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ON THE SUPPORT OF A BIMEASURE AND
ORTHOGONALLY SCATTERED VECTOR MEASURES

HANNU NIEMI

1. Introduction. Let S be a locally compact Hausdorff space. By
A o(S) we denote the linear space of all continuous complex-valued func-
tions defined on S with compact support!. Let K be a subset of S .
By #.(S; K) we denote the linear space of all functions f e # ~(S) such
that the support supp f of f iscontainedin K . The topology of # (S ; K)
is defined by the supremum norm and the topology of 2 (S) is the locally
convex inductive limit topology of the Banach spaces (S ;L) relative
to the canonical injections j, : # (S ; L)— A '(S), L C S, L compact.
The set of all Radon measures on S, i.e., the dual of #(S) is denoted by
M(S) .

For two locally compact Hausdorff spaces § and 7 a bimeasure B
on Sx7T is defined as a continuous bilinear form B : # (S)x # (T) — C .
The set of all bimeasures on Sx 7 is denoted by Z.(SxT).

We note that bimeasures are especially studied in the papers of Morse
and Transue [5] and Thomas [9]. In our earlier paper [7] we have used
Thomas’s results on the integration of bimeasures in studying stochastic
measures and their so-called covariance bimeasures.

In this paper we shall give a definition of the support of a bimeasure
and show that the support of a bimeasure has some very similar properties
as the support of a Radon measure.

To justify our definition of the support of a bimeasure we shall consider
bimeasures defined by a Radon measure. By a bimeasure defined by a
Radon measure we mean a bimeasure B: # (8)x A4 (1) — C for which
there exists a (unique) Radon measure u: % (Sx7T)— C such that

B(f,9) = p(feg), feAHcS), g€ ().
We shall show that in this case the support of the bimeasure B coincides
with the support of the Radon measure u .

1In this paper R stands for the set of all real numbers and C for the set of all
complex numbers.
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In Section 4 we shall consider bimeasures B : % (S)x # (S) — C with
the property that the support supp B of B is contained in the set Ag, ¢ =
{(s,s) eSxS8| seS}. We shall give two characterizations of such
bimeasures. Moreover, we shall show that for such a bimeasure B on
Sx S there exists a unique Radon measure u,; on S such that

B(f7g):1uB(fg)7 f,gE(%C(S),

and
Bu,v) = /uvd,uB

for all B-integrable pairs (u,v) of functions w: S —C, v: §S—C.

In Section 5 we shall consider orthogonally scattered vector measures.
These vector measures are especially studied by Masani [4]. (For further
development of the theory of orthogonally scattered measures see e.g.
Sundaresan and Woyczynski [8] and Musial [6]).

We remark that in this paper we consider vector measures as vector
valued Radon measures whereas Masani considered them as completely
additive vector valued set functions. As an application of our results on
the support of a bimeasure we shall show that the basic results proved by
Masani can be proved for orthogonally scattered vector valued Radon
measures using the bimeasure theory. The basic idea in our proof
is the use of bimeasures B : A (8)x A4 (8)—C with the property
supp B C 4g,s .

In this paper we use Thomas’s [9] results concerning the integration
of bimeasures and vector measures. Thomas has proved these results
in the case of real scalars, but the results are valid even in the case of
complex scalars. The basic results concerning the integration of bimeasures
and vector measures are also presented in our earlier paper [7]. For con-
venience we here give references to both of these papers.

Note added in proof: We have recently learned that Varopoulos [10,
p- 81] has given a definition of the support of a bimeasure.

2. The support of a bimeasure. We begin with the definition of the
support of a bimeasure. Before stating the definition we introduce some
notation.

Let U (resp. V) be an arbitrary set and let K (resp. F ) be a linear
space of functions f: U-—-C (resp. g: V — (). As usual, the tensor
product E®F is considered as the linear space spanned by the functions
feg: UxV —=C, (feg)u,v) = fu)gw), wuelU, veV, feB, gek.
Moreover, let 4 C H and B C F. Then A®B stands for the set
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{feg| fed, geB}. If B: ExF—C is a bilinear form, then we
denote by B the unique linear form defined on F®F satisfying

B(feg) = B(f,g9), [fek, gelF.

