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SOME NEW DENSITY ESTIMATES FOR THE ZEROS
OF THE RIEMANN ZETA-FUNCTION

K. RAMACHANDRA

1. Introduction. It is the object of this paper to prove the following

Theorem. Let R(o,T) denote the rectangle ¢ <o <1, |y| =T,
and N(o,T) the number of zeros of [(2), z = x + ¢y, init. Then we have,
uniformly for 3[4 <o <1,

N, T) < (Tzuﬁa) 4 ko) | p3ki—o)/(k(3o—1) +2(1—o0))
+ TS(]—-~n)/(k(4o»--3)+3(1——0))) e

where k is any fixed positive integer, ¢ > 0 an arbitrary constant, and the
constant implied by < depends only on k and .

Taking k& = 4 we have the following

Corollary. For every &> 0, we have

N(o,T) < T,

uniformly for 21/26 <o < 1.
Remark 1. We can obtain similar bounds for
> N,(o,T)

Ly
x mod ¢

where N (...) denotes the number of zeros of L(z, ) in E(o,T) and also
for

S 3N T)

g=Q xmodyg
(* denotes omission of improper characters) provided ¢ and @ do not
exceed certain function of 7.

Remark 2. The best result so far published in the direction of the Corol-
lary is that the inequality of the corollary is valid for o = 5/6 due to
M. N. Huxley [1] and M. Jutila [2] independent of each other (by different
methods). However, Professor M. N. Huxley has informed me (in his
letter dated 15.7.1973) that he has established the truth of the above
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corollary for o > 4/5. 1 have not seen his manuscript and I hope that my
method is new.

2. Notation. In the Sections 3—4 we omit certain obvious factors like
T¢ or T at several places and this has to be supplied by the reader at
proper places.

3. An improvement of the Haldsz-Montgomery-Huzxley estimate for the
large values of a Dirichlei polynomial. So far as applications are concerned
it will be sufficient to consider the case when the positive quantity V
(see below) satisfies V + V-1 = O(T°) and a, = a,(N) are complex
numbers satisfying max |a,| = O(N°). The definitions of V and T
are as follows. We are given a finite set of distinct complex numbers
s,=0,+tt (r = 1,2,..,R). We put ming, = ¢, max?, — minf, +
20 = 7 and impose the condition min |t, — ¢,| = log?7T . We are
given a Dirichlet polynomial e

fey = 2> a,n>.
N=n=2N
We suppose that for » = 1,2,..., R we have |[f(s,)] = V and seek to
find an upper bound for R . We shall also assume that ¢ = 3/4 and ¢, =1
for all r.
For suitable complex numbers 7, of absolute value 1, we have

RV = Z Ny Z a, nr = 2 a,n’ Z n, n’
< Gl/z Z bn z Ny 777 n‘-{‘_c »“S )1/ 5

7, 7

where
= > la,[*n*
n
and
bn — e—n/ZN . e—n/N — e—n/N (en/zN o l) > 6_2NlN (’ﬂ/QN) g %6_2

in the relevant range for n . We can now take the sum over all » from 1
to infinity in the bracket. We observe that > b, < N and so separating
the terms with » = #" and r = " we get the estimate

241w

RV<G1/2[RN+ 2ma)— f i(s, + s,

r#F
2—~j 0

— 20 4+ w) I'(w) (2 N)? — N®) dw:I
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We can regard the inner sum as >, >, ., and pick out " = r, say, for
which the inner sum over r is maximum. Thus we get the estimate

2+i0
1/2
RV < N2Z—o Rl/z[]\]l/2 + <2 f () dw > :I .
r# 7, /

Next we impose the condition that N shall not exceed a fixed power of 1T and
move the line of integration to u given by (w =u +14v) o, + 0, —
20+u = —(logT), ie. w = 20—90,—-0, — (log?)?*. It is
easy to check that —1 — (log7)™ < u < —(logT)™'. We next apply
the functional equation for ((z) in the form ((z) = wp(z) {(1 — 2z) to get

p(s, + 5, — 204+ w){(l =5, — 5, + 20— w)

in place of {(...) in the integrand. We next write the series for {(...),
with Y = T (k a fixed positive integer), in the form

{1 —s,—5 +20—w) = > + >
n=Y n<Y
and denote the corresponding integrals by [, = I(r,r,) and I, =
= Iyr,ry). In I, we next move the line of integration to u given
y l—-0,—-0,+20c—-u = 1/2, ie. u = 12420 —-0,—0,.
Observe that 0 <« < 1/2. We now break off the integrals 7, and
I, at v = + log®7T with a small error. This will enable us to prove
Lemmas 1 and 2 below. (Of course we have to use Holder’s inequality and
a theorem of Davenport; see Theorem 1 of [3]).
Lemma 1. We have

2 Mh(r,m)| < RIV2k 2
r#r

(=

Lemma 2. We have

}: [Ig(’ , 7,0)1 < N]/Z T]/'Zk Rl——l/‘_’k .
r#r,,

Using these two lemmas we get
Lemma 3. We have

R < Nl—a Rl/z + R1~1/4k Nl/Q——a T1/4 + N3/4——a T1/4k R1—1/4k .

