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ON THE SYNTHESIS OF DOL GROWTH

KE1JO RUOHONEN

1. Introduection

In 1968 A. Lindenmayer [3] introduced mathematical models for the
development of certain filamentous organisms. These models (now custom-
arily called L systems or developmental systems) are essentially generative
grammars with parallel rewriting. Each cell type of the organism is denoted
by a symbol. The stages of development of the organism then correspond to
certain strings of these symbols.

In subsequent years L systems have been one of the most vigorously
studied subjects in formal language theory. Among the most widely studied
L systems are the DOL systems. The “D” means that the development
is deterministic, i.e. each stage has a unique successor; the “O” means that
there is no interaction between the cells of the described organism. The
system being deterministic we can attach to each of the successive stages
(starting from some initial stage) the unique number of the symbols of the
corresponding string. Thus we get a function from N ( N is the set of
nonnegative integers) into N . These functions are called growth functions.
The basic papers in the field of growth functions are Szilard [7], Doucet [2],
Salomaa [6], Paz and Salomaa [5] and Vitanyi [9].

Our purpose is to state some sufficient conditions for a function (usually
given by its generating function) to be a DOL growth function. Our
results are extensions of those of Doucet [2] and Szilard [7].

We expect the reader to be familiar with the basic concepts of formal
language theory, developmental systems theory (mainly for motivation)
and the theory of matrices, linear difference equations and generating
functions.

2. Definitions and bhasie properties

By an alphabet we mean a nonempty finite set. For an alphabet 4 we
denote by A* the free monoid generated by A . The identity element of
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A* is denoted by a. The length function lg is a homomorphism from
A* onto the additive monoid N such that lg (¢) = 1 foreach a € A4 .

Definition 1. A deterministic Lindenmayer system without interaction
(a DOL system in short) is an ordered triple G = (A ,0,w) where A s
an alphabet, 6 @ A* — A* is a homomorphism (the production function)
and o € A* (the axiom). G 1is called propagating (a PDOL system in short)
if o #i and O(P) # A forall PE€A* suchthat P # 1. The growth
function f, : N — N of G isdefined by

fa(n) = 1g (6"(w)) (for n €N ).

Ezample 1. Consider the PDOL system ¢ = ({a},d,a) where 3§
is given by §(a) = a?. Then obviously fo(n 4+ 1) = 2 fe(n) (for n € N)
and so fg(n) = 2" (for n €N ).

Tet G = (4,8,0) where 4 = {a,,...,a,}bea DOL system and
o, + A% — A% be the homomorphism given by

pda,) = a;, pla;) = A (for @, j = 1,...,k; v #7j).

Then the row vector =, square matrix Mg and column vector 7¢ are
defined as follows:

Mg = (m,)px, where
my = le(e3@))  (for i, j=1,..,k)

and 7 isa k-vector all entries of which are equal to 1.
Theorem 1. Let (¢ bea DOL system. Then
1) faln) = 7g Mg n¢ (for m €N )3

(ii) the generating function Fq of fq (i.e., the formal power series Fg(x) =

Do fa(n) a™) is given by
Fo(x) = g (I — 2 Mg)™" g
where 1 is an identity matrix of the sume size as Mg ;

(ill)  fq satisfies the linear homogeneous difference equation Pg(D) f(n) = 0
where Py 1s the characteristic polynomial of Mg and D is the transition
operator given by

Df(n) = f(n -+ 1) (for n€N).
Proof. The proof of (i) is by easy induction. The claims (ii) and (iii)
then follow from the formal identity

(I — & :‘IG)—I = Z ,szo am 1‘13‘

(note that T — a My is non-singular) and the Cayley-Hamilton Theorem.
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By part (i) of the previous theorem the generating function of a DOL
growth function is a rational function. In fact
g I — & Mg|(I — 2 M)~ 9g
7ig |I — & Mg|(I — & Mg)~1 g

xk PG(;)

where |I — a M| is the determinant of I — a Mg and the alphabet of ¢
has k elements.

nig (I —aMg) e =

Example 2. Consider the PDOL system ¢ = ({a,b},8,a) where
8 is given by 38(a) =b, 8(b) =ab. Then m¢ =(1,0),

0 1 1
) )

1
1 —2x — a2’

and

Fg: Fo(x) =
So fg(n) is the nth Fibonacci number (for n € N).

