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1. Introduction

Consider the class B(b) of bounded univalent functions / defined in the

unit disc U : {zeC I lzl<l } and normalized as follows:

f(r) * bz + br*' +,..,
It

n,nu _ ,;, (n _ L, z

l,fb)l

b is constant, € (0 , 1]

For these functions the Power inequality, or P"-inequality, holds in its
quadratic form

mN

ä k luup + 2 R,e ('ia!ta) i )' pt l'*'*i*,
-:rV *N

derived in [2] under the unessential restriction ro e R. The numbers

xp are supposed to be free complex parameters, determining the com-

binations

the

(r )

L,m

lJn

Po,u;er-ooe,ff,ic,ieruts'-;:r are deterrnined" by the defining concli-

{ fr-, _ : c,r,zk g, - +l , *2,... ) ,

I t'),
I
1i_ f@ q,

I tog ":: : ) c,ak zk ,

["k:o

numbers A, are obtainecl by the aid of the generating function

Here
tions

and. the
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g?a) - molag w + 2' ,r, LU'

a,s coefficients of the develon**rr, 

t
(v * 0 i"I'),

gff(z)) - rrrog z An zk

rn Vl there is the bilinear form of the P"-inequality

(Y*u Yu + fr)-k n)j(2)

co

rStL
å:-N

N

1

nrl

R* {Zk
1

(lA_ul, + l*uln)

true on the condition that Re (iloyo) : g. We used the bilinear Ps-
inequality in l3l for the maximizing of laol in B(å) by choosing the coef-
ficierits r, in a special optimal way. The same optimization worked also
when the first coefficient region (au , ar) was studied by the aid of the
quadratic Pr-inequality [t]. Similarly, the optimized bilinear Pr-inequality
was able to give some information of the region (an , au , ar) on the con-
clition that all the coefficients a2 1 as t ct4 were supposed to be real.

In the present paper we will make use of the optimization principle in
the bilinear P, inequality when applied to the function I e B(buz'1, where
F(z) : f("')'t', f eS(b). Our aim is to prove that the result concerning
(a, , a,r) can be generalized: The given pair (a, , a2) determines a disc as
a range of ar.

2. The optirnized bilinear Pr-inequality for .f(*r)t,n

Form first
cording to [3],

and apply the

together with

the Pu-inequality for the function
introduce the parameters rLy t

'll'tr: -'YU-, (a: 1r2,

symmetric choice

r@) : f(r')t,'. Ac-

3)

)r-t, - -fr\, (a : Lr 2, 3

tr'o: 'fr,: 0,

which agrees with the odd character of F Because this irnplies

'tlz: 0; uO: uZ: 0,

we obtain for the Pu-inequality the quadratic truncated form

lytl' + S lyul'
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trs : å bslzuz, r, : buz(111 * $a"ur) .

A comparison to (r) shows that equality here requires A+ : As - ... - 0 ,

i.e. for the extremal -F ,

-$bBIzurF-B + hbEzAB Xs - buz(ur * ä arus)I-t - bu'(ur + $ aru)F
(3) : -+ ua{8 I Uszs - %r?-r * Urz

holds necessarily. Here

(4)

where

a'L : *ot
dL: *ou *o7,
eL: äbdr,
es: *blorl' + +bu,

ds: ton dz&s + tt"|.

with

(5)

(6)

Illt : &r%t + bilt + dtus + €1llst

\yu: dt%t+21 uL+ d3ur+ esäs,

Because the bilinear form (2) is obtained from the quadratic form (1)

by the aid of Schwarz's inequality, we see (cf. [2], (57)) that equality is
preserved if, together with the symmetric choice n- : - 7, , we have

The experience gained in [l] in connection with the quadratic Pt-inequality
justifies our expecting (6) to hold in the optimized case for P, , too. Thus,
we will base our studies on the bilinear Pr-inequality

(7)

i.e.

(8) C : +aru?r+t6ril'r+ (ö- \lurl'*dtutuu+d,rlcruu
: aL%Lu, + eril,ru, * Re (du u!7 + 1e, - t) luul' < o .

