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ON K.PERIODIC QUASIREGULAR MAPPINGS IN R"

O. IT{ARTIO

1. Introductlon

Let f : R" ---> R' be quasiregular i.e. / is continuous, ACL" , and

lf'@)|" < KJ(r,f) fora.e. n eB'. Themapping / is calledperiodicwith
aperiod at*0 if f(r * a-l) : f(r) forallreB*. If / isnon-constant,
then it is well-known fhat f is discrete and open. Hence in this case the
module O of allperiodsof / isspanned.by k, | <Ic<n,linearlyin-
d.ependent periods @L,...,cou . The mapping / is then called k-periodic and

o)1t ...t @k are called primitive periods. Letr tr/ denote the (z-å)-dimen-
sional linear space orthogonal to the linear spa,ce spanned by ar1, .", aru and let

')
Then -Fr: Qrx W isa periodstripfor /. X'or ,4 C -B' and y eR*we
let' N(u,f ,A) denote the number of points, possibly infinite, in the set

A af-'(y) and we set N(f ,A) : supneRz N(y ,f ,A).
Quasiregular mappings share many common properties with plane

analytic functions, see [t-3], however, the following theorem only applies

to periodic quasiregular mappings in higher dimensions.
1.1. T h e or e m. If f : R" --> R*'is quas'iregular and' k-period'i'c,

I <lc 1n-2, then N(f ,1'f): oo.
In the above theorem the assumption "f : R" ---s p" is quasiregular"

can be replaced by "f : R" -- p" is quasimeromorphic". This turns out
ts be a slight technical difficulty, see 5.3, but all the other assumptions

are strictly necessary, for examples and more details on periodic mappings

see [4].
The proof of Theorem 1.1 is by contradiction. However, some of the

details, especially Chapter 2, are of independent interest. We shall mainly
use the terminology of [], [a], and 16l.
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2. Modulus inequallties for periodlc mapplngs

We follow [8] to define the modulus of a family J' of paths y in R* as

f
M(q : #[,, J Q" itmn

RT

where -F(,1-) is the class of all non-negative Borel-functions g : R* ---> il
such that

I od,s > t
/

forall yeL
2.1. Suppose that f : R" -..> R, is quasiregular and /c-periodic,

\ 3lc q n , with the primitive periods o)1t ...t (Dp. Let I be a path
family in R". We denote by Ir a path family such that flr:,f . We
define the modulus M' of l, as

M'(r) : inf I Q', d*,
p'eF'(ry) J

where E'(f f) is the family of all non-negative Borel-functions g' : n" --> il
such that g' is invariant under Q i.e. g'@ + a) : p'(r) for all r e R,
andall ote Q, and

I p'd" , t
{

for all y e Ir. Observe that for given -l- there does not, in general, exist
l, and in the case J", exists, it is not uniquely determined; moreover, in
many cases M'(f) + MQ).

For .4 C -8" we denote by 9A the orbit of -4 under J) , i.e.

QA:{y:n*a:ueA,a€O}.
2.2. Theorem. Let f , l,anil l, beasin2.t. If N(f ,1:y):

-l/<oo,then
I(2.3) K"(f) N M'(r) < Mg) < Kr(f) M',(rt) .

Proof . At first we shall prove the left hand side of (2.8). Let g e f(I) .

Set

Q'(r) : p(f(r)) L(r ,f) ,
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see [, p. 16]. Let f; be the family of all locally rectifiable paths 7 e -[
such that / is locally absolutely continuous on y . Then slight modifica-

tions in the proof of [8,28.2] show that M'(fr): M'(l;). Now for

yef; and a:foy

!r 
* , 

{ads 
> r

and since g' is invariant und.er Q , Q' e lTi). This implies by a t'rans-

formation formula for Lebesgue integrals

M'(r) : M'Qh = I s'n itrnn - [ eff@1" L(r,f)' itm*(r)

Fl Ff

< Ko(fl [ e(f@))"J(*,f)itm,(n)
Ff

: Ko(fl | e{il" N(y ,f , F,1itm,(a)

Rn

< Ko(h w f e. d,*,.
Rfr

Since q e?(l) was arbitrary, the first' ineguality follows.

