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ON THE STRUCTURE OF PRODUCED AND INIDUCED
INDECOMPOSABLE LIE MODULES

TIII{O NEUVONEN

l. Introd,ucti,on In recent years, it has become evident that certain
indecomposable mod.ules are of basic importance to the representation
theory of semisimple Lie algebras both over fields of characteristic 0 and
over modular fields. If g is a semisimple Lie algebra and b a Borel sub-
algebra of g , then these fundamental g-modules are those induced from
one-dimensional b-modules (cf. [I2],[f],151,[a]). Also modules induced from
more general parabolic subalgebras have recently revealed. some deep,

far-reaching properties in the characteristic 0 setting (Lepowsky [7]). On
the other hand, Humphreys' work [4] indicates that a better understanding
of induced indecomposable modules would be desirable in the modular
case too.

In this paper we study (restricted) indecomposable modules produced
and induced from parabolic subalgebras of classical Lie algebras over
fields of prime characteristic. We emphasize that ,,produced" is being used

here in the sense of [8],[13],[14]. Section 2 summarizes the basic definitions
and properties ofparabolic subalgebras and produced modules as presented
in [8]. These are then applied in showing that indecomposable modules
behave well under production: a produced module is indecomposable if and
only if the original is so. The duality relation between induced and prod.uced.

modules is then used. in Section 4 to prove results about induced modules.
In particular, if we start from an indecomposable module with a unique
maximal submodule, then the resulting induced module is also in-
decomposable. A special case of this is the well-known fact, that the standard
cyclic g-modules Z^ are indecomposable. As another corollary we seei that,
modules induced from the principal indecomposable modules &re all in-
decomposable.

2. Prel,iminary results. Let g. be a finite dimensional complex simple
Liealgebra,and let A, l+, and / : {qp...,qt}, respectively,denote
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the sets of all roots, positive roots and simple roots of g. relative to a
Cartan subalgebra b" (in some ordering). We fix a Chevalley basis

{e1,...,e*; h1,...,hti fr,...,f*} of g., where {h1,...,ht) is a basis for
!" and en's (fn's) are positive (resp. negative) root vectors. Let g, d.enote

the free Z-module on this basis, and let n be a field of characteristic
p73. Then I : gr@rn becomes a Lie algebra over 7 with a basis

{ena l, hp@ l, fi@ Ii i : 1,.'.,ffi, k : 1,...,1}, and we denote
these basis elements again simply by ei, ho, fn. The algebras g are
called classical Lie algebras over the field .F (tl0l).

Let go be the root space corresponding to a root a, and let f1 be the
Cartan subalgebra of g araising from !. . A maximal solvable subalgebra
b of g of the form b : lt + ) g" i. given the name Borel subalgebra.

aell
We call any subalgebra p of g containing b a parabolic subalgebra.
Clea,rly p is oftheform p : Fn : tl + ),U", where A+ C n C zl and

z satisfies the conditions i) A : n v (-n) and ii) z is closed under
addition, i.e. oc , p en, d"+P e/ implies d.+P en.

Let, n, : n A (-n) , and let n* be the complement of n, in n.
Define l, : t) * 

ån" 
, called. the Levi subalgebra of Fn, nJ- : I 0n

defrfr

and n; : ) gn. When no confusion is possible we usually drop the sub-
deAa

index z in this notation, and hence can write the classical Lie algebra g

in a form
g : P@n-: n+@l@n-.

It is now easy to check that n+ is an ideal of p , that [n+ , I] C n+ ,

ln- ,l] C n- and that n+ , n- are both nilpotent Lie algebras. Moreover,
every classical Lie algebra is a restricted algebra ([0]) in the sense of [6].
Evidently rr* , fr-, I and p are all restricted subalgebras of g.

Leb at@) , ol/(p) , %(n-) denote the z-algebras (:?sstricted universal
enveloping algebras) ofthe corresponding restricted Lie algebras g , p , n- .

