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ON THE SYNTHESIS OF DOt GROWTH

KEUO RUOHONEN

1. Introrluction

In 1968 A. Lindenmayer [3] introduced mathematical models for the
development of certain filamentous organisms. These models (now custom-

arily called L systems or d,eaelopnzental systems) are essentially generative
grammars with parallel rewriting. Each cell type of the organism is denoted

by a symbol. The stages of development of the organism then correspond. to
certain strings of these symbols.

fn subsequent years L systems have been one of the most vigorously
studied subjects in formal language theory. Among the most widely studied
L systems are the DOL systems. The "D" me&ns that the development
is iletermi,ni'stic, i.e. each stage has a unique successor; the "O" means that
there is no interaction between the cells of the described organism. The
system being deterministic we can attach to each of the successive stages

(starting from some initial stage) the unique number of the symbols of the
corresponding string. Thus we get a function from .lf ( ,l[ is the set of
nonnegative integers) into .l/ . These functions are called growth functi,ons.
The basic papers in the field of growth functions are Szilard [7], Doucet [2],
Salomaa [6], Paz and Salomaa [5] and Vitånyi [9].

Our purpose is to state some sufficient conditions for a function (usually
given by its generating function) to be a DOL growth function. Our
results are extensions of those of Doucet [2] and Szilard [7].

We expect the reader to be familiar with the basic concepts of formal
language theory, developmental systems theory (mainly for motivation)
and the theory of matrices, linear difference equations and generating
functions.

2. Definitions anil basic properties

By an alphabet we mean a nonempty finite set. n'or an alphabet A we

denote by A* the free monoid generated by A. The identity element of
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Atr is denoted by I . The length lunction lg is a homomorphism from
,4 * onto the additive monoid .ly' such that lg (a) : I for each a ( A .

Def inition l. A d,etermi,ni,sti,c Li,nd,enmayer system without interact'i,on
(a DOL sgstem in short) 'i,s an ord,ered tri,ple G : (A, ö , @) where A i,s

an alphabet, ö : A* --> A* 'i,s a homomorphism (the prod,ucti,on luncti'on)
and, a E A'r fthe ari,om). G is called, gtropagating (a PDOL system in short)
il @ +1 and' ö(P) +), lorall P(A* suchthat P *1.. Thegrowth

lunction le : N -->N ol G i,sd,efined,by

le(n): lg(ö"(r,r)) (for n(lf ).

Erample L Consider the PDOL system G : (1"1, 8 , o) where I
is given by 8(a): az. Then obviot:sly fs(n + l) : 2te@) (for z (.0/ 

)

andso le(n):2" (f.or n(N).
Let G: (A,8,co) where A: lor,...,arlbe a DOL systemand

pt i A* -> A* be the homomorphism given by

Pe@) : ao, Po(a,) : )' (for i, j : 1,..',k ; i' +j ).
Then the row vector E6r , seu&ro matrix M6 and column vector .4s ate
defined as follows:

zcc : (lg(pr(.)) ,..., lg(po(.))),

llIG : (moi)rr* where

mil : lg(p,(8(a,))) (for i, j : r,...,(c)
and 1c is a &-vector all entries of which are equal to 1.

Theorem l. Let G be a DOL system. Then

(i) le@) : neNläqa $.or n(ff ) ;

(ii) the generating functi,on Ee ol f a (i.e., the lormal power seri,es F6@) :
}tr-o le(n) r" ) 'i,s gi,aen by

Ea@) : ne (l - rN\d-L rte

where I i,s an id,enti,ty matri,n ol the same si'ze as NIs;
(iii) ls sati,sfies the linear homogeneous d,i,fference equat'i,on Pa@) l(n) : 0

where Ps i,s the characteri,sti,c polynomial of \Is anil D i,s thetra,nsition
opterator gi,uen by

Dl(n) : f(n + r\ (for n ( N) .

Proof. The proof of (i) is by easy induction. The claims (ii) and (iii)
then follow from the formal identity

(I-rMc)-l :}ff:on"NIä
(note that I - r M6 is non-singular) and the Cayley-Hamilton Theorem.
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By part (ii) of the previous theorem
growth function is a rational function.

the generating function of a DOL
fn fact

-nM6l(I-rMc)-'nnnrs lI*e (I - n Mc)-t tle _

where lI - n T{Iel i* the determinant
has k elements.