To prove the right hand side of (2.3) let p' e I'(11). Set

D : {reR":\f'(r) and J(r,,f) >0} and "Eo: A'\.E. Then, by

[I,2.26and8.2], m,(Eo):0. Define o: R*-+-E as

o(n) : s'(r)ll(f'(r)), r eD ,

: -FOO, f eUg,

and g: -8"-+å as

S@) : sup{o(r): ref-t(y)\.

Then g is a non-negative Borel-function, see [9, p. 6]' Next we shall show

that g c f(IJ where J"t : J-\fo and J-o is the family of all paths B

in ftn such that either B is localty non-rectifiable or there is a path q.

in R, such that f " u C B and / is not absolutely precontinuous on d.

in the terminology of [9, Definition 2.4]. Then, by [9, Lemma 2.6]'

M(lr): M(f). X'ix f e/:, and assume t]nat B is a closed path' We

parametrize P by means of its arc length. Let u e T, be such that

f " o : B . Now a is absolutely continuous and for almost every f either
a(t) e D, or
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I : lf'(t)l : lf'(a(t)) a'(t)l > t(f'(u(t))) 1",$)1.

Thus the inequality o(u(t)) > q'(cr(r)) lo('(r)l holds almost everywhere.
Consequently

I

If the path B is open or half open, we obtain the result by using a simple
limit process, see [8, S 3].

To complete the proof we estimate the integral

f

J e" dm*.

Rfr

At first it is easy to show using the method of [1, T.t5], the periodicity of
/ , and the finiteness of -l[(/ , Ir) that there exists a countable net of open
disjoint cubes Qr,Qr,... such that (l) -E"VB/ : v clQn, Q) the
components of f-,Qt which meet X, form a finite collection Di, ..., D,u,

and (3) f defines quasiconformal mappings fj, nj - Q, . Since, by
lt, 2.27f, m,)fB) : 0 , (r) implies

I r" d*n

Rn

p

(2.4) : å I r'd**'
Q;

Fiv i uttd lef E,t : Oj n.Fr. Denote by j - j' theequivalence relation
Di C A@;,) . Let the equivalence classes be a1, ...,ap. Clearly p < N .

We define At: V E} , i eat, l : 1,..,,p. Now each A, is open in
X, andmappedinjectively onto Qn by f .X'orevery A eQa welet {r}:
f-'(il A Ar , l : I, ..., p. X'or almost every U e Qi

(2.5)

p

e(il" : 
,\1i,rQ'@)"lt(f 

'(n,))'

p: ) s' (ff|A,)-'(aD" lt(f ' (UlA,)-'(y)))"

'(UIA,)-'(y))- J(y , fflA,)-,)

Here we have used the quasiconformality of the mappings (flA,)-t re-
stricted to the components of f(int Ar) and the fact that aE, is of mn-
measure zero and ;f presorves sets of measure zero, see [f , S.4] . Integrating
(2.5) over Qn and using a tran$formation formula for Lebesgue integrals
we obtain

p

)oZ-r \
T:L
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I rd**
Q,I Q;

: K,(f),ä8", I a'ff'i-'(y))* J(a ,f';') d**(y)

t n',

\å, I r'' d*n: K,(f),2 
[ Q'n dmn

"1 At

-- K,(f) [ r'n d,mn ',l\
f-'Qa) n Ff

yields by (2.4)

- lt[ (.|r)

pn Ff

Summitg oveli

MV)

Since g' e n'(11) was arbitrary, the result follows.
2.6. Remarks. (a) It is possible to prove better modulus estimates

than (2.3) in the spirit of [9]. However, we shall only need the right hand.

side of (2.3).
(b) The right hand side of (2.3) is true without the assumption

N(f ,If) < co. Almost the same proof applies to this case.

(c) The essential idea in the inequalities (2'3) is that instead of / we

consid.er the mapping g : M --> R" from the orbit space M : R"l Q
induced by f . The inequalities (2.3) now become ordinary mod.ulus in-
eqrlalities for the quasiregular mapping g defined on the. manifold M .