This gives as a corollary
Lemma 4. If 7T =20, then

R < N2(1—-o) + Tk N—Qk(Qo—]) + TN—k(4a—3) .

We now assume 7' > 200 and break up the set of points into at most

1 + T T;* sets where in each set we can take 7'; in place of 7' (assuming
that 7' = 20). We then have
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Lemma 5. If 7 =200 and T, =20, then
R < (1\72(1—~a) T TIS 1\7—2k(2a~1) + TO Ar——k(4a——3))(1 + T To—l) .

Let 7'y and 7', be defined by
Tl - (N2(1—0)+2k(2a—1))]/k

2

T _ 7\72(1——6)—{~k(40‘—-—3)
o = 4 .

Then since N?*'=9 in the lemma dominates if 7, < min (7,,7,) we
have by taking 7, = min (7, ,7,)
Lemma 6. We have

R < N*=0 (1 + T7'T + T;0 7).

Proof. The condition min (7;,7,) = 20 can be dropped since other-
wise the lemma states the trivial bound R < 7T'.

Lemma 6 gives

Lemma 7. We have for T = 200 and for N nol exceeding a fived
power of T

R < N?.(l—s) + TAHV—GGﬁZ(lf—a)/k + TA’«»k(«la»--?)) .

Remark. The limiting case k- oo here is due to Huxley [1], who
deduced it from a result of Montgomery. Our method is somewhat more
complicated.

4. The density estimales. Further work to prove the theorem is a device
due to Montgomery with sharpenings due to Jutila explained in [1]. We
repeat it to some extent. Tet 6 > 0 be a small constant and let
F() = ((:) M(z) — 1, where

It is clear that if o = f + ¢y is a zero of ((2) in R(o,7) then
|[F(o)] = 1. Let the sequence {a,} be defined by

Fz) = > a,n,
where Rez = a > 1. Clearly a, = 0 if n <7°. Also the number of
zeros with |y| < log?T" is O(log®T) . We first select, (observe that

NO,T + 1) — N©O,7) = O(logT)), a maximal subset of zeros in
R(o,T) with the properties

(i) lyl = log*T,

(i) min |y —y'| = log*T".
v#Y
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It suffices to estimate the number of these zeros. For these zeros consider
the identity

241w
> oa,nte = (2ad)7! f Flo + w) I'(w) Y* dw .
n= o .
By moving the line of integration to » given by w + f = 1/2 and then

using
f{C(l/Z +at)y*dt < Tlog*T
WET
(or its consequence

SUE2 + i) < TlogT

ST
in an obvious notation) and choosing } = 7Y% " \yve see that
‘ — > —8
[ > d,n ¢ = (logT)
71/24-200 >nz= 70

(with d, = a, ¢ """ and |d,| <d(n)) for all such zeros with the ex-

ception of at most 721" zeros where 7 = 5(d) tends to zero as 9
tends to zero. From this we get a zero detecting device of the form
> dyw?] = (log Ty (10 £ U L TR0

/
L
2U

UZn

IIA

where U is the same for all zeros under consideration except for a pro-
portion 1 — (log 7'y**. If U > T'? then we use the square of > d, n™*
as the zero detecting function and use the results of Section 3. Otherwise
we have TV < U < TU" with 2 < m < 2671, We use

( 2‘ (]n n-—--.:)l

%) 2U

A
IIA

n
as the zero detecting function with / =m + 1 or [/ = m according as
T < U < T or TP < U < TY", where 1 is a positive
parameter to be chosen to the maximum advantage. (Of course the zero
detecting function is of the form > <, <.y Where (' is a large constant
but we can pass to a function of the form > y<, <,y or apply a trivial
modification of the results of Section 3). We get

N, T) < 2—0) 4 pl—kdo—3) 4 /pi—bo—2(l—o)/k
+ min (Tzz(mﬂ)u_-a) 4 i—kime—3) 4 pl—im(Go—4+2(1—o)[k)

& PAmEN0—0) 4 pmil)i—o) 4 p2(i—e) 4 l—k(o—3) 4 /5—6o—2(1—0)/k

2

where
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M{2m+ 1)1 —0)+km(do - 3)} =1,
AW{2m+ 1)1 —-0)+m6c—4+2(1 —o0)k)} = 1.

Now (m + 1) 4; and (m + 1) A, are decreasing as m increases so that we
can take m = 2 to get the bound in all cases. This leads to the theorem
stated in the introduction. (In the computation of the minimum over 1
it is convenient to use a lemma of van der Corput as modified by
B. R. Srinivasan (see Lemma 4 of [5])).

Added in proof

Recently Professor M. Jutila has proved the Density hypothesis for o >
11/14 and the ¢ and @ Density hypothesis for ¢ > 4/5; see his papers
“zero-density estimates for L-functions I and I1” (to appear). He has also
simplified the proofs of Huxley’s Density results.
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