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ON THE STRUCTURE OF PRODUCED AND INDUCED
INDECOMPOSABLE LIE MODULES

TIMO NEUVONEN

1. Introduction. In recent years, it has become evident that certain
indecomposable modules are of basic importance to the representation
theory of semisimple Lie algebras both over fields of characteristic 0 and
over modular fields. If g is a semisimple Lie algebra and b a Borel sub-
algebra of g, then these fundamental g-modules are those induced from
one-dimensional b-modules (cf. [12],[1],[5],[4]). Also modules induced from
more general parabolic subalgebras have recently revealed some deep,
far-reaching properties in the characteristic 0 setting (Lepowsky [7]). On
the other hand, Humphreys’ work [4] indicates that a better understanding
of induced indecomposable modules would be desirable in the modular
case too.

In this paper we study (restricted) indecomposable modules produced
and induced from parabolic subalgebras of classical Lie algebras over
fields of prime characteristic. We emphasize that , produced” is being used
here in the sense of [8],[13],[14]. Section 2 summarizes the basic definitions
and properties of parabolic subalgebras and produced modules as presented
in [8]. These are then applied in showing that indecomposable modules
behave well under production: a produced module is indecomposable if and
only if the original is so. The duality relation between induced and produced
modules is then used in Section 4 to prove results about induced modules.
In particular, if we start from an indecomposable module with a unique
maximal submodule, then the resulting induced module is also in-
decomposable. A special case of this is the well-known fact that the standard
cyclic g-modules Z,; are indecomposable. As another corollary we see that
modules induced from the principal indecomposable modules are all in-
decomposable.

2. Preliminary results. Let g, be a finite dimensional complex simple
Lie algebra, and let A4, AT, and 4 = { oy, ..., %}, respectively, denote
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the sets of all roots, positive roots and simple roots of g, relative to a
Cartan subalgebra ¥, (in some ordering). We fix a Chevalley basis
{ ey ey by s bys fiy s f} of g., where {hy, ..,k } is a basis for
), and es (f/s) are positive (resp. negative) root vectors. Let g, denote
the free Z-module on this basis, and let # be a field of characteristic
p>3. Then g = g,®,F becomes a Lie algebra over F with a basis
{1, ®1l, f®@l; 4« = 1,..,m, k = 1,..,1}, and we denote
these basis elements again simply by e;, %,, f;. The algebras g are
called classical Lie algebras over the field ¥ ([10]).

Let g, be the root space corresponding to a root «, and let f) be the
Cartan subalgebra of ¢ araising from .. A maximal solvable subalgebra
b of g of the foorm b = § + > g, is given the name Borel subalgebra.

aeat
We call any subalgebra p of g containing b a parabolic subalgebra.

Clearly p isoftheform p = p, = §h + > g,, where 4+ C 7 C A and

XET

n satisfies the conditions i) 4 = @ U (—x) and ii) x is closed under
addition, ie. o, fex, a+pf €A implies a+pf ex.

Let n, = an(—=n), and let x, be the complement of =, in = .
Define I, = § + > g,, called the Levi subalgebra of p,, n = > G
and n; = > @,. When no confusion is possible we usually drop the sub-

aed—mn

index z in this notation, and hence can write the classical Lie algebra g
in a form

g=pdn =ntelen.

It is now easy to check that n* is an ideal of p, that [n*,[] Cn*,
[n=,1] C n~ and that n*,n~ are both nilpotent Lie algebras. Moreover,
every classical Lie algebra is a restricted algebra ([10]) in the sense of [6].
Evidently nt, n—, [ and p are all restricted subalgebras of g.

Let «(g), %(p), %) denote the u-algebras (=restricted universal
enveloping algebras) of the corresponding restricted Lie algebras g, p, n~.
The restricted analogue of the Poincaré-Birkhoff-Witt theorem then gives

Ug) = UWp) D Up) N~ UMm~) .

Let vy : %(g) — %(p) be the projection onto the first factor.
If W is a restricted [-module, then this can be extended to a restricted

p-module W by setting nt W = 0. Hence we can define a %(g)-module

by letting (yf)(®) = fxy) for all feP(W), x,yeu(g). Asan I[-
module we may injectively embed W into P(W) via the map
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w: W — P(W), which is defined by w(@)(®) = y@@)v, ve W, xe¥U(g) .
The following definition and the basic properties of produced modules are
essentially due to Wallach [13],[14].

Definition. The (g)-submodule of P(W) generated by (W) is
called a produced module (or a module produced from the [-module W). It is
denoted by W* = U(g) (W) .

If V isa g-module,let VW = {veV|xv=0, forall xen}.
The following facts were proved in [8], [14].