We now state the DOL (resp. PDOL ) growth synthesis problem for a
set § of functions from N into N : Find an algorithm (if there exists one)
which, for each f€ §, determines whether or not there exist DOL (resp.
PDOL ) systems ¢ such that f = f; and, should the answer be affirmative,
gives mg and Mg for some such .

The following two theorems give us some permissible operations on
DOL (resp. PDOL ) growth functions and their generating functions.

Theorem 2. A function (resp. non-decreasing function) f: N — N
is @ DOL (resp. PDOL ) growth function if and only if, for an arbitrary
k€N suchthat f(0),...,f(k—1) # 0 if f #0, also f: N—>N: f(n) =
f(n+k) is @ DOL (resp. PDOL ) growth function.

Proof. 1° Let f: f(n) = mg M§ ¢ for some DOL system . Then
Te ) = (m6 M)W 1g .

2° Let f: f(n) = ng Mg n¢ for some DOL system G'. The theorem
is trivial if £ =0. Solet £ > 1. It is easily seen that, if k=1, then

0lmg |O\N" /1

fo fm)=@]0[f(0)=1){ 0| Mg 0 e
0 010 1

where the 0’s are zero matrices of appropriate sizes, and that, it &> 1,
then
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OO0 | F\"

0/0|7mg| O 7
B OERTIVORETE e e e .

oloo |o 0

where I is a (k—1)x (k— 1) -identity matrix, F = (f(1)—1,...,
f(k—1)— 1)T and = isa k-vector all entries of which are equal to 1.

The bracketed claim is proved analogously, only in part 2° of the proof

we may need matrices of sizes greater than above.

Theorem 3. Let ¢ and G be DOL (resp. PDOL ) systems. Then

the following results are valid:

(i)
(ii)
(iii)

(originating from A. Szilard (7)) fe + f¢ = fo (and hence Fg + Fg =
Fo ) for some DOL (resp. PDOL ) system G ;

(originating from A. Szilard [7]) for a k€N, kf; = fo (and hence
k Fg = Fg ) for some DOL (resp. PDOL ,if k> 0 ) system G';
(originating' from A. Szilard [8)) fa-fa = fer (and hence Fg o Fg =
Fq , where

FgoFg: (FgoFg)(x) = Xn-o(fafe) (n)a”

1s the Hadamard product of Fg and Fg ) for some DOL (resp. PDOL )
system G’ ;

Fo-Fg = Fg  for some DOL (resp. PDOL ) system G (inde-
pendently of the author this has been proved by J. Berstel [1]);
(originating from J. Berstel [1]) Fy = Fgr , where

1

F§: Fi@) = T= % Fa@)

s the quasi-inverse of F, for some DOL {( PDOL system, if
Fg #£0) G .

Proof. (i) It is immediately seen that

M| 0 \»
fo i fan) = (7g | @) ( G, ) (nG ) .
0 ! Mg NG

(ii) It is immediately seen that

for + for(n) = (kmg) Mg g .

(iii) For any matrices A = (a,),x, and B we denote by A o B the

Hadamard product of A and B ie,
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a Bl ... | aB

AoB =

»pl pa

Then

oo+ fo(n) = (7¢ © 7g) (Mg © Mg)" (e © 14)
= (mg © g) (Mg © Mg) (e @ ng)
= (g Mg me) © (7g "G ng) = fG n) fa(n) .

