on A4 equipped with the relative weak* topology. If E is
a Banach space and D CE, then [D]- is the closed linear span of D
in B, and D°is the polar of D in the topological dual E* of E . The
identity map of a set D is denoted by idj, .

2. Banach (-algebras and their C-tensor products

Throughout this section C denotes a commutative Banach algebra.
We adopt the following definition used by J. E. Kerlin (see [6, p. 3]).

Definition 2.1. A commutative Banach algebra 4 is a com-
mutative Banach C-algebra with respect to a bounded bilinear map
(c,a)r>c-a from C x 4 to A if

(1) (ccy-a=c-(c'-a) and
(if) c-(aa’)=(c-a)a = a(c-a’)

forall ¢, ¢’e€eC and a, o' €4d.

By abuse of language we shall call a bounded linear map @ : C 844
a commutative Banach algebra module action (of C on A), abbreviated as
CBAM-action, if A is a commutative Banach C -algebra with respect to
the bilinear map (¢, a)r>c-a for which ¢-a = 0O(c®a), ceC, acd.
We continue to use the notation @(c® a) = ¢-a for every CBAM-action
O . This should cause no confusion.
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Suppose 6, : C®A->A4 and 6,: C ® B— B are CBAM-actions.
Modelling on M. A. Rieffel’s definition (see [10]) of a tensor product of
Banach modules, J. E. Kerlin defined in [6] the C -tensor product of A4
and B as follows. Denote

J=[{(c-a)@b—a®(c-b) | ceC, acAd, beB]"CA®B.

As observed in [6, p. 5], J is a closed ideal in the commutative Banach
algebra A ® B, so that the quotient algebra A®.B = 4 ® B | J with
the quotient norm is a commutative Banach algebra, called the C -tensor
product of A and B. We denote a®:b = n(a® b), where n: A ® B—
A® B|J is the quotient map, so that A®.B =[{a®:b | ac4d,
beB} .

Two natural CBAM-actions of ¢ on A® B arise from 6, and
©,. Tndeed, if j: C® (A®B)—~(C®A)8B and k: C® (48 B)—
A® (4 ® B) denote the canonical isometric isomorphisms satisfying
jc®@®d))=(c®a)®eb and k(c® (@®b))=10a® (c® b), it is easy
to verify that ©, = (0, ® idy)°j (resp. O, = (id, ® O) ° k) is a CBAM-
actionof C on A® B suchthat ¢c- (a®b) = (c-a)®b (vesp. ¢ (@a® b) =
a® (c-b)). Applying the commutativity of C' and (i) in Definition 2.1 we
see that for each ¢ €C the kernel of each one of the operators
x> 7o O,(c® ) and x> 7 ° Oy(c ® x) from A8Bto A® B | J contains
J . Both of these operators induce canonically the same operator
7.:A4®B|J—>A®B|J, andtheoperator ©: C® (4®;B)—> A®:B
for which @c®x)=T,x, x€A®;B, is a CBAM-action of C on
A®,B suchthat c¢-(a®cb) = (c-a)®cb (=a®c-D)). We shall
always regard A ®; B as a commutative Banach C -algebra with respect
to the action so defined.

We close this section with an alternate description of the multiplication
in the C -tensor product of two Banach C -algebras.

Lemma 2.1. Let A and B be commutative Banach C -algebras. There

is a unique isometric isomorphism
9: (A®:B)®;(A®;B)—(A®;4)®; (B®:B)

which maps (a,® ¢ by) ®¢ (a8 by) to (@, @ ¢ ap) ®¢ (b1®¢ by) for ay, ayed,
by, byeB. Let my: A®A—>A and my: B® B—> B denote the multi-
plication maps of A and B, and write

Jy=[{(a)®a, —a;® (c*ap) | celC, a;, a,e A} ],
Jg=[{("b)®by, —b;® (cby) | ceC, b, byeB} ] .
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Then my |J, = 0 and my | Jyz = 0 sothat my and my induce canonically
the maps my: A®A|J,—~A and wy: B® B|Jy—B for which
My + J ) = my@), myx + Jg) = mg(x). There is a unique bounded
linear map

my@:my: (A®.A)®; (B®:B)—A®;B

such that m, @My ®cy) = Mmy(x)® mply), vteA®; A4, yeBe:B.
If 7: (A®;B)® (A®;B)— (A8;B)®.(A®;B) denotes the natural
quotient map, then (m,® my) o ¢ om 1is the linear operator corresponding
to the multiplication in A®; B .

