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TENSOR PRODUCTS OF CERTAIN BAI\ACH
MODUTES OVER COMMUTATIYE COI\VOLUTIOI\

MEASURE ATGEBRAS

KARI YLINEN

1. Introductlon and prellmlnaries

J. E. Kerlin [6] has studied Banach algebra actions of one group algebra
L' (G) of a locally compact abelian topological group G on another such
algebra. fn particular, Kerlin wa,s concerned. with locally compact
abelian groups K, Gr, . . ., Go, Banach algebra actions of LL (K) on
L'(G),...,L'(G,), and the L'(K)-tensor product Lr(Gt)82,1r1 ...
@a,1qLL(G,) in the sense of M.A.Rieffel [0] of the resulting Banach
L' (K) -modules. The objects of study in the present paper are related. to
those of Kerlin. The Banach algebras we consider, namely the com-
mutative convolution measure algebras introduced by J. L. Taylor in [f5],
are much more general than the group algebras Lt (G). A convolution
measure algebra is a complex Z-space with a Banach algebra product
which is suitably related to the Z-space structure. The olass of convolution
measure algebras includes e.g. the convolution algebra IUI(S) of bounded.
regular Borel measures on any locally compact topological semigroup S
with a separately continuous multiplication (see [6, Theorem 2.1]), and
the so-called ,t-subalgebras [6, p. 812] of 11(B) . But it appears that
in the context of this rather general class of Banach algebras one needs
more restrictions on the algebra actions than those asgumed. by Kerlin
in the case of group algebra modules. Specifically, we introd.uce what we
shall call a CCM-action of one commutative convolution measnre algebra
on another. This notion generalizes naturally the multiplication in a com-
mutative convolution measure algebra. Before making this statement
precise we review some aspects of the theory of normed tensor products
and convolution measure algebras.

If .&' and -l' are Banach spa,ces, E A I d.enotes their projective tensor
product (i.e. the completion of the algebraic tensor product E g n with

Mika
Typewritten text
doi:10.5186/aasfm.1975.0131



Kem Yr,rlrnx

respect to the greatest cross-norm y of Schatten p3, p. 3Sl) and .86-F
thJcompletionlcailed the weak tensor product of .E and -F in p4, p. 3551)

of E s -F with respect to the least one, ), , of all cross-norms whose dual

norms are also cross-norms (see [13, p. 32]). In this paper the .l-norm

appears in tensor products of spaces c(xr) of continuous complex func-

täs on compact Hausdorff spaces Xr,,i, : L, 2. In this connection the

crucial property is the natural identification C(X, x Xr) : C(Xl) 6 O1Xr1

[14, p. åSZ]. f6" ? -norm will be used mainly in tensor products of complex

i-rpi""r. We take as our definition the characterization of a complex

Z-riu"u as the predual (see [12, p. r]) of a commutative W* -algebra as

in irO1. More precisely, a complex Z-space M is an ordered Banach space

whåse auut, *ittr the order determined by that of M, is a commutative

C* -algebra. We often suppress the word "complex", because all Banach

,p"""r-*" consider ere over the complex field. If M and .lf, are .L -spaces,

U 6 W is an .L -space whose positive cone is the closed convex hull of the

set{p@elpeM, P }0, reN,rt >0}, and whose dual can be

identified with the IIz* -tensor product M* @ N*. For details gee e'g'

[f?, pp. 20-22] and [19, pp. 5-6]. In general the properties of tensor

p"oa""tr of Banach spaces and Banach algebras we use without explicit

mention are elementary and can be found in [19] and. the references listed'

there. In particular, the projective tensor product, of two Banach algebras

will be regarded as a Banach algebra with the product described in [19,

p. 41.

It M is a complex z -space, the w* -algebra structule in M* com'

patible with the närm and oider determined by M is by the Banach-

S5one theorem unique. A bounded linear map ? : III ->.1[, where M and'

.l[ are complex Z -spaces, is called. an L -hornornarph'i,sm, if its transpose

T* : N* --> M* is what we shall call a c{ -rnorlthism, i.e. a c* -algebra

homomorphism which maps the identity of N* to that of M* . A con-

aolution io" ur" algebra (abbreviated as CM-olgehra in the sequel) is a

complex Z-space M wifh a Banach algebra product (l','lt-p? such

that the bounded linear map @ : MG M'-> M for which @(ps e) : Pp ,

p , t, e M , is an -L -homomorphism. In this paper we limit our attention

to commutative cM-algebras. A central position in their theory is occupied

by the structure semigroup constructed by J. L. Taylor in [15]. we shall

,rät go into details in this introductory section, but refer the reader e.g.

to [7] for an exposition.