2.7. We shall need a modulus estimate for a special path family. As-

sume that, / is as in 2.1 and, moreover, that the primitive periods of / are

the coordinate unit vectors €1,...,ep, I <k <n-l . Let W be the linear

spa,ce spanned by eu*r, ..., en and- 7 its orthogonal space. n'or -Bo > 0 we

denote

C(Ao) : {reR': d,(r,V)<Rr}.

Here d means the usual euclidean distance.
2.8. Lemma. Let Ao>l and, let fr beapathfamilyd'escribed'

in 2.1 wi,th two ad,alitional prupert'ies:
(a) Each a. e l, is conta'i,neil,'i,n ,B\C(-80) .

(b) -I/ sup, il(u(t) , V) : r' , then ,7r" tryn;gth of a. is > r'12 .

Then M'(ln) <CIR, where C d,eltend,sonl,yon n and' h.
\ J' 

-
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Proof. For fr e R" we use the representation r
Let

Q'@) _ Q'@ , ?') - 2 l"'l-(trn-h)ln if P'l
g'(r) : o otherwise'

Let a . lt and suppose that sup d,(a(t) , V) _ r'
I{ow by (b)

f n'o,

- (z,z')eV X W

) Äo and

Then r' > -BÛ

: ,r (h-l)ln

Clearly Q' is invariant
Fubini's theorem

under Q , hence Q' e F'Q) . This implies by

-O 
a

f 'drf

where

3. Behavior of / at co

Suppose that f : R"--->R" is quasiregularand &-periodic, I <k <n-2,
with If : lf(/ , E7) < o . Assume that the primitive periods of / are
412 '.., Ap .

3.1. Lemma. Unil,er the aboae assumptions limf(r) : @ os fr--+ @
i,n Ir.

Proof. Choose y rflt with cafl(f-t(y) n Ir) : N and let
l-'@) n I, : {rt, ...,nr). X'or each 'i, let Un denote a normal neighbor-
hoodof fi67 saeLI,2.4J. Wemayassumelhat QUnnU,: A for A +i.
Set U : u Ut, Y : 6fUa, and Q, : {r eR": lrnl <1, i, :
1,...,n\. We may assume that U C Qr for if this is not the case, we
may take a bigger cube instead of Qr. Now f(COQr) C CY for if
there exists r e CQQ, such that f(r) e V, then caÅ (f-Lf(r) n .F'r) > lI
whioh is impossible.

Let Q : 2 @\gcl@t where we have used the notation

M',g)
Ff VfrcLFyW 

oo

2" I V'F$*n-h) d,mn-u(z') - z* ,;-_r_-, 
_[

w n cc Ri Ro

: Z" *,*_n_tlRo ,

,'p denotes the p-dimensional measure of 8p .

pA: {reR": rlpeA},
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p e -B\{0} , for a subset :4 of R*. Observe that A is connected'; the

proof breaks down here for Ic : n- I . For each integet m ) 0 we define

g*i Q--->R" as g*(r) : mr and'set f*:f og-. Then f*: Q-'->CV,
hence {/-} is a normal family [2, Theorem 3.17]. Passing to a subsequence

if necessary, we may assume that {f^} converges uniformly on every

compact subset of Q . By [5, p. 664] the limit mapprng /r is quasimero-

morphic. We shall first show that fo is constant.
Choose a point roeQ and. a number roe(0,d,(ro,aQ)). By

the periodicity of f for every m > 2lro there exists fi* e I :
cl(B"(r* ro))\.B"(ro ,rol2) sudnlhat f*(r*) : f*(rd. Since .F' is compact

in Q, there exists a subsequence of {r*} converging to Ao e-F . On the

other hand fo@r) : fr@o) . Since this is true for all ro e (0 , d'(ro , 0Q)) ,

ro is not an isolated point of ft'fr@o). Thus /r cannot be discrete and

so it is constant : dl .

