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ON THE SECOND COEFFICIENT REGION FOR
BOUNDED UNIVALENT FUNCTIONS

RONALD KORTRAM and OLLI TAMMI

1. Intreduction

Consider the class S(b) of bounded univalent functions f defined in the
unit dise U = {zeC| |z <1} and normalized as follows:

a, = n = 1,2,..; by =0),

b is constant € (0, 1].

For these functions the Power inequality, or £ y-inequality, holds in its
quadratic form

) N
(n : k ly,l* + 2 Re (royy) = 4\_, k|,

% N
derived in [2] under the unessential vestriction w, € R. The numbers
x, are supposed to be free complex parameters, determining the com-
binations

5

,///c = Z ;FV (“'z*/c (A o ‘,\' ) .
y=—N

Here the Power-coefficients ¢, —ave determined by the defining condi-
tions

kv

{f(z)” = ]§; (= 1420,
e .

f
log=— = 2 ¢g2",
N E=0

and the numbers y, are obtained by the aid of the generating function
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N

gw) = ajlogw + >"ax,w" (v #£0 in)>'),
—N

as coefficients of the development
ze]

g(f(z)) = w,logz +k >y,
=—N

In [2] there is the bilinear form of the P g-inequality

N N
(2) —Re (D k(y pyp +2,m)) < Z k(ly o* + |22
1 1
true on the condition that Re (vgy,) = 0. We used the bilinear P,

inequality in [3] for the maximizing of |a,| in S(b) by choosing the coef-
ficients x, in a special optimal way. The same optimization worked also
when the first coefficient region (a,,a,) was studied by the aid of the
quadratic Pj-inequality [1]. Similarly, the optimized bilinear P,-inequality
was able to give some information of the region (a,,a;,a,) on the con-
dition that all the coefficients a, , a,, @, were supposed to be real.

In the present paper we will make use of the optimization principle in
the bilinear P, inequality when applied to the function F e S(b'?), where
Fz) = f@*)'*, feS(®). Our aim is to prove that the result concerning
(ay, ay) can be generalized: The given pair (a,,a,) determines a disc as
a range of «a, .

2. The optimized bilinear P,-inequality for f(z*)"*
Form first the Py-inequality for the function F(z) = f*H)Y". Ac-
cording to [3], introduce the parameters 1, ,
w, = —riy_, (v = 1,2,3)

v

and apply the symmetric choice

together with

which agrees with the odd character of # . Because this implies
Uy = 05 Yo = ¥ = 0,
we obtain for the P£,-inequality the quadratic truncated form

ly[* + 3 lysl> < Juy|® + 4 Jeg|?
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with

vy o= F0Puy, @ = bPug + faguy).
A comparison to (1) shows that equality here requires y, = y, = ... = 0,
i.e. for the extremal F ,

— 303, B3 4 1 0%, FP — bV (u, 4 Lag ug) P — 0wy + Lay ug)F
(3) = —dupz 4 gy — w4 ypz
holds necessarily. Here

[ = au + buy + dyug + e ug,

(4) l , o
Ys = dyuy + eguy + dyuy + ez uy,

where

ap = fa

dy = fa, — {a;,
(5) e = tbay,

eg = 10a)® + 407,

dy = Ya, —ayag + 1§ a5

Because the bilinear form (2) is obtained from the quadratic form (1)
by the aid of Schwarz’s inequality, we see (cf. [2], (57)) that equality is

preserved if, together with the symmetric choice x , = —u, , we have
(6) [ Y = Y1
‘. Y = ";lj 3 *

The experience gained in [1] in connection with the quadratic P,-inequality
justifies our expecting (6) to hold in the optimized case for P, , too. Thus,
we will base our studies on the bilinear Pj-inequality

(7) Re (uy 4y + ugyy) = Jug” + § lugl®,
ie.
(8) G = Yayud + byl + (b — 1) [ * + dywg g + dy g g

= e u Uy + e uyuy + Re (dy uf) + (65 — 3) |ugl* = 0.
Now, keep first u, constant and optimize with respect to
w, = x4y

by determining u, from o(/jox = o(/joy = 0. We will make use of the
formulae
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PP 2

o, N

e =y e = (U —
8 1 1 oy (uy b

euy ou, ou, ou, .