(iv) By easy induction we see that
Ma| ng © (ng Mg) )n ( e )
0o Mg

[ fm) = (7 |0) (
na

[ Zn 1 n 1— 1("’]6‘ ®( - M- ))v‘[ N
= (ma | 0) -
0 i Mg G

g Mg -+ 2423 me M~ (g0 © (=g Ma))Mg g
f(v n) + D425 (e M~ " ng) © (g M5 ;)

= fo(n) + X225 feln — 1 — 1) fa(t + 1)

== ]‘(,v’ 7l e [fG — 1 f(,v 72«

and so f¢r = [+ [f3(0) — 1]f¢ . By (i) and (ii) the claim now follows.
(v) Since

1

FG(Q/) o 1 — X Ty (I—— xl‘lg)—l ne

g (I — @ Mg)™* 10
1 —x g (I a7 “IG)——l NG

= 14+

it suffices to show (cf. Theorem 2) that

ng (I — o Mg)~! 9¢

H: H@) =1 (I — & Mg)~1 ng

is Fg for some DOL system (". Denote M = Mg+ Ng TG . SO
[—aM = I —aMg—2vgme.
Multiplying by mg (I — 2 Mg)~! and (I — 2 M)~1yq we get

B g (I —a Mg) g =
g (I —a M)~ qg — 2w mg (I — 2 Mg) g g (T — & M)~
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Hence H(z) = ng(I - M)-17,. The claim now follows when we take
e = g and Mg = M (cf. Theorem 1 (ii)).
It is easily seen that the bracketed claim also holds true.

3. A class of DOL growth functions

We define a class of DOL growth functions recursively in terms of their
generating functions.

Theorem 4. Let oy,...,, be integers such that
(1) Iy, >0 (for 5 = 1,..,k).
Then
F: P = l—or.lx—l...—akoc"

1s Fg for some PDOL system G . I.e., thereis a PDOL system G such
that fq satisfies the difference equation

(2) fo + k) = Ziy o f(n + k — 1)

with initial values f(—k + 1) =...= f(—1) = 0, f(0)=1.

Proof. The equivalence of the last two sentences of the theorem is an
easy verification.

If k=1, then obviously

fa i feln) = (1) («)" (1) .

Suppose that & > 2. Let f be the function which satisfies the difference
equation (2) with the given initial values. Consider the k-vector = =
(1,0,...,0)and the kX k-matrix

M — A II
(Zf:l“i“lll})

where A = (o —1,...,2%-1o, — 1)” and B=(0,...,0,1). We claim
that = M" = =, , where

m, = (fn) = f(n = 1) ..., f(n =k +2) = f(n —k + 1), f(n — k + 1))

(for m € N'). We prove the claim by induction. Obviously =, = = . Suppose
that # M" =, for some n € N . Then
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M =7, M = ([f(n) — f(n — 1)] (¢, — 1) +...
+[fn—k+2) —fn— b+ D] (ZhZfe, — 1) +
foo —k + 1) (XF g0, — 1),
fn) —fn—1),...,f(n—k+3)—fn—k+2),f(n—Fk+2)
= (Zle a; f(n — 1+ 1) —f(n), f(n) —f(n —1),...,
fon—k+3)—fn—k+2),fn—Fk+2) =m,.4.

The theorem now immediately follows when we choose 7g== and
My;=M.

Example 3. By Theorem 4
1
1—10x +2a%2 — 2423 + 2 b

F: F(a) =

is the generating function of some PDOL growth function. We may note in
passing that the characteristic equation of the corresponding difference
equation cannot be solved by radicals.
Theorem 5. Let «y,..., o, be asin Theorem 4 and 1,cy,...,c,_; be
positive integers. Then
Co+Crax+...+cp_qat
1 —og 2t —apa? —. . —a

B Fr) =

kl

ts Fy for some DOL system G . I.e., there is a DOL system G such that
fo satisfies the difference equation

(3) fon + k1) = X¥_ o f(n + (k=)

with nitial values f(—(k — 1)) =...= f(—=1) = 0 and [G)=c, (for
t=0,...,1—1). Moreover, if 1> 1, thereis a column vector ug (of appro-
priate size) all entries of which are in {0, 1} such that

xl—l

1 — oy &t — oy @ — .. — oy 2F

H: Hz) =

15 the generating function of h : h(n) = 7 Mg pg .