The Banach modules we are considering in this pa,per generalize com-

mutative cM-algebras in the following"sense. lf. c and' a are com-

mutative CM-algebras and @ : C 6 .q ---.,4 is an Z -homomorphism, we

saythat o isaccM-a,ctionand / isaccM-r?roiluleover c, providedthat
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the bilinear map from C x A to A defined by @ satisfies the
natural algebraic conditions postulated in [6, p. 3], i.e. @((oo')@ a) :
@(co @(c' e a) ) and @(co (aa')) : @(co a)a,' : a @(ao a'), c,c' eC ,

a,, a' eA.
The main results of Section 3 concern the C -tensor product Ao"B

(in the sense of [f0] and [6]) of two commutative CM-algebras .,4. and B
which are CCM-modules over a, commutative CM-algebra C . It is shown
lhat A 86 B is also a commutative CM-algebra (Theorem 3.f ). In Section
4 the structure semigroup of ,4 86 B is given a characterization (Theorem
4.2) which generalizes Theorem 4.3 in [f9]. Section 5 concems mainly
group algebras which are CCM-modules over group algebras. Specifically,
it is shown that if K and G arc locally compact abelian topological groups

and @ : LI(K)G n G) -> Lt(e) is a C0M-action, then @(LL (K)6 ZtlC;1 :
Lt(G) if and only if there is a continuous homomorphism e i K -+ G such
that @(v@ p):T@)*p t ye Lr(K), peLt(G), where i: M(K)-->M(G)
is the algebra homomorphism canonically induced by q .

Natati,ans. X'or any commutative (complex) Banach algebra 24. , l(A)
denotes bhe spectrum of A , i.e. the set of nonzero multiplicative linoar
functionals on A equipped with the relative weak* topology. It E is
a Banach space and D C E, then [D]- is the closed linear span of D
in D , and D0 is the polar of D in the topological dual E+ of E . The
identity map of a set D is denoted by i,il,o .

2. Banach C-algebras and thelr C-tensor products

Throughout this section C denotes a commutative Banach algebra.
We adopt the following definition used by J. E. Kerlin (see [6, p. 3]).

Def inition 2.1. A commutative Banach algebra A is a cotn-
mutati,ae Bannch C-al,gebra with respect to a bounded bilinear map
(c,a)r>c.a from C x A to A if

(c c') . a : c . (c' ' a,) and

(ii) c.(aa'):(c.a)a':a(c.a')
forall c, c'eC and. cr,, a'eA.

By abuse oflanguage we shall call a bounded linear map @ : OG A -* A
a cornmutati,ae Bana,ch algebra moil,ule aoti,on (of C otu A), abbreviated as
CBAM-acti,un, if A is a commutative Banach C -algebra with respect to
thebilinearmap (c,a)åc.a fot which c,a: @(coa), aeC, aeA.
We continue to use the notation @(cO o) : c. a fot every CBAM-action
@ . This should cause no confusion.

5l

(i)
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Suppose @n: CG A-->A and @s : CG B---B are CBAM-actions.

Modelling on M. A. Rieffel's definition (see [r0]) of a tensor product of
Banach modules, J. E. Kerlin defined in [6] the C -tensor produot of A
and B as follows. Denote

J : l{(c'a)@b - ao(a'b) I ceC, aeA, beB}l- CAAB.

As observed in [6, p. 5f, J is a closed ideal in the commutative Banach

algebra 16 n, so that the quotient algebra Ao"B : AA B lJ witln

the quotient norm is a commutative Banach algebra, called the C -tensor

prod,uctof z4 and B . We denote a,@cb : n(a@ ö) , where n: A6 A'*
2,6 n 1,t is the quotient map, so that Ae"B: l{a@cÖ I aeA,
bea)l-.

Two natural CBAM-actions of C on .qG A arise from @A and

@8. rndeed, if j: C6@6B)-*(cA A)AB and ft: C61AGa1-*
e6 eG n denote the canonical isometric isomorphisms satisfying
j(ao (ao å) ) : (co a)ob and k(co (as b) ) : d'@ (aab), it is easy

to verify bhat @r: (@tG muloj (resp. @2: (id,a6 Ou) " k) is a CBAM-

actionof C on 'q,6n suchthat a'(aob): (c'a)ob (resp. c'(aob):
a,@ (c.b)) . applying the commutativrty of c and (i) in Definition 2.1 we

see that for each c eC the kernel of each one of the operators

n>ly" @r(c@r) and n>iro@z(c@r) from .4,6 A to ,46 B/J contains

J . Both of these operators induce canonically the same operator

T,: AG A 1.r --AG B lJ, andtheoperator @: c6 @scB) --> Ae"B
for which @(co u) : T"fi, n €Ae"B, is a CBAM-action of C on

Ao"B such that a' (ao6b) : (a' a)@cb ( : ao"(a'b))' We shall

always regard AO" B as a commutative Banach C -algebra with respect

to the action so defined.
We close this section with an alternate description of the multiplication

in the C -tensor product of two Banach C -algebras.