Proof. Since A, B, A®. A, B®:B, A®; B and B®; 4 are C-C -bi-
modules in the sense of [10, p. 447], the existence of ¢ can be proved by
applying Theorem 2.11 and Corollary 2.6 in [10]. The uniqueness of ¢
is clear. Condition (ii) in Definition 2.1 shows that m, |J, = 0 and
mg|Jz = 0. The existence and uniqueness of #,®;my follow from
Theorem 2.7 in [10], since by Definition 2.1 (ii) m, € Hom (4 ®:;4 , 4)
and m, € Hom (B®. B, B) in the notation of [10]. Suppose a,, a, €4,
b,, b, € B. The multiplication in the quotient algebra 4 ®; B gives by
definition (@, ®c b;) (2, ®¢ by) = @; @ ® by by . The last statement is thus
clear, since

((my®cmp)open) ((a;0:b)® (@3®cby)) = a4, @by by

3. CCM-modules and their tensor products

As indicated in the introductory section, this paper is mainly concerned
with a special class of CBAM-actions. These are defined as follows.

Definition 3.1. Let C and A4 be commutative CM-algebras. If
the CBAM-action ©: 0 ® 4 — A is an L-homomorphism, we say that @
is a CCM-action and A is a CCOM-module over C (with respect to the
action @ ).

Before the main result of this section (Theorem 3.1) we prove four
lemmas.

Lemma 3.1. Let M be a complex L-space and J  a closed subspace
of M suchthat JO is a sub- C* -algebra of M* containing its identity. Then
M |J is a complex L-space and the quotient map w: M — M [J s an
L-homomorphism, if M |J s equipped with the quotient morm and the
following order: [x] =x + J =0 if and only if (x,f> =0 for all
f=>0 in J°. If N is another L-space and T :M —N an L-homo-
morphism whose kernel contains J , then the induced map T:M |J—N,

Sfor which i’[x] = Tx, is an L-homomorphism.
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Proof. Since n*: (M | J)* — M* is an isometry whose range is J9,
(M | J)* has the structure of a C* -algebra with identity such that =*
is a Cf -morphism. Clearly, the order determined by (M /J)* in M /J
can be described as stated. As to the second statement, observe that since
a*oT* = T* isa C¥ -morphism and z* is an injective CF -morphism,
T* isa C¥ -morphism.

In [7, p. 663] the order in M |J defined in the above lemma is called
the order induced by J°. The definition is clearly independent of the
choice of the representative in [x] € M /J . We shall refer to this order
as the quotient order in M |J . This term is justified by the following
lemma.

Lemma 3.2. Le¢ M and J be as in Lemma 3.1. The positive cone
of M [|J with the order defined in Lemma 3.1 is the image of the positive
cone of M wunder the quotient map «: M —~ M |J .

Proof. It is immediate that w(u) > 0 for every u >0 in M . Suppose
now u €M is such that zm(u) > 0. We show that in M thereis » >0
for which #(») = m(u). Let us consider M* realized as a von Neumann
algebra of operators on a Hilbert space H so that the o(M* , M) -topology
on M* corresponds to the relative o -weak operator topology (see [12,
pp- 39—42], [2, pp. 38—40]). Then JO is identified with a von Neumann
algebra of operators on H, and u |J? isa o -weakly continuous positive
linear functional on J°. Thus there is a sequence (&,),"_; in H such that

2 EJ< 00 and (w,u) = 3P, @k, &), weJdo [2 p. 51]. Using
this expression u |J° can be extended to a o -weakly continuous
positive linear functional » on M*. As J is o(M , M*) -closed, the
polar of J° in M is J by the bipolar theorem, so that =(v) = #(u), and
the lemma is proved.