Throughout the paper S (resp. 7') stands for a locally compact
Hausdorff space. If ¢, C S, ¢, C T are open sets, then 4 (G1)®A (Gy)
can be considered as a linear subspace of A (S)®# (T) . Suppose that B
is a bimeasure on Sx7 . Then we denote by B l6,xc, the restriction of
B to A (G)®A (Gy) .

Definition 1. Let B: #(S)x A (T)—C be a bimeasure. The
support of B, supp B, is the complement of the union of the sets G x 0,
such that B[Glez =0, where G, C S, Gy, CT areopen.

We recall that the support of a Radon measure u: # (Sx7T)—C is
defined as the union of the complement of the open sets  C §x7' such
that wu|, = 0, where u|, is the restriction of u to the space 7 (G).

We remark that the difference between the definitions of the support
of a Radon measure and of a bimeasure is the use of open rectangles instead
of arbitrary open sets in the latter definition.

The support of a Radon measure u: # (Sx7)-— C can be also char-
acterized as the complement of the largest open subset ' of Sx7T such
that u|; = 0 (Bourbaki [1, p. 66]2). We shall show that for every bi-
measure B on Sx7 the complement of the set supp B is the largest
open subset ¢/ of Sx7 with the property E[(;lx(;z =0, if ¢;C S and
Gy, C T are open sets such that ¢, x¢, C (.

First we prove some preliminary results.

Lemma 2. Let B: A (S)xAH(T)—C be a bimeasure on SxT
and let K, C S, K, CT becompact sets such that K, x K, C S xT\supp B.
Then there exist open sets G C S, j=1,.m, GACT, k=1,.,n,
such that

(1) UG DK, UG DK,
i=1 h=1
and
(2) G x G C SxT\supp B, Bl‘(?{fo -0,

j=1,...,m, k=1,.,n.

There exist continuous functions f;: S —[0,1], g, : T —[0,1] such
that supp f; C G4, supp 7, C Gf_ﬁ, j=1,..,m, k=1,.,n. Further-
more,

2 Unless otherwise stated we refer to the 2nd edition of Bourbaki [1].
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B) Df(s9) <1 when s €8, 2f(s) =1 when s e K,
j=1 j=1

(4) Sgit) < 1 when t € T, > gyt) = 1 when t € K,.
i1 K=1

Proof. By Definition 1 for every (s,t) € K;x K, there exist open sets
Gy(s,t), Gy(s,t) such that (s,f) e Gy(s,t)xGy(s,t), Gi(s,t)xGys,t)
C SxT\supp B and

Bi(}l(s,t)x()z(s,l) = 0.

Since K, x K, is a compact set, there exists a finite collection (s, ,{,) ,
k=1,.,M, of points belonging to K,x K, such that the sets
Gy(8, s t) x Gy, , 8, k=1,.,M, cover K, xK,. Let s eK,. Put

Gys',.) = M Gy(sy s ) -
{kls" € Gy(sp, tp)}

Then G,(s",.) is open and s eG4(s’,.). Moreover,

B[Gl(s', DX Galsgoty) T 0

for all k such that s e€Gy(s,,t,). Let " e K,. Put
Gy ., t") = N Go(sp > ta) -

{kIt" € Gy(sp, 1)}
Then Gy.,t") is open and 1" € Gy(.,t"). Moreover,

Ble,sptxu.,mn = 0

for all k& such that ¢ € Gy(s,,t,). Let G|, j=1,.,m, (resp. G},
k= 1,.,n) be a renumbering of the different sets G(s",.), & €K,
(resp. Go ., t"), 1" € Ky). Then the sets G, j=1,.,m, (resp. G},
k=1,.,n) form an open covering of K, (resp. K,). Moreover, let
je{l,.,m} and ke{l,.,n} befixed. Then

l6ixat — o,
since for every (s,t) € Gx G5 there exists at least one k' e{1,.., M}

such that (s,t) € Gy(sy , t,) x Gy(s, , 1) and, by construction,
G x GE C Gy(sy, ty) < Gy(sy , ty)