Lem ma 2.1. Let A anil, B becommutati,aeBanach, C'ol'gebras.There

is a unique isometric i,sornorphi'sm

e | (A@c B) @c (A @c B)'-> (A a6 A) s" (B e" B)

whichmalts (at@cbr)8c (ar@"br) to (ar@caz)oc (br @cbr\ for ar, d2eA ,

b1, bz e B . Let mn: A6 .q. -- A anil rnu: Bä a -r B ilenote the multi,-

pli,cation ma4ts of A an'il, B, anil wr'i,te

JA: t t (c. ar)@ az at@ (c' ar) | c e C, &L, az e A) ]-'
JB: t{ @'br)ab, bre (c'br) | ce C, br, breB} l-.
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Then rnAlJn
the rna,ps mA

ffio@ + J):
linear mup

- 0 anil rnB I J 
" 

: 0 so that rnA anil rnB 'i,nduce canonically

: A6,qlJo+A anil Fau: BGr lJu+B forwhich
me@) , ffiu(* + J u) : mu@). There 'i,s a unique bouniled

frn@"fru : (A@c A) o" (Be, B) + A@c B

such tlmt fre@cfr"1ro"il : frn@)@"fru@), r eA@cA , g e Be"B .

If n : (Aec B) 6 (e e" B) + (Aoc B) @c (Aoc B) d,enotes the natural
quotient mn4t, then (fro@"fr,") o g " n 'i,s the li,near aperatot correspanil'i'ng

to the mul,ti,gtlicati,on i,n A o" B .

Proof. Since 1 , B, A@cA, B@"8, Ao"B and B@"A are C-C -bi-
modules in the sense of [0, p. 4471, lho existence of p can be proved by
applying Theorem 2.tl and Corollary 2.6 tn [10]. The uniqueness of I
is clear. Condition (ii) in Definition 2.1 shows llnat mllJe:O and

m"lJu:0. The existence and uniqueness of fr,no"fr," follow from
Theorem 2.7 tn p0l, since by Definition 2.1 (ii) fr,n eHom"(Ae"A,A)
and. fr," e Hom"(B @c B ,B) in the notation of [10]. Suppose a1, a2 e A 1

b1, b2eB. The multiplication in the quotient algebra Ae"B gives by
definition (ar@cbr)(aro6br): &r.ur@"brbr. The last statement is thus
clear, since

((fro@"fru)"p"ra) ((arorbr) e (ar@cbz) ) - ataz@cblbz

3. CCM-modules antl thelr tensor products

As indicated in the introductory section, this paper is mainly concerned

with a special class of CBAM-actions. These are defined as follows.
Definition 3.1. Let C and A becommutativeCM-algebras. If

the CBAM-action @: C6 '4"---r4. is an.t-homomorphism, we say that @

is a CCM-acti,on and A is a CCM-moilutre over C (with respect to the
action @ ).

Before the main result of this section (Theorem 3.1) we prove four
lemmas.

Lemma 3.1. Let M beacomplen L-bfia,ceund, J acl,oseil'subsgtace

of M such thnt Jo is a sub- g'r -algebra of M+ oontaini,ng i'ts i,ilenti,ty. Then

IUI I J i,s a aornpleu L-space anil the quntient map n : M --> M I J'i,s an
L-hom,omorgthi,sm, i,f IVI I J is equippeil with' the quotient norm anil the

fol,hwi,ng oriler: lrf : r + J >0 if and' onlg if (r,"f) > 0 for all'

f >O i,n Jo. If N ,i,s another L-space anil, T:M-->N an L-homo-

morlth,ism whose kemel contains J, th,en the i,niluceil magt F, M I J - > N,
for whi,ch 714 : T* , is an L-hamarnorgthi,sm.
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Prool. Since n* : (M I J)* --> M* is an isometry whose range is J0 ,

(I[ I J)* has the structure of a C* -algebra with identity such t}lat n*
is a Cf -morphism. Clearly, the order determined by (M I J)* in M I J
can be described as stated. As to the second statement, observe that since

n* oT*: f* is a Cf -morphism and u* is an injective Cf -morphism,

fr* is a Cf -morphism.
In [7, p. 663] the order in M IJ defined in the above lemma is called

the order induced by Jo. The definition is clearly independent of the
choice of the representative in lxl e M I J . We shall refer to this order
as the quot'i,ent oriler in XI I J. This term is justified by the following
lemma.

L e m m a 3.2. Let M anil, J be as in Lemma 3.1. The pos'i,tiae cone

of M {J wi,th the ord,er defi,ned, in Lemma 3.1 is the i,ma,ge of the positiae
cone of M uniler the Eunti,ent rnae n: M --> l][ I J .

Proof. ftisimmediatethat n(p) > 0 forevery p 20 in M. Suppose
now p eM is suchthat n(p) >0. Weshow that in M thereis I )0
for which n(u) : n(p) . Let' us consider Il[* rcalized as a von Neumann
algebra of operators on a Hilbert space ä so that the o(M* , J/) -topology
on M* corresponds to the relative o -weak operator topology (see p2,
pp. 39-a21, [2, pp. 38-40]). Then "I0 is identified with a von Neumann
algebra of operators on H , and p I Jo is a o -weakly continuous positive
linear functional on ,I0 . Thus there is a sequence (t")L, in ä such that
ILrll6,ll'< * and (r , p) : )L, (r€*, €^) , n e Jo [2, p. 5r]. Using
this expression pIJo can be extended to a o-weakly continuous
positive linear functional y on M*. As J is o(M ,M*) -closed, the
polar of Jo in M is "I by the bipolar theorem, so that n(r') : n(p,) , and
the lemma is proved.