The restricted analogue of the Poincard-Birkhoff-Witt theorem then gives

q@) : q/(p) @ %@) n- %(n-) .

Let y : qk) --- q@) be the projection onto the first factor.
If 7 is a restricted l-module, then this can be extended to a restricted

p-module fr UV setting n+ frl : 0 . Hence we can define a Qt(g)-module

P(W) : Ho^o?r(p)gt(g), fr)

by letting (Af)@) : f(*y) for all f eP(W), n,A e%(g). As an I-
module we may injectively embed W into P(W) via the map
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a: W->P(W), whichisdefinedby a(a)(r) : y(*)I), o eW, neq$).
The following definition and the basic properties of produced modules are
essentially due to Wallach [3],lf4l.

Definition. The a?t(g)-submoiluleof P(W) generateil'bg a(W) i's

cal,le(l a proiluced, moilul,e (or a mod,ule prodaceil, from the L-mod'ule W). It is
denoteil by W* - qt G) @(W) .

If T/ is & g-module, let Vn- _ {ueT/lru:0, for
The followitg facts were proved in [S], p4l .

P r o p o s i t i o n 2.1. Let g be a cla,ssical Lie algebra

cL restricted, g-module. Then
i) vn- + 0.
ii) V i,s proil,uced, from an I-moil,ule if and' only if Y : 4t(0) Vn- and,

n+ V n Vfr- : 0 , and, i,n this case it is prod'uced' fraru the I-moil'ul,e Vn- .

ii| If Wr, W, are two I-mo(l,ul,es, then (Wt@ Wr)* - W{ @ Wt
as g-moilul,es.

iv) Daery 'irred,ucible g-mod,ule Y is prod,uceil, from the irreiluci,bl'e

l-moil,ule Vn- .

3. Prod,uceil, inil,ecomposable moil,ules. X'requently, the produced Lie
mod.ules seem to behave better than the induced ones. In [8] we saw how
a g-module is completely reducible if and only if it is produced from a, com-

pletely reducible l-module. The next proposition shows that produced
indecomposable mod.ules exhibit similar behaviour. From now on all
modules and algebras ate automatically assumed to be restricted.

Proposition 3.1. Let g beaclassi'cal,Li'eal'gebraard, I aLeui'
companent of a parabolic subalgebra of g . Let W be an [-moilule. Then the

prod,uceil, g-mod,ul,e W* 'is inilecomposable i,f and' only if W is an inilecum,-

posable [-module.
Proof. Assume we could decompose

medules, W* - T/L @ V2. If f e VT-

y(r)'f(L) : @(f(r))(r) Hence VY C

Since Vrn Tlz - 0, we now have

vY a v*- c ,(w) ,

and we proceed to show that in fact this is an equality. To do this let

o(o) ea\W) C W* : Vt @ Vr.

Write a\u) : fr+ fr, where fteVr, fzeVz. It is easy to see that
o(W)C (W*)n-, hence O : na(a) : nfr+ nf, for all nen-.
Butsince VrnVr: 0, thisforces nh:0, nfz:0 for all nen-.
I{ence at(a) : f, + f, with å e VT- , f, e i*- .

all fr e n- ) .

a,nd v + 0

W* into a,, direct sum of two g-

C W* , then f(") : f(y(")) :
@(W). Similarly Yy C 0,(W).
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Now ar(IZ) as an l-module is isomorphic to the indecomposable module

W and @(W) : VT A V[- . ltfollows rhat' VI or 7[- is : 0. Con-

sequently Vt:0 or Vr:0 (Proposition2.l)andhence IZ* isindecom-
posable.

Conversely, if W* is indecomposable, then so is the l-module W .

fnd.eed, if we had W : Wr @ Wz this would imply W* : Wt @ Wi .

Since Wf + O if Wi + 0 , this would contradict the indecomposability
of W*.