Proof. The equivalence of the second and the third sentence of the
theorem is an easy verification.

If 7=1, the theorem follows immediately from Theorem 4 and part
(ii) of Theorem 3. Suppose then that I > 2. Let ¢ be the PDOL system
for which

1

k
l—oyx—.o.—op

Fg: Fgla) =

given by Theorem 4. Consider the (k[ + 1)-vector
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m o= (mg|0]...] 0] (co— 1)m¢na) ,

where the 0’s are zero matrices of size 1 X kb, and the (k14 1) x (k1 + 1)-
matrix

0 ]I Ao
M= Mg |0] (c,— )Mz ua
010 0
where A = (¢; —1,...,¢,_; — 1)7. By straightforward induction we can

show that

R M = (0[]0 7 M (0.0 | (e, — 1)f5(a))

S E— [
r copies I —r — 1 copies
(for g€ N and r€{0,...,1—1}) where the 0’s are zero matrices of size

1 X k. Hence the theorem follows when we choose 7z =mn, Mg=M and

e = (0]...10 |77 | 0)T

[ Y —

[ — 1 copies

where the 0’s are zero matrices of size 1 x k.

The DOL system G in the previous theorem is not propagating
(unless 1=1). In case ¢, >c¢;, for some ¢€{0,...,1—2} or
¢,_1 fa(n) > ¢y fa(n + 1) for some n € N, there clearly is no such PDOL
system G’ that f;= for. Otherwise the question whether or not fq = fe-
for some PDOL system (", remains open (except when [ =1).

Theorem 6. Let oy,...,a; beasin Theorem 4, 1 be a positive integer
and G a DOL system such that [q(0),..., fe(l —1) > 0. Then

F . F(x) = Fol@)

1 — o2t —apa? —.. . —a, ot

is Fg for some DOL system G .

Proof. If 1= 1, the theorem follows from Theorem 4 and part (iv) of
Theorem 3. So suppose [ > 2. Let ¢ be the DOL system, given in
Theorem 5, for which

fol0) + foll) & ...+ foll = ) &=t

[ 2l - Kl
I -y — oy e 0 T

F(;l H FG/(.%') =

Then

Q: Q@) = o

= i 21 %l
1 —oy 2 —oga® —.. — oy @
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is the generating function of ¢ : ¢(n) = me Mg e . Consider the row
vector m = (mg | 0), where the 0 is of the same size as ¢, and the
square matrix

A
M ( AIG' ‘ Ugr © g l‘l(;) )
0| M

Then (cf. the proof of part (iv) of Theorem 3)

w0 (22) = fon) + Bioya (0 =) foll 6= 1)

e

(for » € N ) and so

DI K (ﬁi) @ = Fole) + Q@) X2, fall +n —1)a”

K

Hence the theorem follows when we choose =g = and Mg= M.

Starting from the zero function and then using repeatedly the operations
given in Theorems 2 (considered as operations on generating functions),
3 and 6, we get a wide class C of generating functions of synthetizable
DOL growth functions.

Correspondingly, starting from the generating functions given in Theo-
rem 4 and using repeatedly the operations of Theorems 2 (the bracketed
version) and 3 we get a class Cprop of generating functions of synthetizable
PDOL growth functions.

Some questions now naturally arise:

(i) Is C wide enough to contain the generating functions of all DOL
growth functions?

(i) Does Cprop contain the generating functions of all PDOL growth
functions?