Now we shall show that lim/(r) : a äs r--> 6 in the period strip
1r. X'or a moment we ma,y assume lhab a: oo ' Let M > 0 and denote

E:9((312)Qt), E*: g*08, and I* : E1n(9*+rD"9*D). Choose

rno such that f* aE C CB"(M) for m ) mo. Now for m ) rtu6 t

af?*CfE*vfU**rCCB"(M). Since fI*CCV and f is open,

fE*C CB-(M). This shows the existence of the limit.
Finally, if a + co , then / is bounded. This violates Liouville's theorem

in ra dimensions, see lf , p. 29]. The lemma follows.
9.2. Remarlc. The above proof is similar to the proof of Theorem 8.2

in [a].

3.3. Lemma. fRr - Rn.

Proof. This immediately follows from Liouville's theorem [r, p. 29]

and Lemma 3.1.

3.4. Let P : R" --> R* d.enote the projection to the linear space W

orthogonal to the periods of f.
3.5. L e m m a. Suptpose that C C R' is such that PC i's boun'd'eil.

Then th,ere eri'sts ro> 0 with the protrterti'es

(a) 1-t3"(r) anil, Cf-tB"(r1 are connected,,

(b) CCf-LB"(r),
forall r>r^.

Proof. By Lemma 3.3 there exists c €"f-t(0) ' By the periodicity of /
and Lemma 3.I each component of f-rB*(r) is mapped onto B"(r) and

hence the finiteness of /-t101 n -F1 implies that for large r , say r ) r' ,

the r-component U(r) of. f -LB"(r) is the whole of f -tB"(r). Take rolt'
so that B"(ro) ) fC . Then C C U(r) for r > ro. If now CU(r) is not
connected, let -F denote the component of CU(r) such that "F' n -Ft is
not bounded. Observe that since I <lc <n-2 there exists only one
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such component. The proof breaks down here for It: n-I . Let E be
a component of CU(r)-\'F' . Since / is open and does not take the value
co, the periodicity of / implies fntUCB"(r), hence rl;rt4:A.
Setting U : CF we thus have fa C d B"(r). Now fU C B,(r) since /
is open. But this implies U C U(r) which shows E: O. The lemma
follows.

3.6. Remarlc. If k : tu-L, then the above lemma holds except the
result "Cf-tBn(y) is connected.", see [a]. This result turns out to be es-
sential in the constructions of the next chapter.

4. Construction lemma

Here we do the main construction for contradiction. The construction
of the path family l- in Lemma 4.2 and its modulus estimate are based
on Rickman's method in [6], and we shall frequently refer to his work and
omit some details.

4.1. Let f be as in 2.7. Recall that C(r) denotes the cylinder
{r eR": il(r,V) <, } and V is the linear subspace spanned by the
periods a1t ..., ep of /. X'ix ro ) 0 so that Lemma 3.5 holds with C : C(l) .

Let r ) ro. Then by Lemmas 3.5 and 3.1 1-tgn-r(r) meets the line
L : {te*: t } 0) at some point n. Set y : f(r).S"-r(r) . For
g € (0 ,nf welet C(y , E) be the open spherical cap of angle E centered at
y on the sphere gr-t(r) .

4.2. Lemma. Thereeri,stsafamily I of paths T: l0,tr)-->S"-t(r)
such that
(a) y(o) : y
(b) MlQ)

modulus on a splr,ere [8, S 10].
(.) y ltas q, lift d. i [0 , trf ---> CC(l) start,ing

"f d. 'is
For the proof it is convenient to consider the orbit space M : R,l Q

which is a connected and oriented n -manifold obtained from cl E, by
identifying its opposite faces. Let n : R" --> M be the canonical projection.
Then z is a covering mapping. Now / induces a discrete and" open map-
ping g:M--->R" suchthat f :g"n and card(g-L(y)) < -AI forall
A e R", Let M* : M v {a} denote the one point compactification of
M and a : M --> M* the natural inclusion mapping. By Lemma 3.1 g

has a continuous extension gx : M* ---> Rr wifh g*(.o) : co .

We remark that all the local topological results in ll, pp. 8-lll con-
cerning discrete and open mappings f : G--->R,, GC R" a domain,
remain valid if instead of / we consider g :, M -=> R, . Especially we shall

0 and fVIs" n't eans tlt e n-

at x a,nd such that the length
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use the notation U(z,g ,r) for the z-componenb of g-rB*(g(z) ,r) of a
point z in M. Similarly we shall use the concept "normal neighborhood"
in M andthenotation N(A,g,A) : caÄ(g-t(y) nA), AC M.