— e —— == : — = = T =g

ox cw ’ oy cy ’

to give

of o -~ o
Ty T Gt Uyt (b — Dy(uy + uy) + dyuy + dyu,
+oe Uy + e uy, = 0,
1 a¢f o o _—
s = gy — ayuy + (b= D(uy — w) +dyuy, — d) oy
! :
+ € Eu — e uy = 0.

This is equivalent to
(9) ay g — (L = b)uy + dyug + e;ug = 0.

In the equality case

PO

olf old . N L= =2 b 2
0 = i{x— y— 1\ = La, uy + La, uy — 1) Ju,|”
< éf‘ﬂ:+‘/8y> 5y uy + gaguy + ( ) |ty

b (dy gy A+ dy gy e g e )
ie.
G = 1(dyuyug 4 dywg g + eg g g + e )
(10) + Re (dgug) + (5 — §) uyl®
= Re {u, (dyuy + e, uy) + dyug + (5 — 3) |ugl*}y = 0.
From (9) we derive by conjugation a linear system of equations determin-
ing w, in o, :

w o= Aty + p 'ﬁ;;;
S ah (U -be g —a)+ 200 -ba
(11) O e (I [2(1 = B)) — |ayf? ’
aye; + (1 — b)d, bai + 2 (1 — b)(ag — § a3)
A e e (2 N XU I ST TN

The inequality (8) preserves its form if both sides are divided by
[ug|® # 0. This means that we may assume without restriction

lug] = 1.
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On this condition we express { }, in u,; by using (11):
l{ Yo = hud + kul+ 1
h = d, + d, 2,
(12) j 3 1
] ko= e u,
|/ = dip+ett+e—13.
Thus we have
2G = 2Re{}y = (h + k)ud + (b + k) u? + 2 Rel
= (b + F)Puy — (b + k) Pug? + 2Rel + 2 b + k|
< 2Rel + 2|h + k| .
Hence, the optimized bilinear P, -inequality reads
(13) b+ k| + Rel < 0

and the optimizing w,-choice is

i (i? + k)“ﬂ o+ k h + k|
(14) o= = = omsmmen g e
; o+ k b+ k| h o+ k

Determine now y, and y, in the optimized case. From (4) we obtain,
according to (9):

Yy, o= apuy by odpug e uy = g

Similarly, by the aid of (11),
Yo = dyu, + 6 ity + dyug + gty =y [(h 4+ k) ui + dyp+ e A+ el
Here
o 7 2 712
IR B U RN EUTARR
Because in the extremum case (13)
(h+ k)u2 = |h+k = —Rel,
we have
Yy =ty (—Rel + dyp +¢ 2+ ¢)
= a3+ D+t ad+dip e d) + gl
= ugRe (=l +dypu+ e, A +e) = Luy:

Ys = —Ys.
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The validity of the conditions (6) in the extremum case is thus verified and
(13) will hence be sharp simultaneously with the quadratic Py -inequality.
The conditions (6) written in the form

Uy

[

(15) Yo = W, Yz = d
can now be directly combined with the expressions (4) to give

a, iy, + (b — ])ﬁ1 + dyuy + e 1-1,3 = 0,
(16) {

diu, +e uy +dyuy + (65— Hug = 0.
Observe that the first condition is the same as (9), thus giving (11). There-
fore, the second condition (16) assumes the form
(dy 2+ ey p+d)u, + (dyp + e, 4+ e; — 3y = 0;
dy + d; A + ;] 1“ = (d—e—dp- A(;] ;*) “%l

Here
b—e—dip—ed =% —e—Ldp+ i+t dy o+ ey 4)

= Re(} —eg —dyp—e¢ 1) = —Rel = 0.

Thus, we may interprete the above d.-condition as a circumference of the
5 y p 3
dise in which d, is restricted to be. — The results are collected as follows.

Result. TFor S(b)-functions with given coefficients «, and a,,
the number d, lies in the disc

dy ~ g] = R
(17) dy = —di A~ e,
R=131—e—dyp—re2 >0.
The boundary points of this disc are parametrized in u, = ¢ ; thus
(18) dy = df + Ruz™®.