L em m a 3.3. Let C, A and, B be comTtler L-spaces ard q : C6 e + A,
,p: CG B --> B L-homomorTth,i,sms. Denote tp(co a) : c. & , v(os ö) :
a.b, anil

J:l{(a.a)@ö - a@(c.b) I ce C, aeA, b eB}l- C AAB.
Let n : e6 B -, 16 A 1,t be the quoti,ent mapt. Then Jo is a sub- C*-
algebra of (ra 6 f1* eontatning its i,ilenti,ty. Equilryteil, with the quntient

oriler A6 n 1 "f i,s a comptkr L-sgtace whose gtosi,tiae cone i,s the claseil catlaefi
hull of {n(aob) I a}0, oeA, b>0, beB}, and, w is an L-
hornomorphi,sm.

Proof . X'rom the definition of the positive cone in the projective tensor
product of two .D-spaces (Section 1) it follows that the canonical isometric

isomorphism j : C6 @6 B)+ (Cö A)A B is also an order isomorphism.

Therefore Tr: (g6;a; 'yi is an tr-homomorphism from CG @6 Al
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to eG A such that Tr(co (aob) ) : (c'a)ob [19, Theorem 3'2].

Similarly, we get an Z-homomorphism Tr: CA te6 n!-->Aä B such

that Tr(co (aob)) : a@ (a'b). Since {/e(,aG q* lffl : Ttf) :
{f e(AGfl* lf(@-a)ob-a@ (o'ö)):s for all ceC, aeA,
beB\:Jo, and f{ and ry are Cf -morphisms, Jo isasub-C*-
algebra of (AA h* containing its identity. The last statement in the
lemma is a consequence of the first part, Lemmas 3.1 and' 3.2, and the

definition of the positive cone in e6 n .

Canaenti,on.Whenever C, A, B, Q, g, and J ate asintheabove

lemma, 16 A 1 I will be regard.ed" as an .t-space with the structure
described in the lemma. rn particular, rf c , a alald B are commutative

CM-algebras and @a: C6 A --- A , @": C6 n --- n are COM-actions,

lhen A @6 B is an Z-space.

Lemma 3.4. Let C, Ai, Bi becomlilerL-qta,cesanil qi: C6A,--
Ai, ,ti, C6 B,---B, L-hornomorphi,sms, i : I, 2. Denote ^Jt:
l{w1@oo)ob-aotp/cob) | ceC, aeA1, beB)l- c AiABi,
a,nil let n,: A,6 B, -- Lo6 A, 1 ,to be the quntient mA. If a: Ar-> A,
and P: Br* B, are L-hmnomorTth,i,sms such that a Q{c@ a\ : qr(c@ aa)
anil, Frpr(cab):rpr(a@Pb), ceC, aeAr, beBy, then there'i,s

a uniquebouniteil linu,r nury) q@c f ; ArG Bt I Jr* A16 B, I J, for whi,ch

(aecilnr(a@b):nr(aaoBb), aeA1, beB* end a@cF 'i,san

L-homornorphi'sm.
Proof . The existence and uniqueness of a 86 B follow from Theorem 2.7

in [10, p. 450], the crucial point being the fact that by our assumptions

the kernel of nro ("6 p) contains ./r. Since zr'("6 p) is an Z-homo-

morphism by Theorem 3.2 in F9] and Lemrna 3.3, an application of Lemmas

3.3 and 3.1 completes the proof, a@c F being simply the operator canoni-

cally induced by z, " (o6 p) on the quotient space ,4rG Brl Jr.
TheoremS.l. Let C, A anil, B becommutati'ae CM-algebrasan'il

@o: CGA->A, @st C6n-+B CCM-a,ctions. Th,en A@68 isa,cam'

mutat'i,ue AM-algebra and, thebaund,eil,l,i,nearmngt @ : CG (Ao"B)--->A8"8
for whi,ch @(ce (aec ö) ) : (o'a)@cb : ae"(a'b) (see the il'iscuss'i'on

preceili,ng Lemma 2.1) i's a CC,M-anti,otr'.