Now, keep first a, constant and optimize with respect to

ut : r *'iY
by determiniog u, fuornr aGlar : aGlag : 0. We will make use of the
formulae

Re (a tUt + usU*) g lurl' + å lurln ,
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to give

,o
o lu,rl'

== X{I +
ön

Tut 7il,
_::z :

öt' t't

elurl'
lLt , -^ **- o'u

4Lt,-r . 
--t-l; ; :
ou

: i (ut xrt) ,

eil,
ta0l

ay

+ taril? + (b 1) lurl'

iluu, + Vrururl ,

AG

- Q,1 l,cL + dril, + (b l)(ut +ax r

+ er6u + ärztu : o,

raG

ilr) + dtue +ALus

T e:i : &r ut 6, il, + (b lxilr ur) + d, uu

+ e, ilr Er'u,r :=. o

This is equivalent to

&t %t (l b)il, + dtue + erds: o

d', ur

In the equality ease

(e)

(r1)

o : +("#+ ,#):
+ * (d, 'th rtl + i, ilr

-o
-h at ui

At + el

t.e.

(10)

G : * (d, %t %e + q,LcL uB + e, u, ur * Et u, zr,r)

+ Re (du er!) + (eu å) luri'

- Re {ur(drus + eLurl + dru! + (e, - å) laul'}o ( 0.

X'rom (9) 'we derive by conjugation a linear system of equations determin-
ing u, in z, :

I{t: AUr + ItU:t,

A : y qr:J!-b) :: -- 
a, (a' - t aZ) 

-+ -z 
b (r - b) u,

'v (1 b)' lorl' [2 (1 b)]' lorl' '

å,e, + (1 b)å, ba? + 2 (t b)tes 4 e")
Ld:f'v (1 b)' lo, l' [2 (1 b)]' Iorl' '

The inequality (8) preserves its form if both sides are divided by
luul' + 0 . This mea,ns that we may assume without restriction

Irrtl - I
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On this condition we

(12)

Thus we have

2G : 2Re

:- ((71 +

Hence, the optimized

(13)

and the optimizing

(l'+) rt'i :

4rr +

Beeause in the

we have

t )o in xls by using (l I ):

: h"?, + k"å + I;

4 + drA,

%F,
tlrpt + etA + es å

{}o - &+71 u!+ (h + k)"'u+ ZFuet

lr)tt'u, (i+ k)tt'uu)' +2Ret+2lh +

bilinear Pu-inequality reads

ItL + it + Rel i t)

a,u-choice is

h + k lh + kl

la + kl lL + k

the optimized case. I-rom (a) we obtain,

express

I L':

l::
kl

*:+)"'
and ?/s inI)etermine nolv At

accorditg to (9),

Ut :-

Similatly, by the aid of (ll),

!/s: dtu, +ä16, + clru,, + eeilu

Here

2 Re (a, d, er) + (1

{tlrt,r + b il, + dtus + e, ile - Idt ;

?/t =: -Y_t '

: 6, l& + k)"? + 4F + e, 1+ es)

e.B.
bX 

I 
erl' + ld, lt)ZtA _

extremum CIase

(71 + El 
"3

(l b)

(13)

: lh + nt

lorl'

- -Re I

U*: 6u(-Rel + ilF +ärA +
: iluf-+ (t +1) + b @, t'+
: zluRe (-I + &F + etA +

Ae: -0r

d, t, + et 1) + e,e7

*&u;

es)

erl+
es) :
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The validity of the conditions (6) in the extremum case is thus verified and
(13) will hence be sharp simultaneously with the quadratic Pr-inequality.

The conditions (6) written in the form

(15) llt : ilt, Us : äils

c&n now be directly combined with the expressions (4) to give

'6) 
[otrr+(b- l)uL+drurteru,: g,

I dru, *Ztdt * dt,us * (eg - å)d, : o.

Observe that the first condition is the s&me as (9), thus giving (11). There-
fore, the second condition (16) assumes the form

(dr|+Zri + d,u)u, + (4F + erI + ee - å) ils : o;
d, + d,rX +ir1t : (å - eu - 4 F -iril1u;z .

Here

ä - "r- 4p -irT : å - es - ä(4tr t erI + irlt + er)'1

: Re(tr-et-hF-etl): -Re/ ) o.

Thus, we may interprete the above dr-condition as a circumference of the
disc in which d, is restricted to be. - The results are collected as follows.