Lemma 3.3. Let C, A and B be complex L-spaces and ¢ : C ®A->4,
P C® BB L-homomorphisms. Denote ¢(c® a)=c-a, wp(c®b) =
c'b, and

J=[{(c a)®b—a®(cb) | ceC, acd, beB}]-C A® B.

Let n: ASB-—>A® B |J be the quotient map. Then JO is a sub- C*-
algebra of (4 ® B)*  containing its identity. Hquipped with the quotient
order A® B | J is a complex L-space whose positive cone is the closed convex
hull of {m(e®b) | a >0, acd, b >0, beB}, and n is an L-
homomorphism.

Proof. From the definition of the positive cone in the projective tensor
product of two L-spaces (Section 1) it follows that the canonical isometric

isomorphism j: C ® 4 ® B) — (C ® A4) ® B is also an order isomorphism.
Therefore 7', = (¢ ® tdg) oj is an L-homomorphism from C ®(4® B)
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to A®B such that T,(c® (@a®b)) = (c-a)®b [19, Theorem 3.2].
Similarly, we get an L-homomorphism 7,: C ® 4 ® B)— 4 ® B such
that Ty(c® (@® b)) = a® (c-b). Since {fe(A®B)* |THf="T§f} =
{fe(A@B)* | f(c-a)®@b —a® (c-b))=0 for all ceC, aed,
beB}=J% and T§ and T§ are Cf -morphisms, J° is a sub-C*-
algebra of (4 ® B)* containing its identity. The last statement in the
lemma is a consequence of the first part, Lemmas 3.1 and 3.2, and the
definition of the positive cone in 4 ® B.

Convention. Whenever C, A, B, ¢, v, and J are asin the above
lemma, A® B/J will be regarded as an L-space with the structure
described in the lemma. In particular, if ¢, 4 and B are commutative
CM-algebras and @,: C ®A-—>4, 0,: C ® B—> B are CCM-actions,
then 4®.B is an L-space.

Lemma 3.4. Let C, A;, B; be complex L-spaces and ¢, : c® 4;—
A;, v c® B; — B,  L-homomorphisms, j =1, 2. Denote J; =
[{p;(c®a)®b — a@y(c®b) | ceC, acd;, beB}]- C 4,8 B,
and let 7;: A;® B;— A;® B;|J; be the quotient map. If a: A;—4,
and B: B, — B, are L-homomorphisms such that o ¢,(c® a) = ¢,(c® aa)
and By, (c®b) = pc® fb), ceC, acA,, beB,, then there is
a unique bounded linear map a®;p: A, ® By | J,— A, ® By | J, for which
(@a®cf) 7y (@a® b) = mylaa® fb), acd,, beB,, and a®;f isan
L-homomorphism.

Proof. The existence and uniqueness of a® f follow from Theorem 2.7
in [10, p. 450], the crucial point being the fact that by our assumptions
the kernel of 7, © (a ® B) contains J, . Since m,° (a@ B) is an L-homo-
morphism by Theorem 3.2 in [19] and Lemma 3.3, an application of Lemmas
3.3 and 3.1 completes the proof, a®.f being simply the operator canoni-
cally induced by ,° (a ® B) on the quotient space A, ® B,/ J,.

Theorem 3.1. Let C, A and B be commutative CM-algebras and
0,: C®A-—>A, Op: C® B—> B CCM-actions. Then A®;B is a com-
mutative CM-algebra and the bounded linear map O : C ® (Ae;B)—~>A®;B
for which O(c® (@®:b)) = (c-a)®:b =a®;(c-b) (see the discussion
preceding Lemma 2.1) is a CCM-action.