Remark. Since the map a : W ---> P(W) is injective, we have

dimW 4 dim W* . If n consists of 1+ together with a single simple
root, uo, then I, : b + Ien + Xfn. In l9l Pollack considered first the
structure of indecomposable modules for the classical Lie algebra of type
Ar, hence also for the algebra [n above. In particular, he constructed'

indecomposable -4r-modules of arbitrary high dimensions. Since the
dimension does not decrease in producing, it follows from Proposition 3.1

that every classical Lie algebra has (restricted) indecomposable modules

of arbitrary high dimension. This is a result of Pollack ([9], Theorem 6).

If V is any produced g-module, then the first and last member in a
composition series of V are produced. It would be interesting to know
whether (or when) all members in a composition series of V have to be

produced modules.

4. Iniluced, ind,ecomposable mod,ules. Let g be a classical Lie algebra,

I a subalgebra of g and W an indecomposable l-module. fn this section

we consider the question: when is the induced. g-module atG)aoU$1W
indecomposable? The results below generalize those in [8], 54.

A g-module V is called completely indecomposable (cf. [f 1]) if every
submodule of V (including 7 ) is indecomposable. We see at once that
a module is completely indecomposable if and only if it has a unique
minimal submodule. All irreducible modules are, of course, completely
indecomposable; moreover, since ryG) is a X'robenius algebra, the PIM's
(:principal indecomposable modules) of qt\) are completely indecom-

posable (this follows from Theorem 58.12 in l3l). In addition the standard

cyclic modules 14] have a unique maximal submodule, hence their con-

tragredient modules are completely indecomposable.

Lemma 4.1. Let I be the Lea'i, component of a parabol,'ic subalgebra

of g. Then a prod,uceil g-mod,ule W* is compl'etely 'i,nd'ecomposahle if and'

only i,f the l-modul'e W i,s compl'etelg inil,ecomltosabl'e.

Proof. If W is not completely indecomposable it has a submodule of
the form Wr@ Wz, Wt *0. But tt'en W{ @ Wt = (Wt@ Wr)* C W>F

shows that neither can \T* be completely indecomposable.
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on the other hand, if I4z is completely ind.ecomposable, then so is tr4l* .

Indeed, if vr@ vrc w* then, as in the proof of Proposition 3.1,

rf-o v[- c a1w7 - w.
our main tool in dealing with induced modules is the duality relation

between induced and produced modules. This is made precise in the follow-

ing lemma (for the proof see [2], Prop. f ).
Lemma 4.2. Let g,p and I beasbefore.If v isamoil,ule,d,enote

bg V' i,ts contragreil'i,ent moilul'e Homo(Z ,I) . Then for any p-mod'ule W

we lmae a (restri,cted') g-mod'ule isomorplt'ism

(s/(g) @aU$ W)' = P(W') : Homoylp)Qt(g) , W') ,

send,ing an7 v' e (s/(g) @ W)' onto p e P(W') , which i's il'efi'neil' bg

,p(r)(u) : y'(f @ a), r e ol/(g), u e W'

Here s i,s the Hopf al,gebra anti,ltoile of u(g) (i.e. the unique ant'i,automorphism

of qG) d,efined'bg f : -n for all r eg).
p ; o p o s i t i o n 4.3. If W is an ind,ecomposable [-mod,ule wi,th a

unique Åaxi,mat submoilule, then the i,nd'uced, g-mod,ule AtG)aatlW1W i's

also ind,ecomposahle.

Proof. we note l]nat w is here first extended to a p-module by letting

n- w : 0 . since w has a unique maximal submodule, it follows that
w, is completely indecomposable. Hence the g-module (w')* is also

completely indecomposable.
Let Y + 0 be a minimal g-submodule of P(W') ' As before, it is easy

to see that 0 +Yn- C a\W'). But since Y is minimal, we must have

V : qG) /n-, hence

V C Qt(g) a\W') : (W')* .