Thus the sets G, j=1,..,m, G5, k=1,.,n, have the desired

properties.
The latter part of the lemma is a direct consequence of a result proved
in Bourbaki ([1, pp. 43 —44]).
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Theorem 3. Let B: A (S)x A (T)—C be a bimeasure. Then
SxT\supp B is the largest open subset G of SxT with the property
Z?|Gle2 = 0 for all open sets G, C S, Gy CT such that G xG,C G .

Proof. Suppose that ¢, C S, G,CT are open sets such that
Gy x Gy C SxT\supp B. We show that B!Glez = 0. Obviously it is
enough to show that B(f@g) = 0, if f@g € # (G1)®H o(Gy), f € H (Gy),
g € # -(Gy) . Hence, suppose that fe A (Gy), g€ A (G, and denote

K, = suppf, K, = suppyg.
By Lemma 2 there exist open sets f C S, G5 C T and continuous func-
tions f: S—[0,1], g,:T—[0,1], j=1,.m, E=1,.,n
satisfying the conditions (1)—(4). Since

m

f®922§,f] ®(9x 9)

7=1 k=1
we get

Z ®(g,9) = 0.

H[\Ag

Eﬂm>=

Thus BJG xg, = 0.

Suppose that G C Sx7T is an open set such that B\( wg, = 0 for
all open sets ¢, C S, ¢/, C T satisfying the condition G¢;xG, C . We
show that ¢ C SxT\supp B. Let (s,t)eG. Since G is open, there
exist open sets ¢, C §, G, C T such that (s,t) e ¢;x G, C G . Therefore

B[Glx(,;, = 0,

thus (s,t) is a point of the complement of supp B. It follows that
G C SxT™\supp B, which proves the theorem.

Let p: A (SxT)—C bea Radon measure. We recall that u(f) = 0,
if f(s,t) =0 for all (s,t) belonging to the support of u (Bourbaki
[1, p. 68]). In the following lemma we state an analogous result con-
cerning bimeasures.

Lemma 4. Let B: 4 (S)®@4 (T)—C be abimeasure. If fe A (S),
geA (T) and if (fg)(s,t) = 0 forall (s,t)esupp B, then f?(f@g) =0.

Proof. Let & > 0. Denote

Ky = suppf, K, = suppyg
and
— (seS|fe) <ey, V= {teT| gl <e}.
Then the sets S\ U C K;, TV C K, are compact and (S\U)x (T\ V)
C SxT supp B. Thus, by Lemma 2, there exist open sets &/ C S,
G:CT, j=1,.,m, k=1,.,n, such that
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m
U
=1

G DOSU, UG DTV
k=1

and

B| = 0, j=1l,.,m, k=1,.,n.

G{fo
Moreover, there exist continuous functions f;: S—1[0,1], g,: T —
[0, 1] such that suppf, C G, suppg, C G5, j=1,...m, k=1,.n,
and such that the conditions (3) and (4) are satisfied (write K, = S\ U in
(3)and in (4) K, = T\ V). It follows that

n |

;ff; < Ifl, ‘Zggk' < lgl,

k=1

| m | ,; ’L 1
’f—Zlfff\ < 2o, 9= 290 <2
J= | | b= |

and
supp(f—fo]) C Ky, supp<g—kzlggk> C K.
j=1 =

Since the bilinear form B : # -(S)x # (T) — C is continuous, there exists
a constant My, ,. such that

|B(hy , hy)| < My, g, sup |hy| sup |hy|
for all Ay € #' (S Ky), hyex(T; K, . It follows that

B(f,9)

IA

S

+ B

|

éif i ,élg gk> |

§

S

< 2My, g osup |fle + 2 Mg, g suplgle.