Proof. As observed before Lemma 3.4, A @6 B is an -L-space. To show

that it is a cM-algebra we use Lemma 2.1, which gives a factorization

(A a, B) A @ac B)L Uoc B) @c (A@c B)\

(AscA) o, (Be cB)fr'ns"fr'">AacB
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of the multiplicationmap of Ao"B (the notations being as in Lemma 2.1).
We shall prove thaf, n, p and fr,o@"fr" are Z-homomorphisms. Let us

first show that the CBAM-action @: C6 1ae"B)-->Ao"B is an .L-

homomorphism. Let j : C6 @A h -' (CA A)A B be the isometric

isomorphism satisfying j(co(aob) ): (coa)ab and no: A6"A--
Ao"B the natural quotient map. The diagram

aa@
Arral

.k

oä@

ärl i * (cA A)Auoo6idu>A AB

I'o
'1,

&" B

idt

8" 8)

is commutative. By the definition of the positive cone in the projective
tensor product of two -t-spaces j is also an order isomorphism. Since

zo is an Z-homomorphism (Lemma 3.3), and. id,"ä ,ro and @nG id,u urc
-L-homomorphisms by Theorem 3.2 in [r9], (no"(@oä,;,a;"i1* is a

Cf -morphism and (id"ä zs)* is an injective Cf -morphism. As

(id,"6 nr)* o @* : (no" (@eG id,"1. i1* , @* is thus a Cf -morphism, i.e.
@ is an -L-homomorphism. Replacing here B by A (resp. ,4 by B)
we see that the CBAM-actions Or: C61,larA)--->Ao"A and

@r: C6 (Be"B)-->B@"8 for which @r(o@ (ar@rar)) : (c .ar)@"a,
and @r(co (åro"br)): (c.br)@br, c eC, ar, areA, b1 ,b2eB, are

"L-homomorphisms. Lemma 3.3 now shows lhal n is an Z-homomorphism
and the isometry p is an order isomorphism. As (J)o (in the notation
of Lemma 2.1) is by Lemma 3.3 a sub- C* -algebra of (,a 6 :4)* containing
its identity, hti A9"A--->A is an -L-homomorphism by Lemma 3.1.
Similarly, hu is an Z-homomorphism, and so isffi,n@"ffiu by Lemma 3.4.
Thus Ao"B is by definition a commutatiye CM-algebra, and @ is a
CCM-action.

4. The structure semigroup of Ao"B

Throughout this section C , A and B are commutative CM-algebras

and @a: C6 A --- A , @u: C6 A -- n are COM-actions. We write
P" : [/(C) ]- C C* . As /(C) is closed with respect to multiplication
and involution, Pc is a sub- C* -algebra of C* containing its identity,
so that P" ean be identified via the Gelfand transformation with C(8") ,

the C* -algebra of continuous complex functions on B" , where Bc :
/(Pd . S" is a compact abelian topological semigroup with a multiplication
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(r , y) r-> n y which is determined by the condition t Y(y) : r(y) A(il ,

y e /(c). Equipped with this structure, B" is called the strnnture sem,igroupt

of B" . The Gelfand transformation puts /(c) in a bijective correspondence

with ,Q , the set of the (nonzero continuous) semicharacters on 8," ' The

canonical embedding cv>T of C into M(8") , (c ,f) : (f ,V) for

f eP": C(Bc), where M(8"): C(8")* is the Banach space of bounded

regular Borel measures on B" , is an algebra homomorphism with respect

to the convolution product

p*a(f) - y) dp(n) ilv(y) , f e C(Sr) ,

in M(s"). simila,r notations and terminology are used when c is replaced

by A or B. The details of the theory summarized above can be found
e.g. in [15, pp. f57-159] and [17, pp.24-25], see also [19, pp. 7-8] and

120, Theorem 2.I1.
In [19] we have shown that the structure semigroup of the CM-algebra

a6 A can be identified with the product B,a x Bu . The main purpose of
this section is to prove an analogue of that result for AO"B instead of

1,6 n (Theorem 4.2). Cefiain identifications and notational conventions

will be adopted. X'or example, P"6 Po is sometimes identified with

C(8" x Br) and sometimes with a closed subspace of C*6 A* (see [13,
p. 35] ), which in turn is considered canonically and isometrically (see

[r3, p. 40] ) embedded in (c6 A)* : c* ö A* . In general our approach is

the same as in [r9]. A fund.amental result of Gelbaum [a] and Tomiyama

psl yields the identification lQA A) : {p@ rp I q e /(C), y e /(A)) ,

and as in the proof of Theorem 4.3 in [9] it is seen that, P"6 Pn :
llPA y'J1- . Since @e(@te ar) (cr@ oz)) : @,(ctcz@ a.-ar) : (crcr)'
(arar) : %.lcz. (arar)f : q'l(cr'az) al : (cr' at) @z' az) :
@n@ro ar) @n(cr@ az), c1,a2eC, a1,a2eA, and C6 l' : l{as a 

I

c eC , a eA\f- , @e is an algebra homomorphism. Therefore @lg) C

e"6 Pn. we let To: Pa --- P"6 Pn , i.e. Tn: c(Br) -+ c(86 x Br) ,

denote the map defined by @ä restricted lo Pa. In much of the discussion

below attention is limited to @.E, but we uso the corresponding results

and notations for @ B as well.
L e m m a 4.I. There is a, unique

(calleil by abuse of language the ailioint
p. l tl ) such that

I I,ns6 s5

nxa,ppi,ng tA i /(A) -> /(C) U t 0 )
naap of the action @ A , compare [6,

(c,to\))@,y>- (c'a,y>, ce C , a,eA, Te/(A)
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The mappi,ng tA 'is weal# conti,nu,oltE, ancJ

(l) @fry:to|)eT, yeA(A)

Proof. The existence and weak* continuity of tA are shown in [6,
Lemma 3.1]. The uniqueness of tA is clear, for if (a , y) * 0, then
(tej),c):(y,a)-r(y,c.e). If ceC, aeA and yel(A),
then (cg a,to\)o y) : (c,te0)) (a,y) : (c.a,y) : (ca a,@Iy),
so that (l) holds.