(iii) Should the answers to questions (i) and (ii) be negative, are there
generating functions of PDOL growth functions in  C ~ Cprop?
(Cf. the discussion after Theorem 5.)

(iv) Is it sufficient to take

¥ Fr) =

as a starting function for Cprop ?
We do not have the answer to any of these questions,
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4. A subelass: polynomially hounded DOL growth funetions

We show that the class C is wide enough to contain the generating
functions of all polynomially bounded DOL growth functions, i.e. DOL
growth functions f such that

f(n) < P(n) (for n € N)

for some polynomial P .
We denote by §; the set of functions from XN into N given by the
following conditions (i)—(iii).

(i) The zero function is in §, .
(ii) §, contains all functions g from N into the set of positive integers
of the form

gn) = YT P(n)r(n)  (for n€N)

where P,,..., Py are polynomials, 7y,..., 7y are periodical functions,
with periods jq,...,jr respectively, and the polynomials

R,: R,n) =gnJ+1) (for +=0,...,J—1),

where J = lem (j;,...,jr), are all of the same degree (we denote
the degree of a polynomial P by G[P]; by convention G[0] = — 1).

(iii) In addition to the functions given in (i) and (ii), §, contains all
functions which we get from them by applying the operations given
in Theorem 2.

Theorem 7. All polynomially bounded DOL growth functions are
m Sy .

Proof. Let G bea DOL system such that fs is polynomially bounded.
J. Karhumaki [4] has shown—using a result of J. Berstel's—that then we
can choose G in such a way that the roots g,..., ¢, of the characteristic
equation of the associated difference equation Pg(D) f(n) = 0 are all in
the unit circle. By the well-known Kronecker Theorem each p; is then

either zero or equal to some root of unity. Thus f; is of the desired form
(the zero roots correspond to the use of the operations of Theorem 2).

The only thing still to be shown is that the associated polynomials R,
..., Rj—y are of the same degree. Indeed, if G[R;] > G[R,;] for some
i, j=0,...,J—1 such that ¢ #j, then

. Rin) . felnd +1)
Nim ) = I T )
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(clearly the leading coefficients of R, and R; must be positive) which is
impossible since the ratio fe(n + 1)/fe(n + j) is bounded.

The next theorem shows that the generating functions of the functions
of §, arein C . Since these functions obviously are polynomially bounded,
it then follows that §, is equal to the class of all polynomially bounded
DOL growth functions.

Theorem 8. The generating functions of the functions of §; arein C.

Proof. By Theorem 2 it suffices to prove the claim for those functions
of §, which are defined by (i) and (ii). The proof is by induction on the
common degree m of the associated polynomials R, ..., By . The case
m — — 1 is trivial. So suppose m > —1. Then the polynomials are either
constant polynomials or increasing when restricted onto some sct
{n|n€N, n=>1}. By Theorem 2 it suffices to show that § : g(n) =
g(n + 1) is fy for some DOL system . We see that

(1L —2a7) 20 o g(n)a”

Do f(n) a" =

1 — [U',
70) + g1y @ +...+ g — Dl 42 X7, [g(n + J) —g(n)ja"
a 1 —a’/
and, if we denote
Rn) = a;, ,n" +a;, , 0" 4. . +a,, (for i=0..J-1),
that
R(n+1)—=Rin) = ma, , W™ ' +...4 (@, +...F @ 1)

(for i=0,...,J—1). Thus the function & : h(n) = g(n +J) — g(n) is
in S, and the common degree of the associated polynomials is m — 1.
The claim now follows from Theorem 6.

Should a function ¢ € §; be ultimately polynomial (ie., we get g
from some polynomial by using the operations of Theorem 2), the above
proof (instead of Theorem 6 we now use Theorem 4) shows that g is ulti-
mately a PDOL growth function (i.e., we get g also from some PDOL
growth function by using the operations of Theorem 2 (the non-bracketed
version)). This is a well-known result (see Szilard [7]) and we have given a
new proof for it.
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