Equality in (17) is reached in the cases where the necessary extremum
condition for F = F(z) = f(*)"* e S®'?),

%bS/l (&5 ﬁvt} . “3 ]11‘3) + b]/ﬁ(g, ]17 - ]" 'I)

(19) ” )+ l
= 3 (Ug2® — wug 2z ®) +upz — w2ty
w, = Ay + pu
4 3 3
(20) {
s = U + ayuy,

defines a S(b)-function f. The abbreviations used are
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s = ka, —aya5 + $1 a3,

L= a3 —§a3,

ey = 1bla® +30°,

(21) “ =%b—2,

o ax(as — 3 a3) —}~A2b(1—b)a2

[2(1 = b)) — |ay/? '
ba:+ 2(1 — b)ay, — 2 aj)
S I

Remark. According to the above result (15) we may, in general, reduce
the optimization of parameters in the Power inequality P, in solving the
linear system of equations
u,

Y, = ;’

the number of which depends on N . The linear structure of this system
clearly suggests that the disc result found for N = 1 and 3 is independent
of the index N .

3. Rotation of the extremum function

Consider the rotation of f to f:
fe) = v fz), Irl = 1.
Suppose that f is determined by a defined equation
D(f(z),z) = 0.

Because this implies &(f(rz),72) = 0, we see that for f

O(rfz),72) = 0.
Apply the above observation to the condition (19), written in the form

FOP g f@)" 4 b1 f2)VF — (0% g f2) T 4 0 s ST

2

(22) . .
= Jug2®® 4 u 2? — (Fuy 2 4w, 27N,
Suppose that this determines

fiz) = bz + b,2% +...

which is connected with the rotated function
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bz + by2® +...;

= 7 1,.

J@)

S

Consider now the numbers determined by (18), (20), and (21) for the rotated

function f :

a 2
dy = ©°d,, d, = 1°d,, ey = e,
~ —1 7 ~ 2
e, = T le, A= T, W= 1T "u,
” —3/2 ~ —12 = e,
g = T Puy, w = vy, 5 = 7.

For the function f~ we thus obtain from (22)

co

(23) = .
-l 252

-t

i

By fYE 4+ B2 E f — (467 U S 4 B E )
iy 22

M- (FugP 4 u 2.

5y
-

This means that the extremum condition is formally invariant for the
rotation applied to the extremum function.
Especially, we may choose u; = 1, i.e.

T

(24) w, = ;o= uilf.

i
~
—_

[N

ro
~

—

=

o

This implies for the corresponding F(z)

(25) LBY2(F8 — F3) 4 BRSF — 5 F7Y) = 3 (P — ) + gz — a2t

4, Real coefficients a,, a,, a,

In the special case where a,, a;, a, are real, the maximal @, and the
corresponding extremum cases are studied in [1]. It is useful here to compare
the real and complex cases to each other. Consider therefore the real case
in detail. From (18) we deduce that if a,, a;, a, € R, then «} = +1;
ie. we may take wu; =1 or wu; = i.

The case u; = 1 was met with in [1]. The extremum condition (19)
assumes the form

(26) 1 (FP — F®) 4+ bVPs(F —F7) = 3 (@ -2 +u(z—27").

Differentiation gives

B B+ (2t
w2, + + 1(___4_‘ )

F 4 B8y

S
/]

; (F + F1

97y B2 g _ lf (z — i)z — 2)(z — 2)(z + 1)(& + 2)(z + 2,) )
@ VTEF = A - ) - F)(F — F)(F + O)(F + F)F + Fy)°
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2,% = 3 (3 - “1)1/2 + % (—u — n',
s\ U2 s 12
L, F, = i%<3—-‘b‘> -{-%(—-3—1) .

Denote z, = ¢, F, = ¢” (v =1 or 2). Because z} + 2% — 1 +u, =

0, F2 4+ F;2 —1+s/b = 0, wehave

s
w, = 1 — 2cos2¢,, b= 1 — 2cos 2y, .
This implies
(28) -1 < £ 3,
20 < s 3
.—r. _'] =~ o ,i
(29) =75 =

(28) is necessary and sufficient for four unit roots z,. Similarly, (29) is
connected with four unit roots F, .
If (29) holds, then —1 = s/b implies

-b—-1ta, = u.
Because —(1 — b) < —a,/2, it follows from the preceding condition that
1= b (1) <oy,

i.e. the left side of (29) implies the left side of (28). — The factorized con-
dition (27) suggests the type 1° in Figure 1 for the extremum domain.
If s/b >3, the type 2° of Figure 1 emerges from the factorized con-

dition.