Since the second conjugate space of a commutative C* -algebra is
a commutative W* -algebra (see p2, p. 431, 13, p. 2361), M(8") : C(Sc)* ,

M(S) and M(8" x Ba) are by definition complex .L-spaces (and the order
in each space as a predual is the same as the order in a, space of measures

[3, p. 236]). There is a linear isomel,ry jn: M(5")6 A6; -> M(56 x Bz)
whichmaps y', @ y totheproductmeasure p x y for p e M(5"), a e M(S).
'Ihis can be proved using the techniques of the proof of Theorem 2.2 in [8].
The same proof shows that jo(M(S")ä f1Srl ) : {m e M(8" x Ba) 

I

nx<pxy for some p,20 in Jl4(8") , ! 70 in M(Sn) ) (< denotes
absolute continuity), and applying the Radon-Nikodym theorem it can

be proved that the positive cone of jo(M(5")6 U1So1) is the closed. convex
hull of {pxvlpeM(S"), t-t}0, veM(S), ?>0}. Therefore
jex 20 is equivalent to r ) 0, r eM(5")6l7t1So!. It is also clear

that jn(M(S")G A6o1) is an .t-subspace of ?1(8" x Sr) in the
sense of [5, p. l5l]. It is not difficult to prove, using the fact that
(jn(M(5")6 f1Srl I p is a * -ideal in C(S" x Br)** (see Theorems 3.1

and 3.2 in l7l), bhab jfr is a Cf -morphism.Butinsteadof goingintothe
details of that proof we observe lhat jo satisfies the conditions of Definition
L3 in p5, p. 1521, and so j, is an tr-homomorphism in the sense of the
definition we are using in this paper (cf. [5, Theorem 1.2] or 17, Theorem
4.21).

lVe are going to show that M(S) is a CCM-module over M(8") with
respect to a suitable action. This action <Dn: M(8")ä A6;-+,41(Sr) is
defined as @a: TI. jA. We denote also @n@@ u) : p.u .

L e m m a 4.2. If tn is the adjoint magt of the acti,on @a, then
(tt' r, y) : (p,to\)) (y, y) for all, p, e M(5"), u e M(Sn), y e l(A) :
0,

Proof. Using Lemma4.l we geI (p.y,y): QtXr,@Iy): <pXy,
toj) S y) : (p , tnj)) Q' , y) with the interpretation tnQ) o y e
C(8" x Sr) .

Theorem 4.I. The magtgting <Do:M(5")6A6o1--->M(So) ,i.s

a CQM-action.
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Proof . Let us first note the validity of the algebraic conditions

(il 0t * t')' y : tt' (p' ' u) and

(ii) p' (r' * r') : 0t' r') x a' for 7.r,, p,' e XI(S"), !, !' e M(S).

Applying Lemma 4.2 lfuee times we get

(fu x p')' v, Y) : (P * P',taj)) (Y, Y) :
Qt,to\)) {r' ,tn\)) Q,,y) : (p,td\)) (p' 't,,'l) : Q'U,' ',),y)

for all v e Be, and since C(S/) : [Sr]- , (i) holds. An analogous

argument yields (ii). As M(Sc) and M(Se) are known to be CM-

algebras (in fact, what we say below gives with the choice 1 : C this
result, too), the theorem is proved once aDA is shown to be an L-
homomorphism. But To is a cf-morphism, and so is its second transpose

u.,hen pj* an6 (p"6 Po)** are equipped with the canonical structure of
the enveloping von Neumann algebra [3, p. 237]. (Note that a Banach

space is weak * dense in its bidual, and in the bidual of a c* -algebra

involution is weak * continuous and multiplication separately weak *

continuous). Since i, is an Z-homomorphism, <01 : Tj.io is therefore

an "L-homomorphism.
we now turn to the problem of characterizing the structure semigroup

of Ao"B. The answer is given in Theorem 4.2, which generalizes

Theorem a.3 in [19].
Lemma 4.3. If B and,T arecompact Hausd,orff spo,cesanil p' e M(B),

then the map 1' > p x 1) , 1, e M(T), is continu,ryus frun o(M(T) , C(T)) to

o(M(B x r), C(S x 
") 

).