Erample 2. Consider the
8 is given by 8(a) - b , 8(b)

Mc-
and

lI - r T{lel

lrs lI - n NIel (I - r Ma)-t n*

*-r*H
of I - n NIe and the alphabet of G

PDOL
: ab. T

(ll)

G:
- (1 ,

(i)

system
hen rrs

({a , bI ,8 , a) where
o) ,

,4e :

I
FG: Eq(n) - 1 - fr - g2'

So f e(rr) is the ntb Fibonacci number (for n ( ItI )

We now state the DOL (resp. PDOL) growtlt, synthesi,s problem for a
set S of functions from -l[ into .lf : n'ind an algorithm (if there exists one)

which, for each I € S, determines whether or not there exist DOL (resp.

PDOL ) systems G such that | : f6 and., should the answer be affirmative,
gives n6 and M6 for some such G.

The following two theorems give us some permissible operations on
DOL (resp. PDOL ) growth functions and their generating functions.

Theorem 2. A functi,on (resp. non-d,ecreasi,ng functi,on) I : -l[ + -lI
is a DOL (resp. PDOL ) growth functi,on i,f anil only i,f,for an arbi,trary

kCN suchthat l(0),...,!(k-L) + o il I +0, also f , N -+ff: f("):
l(n+k) i,s a DOL (resp. PDOL ) growth function.

Proof. 1o Let t : t@) : neillåIa for some DOL system G . Then

f , f(") : (-c Må)ilIå'ln .

2" Let i , f(") : 'r,eWär26 for some DOL system G. The theorem
is trivial if. k:0 . So let lc ) I . It is easily seen that, if. k: I , then

/ol""l.\" /t \
!: t@t:(1 rou(o)_,,(+l+l+/ l+/

where the 0's a,re zeto matrices of appropriate sizes, and that, if k > I ,

then
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where I isa (k-l)x(e-l)-identitymatrix, F:(l(1) -1,...,
l(k - l) - r)" and q is a k-vector all entries of which are equal to l.

The bracketed claim is proved analogously, only in part 2" of the proof
we may need matrices of sizes greater than above.

Theorem 3. Let G and, G be DOL (resp. PDOL ) systems. Then
the followi,ng results are uali,d:

(i) (ori,gi,nating lrom A. Szilard,Lll) fe + lc : fs, (and,hence Fs + Ee :
Is,) tor some DOL (resp. PDOL ) system G' ;

(ii) (ori,gi,nati,ng lrom A. Szi,lard, [7]) lor a Ic (. N , k f, : ts, @nil, hence

kPc: Fs,) lorsome DOL (resp. PDOL,il k>0) system G';
(iii) (ori,gi,nati,ng',from A. Szilord, Lq) fu. la : 16' (and' hence Es o n6 :

Is, , where

Xe o X6 : (Fs o Fs) (") : XLo $c . ld (n) r"

is the Hailnmard, prod,uct ol Xe and, Xs ) lor some DOL (resp. P DOL )
sgstem G' ;

(iv) Fa'xa: Fe, lor some DOL (resgt. PDOL) system G' (in'd,e-

pend,entlg ot' the author this has been proaed, by J. Berstel ll));
(v) (originati,ng lrom J. Berstet [L]) Iå : Fe' , where

t: l(n) --(1 l0ll(0) 1)

Få | Få@j

is the quas'i-i,nuerse of F a ,

EG * o) G',.

I

f o, some DOL { P DOL sUSter,YL, dt

Proof. (i) It is immediately seen that

lo,: la,@) : (",c l-a) 1i4a\" {-1L\
\ 0 l116/ \'iai

(ii) It is immediately seen that

l*, , Ie,(n) : (k rd Nlft r1s .