We shall use the following notation for paths: Let M' be M or R" .

If a: la ,bl--> M' and f : la' ,b'f --> M' are paths with a.(b) : B@')
we d.enote by or * p flne path obtained by going at first along or and then
along B . By o' we mean the inverse path of a .

The following path lifting lemma can easily be obtained from [3, 3.11]

by replacing G by M .

4.3 Lemm a. Bupposethat B: la,bl-->R''i,sapathand' zeg-t(B@')).
Then two ccrses are possibl,e: Ei,ther there i,s a path x: la ,bl --> M such that
g"q:f and, u(a):z orthere,i,s te(a,b) and,apath a:la,t)-->M
such that g " q" : Fllail, a(a) : z, lim"*, i " x(r) : co : anil' i,f y i

la,t')-->M i,sanyparti,al,l,iftof f ,i.e. g"|: frlla,t'), startingat z,
then t'<t.

In both c&ses oc is called a maximal lift of B slafting at' z .

In the following lemmas we study inverse images of caps and their com-
ponents. X'ix Ee(0,n1. LetE beacomponent of g-LC(y,q),let
C : clg-LC(y, g) , and let' C' be a component of C . By C*(u, g) we
denote the z-component of g-rC(y , E) if u e g-L(y) .

4.4. Lemma. Let f :La,bl-clC(y,fl be a patfu such that

f(a,blC C(y ,E), f(b) : y , and, Let u eg-T(p(a)) n cl"E'. Then there

eristsal,i,ft u: la,bl--->clU of B suchthnt (I) a(a) : u, (2) u(a,blC E ,

and, (3) a.(b) eS-r@). Moreouer, ala,blc E i,f anilonlyif F@) eC(y,V).
Proof. Assume atfirst that g(u): F@): ze cl (C(y,q))\C(y,d. Let

U : U(u,9,ö) be a normal neighborhood of u. Eixt e(a,b) with
F@,tlC C(U,E) aB'(2,ö). Using 16,Lemma 3.31 which also holds for
themapping g thereexists ?e UaE suchthat g(u):p(t). Let
ur: la,tf -->U be a lift of Blla,tl terminating at a, see 11, 2.7]. Then

"r@l:u and. ur(a,tlCE. Leb a, bethemaximalliftof Pz:Pllt,bl
starting at a . Then by Lemma 4.3 either (i) a.r: lt ,bl-->fr or (ii)
ar: lt,t')*E for some l' <b and i"xr(r) -> oo &s r--->t'. Nowthe
case (ii) is impossible by Lemma 3.1. Hence the required. lift oc of B is
&t* *z

If pla, bl C C(y, g), then we can select a to be the maximal lift of
B starting at u . The rest of the proof then follows as above. The last
assertion of the lemma is trivial.

4.5. Coro

4.6. Lem

Proof. The

llary. E _ C*(u,V) forsome ueg-L(A)

ma,. gE: C(y,p)

proof is similar to [6, Lemma 3.5 (d)].
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4.7. Lemma. t' : 
*.;rn",cl0*(u,g) 

: x.

Pioof. Clearly ICC'. Let zeC'. Then g(z)eclC(A,d. Select

apath f : la,bf -clC(g,fl suchthat f(a) : g(z), F@,bf C C(y,9),
anrt B(b) : A. By Lemma 4.4lhere existsalift oc: la,bf -->clC*(a.(b),q)
of P where u(a) : z and cr(b) e S-t(y) . Now the loc'qs of a belongs

to C', hence d(b) eC', andsince z e cl0*(a(Ö),9), thelemmafollows.

4.8. Corollary. C' : vclC*(uo,q) where %e9-1(A) anil'

k <N. t:l

Proof of Lemma 4.2: We start with the following construction: Leb

L>k : n{te*: t <0) and denote r' : n(r). We recall that z is the

point selected in 4.1. Consider the set

@o : {g e (0,nf : L* .1C*(r',g) : g)

and set go : sup @6 . The first step is to prove:

a) @o + A,
(4.9) b) Eo e (Ds ,

c) the r'-component of cl(g-lC(A ,go\) intersects -t*.