Proposition 21. Let g be a classical Lie algebra and V # 0
a restricted g-module. Then

iy Vo 0.
ii) V is produced from an [-module if and only if V = uU(g) VW and
ntV A VW = 0, and in this case it is produced from the [-module VW .

iii) If W,, W, are two [-modules, then (W, ® Wy)* = W{ @ W
as g-modules.

iv) Ewvery irreducible g-module V is produced from the irreducible
[-module V1.

3. Produced indecomposable modules. Frequently, the produced Lie
modules seem to behave better than the induced ones. In [8] we saw how
a g-module is completely reducible if and only if it is produced from a com-
pletely reducible [-module. The next proposition shows that produced
indecomposable modules exhibit similar behaviour. From now on all
modules and algebras are automatically assumed to be restricted.

Proposition 3.1. Let g be a classical Lie algebra and | a Levi
component of a parabolic subalgebra of . Let W be an [-module. Then the
produced g-module W* is indecomposable if and only if W is an indecom-
posable [-module.

Proof. Assume we could decompose W* into a direct sum of two g-
modules, W* =V, @ V,. If feVl C W%, then f(x) = fly(x)) =
y@) f(1) = o(f1))(@) . Hence VI Co(W). Similartly V} C w(W).
Since V, nV, = 0, we now have

Ve vy C o),
and we proceed to show that in fact this is an equality. To do this let
o) ea(W)C W* = V@ V,.

Write o(v) = f, +f,, where fieV,, fyeV,. Itis easy to see that
o(W)C (WM™, hence 0 = now® = nf,+nf, for all nen .
But since V; n V, = 0, this forces nf, =0, nf, =0 forall nen.
Hence w(w) = f, +f, with fyeVlV, foeV} .
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Now (W) asan [-module is isomorphic to the indecomposable module
W and o(W) = VIV @ VI . Tt follows that V' or VI is = 0. Con-
sequently ¥V, = 0 or V, = 0 (Proposition 2.1) and hence W* isindecom-
posable.

Conversely, if W* is indecomposable, then so is the [-module W .
Indeed, if we had W = W, @ W, this would imply W* ~ W§ @ Wi .
Since W3 50 if W, # 0, this would contradict the indecomposability
of W#.

Remark. Since the map w: W —P(W) is injective, we have
dim W < dim W* . If & consists of A% together with a single simple
root «,, then [, = § + Fe, + Ff,. In [9] Pollack considered first the
structure of indecomposable modules for the classical Lie algebra of type
A, , hence also for the algebra [, above. In particular, he constructed
indecomposable ~ A4,-modules of arbitrary high dimensions. Since the
dimension does not decrease in producing, it follows from Proposition 3.1
that every classical Lie algebra has (restricted) indecomposable modules
of arbitrary high dimension. This is a result of Pollack ([9], Theorem 6).

If V is any produced g-module, then the first and last member in a
composition series of ¥ are produced. It would be interesting to know
whether (or when) all members in a composition series of V' have to be
produced modules.

4. Induced indecomposable modules. Let g be a classical Lie algebra,
[ a subalgebra of g and W an indecomposable [-module. In this section
we consider the question: when is the induced g-module %(g)®q ) W
indecomposable? The results below generalize those in [8], §4.

A g-module V is called completely indecomposable (cf. [11]) if every
submodule of V (including V') is indecomposable. We see at once that
a module is completely indecomposable if and only if it has a unique
minimal submodule. All irreducible modules are, of course, completely
indecomposable; moreover, since %(g) is a Frobenius algebra, the PIM’s
(= principal indecomposable modules) of %(g) are completely indecom-
posable (this follows from Theorem 58.12 in [3]). In addition the standard
cyclic modules [4] have a unique maximal submodule, hence their con-
tragredient modules are completely indecomposable.

Lemma 4.1. Let [ be the Levi component of a parabolic subalgebra
of g. Then a produced g-module W* is completely indecomposable if and
only if the [-module W is completely indecomposable.

Proof. If W is not completely indecomposable it has a submodule of
the form W, @ W,, W, # 0. But then Wi @ W3 ~ (W, @ Wy* C W*
shows that neither can W* be completely indecomposable.



On the structure of produced and induced indecomposable Lie modules 203

On the other hand, if W is completely indecomposable, then so is W* .
Indeed, if V, @® V,C W* then, as in the proof of Proposition 3.1,
Ve vl C oW) =~ W.

Our main tool in dealing with induced modules is the duality relation
between induced and produced modules. This is made precise in the follow-
ing lemma (for the proof see [2], Prop. 1).

