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SOME NEW DENSITY ESTIMATES FOR THE ZEROS
OF THE RIEMÄNN ZETA.FUNCTION

K. RAIT{ACHANDRA

l. Introiluctian,. It is the object of this paper to prove the following
Theorem. Let R(o,T) d,enote the rectamgl,e o 1* 11, lyl {7,

and, N(o,T) tltenumberof zerosof e@), z: e t- iU, init.Thenwelraae,
uni,formly for 314 <o ( l,

N(o,T) < (Tz(t-") a !r-ht+o-al 1l3h(t-o)l&@e7)*2(L-o))

a l|(t-o) I @(46-81 + 3(7-o\) 
) Te

where k ,i,s any fired, positiae ,tnteger, e > A an arbitrary constant, and, the

constant impli,ed by
Taking k : 4 we have the following
Corollary. Foreaery €)0, weh,aae

N(o , T) 4 Tz(r-o)+e ,

uni,forml,y for 21126 ( o ( I .

Remarlt I. We can obtain similar bounds for

) Nr(o,lr)
xmodq

where ff"(...) denotes the number of zeros of L(z , X,) n R(o , T) and also
for

q3Q Tmodq

( * denotos omission of improper characters) provided 4 and Q do not
exceed certain function of T .

Remark 2. The best result so far published in the direction of the Corol-
lary is that the inequality of the corollary is valid for o 2 516 due to
M. N. Huxley [] and M. Jutila [2] independent of each other (by different
methods). However, Professot M. N. Huxley has informed me (in his
letter dated f5.7. 1973) that he has established the truth of the above
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corollaryfor 6 >415.
method is new.

2. I{ otat'ion. fn the
f" or T-e at several
proper places.

I have not seen his manuscript and I hope that my

Sections 3 - 4 we omit certain obvious factors like
places and this has to be supplied by the reader at

3. An improaement of tlr,e Halnsz-Mantgomery-Hurleg estimate for th'e

large aalues of a Dirichlet pol,ynom'i'al. So far as applications are concerned

it will be sufficient to consider the case when the positive quantity V
(see below) satisfies V + V-t : O(f") and a, : a*(N) are complex
numbers satisfying max la,l : O(N"). The definitions of V and T
are as follows. We are given a finite set of distinct complex numbers
s,: 6, + it, 1r : 1,2,...,-E). We put min or: 6, max t, - mintr'+
20 : T and impose the condition min lt, - t,,l 2 logz T . We are
given a Dirichlet polynomial r+t'

f(z) :
N<n<zN

We suppose that for r : l, 2, ..., R we have l/(t,)l > V and seek to
find an upper bound for -B . We shall also assume that o ) 3/4 and. a, I I
for all r.

X'or suitable complex numbers T, of absolute value I , we have

RV 
= Zrl,Zo*lL-sr - Zo*n-6Zqrn6-sr

rl, T r, n2o-sr-tr')tl',

where

and

bn:

% from I
separating

in the relevant range for rL . We can now take the sum over all
to infinity in the bracket. We observe that 2U-
the terms with r _ r' and r + r' we get the estimate

G:

;nlzN e-nlN : e-nlN (enlzttT l )

RV å(s, + 3,,

2+ö@

I
2-dq
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lYe can regard the inner sum as Zr,2r*r,
u'hich the inner sum over r is maximum.

and pick
Thus we

2+ia
f

J ("')
2-ia

out r' : ro s&/r for
get the estimate

+ (2,,

Nert we impose the cond,ition thot N shall' not erceed, a fined' power of T and
move the line of integration to z given by (w : u + i,a) 6t + o/o-
2o*u: -(log?;-t, i.e. Qt,:26-6,-d^- (log?;-t. It is
easy to check that -å - (log T)u < u { - (log ?)-1. We next upply
the functional equation for l(z) in the form E(z) : y(z) ((I - z) to get

tlt@, + u," - 2o * w)6(l - s, - s,. + 2o - w)

in place of 4(...) in the integrand. We next write the series for 6(...) ,

with Y : Trth (ft a fixed positive integer), in the form

6(t-s,-3,"*2o-w):
xZY *<Y

and denote the corresponding integrals by I, : It(r,r) and Iz :
: Ir(r,ro). In I, we next move the line of integration to z given
by 1-6,-6,0*2o-u: Tl2, i.e. u:112+2o-6,-c,o.
Observe that 0 { u < ll2 . We now break off the integrals IL and
Iz at a : + logs ? with a small error. This will enable us to prove
Lemmas I and 2 below. (Of course we have to use Hölder's inequality and
a theorem of Davenport; see Theorem I of [3]).

Lemma l. Wehaue

2,, Vr{r, ro)l ( Rr-uzh Tuz -

Lemma 2. Weh,aue

2,V'@ ' 
ro)l ( Nuz Tuzh R7-Ltzh '

Using these two lemmas we get
Lemma 3. Welr,aae

,E < ]trl-{ Rrlz + RL-U+h NUz-o fU4 + NBI+-6 TU4k RL-U4v .