R e s u I t. X'or B(b)-functions with given coefficients az and ds,
the number du lies in the disc

; thus

extremum

It,tr dgl 
= 

R;
| 

(-) qrl

(r?) t dg : -d,, A 6ri ,

[n:å eB hF Zrj

The bounclary points of this disc are parametrized in us _ ei'

(18) d, : dg + Ru;'.
Equality in (17) is reached in the cases rvhere the necess ary
eonditionfor F - F(z)_ f(*')tt' €S(ölt'),

{19) å bstz (il, ru uu F*') + bttz(;"r' s F*1)
\ / : *(ilrzu rhz-s) +ilrz %tz:L;

(zo) {1\ 
: luu + t'r&u'

t s : ut + *orus,
defi.nes a S(b)-function f . The abbreviations used are
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(21)

d3

dL

e3

et

A

: ton &zus + tto\,
: äou *o7,
: +blorl, + tbu,
: tbdr;

or(ou t"7)+2b(L b)a,:
12 (L b))' lorl' )

ba|+ 2(L qm
p:

12 (L b))' lorl'

Remark. According to the above result (f 5) we may, in general, reduce
the optimization of parameters in the Power inequality Pr in solving the
linear system of equations

ao

U,: ,,
the number of which depends on -ly' . The linear structure of this system
clearly suggests that the disc result found for -l[ : I and 3 is independent
of the index -l[ .

3. Rotation of the extremum function

Consider the rotation of f to f:
i@): r-Lf(rz), lrl: l.

Suppose fhaf f is determined by a defined equation

o(f(z),2) : 0.

Because this implies A(fQ z) , r z) : g , we see that for /
o|j@),tz): s.

Apply the above observation to the condition (19), written in the form

(22\ 6bzrz uuf@)ztz a 6rtz sf@)tt' - 1|uztz urf(z)-stz + buz sf@)-uz)

: iilrztlz + utz'12 - (äurz-Blz i ur{-1121 .

Suppose that this determines

f(z): bzlbrzz+...
which is connected with the rotated function
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f(z) : bz*b2z'+...;
6u : 

"-tb' '

Consider now the numbers determined by (18), (20), and (2f ) for the rotated

function f t

äs: zsitra, åt: *dr, Zs: as,

6,, -- rael , i : rX, i, : ,-'p,
il,s : 7-312 q, , ilt : t-Uz ur, 3 : i-112 s .

X'or the function / we thus obtain from (22)

/oo\ g osrz duilzystz + bttzi f 1"1't' - (+ btt' il,r1:121-ztz a 6trz i i1"y-ttz!
\'oJ : ä ilrzul, + irrztl, - (t iosz-slz i il,rruz1 .

This means that the extremum condition is forrnally invariant for the
rotation applied to the extremum function.

Especially, we may choose ils : I , i.e.

(24) us -- ftz; t : u|ts .

This implies for the correspondin1 fr@) : f@\t''
(25) å 6erz1fit - i*u)*Ute1?fr -;X-') : t@u-z-\+dr"-ilr"-'.

4. Real coefticients a2, as, aa

In the special case where &2 7 ag , a4 ate real, the maximal an and the
corresponding extremum cases are studied in ll]. It is useful here to compåre

the real and complex cåses to each other. Consider therefore the real case

in detail. n'rom (r8) we deduce that if d21 ctrs, d4 e.E , then u! : tl ;

i.e. we may take us: I ot us:'i, .

The case us: ! was met with in [r]. The extremum condition (19)

assumes the form

(26) +b\tz(ns - f\ ybrtzs@ - F-t) : ä(z'- z-t) + ut@ - z-t).

Differentiation gives

F'
betz 

" r

713

?3 + z)*3 + %t (z + dt)

(27) bstzr#:

E3 + jr_3 +

(z i,)(z z)(z

,

(f' + -^F-1)

zz)@ + d)(" + z)(z + zz)

s

b

zs (F i)(F Fr)(F r Fr)(I + i)(F + Fr)(F + nr)'
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I)enote
0, F? +

This implies

(28 )

(2e)

zrr?z

FT , F,

z'y: ei*, Fu

F;' 1+

1{r: 1 2cos29,

%r)tt' + *(-ut L)tt',

s\tiz I I \tl'
b) +åt-b L) '

or 2). Because zl + z;2
have

I 
- t 2cos 2rl,r.,b

- ++ (3

: t* (e

: ei,p (a: l
slb : 0, \rre

-zL

(28) is necessary and sufficient for four unit roots ?v. Similarly, (29) is
connected with four unit roots 8,.

If (29) holds, then - I < s/b implies

-b-*ot {ut.