Lemma 4.2. Let g, p and | be as before. If V is a module, denote
by V' its contragredient module Homy(V , F) . Then for any p-module W
we have a (restricted) g-module isomorphism

(@) ) W) = POV') = Homey((), W),
sending any y' € (U(g)® W) onto y e P(W'), which is defined by
pE)v) = yp@@ev), xeUg, ve w.

Here s is the Hopf algebra antipode of U(g) (i.e. the unique antiautomorphism
of U(g) defined by a5 = —ax forall xeg).

Proposition 4.3. If W is an indecomposable [-module with a
unique maximal submodule, then the induced —g-module U@) @ gy W is
also indecomposable.

Proof. We note that W is here first extended to a p-module by letting
n-W = 0. Since W has a unique maximal submodule, it follows that
W’ is completely indecomposable. Hence the g-module (W')* is also
completely indecomposable.

Let V # 0 be a minimal g-submodule of P(W’). As before, it is easy
to see that 0 = Vn~ C o(W’'). But since V 1is minimal, we must have
V = u(g) V1, hence

v C ug) o(W) = (W)*.

The module (W')*, however, contains a unique minimal submodule,
hence V is a unique minimal submodule of P(W’). Consequently
P(W') =~ (%(g)® W) is (completely) indecomposable. Since a module is
indecomposable if and only if its contragredient module is so, the proposition
now follows.

Since every PIM has a unique maximal submodule ([3], 54.11), we get
the following result.

Corollary. Let P bea PIM of %(l). Then the g-module () ® P
s also indecomposable.

We now continue on the assumption that W is an indecomposable
{-module with a unique maximal submodule. Tt follows from the proof of
Proposition 4.3 that the induced indecomposable g-module %(g) ® W has
a unique maximal submodule, In the special case where W is an irreducible
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[-module we can give a description of this maximal submodule using the
theory of produced modules.

Lemma 44. Let W be an irreducible [-module. Then there exists
a g-module isomorphism ¢ from (W*)' into (%(9) ® 1) wy'.

Proof. It follows from the basic properties of produced modules
that W* o~ (WM @n-W* as an [-module (cf. Prop. 2.1). Hence
(W*)' =~ (W) @ m-W*)' . Let Py, Py denote the [-module projec-
tions given by this isomorphism. If fe (W N and p:(f) = 0, then

J) = p:(N)(w) + pa(f)(v)) = 0

for any v = v; + v, e W* ~ (W”‘)n+ @n- W*. It follows that p,
restricted to ((W*))' gives an [-module isomorphism

(WH) M~ (W97~ W,

Since W* is now an irreducible g-module we can combine Proposition
2.1 ii), iv) and Lemma 4.2 to get the following sequence of g-isomorphisms:

(W) == (W*)))* C P((WH))M) = P(W') = (%(g) ®qp) W)

This proves the lemma.
Proposition 4.5. Let W be an irreducible [-module and ¢ the
1somorphism established in the previous lemma. Then

S = {veul@ge W |ef)(v) = 0 forall fe(W*)}

is the unique maximal submodule of the indecomposable module %U(g) ® ¢ wm W

Proof. Let N be a proper submodule of %(g) ® W properly containing
S. Let N! consist of those fe (%(g)® W) such that f(N) =0. If
(W*)" n NL # 0, then the irreducibility of (W*)" implies (W#*)' C NL.
But this means N C §, contrary to our choice of N .

Hence it is enough to find a nonzero f e (W*)’ such that ¢(f)(N) = 0.

Let v, be a maximal weight vector in W, in which case w(v,) is
a maximal weight vector in W* . Since (W*)" is an irreducible g-module,
we can represent it in a produced module form,

(W) = (g) o(W*))) .

Choose y € ((W*)')" such that y vanishes on n~ W*, but y(w(v,) # 0.
Then ¢(w(y)) € (%(g)® W), and we proceed to a closer study of this
element.

Now w(y) is the map
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hence an element in P((W#*))1"). Identifying ((W*) ) with W’ as
in the proof of Lemma 4.4 we see that w(y) can be considered as an element
of P(W’). Hence using the isomorphism of Lemma 4.2, we see that
@(w(y)) is the map
ploy): %@ W—F,
defined by
plo@)(@ev) = o) (@) (@) .
This implies that
Plo@)(1® v) = o@)(1)(w) = (1) p(@(v)) = plo)) # 0,

whereasif x € %(g) , x ¢ %(§) , then

Il

o) @) (@(vg) = () pw(®))
= —yp(@) () = 0.

p(o(y)) (@ @ v,)

Now 1® v, is a generator for #(g)® W so that 1® v,¢ N . Hence
@(w(y)) # 0 vanishes on N . Asobserved earlier, this proves the proposition.
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