Thus E(f@g) = B(f,g) = 0. The lemma is proved.

Let p: #(SxT)—C be a Radon measure. In this paper we denote
by supp u the support of u. Werecall that x is an element of the
o(M(S*xT), #(SxT))-closed subspace spanned by the Dirac measures

6(&,!) s (8 ’ t) € supp u , i.e.,
{06 | (s,8) supp p

where the orthogonal complements are taken in the duality
(A (SxT), M(SxT)) (Bourbaki [1, p.71]). In the following theorem
we state an analogous result concerning bimeasures.
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We recall that the set of all bimeasures on Sx7T is denoted by
B-(SxT). In the following lines we use the notation éC(SxT) =
(B| BeBSxT)}.

Theorem 5. Let B: #(S)x A (T)—C be a bimeasure. Then

B € {f®ge%6(s)®'){C(T)} (f®g)(8:t)=03 (S’t)esuppB}L’
where the orthogonal complement is taken wn the duality
(Be(SxT), A (S)@H (1)) -

Proof. Let B be a bimeasure on Sx 7' . Then by Lemma 4 we have
B(feg) = 0 for all fog € # (S)®# (T) such that (f@g)(s,t) = 0 for all
(s,t) esupp B, which proves the theorem.

Remark. Let A C SxT . In this paper we use the notations

7,(4) = {s eS| thereexists { €T such that (s,f)ed },
7y(A) = {t €T | there exists s €S such that (s,t)ed}.

Theorem 5 can also be formulated as follows. Let B: A4 (S)x 4 (T) — C
be a bimeasure. Then

B € {{0,| s em(supp B) 1'®{ 8, | t € my(supp B) }}*,

where the orthogonal complements (from left to right) are taken in the
dualities (A (S), 4 (S)), (A (T), A (T)) and (B(SxT), A (S)@A (T)).

3. Bimeasures defined by Radon measures. Suppose that w: A (S xT)
— (' is a Radon measure. Then the bilinear form B : 4 (S)® 4 (T)—C,

(5) B(f.g) = w(feg), [fe A8, g€ AT,

is a bimeasure on Sx7 . On the other hand, if B: # (S)x 4 (T)—C
is a bimeasure on S x 7', then there does not always exist a Radon measure
w on SxT such that (5) is satisfied (see e.g. Edwards [3, pp. 93 —95]).

Definition 6. Let B: #(S)x A (T)—~C be a bimeasure. If
there exists a Radon measure p: A (SxT)—C such that the equation
(5) is satisfied, then we say that B can be extended to a Radon measure or
that B 1is defined by a Radon measure. If B: A (S)x A (T)—C s
a bimeasure which is defined by a Radon measwre and if p s a Radon measure
on SxT satisfying the equation (5), then we say that w s a Radon extension
of B.

Remark. Let us say that a bimeasure B on Sx 7 has the property
(C), if the linear form B: H S (1) — C is continuous, when the
space A (S)®@A (1) carries the topology induced by # (SxT). A bi-
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measure is defined by a Radon measure if and only if it has the property (C').
Suppose that a bimeasure B on Sx7 has the property (C'). Since the
space A (S)@A (T) is densein # (S xT) (Bourbaki[l, p. 83]), the linear
form B: # cS)e A (T) — C can be extended by continuity to a continuous
linear form defined on # (S xT) or equivalently to a Radon measure on
SxT . Conversely, it is clear that every bimeasure defined by a Radon
measure has the property (C). Moreover, since # (S)®4 -(T) is dense in
A (SxT) the Radon extension of a bimeasure defined by a Radon measure
is unique.

Theorem 7. Suppose that a bimeasure B: A (S)x A (T) — C
18 defined by a Radon measure. If u, is the (unique) Radon extension of
B, then

supp B = supp py .