Because - (1 - b) < - arlt, it follows from the preceding condition that

-l: -b-(r-b) {l\,

i.e. the left side of (29) implies the left side of (28). - The factorized con-

dition (27) suggests the type Io in n'igure I for the extremum domain.
If slb > 3 , the type 2' of X'igure I emerges from the factoiized con-

dition.
ft

o
,1,

-Ft -F2

*1

I
--t h

- 
,?,

lo

tr'igure 1.

l+?rr:

-io

-FY
oo
4

F2

-F2
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The tpe of the possible extremum domain can be further studied by
the aid of boundary correspondence defined by (26). Take z : eie and
denote

E(e") : r(E) s;v@\

in (26), which gives

I ? - f-1)tå b(rz + t + r-',) cos39 +,scos 9l : o,
I(90) I A : +l+but'Q" + r-') sinBrp l brtzs (r + r-1) sin91
I

t : $sin3p*zrsinp: B.

Eor l(eie) the first condition (30) implies either t'hat r(rp): I or that
r(g) satisfies the condition

(^^1
(sr) lH 

: Eb(" + I + r-') : - r---^Wi : K' or

Icosrp:0.
The boundary curve candidates are given schematically in X'igure 2.

0 $s_.ö ås> b

-.-S : b

Figure 2.

0
-s> b
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It appears that the first condition (30) is connected with the tSrpe lo

if -slb <l and sfb {3, i.e. if (29) holds. The tpe 2o occurs for
slb >3.

Up to now we have found the following conditions necessary for the
existence of the boundary mapping

(32) - 1

If 02, ase R and uL <3 wehave

(33) L4:1+p:
cb *"7 + bo,
2 (L b) ctz

which gives us the
The type lo is

(34)

domain bounded by the para,bola lLL

connected with values for which - I

ch *"7 + cr,z

3, i.e.

-b 2 (L b) e,z

This definesthedomainboundedbytwoparabolas s : -ö and s : 3ö.
- All the limiting parabolas mentioned meet at the point

a, : 2(L - b) , es : 3 - Sb + trbz

connected. with the radial slit mapping.
The type 2o occurs if s > 3b, i.e. in the domain bounded by the

parabolas s : 3 ö and' ur: 3 . These domains are illustrated in X'igure 7
of [], where the notation u me&ns the same as II'L here.

There remains the second condition (30) which gives for r(',p) : l

(35) A : *ö8l2sinBtp I blzssing : å.itgV + uLsing : .B.

X'or the boundary correspondence to be of the type I' ot 2" itr is sufficient
that each y e lO , 2nl has a uniquely determined pre-image g e [0 ,2nJ .

The correspondence becomes clear from X'igures 3 and 4.

Consider first tihe alternative Io, connected with Figure 3. There are

two conditions to b'e satisfied for the existence of a pre-image of each y .

t)

(36)

+
(u, + Llzrz

b S I 'tLL : *o,

I
3

t

This condition is always true
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å(l * ur1rl"

å(s * b1"1"

;6'l,18s _ b)

s<3å)

tr'igure 3.

F
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åis * b1'l'
\

+b'1,(3s - b) /

(37 ) 14å

'lI7

s=3b

Figure 4.

btlz
buz + q + ä;Wa,z.

F

2)

å(1 + r.tr1ul'
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Because larl
condition can be rewritten

3 5 btlz
(3s) eB 5 t r_btiTez

implies uL

form

? (r + b't\e bat\.

are controlled by the last

3 ,) sin 3rp + btlz s z sin tp]

sing : B

The points of the slits where cos ? + 0

equation (30) and (31), which give

1 4sinzy

r+ b3t2 @3

sin 39 + uL

, this
in the

(3e)

?t:

,y:

A':L,
1
3

r
3s

b

The dotted arcs in X'igure 3 indicate points connected with the slits,
determined by (39).

As a result of the above considerations we have found a triangle bounded
by the parabolas I : -b , s : 3å and (38), in the coefficient body
(a, , a2) where the extremum condition (26) defines functions .F' e B(åuz; of
the type lo. The corresponding functions / e S(ö) are thus 3-slit functions.
On the boundary curves of the triangle there exist certain degenerated limit
cases of those 3-slit functions. The type of these is readable in X'igure 3.

The alternative 2o is connected with X'igure 4. fn this case A(rp) has
only one maximum in the interval l0 , trf, which is bigger than minimum
of B(fl, provided that (37) continues to hold. This order is needed to
guarantee the 3-fork structure of the slit. Again, the dotted arcs belong
to the slits and are governed by A'(tp) of (39). Especially the branch point
is connected with

(s + b\trz (s 3b1ttzr:
2 bLlz

obtainedfrom Fz of % _ @lb + Iltrz and (89) give

: å(b +t)rtr.