Proof. It f eC(B x ?), the function a, a(il: I fW,v)dp(n), is
s

continuous on T. This proves the lemma, because (f , p x t') : (q , a) '
fn the next theorem we denote as before

We embed e.g. Sc canonically in M(5"), and write accordingly

QA(ö,@ 6,) : u 's for the Dirac measures d, and ä"'

Theorem 4.2. Iorapair (q,rp) where rpe/(A):gn and'

y e /(B) : fiu, the follmting fi'ae cond,i,ti,ons are equiaal'ent:

(i) rp@yeJo,

(ii) to(q) : tu(tp) (i,n the notation of Lemma 4.L),

(iii) (c'a,,e>(b,rp): <a'A><c'b,y) for all' ceC, aeA, b eB,

eC,cceA,beB\l-CAAB
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(iv) p(u.s)tp(t):p(s)rp(u.t) forall ueS", se Br, te Ss,
(v) (y. 1, q) Q.t,rp) : (A,,p) (r,. p,1p> for all

a e M(5"), )" e M(S), p e M(Bu) .

The set Å : Jo n /(A6 q *;tn,its rel.atiae weak* to?tologg,i,s homeomorlthöc
to the spectrum of Aa"B: eG n 1.f und,er the magt l+yo6 where
n : Aö A --> a6 n 1 .t is the quoti,ent magt. The closed, linear span p of
I is a sub-c*-algebra of Pn6 Pu containing its iitentity. There is a semigrougt
mul,tigtli,cation (n , y) r-> ry i,n /(P) satisfui,ng rA(il : r(y) y(y) , y e / ,
and' wi'th thi,s prod,uct /(P) is tapol.ogi,catty i,somorphic to the structure semi-
group of A e" B. There is a continuous surject'iae semigroupt homontorgthi,sm
x from the prod,uct 8,, X B, onto the structure semigrougt of AA"B such
that x(r1, !1) : x(n2, Az) if and, only if A@L) V@) : A@z) y@r) for all
qta'i,rs (q ,rp).0, 

" 
,0, safisfyi,ng e.g. (iv).

Proof- The equivalence of (i), (ii) and (iii) is contained. in the proof of
[6, Theorem 3.3], and so is the description of the spectrum of AO"B. As
the case of two factors is notationally simple to hand.le, we include for
completeness a proof of this part of the theorem, too. From the definition
of "/ it follows that (i) is equivalent to requiring that

(tp@tp, (c'a)8Ö - a@(c. ö)):0 for all ceC, aeA, beB,
i.e' to (iii). The formula in (iii) is by Lemma 4.1 equivalent tcr
(c, te(q)) (a, q) (b, rp) : <a,, q> <c, tu(rp)) (b, rp), and since a and.
å can be chosen to make (a , rp) and (b , qt) nonzero, (ii) and (iii) are
equivalent. ft follows from Lemmas 4.1 and 4.2 that,

/\)c'cr,: c.ff, c€C, cLeA,

where e.g. c*>V is the canonical embedding of C in MW). fn fact,
<;'4, y> : <c. a,, y> : <c,tnOD @, y) : (d,to\)> (d, D : (7. d, y)

for all T e Pa - Ba . Thus (v) implies (iii). It is even more obvious
that (v) implies (iv). Let us now show that (iii) implies (v). As the
canonical image tr : $ | a e A) of .4 is weak* dense in M(Be), there
is a net (d") in Z converging to 2 in the v'eak* topology. By (iii) and
(l), <T.d",a>ö,V): (d,,q)(V.T,rp).As 

"j 
is continuous from

o(M(S" X Br), C(8" X Sr)) to o(M(Sn), C(Br)) , it follows from Lemma
4.3 that for fixed m e M(8") the map hr->m.h : TI(m x h) from
M(Sn) into itself is weak* continuous. Therefore <7.),, rD 6 ,,,p) :
(1 , q) <V .tr , y) . Iterating this argument we obtain (v), when p is next
approximated by elements from E : tT ln e B) C M(Su), and finally ,t)

(1)
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by elements from C. Since it follows at once from (iv) that (v) holds for
linear combinations of Dirac measures, and such measures are weakx
dense in the whole space of mea,sures, a similar proof shows that (iv) implies
(v). The fact that / and, /(A@cB) are homeomorphic under y+y"n
follows from Theorem 3.1.17 in [9, p. ff6]. By Theorem 3.1 Ae"B is

a CM-algebra so that PL : l/(A sc B)l- is a sub-C*-algebra of (A @" B)*
containing its identity. Since n*: (A8"8)* --(AA B)* is by definition
(see Lemmas 3.1 and 3.3) an isometric Cf-morphism which maps l(A @" B)
bijectively onto / , P : [/]- is a C*-algebra with identity (this could
easily be proved also directly by using (iv)) and z* defines a C*-algebra
isomorphism of P, onto P . It is now clear fhat l(P) has a semigroup
multiplication such that rA0):n(y)y(y), n,Uel(P), Te/, and
l(P) is topologically isomorphic to the structure semigroup of Ao"B .

If the structure semigroup /(l/(AG Att-l of .4 6 B is identified with
B, X B, in accordance with ll9, Theorem 4.3], z arises as the dual mapping

of n* lP, regarded. as a Cf-morphism into V@6.8)l-. The fact that
z is surjective is a well-known simple consequence of Urysohn's lemma.