Proof. As observed before Lemma 3.4, A®; B is an L-space. To show
that it is a CM-algebra we use Lemma 2.1, which gives a factorization

A T
(A9, B)® (Ae;B) > (A@;B)ec (4. B) >

my®c

(Ao, 4)0, (Bo.B) 42", 4¢,B
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of the multiplication map of 4 ®..B (the notations being as in Lemma 2.1).
We shall prove that z, ¢ and m,®.m, are L-homomorphisms. Let us

first show that the CBAM-action ©: C'® Ae.B)—~A®.B is an L-
homomorphism. Let j: Ce® (A ® B) — (0@ A) ® B be the isometric
isomorphism satisfying j(c® (@® b)) = (c®@a)® b and x,: 4 ® B>
A®;B the natural quotient map. The diagram

9,®id,

cowem - weaen®iOls iy

,i(ng 7T, .
~ ¢’ 9 ¢

cottes O aas

is commutative. By the definition of the positive cone in the projective
tensor product of two L-spaces j is also an order isomorphism. Since
7y is an L-homomorphism (Lemma 3.3), and id. ® 7, and @, ® id, are
L-homomorphisms by Theorem 3.2 in [19], (7,° (O, ® idy) o j)* is a
C§ -morphism and (idc@ me)* is an injective CF -morphism. As
(ed . ® 7e)* 0 OF = (7, ° (O, ® idy) ©j)*, ©@% is thus a C§ -morphism, i.e.
© is an L-homomorphism. Replacing here B by 4 (resp. 4 by B)
we see that the CBAM-actions ©,: (® Ae . 4)—~Ae.4 and
0,: 0® (Be.B)—+B®.B for which 0,(c® (¢, ®.a,)) = (¢ a;)®. a,
and O,(c® (b;®:by) ) = (c-b)® by, c€C, a,, ayeAd, by, b,eB, are
L-homomorphisms. Lemma 3.3 now shows that = is an L-homomorphism
and the isometry ¢ is an order isomorphism. As (/,)° (in the notation
of Lemma 2.1) is by Lemma 3.3 a sub- C* -algebra of (4 ® A)* containing
its identity, m,: A®.A4->A is an L-homomorphism by Lemma 3.1.
Similarly, m, is an L-homomorphism, and so is M, ® . m; by Lemma 3.4
Thus A®.B is by definition a commutative CM-algebra, and @ is a
CCM-action.

4. The structure semigroup of A®. 5

Throughout this section ', 4 and B are commutative CM-algebras
and @, : C®d-—>4, O C® B-—>B are CCM-actions. We write
P.=[4(C)]-C C*. As 4(C) is closed with respect to multiplication
and involution, P, is a sub- C* -algebra of C* containing its identity,
so that P, can be identified via the Gelfand transformation with C(S.),
the C* -algebra of continuous complex functions on S., where S, =
A(P) . S; is a compact abelian topological semigroup with a multiplication
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(x,y)—xy which is determined by the condition xy(y) = @(7) y(7),
y € 4(C) . Equipped with this structure, S is called the structure semigroup
of S The Gelfand transformation puts 4(C) in a bijective correspondence

with SC, the set of the (nonzero continuous) semleharacters on S;. The
canonical embedding c¢+>¢ of C into M(S.),<c,f> = {f, c> for
feP; = C(S.), where M(S;) = C(Sc)* is the Banach space of bounded
regular Borel measures on S; , is an algebra homomorphism with respect
to the convolution product

wxv(f fffrjdy x) dv(y), feO(S;

S¢ Sc

in M(S.). Similar notations and terminology are used when C' is replaced
by A or B. The details of the theory summarized above can be found
e.g. in [15, pp. 157—159] and [17, pp. 24 —25], see also [19, pp. 7—38] and
[20, Theorem 2.1].