This is 4 t (u, + l)t/', which condition, according to (36), is always true.
Thus, in the case 2" the parabola s : 3 å together with the parabola

(38) determines a domain in the coefficient body (ou , ar) , where the func-
tions / e B(ö) given by (26) arc 3-fork-slit functions. Actually, this type

Ip:;,

27). Thus

^'(+)
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continues to hold slightly behind the parabola (38)' The bounadry curve

on which the extremum function degenerates into a 2-fork-slit function is
given by

(38)' -ä+u, <å(å+s)Br'.

This defines a third degree arc in a,z, a3 with the end points at the inter-
section ofthe curves

/'': 3b,

l-6+r, : +årl2(3s-å) .

Thus, these end points are

!o, : -å (l - 9b + 9btrt1 ,

[o, : -g(I - eå + sblt\z +(3å + 1)3(1 - sb + sbst\ + 6(b -bz);

Ior:2(L-b),
tor:3-8b+5b'.

In the case b : ll2 the curve (38)' differs very little from that defined

by (38). Hence, the X'igure 7 of [] continues to give a schematic presenta-

tion of the extremum domain.*
In the extremum domain, defined above by (32), (38) and (38)' the

inequality (f 7) is sharp and we obtain from (f 8) the maximum for d, :

maxdu : dou+ R : -drl - erq I Il3 - et- 4p - ezX

-(dt * er)()" + p') + rl3 - et

(40) , .(ag-8"7+baz)z\-'l _r/l_ör) _tb"?_3\*-",/ 4"*2 , Z(L_b)_a,
: M(az,o).

This is the result derived already in [I]. X'rom the above inequality
min d, also follows. Instead of f(z) consider

-f(-") : b z - br"' + brzs - bn"n + ....
This means the following transformation:

f(z)', a, 2 as 1 d4 , ds = -f(-") , -a2, as t -a4, -4 .

Thus,

-ilu(a", ar) < M(-a,z, a's) o

i.e.

* fn this context another inaccuracy of [] can be mentioned. Unfortunately
the d.irection of rotation of the extremum domains in Figure f 2 of [1] is reversed.
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(41) -lw(*a*as) S du@r,us)

Ifere the point ( - a, , ils) must lie in the
range of (az , a,) for which (41) is sharp
clomain with respect to the aB axis.

We may check that our general result
xrs: i in (18) for dz, &s , cr,4 e R :

ds

: (d, et)fu

(au *"7 bor)'
l-"z zG b) + cr,z

5. The speclal Gos€ ds : Q

Before discussing the general case by the aid of numerical examples,
we want to find an easy case, different from the preceding one, where
boundary points of the dr-disc give a sharp inequality. For a, : 0,
au * 0 (21)gives

q: *or, €B: *br, €L:0;

: ;i;11_-ai , L[t : tt u,s _ ---_-tt.-- - %;12(L b) L r"*r 2(l b) --ö

Now I is determined by (19). Apply to it the rotation z : u3t3,

giving &u : |. The rotated. function / frur coefficients ä, and. defines
fr : ip'1tt', for which there holds, according to (28),

brlz
gbstz 1Ps - -tr'-t) * 4, _ t1@uF - ärF-\

- Lt.8 --3\, 
t: E (2" - z-") + Z 1t _ b)(äsz - år"-t) .

Now choose z such that

As ,'ctr
.i..e.

(42)

domain defined above. Thus the
is slmmetric with the precedirg

(17) implies (41) by substituting

I4
[,i:0, rr

(?)"(f)''', %?_ r3:
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At the bound ary point we obtain from ( 1S) for d,o

(48) cl,s: *oo: [n,t öu) #%]
ancl fi' satisfies the condition

{ t bttz 1fi-z ;i'-t) + bttz, (f fr-t} : å (rt
I

is : tJ+b;

(#j)"',

Thus, we rnay use the
condition (32) and (38)

automaticallr,' true and

(44)

Hence we see that if
bounclary point of the
bounclary point.

results true for the equation (26). Both the first,

must be satisfied. ftl the present case - I S tlb is

(38) reduces into the form

lau l

ct a : 0 and a,s satisfles (44), the oorresponcti*g
du-disc is sharp in the sense that (43) holds at this

6. Real coeflicients a, , a,

In the general case, lvhete all the coefficients &2 t as , a4 ate complex,
we ma,y normalize the mapping by rotation into the form (25). For brevity,
drop tilda irr the notations. Differentiation gives

X' ,3 a 7-3 + irz + urt-r
Asle - 

-" oI, - FB+I-s+b*rsF+b-L s.F-l'
The factorizat'ion depends on the roots of the equation having the type

"u+"-"+cz+cz-7:0.
If z is a root here, so are -", V-t and -V-t. This includes two alter-
natives.