Since z*(/(A o" B)) C /(A ö .A) , it is quickly verified lhat xis a semigroup
homomorphism. Finally, x(nt, At) : x(n2, Az) for np r, e Sn, Ut, Az e Ba

if and only if (r1 , !r) and (*, , ur) determine the same functional on

ll1- CC(S, x Br) , i.e. if and only if a@)V@L) : q@ y(r1,Ut) :
e@ V@z,Az) : e@z)y,(yz) for all pairs (p, y) satisfying (i) to (v).

5. Examples of CCll-actions

Many natural actions of one commutative CM-algebra on another
arising in harmonic analysis are CCM-actions. As the inclusion map of an

-L-subspace of an Z-space M into M is an Z-homomorphism (see the discus-

sion preceding Lemma 4.2), ib is clear from [19, Theorem 3.21lhat a com-
mutative CM-algebra is a CCM-module over any of its -L-subalgebras. More
generally, if C and A are commutative CM-algebras and T : C->A is
an Z-homomorphism which is also an algebra homomorphism, then the

operator O: C6A-->A for which @(coa): (Tc)a is a C0M-action.
An equallyobvious example of a COM-module is an -L-ideal of a commutative
CM-algebra -4 when it is regarded as a module over A, X'rom Theorems 3.1

and 4.1 in [20] it follows, in particular, that if ,4 is a semi-simple com-

mutative CM-algebra whose structure semigroup has an identity and whose

multiplier algebra M(A) is also a CM-algebra with respect to the order
defined by the positive cone {T eM@)lT* >0 if reA, r 20},
bhen A is a CCM-module over M(A).

6l
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The case of a so-called essential CCM-action of a commutative group
algebra Lt(K) (of the bounded Borel measures absolutely continuous with
respect to the Haar measure of the locally compact abelian topological
group K) on another such algebra L|(G) can be fairly easily analyzed.

The result is Theorem 5.1. ACCM-action O : C 6 A ---> A is called essenti,al,
if the range of @ is dense in ,4. (see [0, p. a53]). In this situation
actually @QA 4 : A, because the range of every tr-homomorphism is
closed (see [1, p. A92]). fn case C has a bounded approximate identity and
@ is essential, everSr a eA can even be expressed a,s a: @(co a') far
some c eC, a' eA [10, Proposition 3.4].

Theorem 5.7. Let K and, G be local,l,y compact abelian togtol.ogi,cal

groups. A CCW-acti,on @ : Lt(K)6 ntgl --+ Lt(G) i,s essential, if and,
only i,f there i,s a ccvntinuous homomorphism p : K --> G such that

@(r8 y.r,) - T@ * F,

where / : M(K) ---> M(G) is the natural ertension of q obtai,ned, by d,efi,ning

7@@): v(q-L(E)) for al'l Borel sets E cG.
Proof . We identify the character group I of K with /(Lr(K)) by

f'^' 
Q,,y): J y@dy(y), aeLr(K), y:KCL*(K), and G wrfh /@r(G)).

K

Let t: G --> K u {0} be the adjoint map of the action @ (Lemma 4.1).
Suppose @ is essential so that its transpose @* is injective. Since

@*y * 0 for y eG , and @*y : t(y)S y (Lemma 4.1), we have

t@1 Cft . X'urthermore, t lA is a group homomorphism. fn fact,

if Tr, lze G , then t(ytyr)@ tlz: @*0lz) : @*(yt) @*(yr) :
(r(yr)e yr) (t(y) I tz) : t(yt) t(yz) @ yqz, and so t(yryr) : t(y) t(yz) ,

because htz*o.As tr 6-*ft is continuous when ä 1r".p. h is
given the relative o(L*(G) , Lt(G)) (resp. o(L*(K) , Lr(K))) topology,
the Pontryagin duality theorem yields a continuous homomorphism
g: K --> G whose dual mapping f is. To show lhat @ is induced by p
as claimed, it is sufficient to verify the indentity

(2) (7b') * p, y> : (@(a@ p), y), u eLl(K), p eLt(G), y e l(Lr(G)) .

With the interpretation y € å C f g7 the definition of fr' gives

<701 *tt,T):

(tt , y> [ y@) d,T (y) (r): (tt , y> I y " e@) dr(y)
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n'or y e /(Lt(G)) this implies (7(r) * p, f) : (t', t(y)) Qt, y), which

is equivalent to (Z) by Lemma 4.1. Assume, conversely, that, @ is
induced by a continuous homomorphism Qi K -+G via (f). Let ail be

the neighborhood basis of zero in K, directed by the natural order op-

posite to inclusion. For each U ea?t choose a positive me&sure vu eLL(K)
r

such that J d,uu@1 :1, and supp(zu) CU. Then

(3) lim@(ya@p)_ F, pe Lr(G).

rn fact, given e > 0 there is a neighborhood Y of zero in G such that

llf*-fllr<e for all ueV, where fd,r:d'p and f"(*):f(*-u)
(see [1], p. 3]). Let [Jne% satisfy q(U] CY . Then

dr

fora,lt u e 0U, (JCfJo.Thus (3) holds, andso @ isessential.
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