(iii) 3'or any matrices A : (au)exo and B we denote by Ä o B the
Hadamard product of Ä and B i.e.,
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ÄoB

Then

rä (*) :
II_ I _f fi

it suffices to show ("f. Theorem

H: H(r):

is F s" for some DOL system

I-rM :

Multiplying by *c (I - ffi Mc)-t

*c (I
**(I -nffil-'n*-nrrs

1 - n *a (I - n Mc)-t tl*
og (I - n Me)-t tlc
1 - n *e (I - n l}[c)-t t]c

2) that,

ree (I - r Mc)-l rla
1 - n -* (I - n Mc)-t rlc

G" " Denote M : M6 * ,l* rcs .

I- frNIe-fr:4GrcG.

and (I - # M)-t tl* we get

- n Mc)-t rle -
(I - r lVlc)-t ,l* *c (I - ffi Ml-t rl*

:ffiH*)

ffi)

lows.

) - (*e o ?rc) (Me o MA)" (ne o lA)

- (ne o rcC) (Mä " Uä) (lc o la)
: (nsVfåIc) o (mc Mä Ic) - f q(n) le!|.

ction we see that

o) /&l ls"("aata) \" /:l\'\ ol ua I \nel
I Mä I Z i:tMä-'-u(n* o (7ci Ma))Må \

o) \;l -'; /
& n* * Z"t:å rs nIä-t-u("{* o (nc Ma))}Ih tl,;

+ X \:t (re \r&-t-u ,t*) " (*c Ilt*t*t la)
+ U\:', l*(n - 1 - i) fa$ + I)

)-tla(o) -LJfs(n)
0) - L)te. By (i) and (ii) the claim now fol

f*' : fe'W)

(iv) By easy induc

l: ftn)-(*el{

__ (rel(

== ns illi

== fe(n)

- f a(n)

: I e'(n)

dso f*,_ f l- tle(o
(v) Since

a,n

So



148 Knr.ro RuorroNEN

Hence H(x) : ra (I - r M)-1rle . The claim now follows when we take
nG, - rce and M6, : wf 1"t. Theorem I (ii)).

ft is easily seen that the bracketed claim also holds true.

3. A class of IIOL growth functions

We define a class of DOL growth functions recursively in t'erms of their
generating functions.

Theorem 4, Let a.1t...ta* be'i,ntegers su,chthat

(l) Xi:ran)0 (lorj-1,...,1c).

Then

F: F(*\:T-*ffi
is n6 fursome PDOL sgstem G. Le.,thereösa PDOL system G such

that lq sati,slies ihe d,ifference equati,on

(2) l(n+k):2t:raol(n*k-i)
wi,thi,ni,ti,alaalues Iek+ l):...: tFl):0, l(0): l.

Proof. The equivalence of the last two sentenees of the theorem is an
easy verification.

If. lc: I , then obviously

l" : le(n) : (l) (ctt)"(l).

Suppose thab k ) 2 . Let I be the function which satisfies the difference
equation (2) with the given initial values. Consider the k-vector rE -
(1, 0,..., 0 ) and the k xlc -matrix

I A. II\M:(xf:'.'-rF)

where Ä : (ar - 1,..., Xt:l et- l)r and B: (0,...,0, l). We claim
that n Nln : rcn, where

n": (f(nl - t(n- l),..., t(n-k+2) -l(n -k + r),|(n - e + l))

(f.or n ( -l[ ). We prove the claim by induction. Obviously ro : zr . Suppose
that n NIn : rc* for some n €. N . Then
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zc M,+r : rco M : (Ll(n) - l(n - l)l (ar - l) +...
+ lt(n - k + z) - l@ - k + t)l (Xt-l d; - r) *
l(n - k + t) (Xf=r er- r) ,

l(n) - l(n - t),. .., t(n - k + 3) - f(n - lc + 2), t(n - k + 2))

(Xf:, qt(n -d + 1) - l@), t(n) - l(n - r),...,
l@ - k+ 3) - l(n - k + 2), f(n - k + 2)) : nn+r.

The theorem now immediately follows when we choose nEe: n and
Me:M.

Enample 3. By Theorem 4

F: F(u):

is the generating function of some PDOL growth function. We may note in
passing that the characteristic equation of the corresponding difference
equation cannot be solved by radicals.