Proof. First weshow that supp B C supp . Let (s,t) €S x T\ supp .
Since supp uy is a closed set, there exists an open set ¢ C Sx 7 such that
(s,t) e C SxT\supp u; . Moreover, we can find open sets @; C S,
G, C T such that (s,t) eGyxG, C (. By the definition of supp uy
we get

B(f,9) = wuslfeg) = 0
for all fe (G, g€ #(GFy) . Therefore
é‘(;lx(;z = 0,

which implies that (s,f) € Sx7\supp B .
On the other hand, let (s,#) € Sx 7T\ supp B. By Definition 1 there
exist open sets G/, C S, ¢, C T such that (s,¢) e, x @, and

B‘Glx(iz = 0.

Since § and 7 are locally compact Hausdorff spaces we can choose the
sets G, and G, such that their closures ¢/, and (i, are compact. Let
h e (SxT) be such that supp h C G x G, and let & > 0. Since the
space A (S)x A (1) is dense in A4 (S x7T) (Bourbaki [1, p. 83]), there
exists an open relatively compact set U Dsuppks and a function
h, € A (S)®A4 (T) such that supph, C U and

sup | h — h, | < ¢

(Bourbaki [1, Ist edition pp. 55— 56]).

Denote K, = m;(supp k), K, = my(supp h) . Then the sets K, and
K, are compact and K, C ¢;, K, C (,. Therefore there exist continuous
functions Ay : §—1[0,1], hy: T—[0,1] such that supph, C G,
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supp by C Gy, Iy(s) =1, seK;, hyft)=1, te K, (Bourbaki [I,
pp. 43—44]). Since h, € # (S)® A (T) , it has a representation

’
= D w8V, .
k=1

Define %, € 4 (S)®4 (T) by setting

h

&

P,
b, = h, (h®hy) = > hyu,@hyv,.
Pl

€

Then supp(h, w,) C ¢; and supp(hyv,) C G, forall k= 1,.,p. Thus
~ P~
Bh) = > B(hyw®hyv,) = 0.
1

k—
Moreover,

sup [ hls,t) — (s, )| = sup k(s 1) — ks, 1) |

(s,0)eSxT (s,5)eSxT

sup ‘ hs(s s t) - h;(s ) t) ‘

(s,2) eSxT

+

& + sup ] h’e(s s t) - h;(s ’ t) :
(s,1) ¢ Ky x K,

V\\

IN

e + 2¢,

since
hi(s,t) = h(s,t) when (s,t) € K;xK, and
lhi(s,t)] < |h(s,t)] when (s, 1) ¢ K;xK,.

Since the linear form u,: # (S x7T)— C is continuous and since the set

élxa’z C SxT is compact and supph C Gyx Gy, supph, C GyxGy;
there exists a constant M > 0 such that

s < g — k)| + |uph)| < 3Me + |Bh)| = 3Me.
Since the constant M does not depend on the choice of &, we get
uy(h) = 0. Thus (s,t) € SxT\supp puy, which proves the theorem.

4. Bimeasures concentrated on the diagonal. Let S be a locally compact
Hausdorff space. Denote

As,s = {(s,8eSx8S| sel}.

In this section we consider bimeasures B : A (S) x A ~(8) — C satisfying
the condition

(6) supp B C 4y, 5.
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Our aim is to show that in this case there exists a Radon measure Uy on
S such that

B(f.g) = ffgdug

for all B-integrable pairs (f,g) and that B is defined by a Radon measure.

First we recall how the integral of a bimeasure is defined (for the details
see Thomas [9, pp. 144 —145] or our paper [7, pp. 20— 22]).

We remark that we use the same terminology as Thomas, i.e., we use
the terms integral and integrable when Bourbaki uses the terms essential
integral and essentially integrable.

If p is a Radon measure, then the set of all u-integrable functions is
denoted by ZL(u) .