In [19] we have shown that the structure semigroup of the CM-algebra
A® B can be identified with the product S, x Sy . The main purpose of
this section is to prove an analogue of that result for 4 ®; B instead of
A® B (Theorem 4.2). Certain identifications and notational conventions
will be adopted. For example, ch P, is sometimes identified with
C(S. x S,) and sometimes with a closed subspace of C*® A* (see [13,
p. 35]), which in turn is considered canonically and isometrically (see
[13, p. 40] ) embedded in (C ® A)* = C*® A* . In general our approach is
the same as in [19]. A fundamental result of Gelbaum [4] and Tomiyama
[18] yields the identification 4(0® 4) = {p®@y | ¢ €4(C), p e 4(4)},
and as in the proof of Theorem 4.3 in [19] it is seen that chP 4=
[A(C® A)]-. Since 0,((0;®a;) ;8 ay)) = 040102 ® g @) = (0105) -
(@ ag) = ¢y [ca- (@pay) ] = ¢y [(Co @) @] = (61 @) (- @) =
O4(c;® ;) O (ca® ay), ¢y,6,€C, a;,a,€A4, and C® 4= [{c®a]
ceC, acd}]~, @, is an algebra homomorphism. Therefore 0%(P,) C
P.®P,. Welet T,: P,—~P.,®P,, ie. T,: O(S,)—C(Sc x 8,),
denote the map defined by @% restricted to P, . In much of the discussion
below attention is limited to @, , but we use the corresponding results
and notations for @5 as well.

Lemma 4.1. There is a unique mapping t,: A(4)— 4(C) U {0}
(called by abuse of language the adjoint map of the action O, , compare [6,
p- 11]) such that

<C»tA(J’)><“,V>=<C‘“:V>: 0607 a'EAa yEA(A)
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The mapping t, is weak® continuous, and
) Ofy=L,(nN®y, yed(d).

Proof. The existence and weak* continuity of (, are shown in [6,
Lemma 3.1]. The uniqueness of ¢, is clear, for if {a,y> % 0, then
Aq(y),e0 =<{y,ap y,eray. If ceC, acA and yedd),
then {c®a,t, (@) =le, b, (y)a,y =l a,y =lda,@%y,
so that (1) holds.

Since the second conjugate space of a commutative % -algebra is
a commutative W* -algebra (see [12, p. 43], [3, p. 236]), M(S.) = C(S.)*,
M(S,) and M(S, x §,) are by definition complex L-spaces (and the order
in each space as a predual is the same as the order in a space of measures
[3, p. 236]). There is a linear isometry j,: M(S.) ® M8, ) — M(S, x S,)
which maps u® v to the product measure p x v for u e M(S.), v € M(S,).
This can be proved using the techniques of the proof of Theorem 2.2 in [8].
The same proof shows that j,(M(S.)® M(S,)) = {m e M (S x S,) |
m < x v for some p =0 in M(S.), » =0 in M(S,)} (< denotes
absolute continuity), and applying the Radon-Nikodym theorem it can
be proved that the positive cone of j, (M (S,) ® M(S,)) is the closed convex
hull of {u x»|peMS,), pw=0, veMS,), » =0}. Therefore
ja =0 1is equivalent to o =0, v e M(S.) ® M(S,). Ttis also clear
that  7,(M(S,) ® M(S,)) is an L-subspace of M(S. x S,) in the
sense of [15, p. 151]. It is not difficult to prove, using the fact that
(jA(]lI(SC)%i M(S,))) is a *-ideal in (S, x S,)** (see Theorems 3.1
and 3.2 in [7]), that 7% is a O35 -morphism. But instead of going into the
details of that proof we observe that 7, satisfies the conditions of Definition
1.3 in [15, p. 152], and so j, is an L-homomorphism in the sense of the
definition we are using in this paper (cf. [15, Theorem 1.2] or [7, Theorem
4.21).

We are going to show that M (S,) is a CCM-module over M(S,.) with
respect to a suitable action. This action @, : M(S.) ® M(S,)— M(S,) is
defined as @, = T%<j,. We denote also @, (u® v) = p-v.