Io. If there are two unit roots (i.e. they have the absolute vaiue l)
not lying on the same diameter of the unit circle l"l : l, there must be

four, and hence six, unit roots.
2". If z is a non-unit root (lzl + | ), there are four non-unit roots

on the diameter where z lies and two unit roots again on one diameter.
This implies that the type of domains obtained is the s&me as before,
except, that they are not twice axially symmetric any more.

We are not too far from the most general case if we a,ssume ctz and
az to be real and o,4 complex. In Section 4 we actually studied those
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lLs : ei'u , a. (O ,+)

For brevity, norm&lize by the rotation where

T 
_: 

u?lr - r'# .

The connection (25) holds for fi . The coefficients AL and
b;r the followi*g formulae:

boundary points of the dr-disc which
case and were given by the values us -
restrict ourselves to the values

were connected with that special
1 and 1Ls - i . Therefore we may

s are determined

sin a,l ,

p + tor)sinar;

), - p, + *a,
- 

COS cr)
6

1- p + *0, ,_

- sln a)
6

The

(45)

numbers

It'
Iot

q_

'tLL: 1e'* + pte*'': (A +pl) cosco+i(1 p)

s _ ,u,L + *orro' _ (1 + p + tor) cosco + i(l
;r, _ u{'tt t,, _ € e"' ,

3 : u,;Ust: 6eix;

1+ p: "t:3":n'%
2 (I b) cr,z '

1 tr: 
a'_ *a7-ba'.
2(L b) + az '

A+ p+ *or: \2, t??t Y""2 2 (L b) nr'

A p + *or:

t,6; rl ,

- (1 + P

- (1 + p

atg ul

tc)

Sln'(r)

t

au-ta7+Q-2b)a,
2(L b) + e,z '

X, are determined as follows:

)z cosz o + ()L p)z sin' * ,

+ tor)' cos2a; + (A p + tor)'

1 A + p
I cos Affg Ur - 6 

eOS cr)

*ts,lt ' I A p.
I sm atg ?"Lr - 6 sln c0 .

(46)

cos arg s :

sin arg s _

(47) X, : Afg ,9 Al3 ;
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By substituting in (25) z_ ei' , fr - r eiv, and splitting it into
imaginary parts, we end up with the conditions

( + but'(ru ,-u) cos 39 + bttz o (r .' t) cos (g il : 0 ,

(48) 

i :';::.,;:'ä-il,; 
u-',io + r*')sin ('lp x)

The first condition gives a, unit circumference r -- I and, for

curves in the disc tF t < I , determined by the equation

real and

r<-l,

: 7rl4

5 by the aid of graphs
the resultitg extremum

(4e)

(50)

(51)

The second condition (48) defines for r : I the connection botween

the unit circumferences in the z- and -F-planes. Especially, for r : I
each rp el} ,2nf must obtain a uniquely determined pre-image E elD ,2n) ,

according to the connection

A - t b't' sin 39 + btlz o sin (rp rl)

- $sin3g+f sin(g ril- B.

X'or r < f , (49) together with the second condition (48) determines,

the connection between E and q) on the slits. From (49) we deduce

analogously to (39) in Section 4,that

I x - r + r*-L : (1 ,)tl' ;

J-i Socos(g X,)
I --

l' b cosSg

The second condition (4S) thus assumes the form

(52\ A' _ + tå 6ztz (ys 3 r) sin 3tp + bttz o ?4 sin (g X,)l
\ ' - $sin3g+f sin(g yi- B

(a, , au) we can study the above
_0 (and @_ nlz). Ifowever,
involved are, in general, only

X'or each fixed @ and the given pair
conditions similarly to the previous case a)

the solutions of the extremum problems
numerically possible.

fn the case

b : *, ccz : qB : t, a)

the above connections a,re illustrated in Figure
determined numerically. fn Figure 6 there is

domain.
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.I'igure 5.

tr'igure 6.

By determining the range of (a, , ar) for various values of ar , one
could obtairi, as an intersection, the domain round" the origin where all the
boundary points of the dr-disc are reached

I'
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