Theorem 5, Let &1t...tur beas i,n Theorem 4 and, l,csr.,.rcr-t be

gtositi,ae'i,ntegers. Then

I : Eh\ : = 
co* cUr*"'.!cP'rt-t,,,

- \*'r - | - arfrt - azr2t -...- &**rl

is I11 lor some DOL system G . Le., there i's a DOL system G such that

ts sati,sti,es the d,i,lference equati,on

(3) t@ + ktl : Z!:ruof(n * (k - i)t)

wi,th i,ni,tial, aalues fe@ - l)r) l(-l) :0 and, t$):cn (for
i, : 0,...,1-l ). Moreoaer, il L S l, there i,s a col,umn uector pe (of appro-
priate si,ze) all entri,es ol which are in {0 , 1} such that

H:H(r):ffi
i,s the generati,ng lunction ol h : h(n) : neMä pa .

Proof. The equivalence of the second and the third sentence of the
theorem is an easy Verification.

If l: | , the theorem follows immediately from Theorem 4 and part
(ii) of Theorem 3. Suppose then that I > 2 . Let G be the PDOL system
for which

Ie : Fq(r) :

given by Theorem 4. Consider the (k I f l)-vector
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o'sarer;Xjj
l'..lol(co
of size I x k,

1),te Ii) ,

and the

M__

where Ä : (cr - 1,. ..,ct-!- f )". By straightforward induction we can

show that

zcM'q+r : (0 1...10 I "aMå l0 1... I 0 I (c,- })la(q))

;;iil ,-l-llp'".
(for q(.0/ and r( {0,...,1_l })wherethe 0's atezero matricesof sizo

1 x å . Hence the theorem follows when we choose ne : n, Me : M and

rre : .(0 1... I 0 I'tå I o)o

I - I copies

where the 0's are zero matrices of size I x k ,

The DOL system G in the previous theorem is not propagating
(unless I: I ). In case ct) c+r for some t ( { 0 ,..',1,- 2l or
crt la(n) ) cofs(n { f) for some ?? ( -l[, there clearly is no such PDOL
system G' ihal f* : tr,. Otherwise the question whether or not t* : lr"
for some PDOL system G" , remains open (except when J : I ) .

Theorem 6. Let &r,,.., a* be as i,n Theorem 4, I be a positi'ue 'i,nteger

anil G a DOL sgstemsuchthat le(O),...,|e(l - l) > 0. Then

F: F(x)- Fe@)

where the
matrix

is le lor
Prool.

Theorem
Theorem

(kt + t) x (kt 4- I)-

some DOL systenx G .

If I - I , the theorem follows from Theorem 4 and pa,rt (iv) of
3. So suppose I
5, for which

l"(0) + f e(\ r +.. .* f e(l - L) Yt-t
1 - a.Lfil - azfrT\ -o,,- &t ffikl

fri-r

(co - l)Ma tlA

Then

A : Q@): t - d.Lfrl - a.zfiLr -,.. - &kfio'
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is the generating
vector rc _ (ne, 

I

square matrix

Then (*f. the

(i)

(ii )

(iii)

(iv)

- / St*, 
I fr", " 

tt" FIL\:\;l lrc -).

(iv) of Theorem 3)

f*,(ri + I ?:t I @ - i,) f*(l { d - 1)

function of q i q.(n) - rce,\\å, VG, . Consider the row
0) , where the 0 is of the same size as rc1 , and the

}I

proof of part

nrlr"(H

and so(for n( i\I )

Zf:o rc ill"

Hence the theorem follows rvhen rve choose rcc: n and M" : 1!l '

Starting from the zero function and then using repeatedly the operations

given in Theorems 2 (considered as operations on generating functions),

3 and 6, we get a wide class c of generating functions of synthetizable

DOL growth functions.
correspondingly, starting from the generating functions given in Theo-

rem 4 and using repeatedly the operations of Theorems 2 (Lhe bracketed

version) and 3 we get a class Cprop of generating functions of s;'nthetizable

PDOL growth functions.
Some questions norv naturally arise:

Is C wide enough to contain the generating functions of all DOL
growth functions?
Does Cprop contain the generating functions of all PDOL growth
functions?
Should the answers to questions (i) and. (ii) be negative, are there
generating functions of PDOL growth functions in C - Cp.op ?