T
.
I, P,
Z2

z N : - fwl - Fz

1°

20

Figure 1.
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The type of the possible extremum domain can be further studied by
the aid of boundary correspondence defined by (26). Take z = ¢ and
denote

F(e") = r(g) &4
in (26), which gives

(30)

(r—r HEbE*+ 1+ 7% cosBy + scosy] = 0,
A = L3V (0® + 03 sin By + 612 s (r + 17") sin y]
1sin3p + uysing = B.
For F(e'%) the first condition (30) implies either that 7(y) = 1 or that
r(p) satisfies the condition

= 1
ey =R

cosy = 0.

The boundary curve candidates are given schematically in Figure 2.

O @ @

0=3s<b

o
[V
Il

o

i8>0

SIS NC;

0= —s<b

s =b

—8>b
Figure 2.



On the second coefficient region for bounded univalent functions 165

It appears that the first condition (30) is connected with the type 1°
if —s/b <1 and s/b <3, ie. if (29) holds. The type 2° occurs for
s/b > 3.

Up to now we have found the following conditions necessary for the
existence of the boundary mapping

S
(32) -1 < n and u, < 3.

If a,, a; e R and u; <3 we have

a; — § a3 + bay _
2(1 —=b) —a, —

(33) w, = A+ p =

which gives us the domain bounded by the parabola u; = 3.
The type 1° is connected with values for which —1 < s/b < 3, ie.

(34) g BTABTH gy,

This defines the domain bounded by two parabolas s = —b and s = 3b.
— All the limiting parabolas mentioned meet at the point

a, = 2(1 —b), a; = 3 —8b+ 50"

connected with the radial slit mapping.

The type 2° occurs if s >3b, ie. in the domain bounded by the
parabolas s = 3b and u, = 3. These domains are illustrated in Figure 7
of [1], where the notation % means the same as wu; here.

There remains the second condition (30) which gives for #(yp) =1

(35) A = 310¥sin3p + b ssiny = Lsin3p + u;sing = B.

For the boundary correspondence to be of the type 1° or 2° it is sufficient
that each u €[0, 27] has a uniquely determined pre-image ¢ € [0, 2x] .
The correspondence becomes clear from Figures 3 and 4.

Consider first the alternative 1°, connected with Figure 3. There are
two conditions to be satisfied for the existence of a pre-image of each .

Y)
(36) Lug + 132 = 3 (s + b2

<>

This condition is always true
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s+ b): LN\
N VAN AANVAR

/ : \ u — 1 W
) - i
1 s\ T Yy (1 Yy
11+ 3 i 1)
Y \
=
¥
-
1 1 -
T ¢

.......

z § <3 Va

Figure 3.
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A 4 a B
s — b/ ap
Hs + D) - S 31 - uy) T
Whiss —p) &~ F TN ‘1
\ 1 3
T Yy
;o
=
T T cd
7T
9
z s> 3b F

Figure 4.

(37) w—4 < 3035 - b)

bl/z

wo = VL) + R
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Because |a,] < 2 (1 — b), this implies u, < 3. According to (33), the
condition can be rewritten in the form

3 — 5% o ; A
(38) ay < %T’:—b—lﬁ a; — % (1 — b1/%)? a, + 2 (1 + bH0 — %7,

The points of the slits where cosy = 0 are controlled by the last
equation (30) and (31), which give

# =7+t = (1 — p)ii2
38 1
Vo= e,
(39) ] b1 — 4sin®yp
A" = LA (%* — 3x)sin 3y + bY% s xsin y]
= 1sin3p + u sing = B.

The dotted arcs in Figure 3 indicate points connected with the slits,
determined by (39).

As a result of the above considerations we have found a triangle bounded
by the parabolas s = —b, s = 3b and (38), in the coefficient body
(ag , @y) where the extremum condition (26) defines functions F e S(b'?) of
the type 1°. The corresponding functions f € S(b) are thus 3-slit functions.
On the boundary curves of the triangle there exist certain degenerated limit
cases of those 3-slit functions. The type of these is readable in Figure 3.

The alternative 2° is connected with Figure 4. In this case A(y) has
only one maximum in the interval [0,z] which is bigger than minimum
of B(g), provided that (37) continues to hold. This order is needed to
guarantee the 3-fork structure of the slit. Again, the dotted arcs belong
to the slits and are governed by A’(y) of (39). Especially the branch point
is connected with

(s + b)* — (s — 3b)"?