Let B be a bimeasure on Sx 7. Thus B is a continuous bilinear form
defined on " ((S) x # (T) , so that the linear forms B(.,g): # (S) — C
and  B(f,.): A (T)— C, which are defined by setting

B(!g)(k) =B(k>g)’ kE%C(S),
B(f5)(k) =B(f,k)’ hE.}{C(T),

are continuous for all g € 4 (T), fe #(S). Define the linear mappings
Wyt H(T) — M (S) and uy: A (S) — M (T) by setting

uplg) = B(.,9), g € #(T),
up(f) = B(f..), € AH9).

If the space .#.(S) (vesp. .#.(T)) carries the topology o(.4.(S), # (S))
(resp. the topology (.4 (T) , # +(T)) ), then the mapping u}, (resp. ul)
is a continuous linear mapping, i.e., it is a vector measure with values in
M(S) (resp.in 4 (T) ). Moreover, the set of the u}-integrable functions
is

(7) Ly = N LUB(f, ) .
te A cS)

If heLi(uy), then the integral of A with respect to Wy is denoted by
[hduy orby B(.,h) and it satisfies the conditions

fkdﬂ;3 € M(S)

and
<f,fkd,uj}> - fth(f,.) forall f € A o(S) .

Similarly, the set of the ul-integrable functions is



On the support of a bimeasure and orthogonally scattered vector measures 259

(8) ZLolup) = N ZLuB(.,9).
ge A (1)

The integral with respect to uy of a function A e #L(u}) is denoted by
[hdys or by B(h,.) and it satisfies the conditions

[ hauy < )

and

<g,fkd,ug> - /th(.,g) forall ¢ e o (T) .

Definition 8. Let B be a bimeasure on S xT . If the functions
fi8—=C and g: T —C satisfy the conditions

(i) f e Llus), 9 € Liuy)

(the Radon measures B(f,.) e M (T) and B(.,g) e M(S) are thus
defined ) |
(i) f e ZeB(.,g9) and g e LUB(f,.)),

iy [ raB(. o) - [oang.:

then we say that the pair (f,q) 1is integrable with respect to the bimeasure
B or in short B-integrable and denote

B(f,g) = fgdB(f,-) = fde<.,g).

Now we go on to the case of bimeasures B: 4 (S)x 4 (S) —C
satisfying the condition (6). First we prove a lemma concerning arbitrary
bimeasures. The lemma is proved by using a result due to Morse and
Transue [5]. For that reason we first introduce some notation.

In this paper we denote by #  (S) (resp. by #.(T)) the set of all lower
semi-continuous nonnegative functions  f: S+ Rt U {0} (resp.
g: T— Rt U {0}), where Rt = {veR| 2 >0},

Let B: A (S)x A (T)—C be a bimeasure. Define

B*(h , k) = sup B(f,9)| when h e 7.(S), k € #.(T),
I<h, 1<k
fed c(s) ge A (1)
B*h, k) = inf B*(f,9) when h: S—R*, k: T >R"
[=h, g=k

are arbitrary functions.

fe (S ege g (1)

Let B be a bimeasure on S x 7' . We recall that Theorem 7.1 of Morse
and Transue ([5, p. 494]) states that a pair (f,¢) of functions f: S -,
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g: T — C is B-integrableif f € Zt(u}) , g € Li(u}) andif B*(|f|, |g]) < oo
(see also Thomas [9, pp. 146 —147T]).

Before stating the lemma we note that the characteristic function of
a set 4 is denoted by y, .

Lemma 9. Let B: #(S)x A (T)—C bea bimeasure. If U C S
and V C T are relatively compact Borel sets, then the pair (yy , xy) s
B-integrable.

Proof. First we note that by the relations (7) and (8) it follows that
sy € LLy) and g, € Ze(uy) . Furthermore, let ¢, C 8 and G, C T
be open relatively compact sets such that U C &,, V C (G,. Since
B A o(S)x A (T)—C is a continuous bilinear form, there exists a constant
M > 0 such that

B(f,g9)| < M sup |f|sup lg|
forall fex(S:6), geH (T ;G . Thus
B*(6, > 16) = M.
Moreover, it follows from the definition of B*(y, , ;) that
B*(v s 2v) = B*(x6, 5 26 -

The lemma follows then by the result of Morse and Transue mentioned
above.