Lemma 4.2 If t, is the adjoint map of the action ©,, then
Gy = G 0 v gy forall e M(Se), veM(S,), yed(d) =
8,

Proof. Using Lemma 4.1 we get {(u-v,y) = {uxXv,0F) = uxv,
Lip®yy = u,ty)> v,y with  the interpretation Li(y)® ye
C (Sc x S 1) -

Theorem 4.1. The mapping @, : M(S.) ® M(S,) — M(S,) s
a CCM-action.
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Proof. Let us first note the validity of the algebraic conditions

’

(i) (s p') v =p-(u-» and

(i1) o (vev') = (u-v) o for u,p e M@, v, v eM®S,).
Applying Lemma 4.2 three times we get

) vy oy = Quap' L) v,y =
b)) vy = s ) ey = e ()

for all yeS,, and since C(S,) = [S‘] , (i) holds. An analogous
argument yields (ii). As M(S.) and M(S,) are known to be CM-
algebras (in fact, what we say below gives with the choice 4 = ' this
result, too), the theorem is proved once @, is shown to be an L-
homomorphism. But 7, is a Cj-morphism, and so is its second transpose
when P¥* and (ch P )** are equipped with the canonical structure of
the enveloping von Neumann algebra [3, p. 237]. (Note that a Banach
space is weak * dense in its bidual, and in the bidual of a C* -algebra
involution is weak * continuous and multiplication separately weak *
continuous). Since j, is an L-homomorphism, @, = T%cj, is therefore
an L-homomorphism.

We now turn to the problem of characterizing the structure semigroup
of A®, B. The answer is given in Theorem 4.2, which generalizes
Theorem 4.3 in [19].

Lemma 4.3. IfSand T are compact Hausdorff spaces and p € M(S),
then the map vi>u X v,v e M(T), is continuous from o(M(T), C(T)) to
G(M(S % T), C(S x T)).

Proof. If feC(S x T), the function ¢, ff y) du(x), s

continuous on 7. This proves the lemma, because <f, uX vy =Lp,v).
In the next theorem we denote as before

J=1{(ca)eb —a® (c'b) | cel,acd, beB}J“CAéB.

We embed e.g. S, canonically in M(S.), and write accordingly
®,(6,® 8) = u-s for the Dirac measures J, and d,. N
Theorem 4.2. For a pair (p,y) where ¢ €A(d) =S8, and

p e AB) = »g’\B, the following five conditions are equivalent:

(i) poypel,

(ii) L,(p) = ty(p) (in the notation of Lemma 4.1),

(iii) <c-a,p>b,ypy =<a,pylc-b,py forall ceC, acd, bebB,
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(iv) p(u - s)p(t) = p(s) pu-t) forall weS., se S, tes,,

V) v A u,py = A,y v,y for all
veM®lS.), 2eM@ES,), ueMS,) .

The set A = J0 A A(A® B) with its relative weak* topology is homeomorphic
to the spectrum of A®.B = A ® B [J  under the map y+>yon where
7n:A®8B >A® B [ s the quotient map. The closed linear span P of
A is a sub-C*-algebra of P, ® P  containing its identity. There is a semigroup
multiplication (v, y) >y in AP) satisfying ay(y) = x(P)yly), yed,
and with this product A(P) s lopologically isomorphic to the structure semi-
group of A®. B. There is a continuous surjective semigroup homomorphism
% from the product S, x S, onlo the structure semigroup of A®.B such
that %@y, yy) = w(xy, ye) if and only if p(a) plyy) = plxy) p(ys) for all
pairs (¢, y) egA X :S’\, satisfying e.q. (iv).