(Cf. the discussion after Theorem 5.)

fs it sufficient to take

F: F(*) - 1-fr

as a starting function for Cpoop ?

We do not have the answer to any of these questions.

(#) ."
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4. A subclass: polynomially bouniled DOL growth lunctions

We show that the class C is wide enough to contain the generating
functions of. all polynomi'ally bound,ed, DOL growth functions, i.e. DOL
growth functions I such that

l(n) < P(n) (for rz ( N )

for some polynomial P .

We denote by S, the set of functions from N into -l/ given by the
following conditions (i)-(iii).

(i) The zero function is in $t .

(ii) s1 contains all functions g from N into the set of positive integers
of the form

s@) : lf-tPr(n) rt(n) (for ro ( N )

where Pr,..., Pa are polynomials, rL,,,., 17 a,te periodical functions,
with periods Jr,..., j2, respectively, and the polynomials

Re : Rn(n) : glnJ + i,) (for i- 0,...,J-ll,

where "I : lcm (ir,...,jr), are all of the same degree (we denote

the degree of a polynomial P by GlPl; by convention G[0] : - 1 ).

(iii) In addition to the functions given in (i) and (ii), 51 contains all
functions which we get from them by applying the operations given
in Theorem 2.

Thoorem 7. All polEnomi,a,llg bound'eil DOL growth luncti,ons are

in 51.
Proof. Let G be a DOL system such that 16 is polynomially bounded.

J. Karhumåki [4] has shown-using a result of J. Berstel's-that then we

can choose G in such a way that the roots pr, ..., p* of the characteristic
equation of the associated difference equation Pe@) l(n) : 0 are all in
the unit circle. By the well-known Kronecker Theorem each Pe is then
either zero or equal to some root of unity. Thus lc is of the desired form
(the zero roots correspond to the use of the operations of Theorem 2).

The only thing still to be shown is that the associated polynomials Ro,

..., Rt-t are of the same degree. Indeed, if Glndl> Glnl for some

i, j : O,.,.,J-l such lhat i' * j,then

Jnffi:;slffi:'.
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(clearly the leading coefficients of, R, and -8, must be positive) which is

impossible since the ralio fs(n + i)lfr'(n *i) is bounded.

The next theorem shows that the generating functions of the functions

of g, are in C . Since these functions obviously are polynomially bounded,

it then follows that s, is equal to the class of all polynomially bounded

DOL growth functions.
Theorem 8. The generati,ng luttctions ol the lunctions ol 51 are in C'
Proof. By Theorem 2 it suffices to prove the claim for those functions

of s1 which are defined by (i) and (ii). The proof is by induction on the

common degree m of. lhe associated polynomials Rs, " . , Rt-t . The case

rn : - I istrivial. So suppose m,) -t . Then the polynomials are either

constant, polynomials or increasing when restricted onto some set,

ln I n( N , n2tl. By Theorem 2 it suffices to show lhab g : 0(n) --
o(n, * t) is f6 for some DOL system G ' We see that

(1 - nr) ZT:o 0(n) rc"

t(0) + t( 1)

ZT:a 0@) n" -_

fr+...+ 0v - 1)

1-y'I

nr-t a nr ZT:o l|(n + J) - O(n)l n"

1-ffiJ

and, if we denote

Ro(n) : ai,^tu* * at,*-tn*-L * ,.,* at,s (for i, : 0,..., /- l ) ,

that
Rn(n -t l) - Ro(n) : flL di,*%*-L + '.. + (ao,^ * '..* ar,t)

(for i: O,...,J -I) . Thus the function å : h(") : A(n + J) - i(n) is

in B1 and the common degree of the associated polynomials is m - L .

The claim now follows from Theorem 6.

Should a function g ( Sr be ultimately polynomial (i.e., we get g

from some polynomial by using the operations of Theorem 2), lhe above

proof (instead of Theorem 6 we now use Theorem 4) shows ihat g is ulti-
mately a PDOL growth function (i.e., we get g also from some PDOL
growth function by using the operations of Theorem 2 (the non-bracketed
version)). This is a well-known result (see Szilard [7]) and rve have given a
new proof for it.
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