"= 2 i ’

obtained from F, of (27). Thus » = (s/b + 1)"* and (39) give

n “
A’<f2> = (b + 8.

This is < ¥ (», + 1)**, which condition, according to (36), is always true.

Thus, in the case 2° the parabola s = 30 together with the parabola
(38) determines a domain in the coefficient body (a4, a,) , where the func-
tions f e S(b) given by (26) are 3-fork-slit functions. Actually, this type
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continues to hold slightly behind the parabola (38). The bounadry curve
on which the extremum function degenerates into a 2-fork-slit function is
given by

(38} —h o = 30+ 8.

This defines a third degree arc in a,, @, with the end points at the inter-
section of the curves

s = 36b,
—L 4w = L0 (Bs D).
Thus, these end points are
a, = —%(1 —9b + 8b%7%),
{a3 = 351 —9b+ 82 4 (3b+1)3 (1L —9b+ 867 +6(0b —10b°);
a, = 2(1 — b),

)

[
la3 = 3 —-8b+5b%.

In the case b = 1/2 the curve (38)" differs very little from that defined
by (38). Hence, the Figure 7 of [1] continues to give a schematic presenta-
tion of the extremum domain.*

In the extremum domain, defined above by (32), (38) and (38)" the
inequality (17) is sharp and we obtain from (18) the maximum for d; :

maxd, = dJ+ R = —diA—ep+ 1/3 —e; —dipu—el
= —(d +e)A 4+ p) + 1/3 — e
(40) ( (ag — 3 a3 + bay)®
= d b3y 1 S .. . A .
= $(1=0) —3ba; -4 2(1 —b) — a,

M(a, , a,) .
This is the result derived already in [1]. From the above inequality
min d, also follows. Instead of f(z) consider
—f(—2) = bz —by2® + b2 — b2t + ...

This means the following transformation:

f@), ay, ag, a,, dy = —f(=2), —ay, a5, —a,, —dj.
Thus,
—d.‘}(a’z , 0/3) = Il]( — g, (I’S) >

ie.
*In this context another inaccuracy of [1] can be mentioned. Unfortunately
the direction of rotation of the extremum domains in Figure 12 of [1] is reversed.
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(41) - M(—a,,a,) = dya,,a,).

B

Here the point (—a, , a;) must lie in the domain defined above. Thus the
range of (a,, ;) for which (41) is sharp is symmetric with the preceding
domain with respect to the a, axis.

We may check that our general result (17) implies (41) by substituting
uy = ¢ in (18) for a,, a,, a, e R:

dy > di — R = —dy A —eyp—1/3+e+d,pu+ el
= (dy —e)(p — ) — 1/3 + ¢,
N ERIT RS

= —M(—a,,a;).

3. The special case a, = 0

Before discussing the general case by the aid of numerical examples,
we want to find an easy case, different from the preceding one, where
boundary points of the d,-disc give a sharp inequality. For a, = 0,
ag # 0 (21) gives

l ([3 = l, ay, (]I = ]J a, 0y = § bb’ ey = 0;
f//3 (13

———_ |
2(1 =) "

~
i

S T raey TS

Now ' is determined by (19). Apply to it the rotation 7 = ul?
giving uy = 1. The rotated function f has coefficients a, and defines
F = f(z)*, for which there holds, according to (25),

~ piz N
FO(FY — F) 21~ b (ay ' — a; I
L = -
= 4§ —-27) + o (1 —p) ®7 % Z7)
Now choose 7 such that
a; = tay = |ay,

i.e.
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At the boundary point we obtain from (18) for d,

(43) ([3 = ta, = |+(1 - b’y — iﬁ—;db)_ ]ﬂ,}[ ,

and F satisfies the condition

l é b3/2 (FS . ﬁ‘:—‘i) + bl/BS (ﬁ o F~~—1) — %(23 _ Z¥3) + 8 (Z o Z’”l),

|S:2uwm'

Thus, we may use the results true for the equation (26). Both the first
condition (32) and (38) must be satisfied. In the present case —1 < s/b is
automatically true and (38) reduces into the form

(£4) ag] < 3 (1 + DAL — b

Hence we see that if «, = 0 and a, satisfies (44), the corresponding
boundary point of the d,-disc is sharp in the sense that (43) holds at this
boundary point.