The proofs of a) and b) are easy and similar to 16, Lemma 3.51. To prove

c) suppose that this is not true. Let C' denote the r'-component of
c : clg-tc(a, E6) . since c' is compacbin M and since by corollary 4.8

there exist only a finite number of components of C , we can find a neighbor-

hood Z'of C'suchlhat aV'nC : Q, cl 7'iscompact,in M, and

cl (V') n L* : 0 . Suppose that go I n. Then there exists g ) 9o

such that C(y,dCgV' and C(A,dAgaV'- 0. But then
C*(*',dCV' and. so Ve@o, a contradiction. If go:n,
glV'ng"-t(r) : A and aV'.rn-t$n-r(r) : 0. Thisimpliesbylemma
3.5 g-tfi"(y) C V' and so g-rB"(r) n L* : A . But by Lemma 3.5 L*
meets g-tBn(r) .

The next step is to prove
exists a sequence Ar, ..., A p ,

g-'C(y , gi such that

that the followitg situation holds: There
1 < p < /'r , of different components of

a) At : C*(r' , Vi .

(4.10) b) cl(An)ncl(Ara1) * A, i - r,...,F-L.
c) cl(Ae)nL* + g.
d) cL(An)AAi:0, i+l-

This can be easily done by using Corollary 4.8 and (4.9) c), see also

f6, Lemma 3.6]. Let A1,,...,Ap be the sequence in (4.10). Let
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f,ti LO,t,,vf *clC(y,Ei be the path desmibed in [6, 3.8] and para,m-

etrized by means of arc length. Here o eT : 7", [6, 3.8] and fo,o
has the properties (l) F,,u$) : b e cl (C(y, go))\C(y , Eo) , Q)
fo,Åto,t) : U , and (3) f,,u(O,t,,u]C C(,y ,pr) .

X'ix ueT. Let h betheliftgir;enbyLemma4.4of 0r:fo,;,
b, : f(or), in cl Ao starting at an e cI (Ar) n cl (z4nat)\24 n \J A;a1 ,

d : 1,...,p-l . Let orn bethecorrespondinglift of pn in clAra, starting
at di, i, : 1,...,g-I . Suppose that the following conditions are
satisfied:

a)

(4.1r) b)

c)

h terminates at r'
et-r and Tt terminate at a common point for
i _ 2r...rP-l
ep-t meets L*

Then af : yl*\*TL*...*Tp_.t*ep-L is a path whichconnects n'
and L* , and T, : {l " ef is a path on S"-1(r) . By the properties of
n: R* ---> M there is now a lift dt of y, with respect to the mapping

f and starting at, r such that &! connects fi and n-LL* :
Q({zeR*:z:ten, r<0}) , hencethelengthof d.t is >lrl . By
Rickman's reasoning in [6] we have the property b) of Lemma 4.2 for t'he
path family l' : { yo: a eT } . Thus it is enough to show the existence
of the paths in (4.11). However, this is not possible in general, hence we
shall give an outline how to continue the construction in (a.9) and (4.10) if
some of the conditions in (4.1I) fails and still achieve the samelike situation
as in (4.11).

Suppose now that (a.ll) a) is not true. Then N(y,g,A) > 2 and
<\ + A where

4 : { E c (0 , Vol: g-rC(y , V) has more than one component in
Ao), i - 1,...,p-l .

Set g, : sup @1 . As in (4.r0) we c&n now form a finite number of com-
ponents All, ..., Aro of g-'C(y , E1) in 1, so that

Arru ... u Auv {arr,,...,et,q_r)

is connected for some a, e cl (Ar) n cl (Ar,,ar). Setting br, : g(arr) and

fy : fo,41 and lifting as above we finally obtain, repeating this process,

if necessary, in A, and so on, a path with the property (4.11) a). Observe
that the above repeating process ends after at most If sfups.

If (4.I1) b) is not true, we do the above construction in each -,4.n .