Proof. The equivalence of (i), (ii) and (iii) is contained in the proof of
[6, Theorem 3.3], and so is the description of the spectrum of A ®.B. As
the case of two factors is notationally simple to handle, we include for
completeness a proof of this part of the theorem, too. From the definition
of ./ it follows that (i) is equivalent to requiring that

ey, (cra)®@b —a® (c b)) =0 forall ceC,acd, beB,

ie. to (iii). The formula in (iii) is by Lemma 4.1 equivalent to
Custlo)y la, o)<,y =<a,p) e, typ)><b,yp>, and since « and
b can be chosen to make <(a,p> and <b,y> nonzero, (ii) and (iii) arc
equivalent. It follows from Lemmas 4.1 and 4.2 that

)

| cca=¢-a,cel, acd
) )

where e.g. ¢i-¢ s the canonical embedding of ¢ in M(S.-) . In fact,
T,y = dora,yy = o () <a, > = (L0 @, 9 = T, 9
for all yelP, = b:;,. Thus (v) implies (iii). It is even more obvious
that (v) implies (iv). Let us now show that (iii) implies (v). As the
canonical image A= {@|aed} of A is weak* dense in M(S,), there
is a net (@) in A converging to A in the weak* topology. By (iii) and
(N, <c-a,,¢p> @, v = <a,, ) (c- b, w>. As T% is continuous from
a(M(Se x S,), O, x 8,)) to o(M(S,),C(S,)), it follows from Lemma
4.3 that for fixed m e M(S.) the map hrsm-h = T%m x h) from
M(S,) into itself is weak* continuous. Therefore (-1, ¢> <3,1/)> =
Dy ey (e b, y)> . Iterating this argument we obtain (v), when p is next

approximated by elements from B = {Z! beB} CM(Sy,) , and finally »
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by elements from O . Since it follows at once from (iv) that (v) holds for
linear combinations of Dirac measures, and such measures are weak*
dense in the whole space of measures, a similar proof shows that (iv) implies
(v). The fact that 4 and 4(4 ®.B) are homeomorphic under yi—yon
follows from Theorem 3.1.17 in [9, p. 116]. By Theorem 3.1 A®. B is
a CM-algebra so that P, = [4(4®, B)|” isasub-C*-algebra of (4 ®, B)*
containing its identity. Since n*: (4 ®,B)* — (4 ® B)* is by definition
(see Lemmas 3.1 and 3.3) an isometric O#-morphism which maps A4(4 ® . B)
bijectively onto 4, P = [4] is a C*-algebra with identity (this could
easily be proved also directly by using (iv)) and =z* defines a C*-algebra
isomorphism of P, onto P . It is now clear that A(F) has a semigroup
multiplication such that ay(y) = 2()y(y), x,yedP), yed, and
A(P) is topologically isomorphic to the structure semigroup of A ®. B .
If the structure semigroup A([4(4 ® B)]7) of 4 ® B is identified with
S, x S, in accordance with [19, Theorem 4.3], » arises as the dual mapping
of a* | P, regarded as a Cj-morphism into [4(4 ® B)|~. The fact that
% is surjective is a well-known simple consequence of Urysohn’s lemma.
Since a*(4(A®.B)) C4(4 ® B) , it is quickly verified that x is a semigroup
homomorphism. Finally, x(x, ,y,) = =(v,,y,) for o, 2, €S, ,y,,y, €8,
if and only if (x,,y,) and (x,,y,) determine the same functional on
[4]- CCS, x Sp), ie. if and only if g(x) vy, = e® v, .y, =
0 ® w(x,, Yy) = p(x,) p(y,) for all pairs (¢, y) satisfying (i) to (v).