6. Real coefficients «,, «,

In the general case, where all the coefficients «,, a;, a, are complex,
we may normalize the mapping by rotation into the form (25). For brevity,
drop tilda in the notations. Differentiation gives

17

k Pt Uz
| i

. ]
PO E T b s B b s B

[):5/:1 2

The factorization depends on the roots of the equation having the type

P rarczt+ert = 0.

If z is a root here, so are —z, 2~ ' and —z~'. This includes two alter-
3 bl

natives.

1°. If there are two unit roots (i.e. they have the absolute value 1)
not lying on the same diameter of the unit circle |z| = 1, there must be
four, and hence six, unit roots.

2°, If z is a non-unit root (|z] % 1), there are four non-unit roots
on the diameter where z lies and two unit roots again on one diameter.
This implies that the type of domains obtained is the same as before,
except that they are not twice axially symmetric any more.

We are not too far from the most general case if we assume a, and
a, to be real and @, complex. In Section 4 we actually studied those
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boundary points of the d,-disc which were connected with that special
case and were given by the values u, = 1 and wu, Therefore we may
restrict ourselves to the values

[ON= <O y -

For brevity, normalize by the rotation where

=1.

7

2

im

uy = €',

. 2o
203 __ 3

T = U3 e

The connection (25) holds for F . The coefficients u, and s are determined

by the following formulae:

{ul = A +pe ™ = (A4 p)cosw + i (A — p)sinw,
S = U +4a,¢” = A+u+ia)coso+i(d—pu+ la)sinw;
{17] = uz;Bu, = g,
s = uzBs = ge
5 ay — $a; + ba,
Chw 2(1 - b) —a,
5 ag — $a; — ba,
= 20—t 14,
a, — 5 a + a,
5 U el i Tl
tht e = 0 ) a
. . a; — }az + (1 — 2b)a,
— oy =
Bt za, 2(1 — b) + a,

The numbers &, o; 7, y are determined as follows:

(45) { & = (A + wicos’o + (A — pisinfo,
5
o = (A+u+ da)coso + (A —p+ Lay)sino .
A4 p
cosarguy; = ~—, s w,
(46) N = arg u; — w/3; -
, A—w
sinargu; = —.— sino.
A—p+§a
cos arg s = o coso,
(47) 1 = args — o/3;
. A—p+day
sinargs =~ sino.
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By substituting in (25) z = ¢*, F = r¢”, and splitting it into real and
imaginary parts, we end up with the conditions
J L0320 — ) cos 3y + 6o (r — 1 cos(y — ) = 0,
(48) ) 13320 4 %) sin 3y + bY2 6 (r + V) sin (p — 7)
= %sin3¢p + 2&sin(p — 7).

The first condition gives a unit circumference » = 1 and, for r< 1,
curves in the disc |F| < 1, determined by the equation

(49) H=3b*+14r%) = —a— 2 — K.

The second condition (48) defines for » = 1 the connection between
the unit circumferences in the z- and F-planes. Especially, for » = 1
each y €[0, 27] must obtain a uniquely determined pre-image ¢ € [0, 27] ,
according to the connection
(50) A = 1 bsin 3y + b'*osin (p — )

9]
= lsin3p + &sin(p —n) = B.

For r< 1, (49) together with the second condition (48) determines,
the connection between ¢ and wu on the slits. From (49) we deduce
analogously to (39) in Section 4, that

¥ = r+1r ' = (1=

(51) 30 cos (p — x)

y = —

b cos 3y

The second condition (48) thus assumes the form

A = L3002 (o — 3% sin 3y + b o xsin (p — y)]

1l

(52)

ol

sin 3¢ + &sin(p — ) = B.

For each fixed o and the given pair (a,,a;) we can study the above
conditions similarly to the previous case w = 0 (and o = 7/2). However,
the solutions of the extremum problems involved are, in general, only
numerically possible.

In the case

b =141 a =a; =% o = a4
the above connections are illustrated in Figure 5 by the aid of graphs

determined numerically. 1In Figure 6 there is the resulting extremum
domain.
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Figure 6.

By determining the range of (a,,a;) for various values of w, one

could obtain, as an intersection,

the domain round the origin where all the

boundary points of the d,-disc are reached.
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