The module (w')*, however, contains a unique minimal submodule,

hence v is a unique minimal submodule of P(w'). consequently

P(W') : Q/G) @ W)' is (completely) indecomposable. Since a tnodule is

indecomposable if and only if its contragredient module is so, the proposition

now follows.
Since every PIM has a unique maximal submodule (13], 54'rf), we get

the following result.
Corollary. Let P bea PIM of SlO. Thenthe g-moilule at$)aP

,i,s also'i,nd,ecomposahle.

we now continue on the assumption that w is an ind.ecomposable

I-module with a unique maximal submodule. It follows from the proof of
Proposition 4.3 that the induced indecomposable g-modde At$) o I4/ has

a ooiqo" maximal submodule, In the bpecial cage where I4z is an irreducible
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I-module we c&n give a description of this maximal submodule using the
theory of produced modules.

L e m m a 4.4. Let W be an i,rreilucible I-mod,ule. Then there er,i,sts
a g-moilule i,somorphi,sm p from (W*)' into Qt(g) aayp W)' .

Proof. ft follows from the basic properties of produced modules

that W* * (W*)n* @ n- W* ås an l-module (cf. Prop. 2.1). Hence
(W*)' - ((W*1n+r' @ (n-W*1' . Let qtr, gt, denote the l-module projec-
tions given by this isomorphism. If f e ((W*)')n- and pr(/) : 0 , then

f(a) : plf)(ur) + pzff)@z) : Q

for any u : ,uL * az e W* - (W*1n+ @ n- W*. It follows that gt
restricted to ((W*\'p- gives an l-module isomorphism

((W\')n- = ((W\n+)' = W' .

Since I4l* is now an irreducible g-module we can combine Proposition
2.1 ii), iv) and Lemma 4.2 to get the following sequence of g-isomorphisms:

(W*)' - (((If*)/)nl* c P(((W*)')n-) - P(W') = Qt(g) @qtW)W)' .

This proves the lemma.
Proposition 4.5. Let Iry beanirreihrcible [-moil,uleamil g the

isomorphism establ.i,sheil i,n the preai,ous lemmn. Then

B : {ue0?t(g)@Wlvff)@): 0 forall f e(W*)'}
is the unique mari,mal submod,ule of the i,nilecomposable moilule ql G) s oU Wl W .

Proof. Let .l[ be a proper submodule of %(g) @ ]Z properly containing
B. Let lVr consist of those f e gt(g)@ W)' such that "f(X) : 0. If
(W*)' n Nt + 0, then the irreducibility of (I/*)' implies (W*)' C N! .

But this means If C B, contrary to our choice of -tr/ .

Hence it is enough to find a nonzero f e (W*)' such that gfif)(lfl : 0 .

Let '0o be a maximal weight vector in W , in which case @(ao) is
a maximal weight vector in W*. Since (7[*)' is an irreducible g-module,
we can represent it in a produced module form,

(W*)' : At@) a(((W*)')nl .

Choose V e ((W*))n- such that g vanishes on n- Wx , but, !,(o)(ao:)) + 0 .

Then Vkn(tp)) e gt(g) @ W)' , and we proceed to a closer study of this
element.

Now ar(g) is the map

a@) : at@).--> ((w*)')n- ,

a(rp)(r) : y(r) r! ,
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hence an element in P(((W*)')n). Identifying ((W*)')r with W' as

in the proof of Lemma 4.4 we see t'hat o(y) can be considered as an element

of P(W'). Hence using the isomorphism of Lemma 4.2, we see that
V@kil is the map

q(.(rp)): qG)@W--X,
defined by 

v@(rp))(ro o) : a(rp) (r')(a,(o)) .

This implies that

Ek't(rtDQ@ro) : ar(q)(l)(oo) : ?,(r)VkD(aoD : V@(us)) + 0,

whereasif n e%(g), n#%(W, then

E@@))(ra or) : ar(rp)(ar)(ar(oo)) : v(r),p(@(Då)

-V0Qe)ar(oo)) : g'

Now 1@ ao is a generator for 1lt(g) e tr4r so that Io uo$ -ly'. Hence

V@kil) + 0 vanishes on If . As observed earlier, this proves the proposition.
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