This gives as a corollary
Lemma 4. If T >20, then

.B 4 lrzrt-ol I 7n X7-2k(2o-L) + T N-nt+o-s) .

We now assume f > 200 and break up the set of points into at most
I + T ffl sets where in each set we can take ?o in place of ? (assuming
that To > 20). We then have

RT/ o*l)"1
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Lemma 5. If T >200 and, To>20, then

_B < (ly2(1-') +TtN-zh(zo-L) *ToM-n{+o-il)(t + f fr1).

Let ft and Tz be defined by

Tt : (N2(L4)+2h(2o-7)111h ,

T, - yzlr-o)få(4o-3) .

Then since Nz(t-ol in the lemma dominates if To { min(Tr,Tr) we
have by taking 7o : min (Tr,Tr)

Lemma 6. Wehaue

A 4 lgzo-") (l + Tr, T + T;17) .

Proof. The condition min (Tr,Tr) 2 20 can be dropped since other-
wise the lemma states the trivial bound R < T .

Lemma 6 gives
Lemma 7. Wehauefor T >200 and,for I{ notexceed,ingafired,

power of T

A 4 lrzO-o) + T N4-66-2$-o)lh + T lv-Å(ao-3).

Remark. The limiting case k-->a here is due to Huxley ftl, who
deduced it from a result of Montgomery. Our method is somewhat more
complicated.

4. The d'ensity est'i,mates. I'urther work to prove the theorem is a device
due to Montgomery with sharpenings due to Jutila explained in []. We
repeat it to some extent. Let ö > 0 be a small constant and let
X(z) : ((z) M(z) - r, where

M(z) 2 p(n) n-' .

n3rö

It is clear that if e: f +iy is a zero of C@) in R(o,T) then

l./(s) I : I . Let the sequence {a,) be defined by

I(z) : )a,n-',
where Rez:r>1. Clearly &*:0 if ntT6. Alsothenumberof
zeros with lyl { logzT is O(logs?). We first select, (observe that
N(0,T + 1) - .lf(0, ?) : O(logT)) , a maximal subset of zeros in
R(o , T) with the properties

(i) lvl 2 logz? ,

(ii) min,ly-y'l 2Iog2T .
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It suffices to estimate the number of these zeros. X'or these zeros consider
the identity

; a,n 1L-8 n-nlY : Q n i)*t
n2 rö

By moving the line of integration to
using

w) l(*) Y* cJw .

% + p- ll2 andthen

2+i@
fI F(s +

J
' 
ut* rruen by

l€Qlz + it)11 dt

(or its consequence

Ittl<T

in an obvious notation) and choosing Y : TLI2+10ö, we see that

I > dnn-nl ) (log 7)-8
7112120ö > r>_76

(with d'n: a,s-ntY and ld'"1 !d,(n)) for all such zeros with the ex-
ception of at most Tz(L-o)+n zeros where q : ,lQ) tends to zero as ö

tends to zero. From this we geb a zero detecting device of the form

I > d*n-nl 2(log?)-10 (ru <u <7ttz+zoa\
Lt3n3 2u

where U is the same for all zeros under consideration except for a pro-
portion I - (log T';tz . If U > Tltz then we use the square of )il,n-'
as the zero detecting function and use the results of Section 3. Otherwise
wehave Tu@+u <U ST't* with 2 lm <2ö-1. Weuse

( 
u'2-,'d*n-')'

as the zero detecting function rvith l, : m * | or I : m according as

fu(n+I) < U < f^ or T^ < U 1 Trl*, where ,l is a positive
parameter to be chosen to the maximum advantage. (Of course the zero
detecting function is of the form ),v<,<"r where C is a large constant
but we can pass to a function of the form )"<,<r" or apply a trivial
modification of the results of Section 3). We get

N(o,T) ( tz(t-ol a|l-n{+o-zl, 115-ao-2(r-o)lh

+ min (Tzx(m+\ ]-ol L, lt-hxm6"-a) * TL-xn(66-4+2(1-o)lkl

4 72t1@+7)(t*o) * T21,(m+t)1-o) :, lz(t-o) + ft-h(46-B) I l5-6o-z(r-o)lh ,

where

f
fti3r
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)"r{2(m +l)(l-o) +km@o-s)}: l,
),r{2(m+ l)(I - o) + m(6o - 4 + 2(L - o)lk)} : r

Now (zr + 1) 2r and (m + l) )"2 are decreasing a,s nb increases so that lve
can take m : 2 to get the bound in all cases. This leads to the theorem
stated in the introduction. (In the computation of the minimum over i
it is convenient to use a lemma of van der Corput as modified by
B. R,. Srinivasan (see Lemma a of [5])).

Ad'd'ed' in proof

Recently Professor M. Jutila has proved the Density hypothesis for o >
lf if 4 and the q and @ Density hypothesis for o > al\; see his pa,pers

"zero-density estimates for -L-functions I and II" (to appear). He has also
simplified the proofs of Huxley's Density results.
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