If (4.11) c) is not satisfied, then the terminal point of ao-, lies in
Ap n g-t(y). Two c&ses are now possible:

Casel. Ao o L* - A. Inthisc&sewechooseapoint aoecl(A) a L*
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and define the path lp similarly as the paths 71, ..., Tp-r. The construction
h Ao can be continued similarly as in the components 41, .,., Ao-t.

Case 2. Ao n L* + g . In this case we consider the non-empty set

@6: {qe(0 ,qof : C*(z,E) 'rL* - A)

where z is the terminal point of ap-r . We repeat all replacing r by z

and Eo by V6: sup @ö . This process ends after a finite number of steps

either in a case like (a.lf) c) or like Case l.
Since I{(g , g , M) < N , it is clear from the above construction that

for each a e T we end with a path 'o g'-r(r) of the form

Yo : F'r,r,* fo,",* "' * fr,rp

where zn e B'-l(r)\{y} does not depend on a and, moreover' lc < N ,

and such that T, has a lift with respect to the mapping g connecting

r' and Z* . For more details we refer to [6] . Lemma 4'2 follows.

5. Proof of Theorem 1.1.

Suppose that the theorem is not true. Performing an auxiliary quasicon-

formal transformation we may a,ssume that / is as in 4.1. We fix ro ) 0

so large that Lemma 3.5 holds with C : C(1) , see 2.7 and 4.1' X'or each

r ) ro let l, be the path family on B'-1(r) of Lemma 4.2. We set

f:vf
rlro

Now if q e l'(I), then SlB"-t(r) €.F's(I,) , and by Lemlrra 4.2

I
SN-I ?)

fnfugrating from ro to

d
Q" dS

t

I
BnQ)\nnQo1

r o grves

dt
Q" dm*

Letting t-->n implies

(5.1)

tr'or each ye f let d.

c). Set ff - {ot y €,f}
the condition b) of Lemma

MV)-.c
denote the lift of y described in Lemma 4.2

. Now a path d. : [0 , trf -> R" in ff satisfies
2.8; to see this let
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[o,ty]]- r'.
by Lemma 4.2 c). If

we let P : B* * ry" denote the projection
and estimate

r'12 ,

P(r): n (*rer+ +nnen)

I(") > la(O)-a(l)l > lP(oc(O)) -P(a(r))l
> lP(ot(r))l - lP(o((O))l > ,' - r'12 : r'12

where t is such that il,(u(t) , V) : sup d(oc(z) , V) : r' The other con-

ditions of Lemma 2.8 are true for -Bo : I , hence

(5.2) M',g)<c<a.
But (5.1) and (5.2) together with the right hand sid.e of (2.3) yield a con-
tradiction. This proves the theorem.

5.3. Remarlrc. (a) fn Theorem l.I the condition "f ; R' -+-8" is

quasiregular" cal be replaced by "f : R" ---> p" is quasimeromorphic",
for the terminology see [2]. The proof goes along the same lines. Theorem
2.2 holds as it is. In Lemma 3.1 the limit can be finite, but using an auxiliary
Möbius transformation we may still &ssume that the limit is co . Lemma 3.3

now reads fRn : nn , ,t f really takes the value oo at some point.
Lemma 3.5 cannot be proved. in its original form, however, we c&n easily
avoid the points of /-1(m) since there are, by assumption, only finitely
meny of them h Ir, and a look at the later proofs will show that we only
need the component X of Cf-rB'1r1 for which I, n F is unbounded.
The rest of the proof requires only minor changes.

(b) Theorem Ll or its quasimeromorphic form have some applications
to the theory of space quasiconformal mappings. X'or instance, the domain

Gt : {reR*: 01nn<t}, t>0,
in E' , fr 2 3 , cannot be mapped onto B* by a quasiconformal mapping

/ . For if this is possible, lhen f can 
-be extended by reflection to a quasi-

meromorphic mapping f* ' ftn --- ftn such that f't is l-periodic,
iratFy, : Gz,, and N(f*,Ir,) : l. This phenomenon was observed
by J. Våisålå in [7].

p] MenTro, O., S. RrcxvrAN, and
pings. - Ann. Acad. Sgi.
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