5. Examples of CCM-actions

Many natural actions of one commutative CM-algebra on another
arising in harmonic analysis are CCM-actions. As the inclusion map of an
L-subspace of an L-space M into M is an L-homomorphism (see the discus-
sion preceding Lemma 4.2), it is clear from [19, Theorem 3.2] that a com-
mutative CM-algebra is a CCM-module over any of its L-subalgebras. More
generally, if C' and A4 are commutative CM-algebras and 7': (' — A4 is
an L-homomorphism which is also an algebra homomorphism, then the
operator @ : C®A->A for which O(®a)= (Tc)a is a CCM-action.
An equally obvious example of a CCM-module is an L-ideal of a commutative
(CM-algebra 4 when it is regarded as a module over 4. From Theorems 3.1
and 4.1 in [20] it follows, in particular, that if 4 is a semi-simple com-
mutative CM-algebra whose structure semigroup has an identity and whose
multiplier algebra M(A) is also a CM-algebra with respect to the order
defined by the positive cone {I'e M(A) |Ta =0 if 2zed, x =0;,
then 4 is a CCM-module over M(4).
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The case of a so-called essential CCM-action of a commutative group
algebra L1(K) (of the bounded Borel measures absolutely continuous with
respect to the Haar measure of the locally compact abelian topological
group K) on another such algebra L'(() can be fairly easily analyzed.
The result is Theorem 5.1. A CCM-action @: C® A — A is called essential,
if the range of @ is dense in A4 (see [10, p. 453]). In this situation
actually o(C ® A) = A, because the range of every L-homomorphism is
closed (see [1, p. 492]). In case C has a bounded approximate identity and
O is essential, every a € 4 can even be expressed as « = O(c® ') for
some ceC, a" €A [10, Proposition 3.4].

Theorem 5.1. Let K and G be locally compact abelian topological
groups. A CCM-action O : LVK)® LYG) — L) is essential if and
only if there is a continwous homomorphism ¢ : K — (! such that

(1) Ove u) = o) *pu,
where ¢ : M(K ) Jl (@) s the natural extension of ¢ obtained by defining
o(v) (E) = v(p~Y(K)) for all Borel sets E C@ .
Proof. We identify the character group K of K with A(LY(K)) by
v,y = f y(y) dv(y), v e INK), yeK CLAK), and G with A(L\(()).
K

N

N\
Let t: (¢ — K U {0} be the adjoint map of the action @ (Lemma 4.1).
Suppose O is essential so that its transpose ©* is injective. Since

75 0 for o ea, and ©* =1{(y)® y (Lemma 4.1), we have
N\
(G) C K Furthermore, ¢|(¢ is a group homomorphism. In fact,
AN,
if 7> V2 €G, then Hy1ve) ® 1172 = OF(y172) = O*(yy) O*(py) =
(t(y1) ® 71) (E(p2) ® 7,) = t(y1) t(Vz)® Y172 and  so (7’172) = t(Vl) t(ya)

because p,y, #£ 0. As t: G—>K is continuous when (resp. K) is
given the relative o(L*((¢/), LYG)) (resp. o(L*(K), LYK))) topology,
the Pontryagin duality theorem yields a continuous homomorphism
¢ : K — (G whose dual mapping ¢ is. To show that @ is induced by ¢
as claimed, it is sufficient to verify the indentity

(2) <o) xp, =B, yy, vel(K), uell(l), ye AL\ H)).
With the interpretation y e G c L*(@) the definition of o gives

o) *py =

= (U, y>f = {u, V>f v e o(y) dv(y)
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For ye ALYG)) this implies <{@(») s p, 7> = <v, )y {u,y>, which
is equivalent to (2) by Lemma 4.1. Assume, conversely, that @ is
induced by a continuous homomorphism ¢: K — G via (1). Let % be
the neighborhood basis of zero in K , directed by the natural order op-
posite to inclusion. For each U € % choose a positive measure v, € L'(K)

such that fdv,,(g/) =1, and supp (v,) CU. Then
4
(3) lim O(vy® p) = u, pelXG).
U

In fact, given ¢ > 0 there is a neighborhood V of zero in (' such that
If, — fl, <& for all weV, where fdr =du and f(v) = fx —u)
(see [11, p. 3]). Let U, e satisfy ¢(Uy) CV . Then

loGo) = pll = f I f (fle — u) — f(x)) do(vy) (w) | de =

< f Wf — flhds;(vu) (w) < e

Vv

forall Uea, UCU,. Thus (3) holds, and so @ is essential.
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