The following theorem is important for us.

Theorem 10. Let B: #(S)xAH(S)—C be a bimeasure on
SxS8. If

B(ya, »24) = 0

for all relatively compact Borel sets Ay, Ay C S such that A, N Ay = 0,
then there exists a unique Radon measure uy: A (S) — C such that

B(f,g9) = wug(f9)

for all f,g €4(S); where (fg)(s) = f(s)g(s), se€S.

Proof. First we construct the Radon measure u,. The method is
analogous to the standard method used for example in Bourbaki [1, pp.
164 —168] or by Thomas [9, pp. 106 —107].

Let K C S be a compact set and let U be a relatively compact open
subset of S such that K C U . By &, we denote the linear span of the
characteristic functions of the Borel sets 4 C U . The topology of & is
defined by the supremum norm.

For a Borel set 4 C U we define

uy = Blya, xa) -
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We show that the linear mapping u: &, — C defined by setting
ulh) = Zak;‘Ak, if b = kzlak X1, € v,
k=1 k=

is continuous. First, by assumption the support of the Radon measure

B( ., yy) is contained in the compact set U ; thus B(., y,) isa bounded
Radon measure (Bourbaki [1, p. 70]) . Moreover, if

n
o= 2 a,n, €6y,
k=1
then, by assumption,

ulh) = ],Zlakfmk dB( ., 1y) -

Therefore

|

(9) jwk)| < IB( ., xp)l| sup

’

n
2 Xa,
F=1

which proves the continuity of u .

By &, we denote the closure of &, in the linear space of all bounded
functions f: U — C carrying the topology defined by the supremum norm.
Since the mapping u: &, — C is continuous, it can be extended to a
uniquely determined continuous linear mapping w: &,—C . Since
H (S K)C g, (Bourbaki [1, p. 162]) we get, by restriction, a linear
mapping u: A (S ; K)— C, which is continuous if the space # (S ; K)
carries the topology defined by the supremum norm.

It follows from the way of defining the mapping wu: # (S ; K) —C
that its values remain the same if we had chosen, instead of the set U,
another open relatively compact subset of S containing the compact
set K .

It follows that the mapping pu,: # (S) —C,

up(f) = wp(f), [ e A (8),

is a continuous linear mapping, i.e., u, is a Radon measure on § .
Moreover, it follows from the construction of the Radon measure pu,
that

(10) /XA dpy = iy

for all relatively compact Borel sets A4 C S .
Next we show that

B(f,9) = us(f9) forall f,g € A(S).
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Let K,L C S be compact sets and let U C § be an open relatively
compact set such that K U L C U . It follows from Lemma 9 that all
pairs (u,v) €6, x &, are B-integrable. Thus, we can define a bilinear
mapping B': &§,x &, — C by setting

B'(w,v) = B(u,v), u,v € &y .
We show that B’ is continuous, if the space ¢ carries the topology

defined by the supremum norm.
First we note that B(., y,) is a bounded Radon measure, since

supp (B( ., %)) C U . Moreover, if

m

n
wo= > ay Xay;o U = D, s Xay, € 6u>
=1 k=1 -
then, by assumption,

B,(’LL ’ ?J) = Z a]j oy, B(XAU- ’ XAQk)

m n

D 2 B(XAUnAQk s Xdp;Ndgy ) -

Il

=1 k=1
It follows that
B'(w,v)| = ‘ Z A1j Aok Xaq ;0 Agy dB(., xv)
=1 k=1

| m n |

IB( ., xo)ll WP z Dy Uy ZA”nAgkz

|7=1 k=1 |

(1)

A\

; | | & \
< [IB(., xu)|sup| Zla]j XA]/} sup i}z]azk X4y,

7=

| m

’

which proves the continuity of B’ .

The continuity of B’ implies that it can be extended to a uniquely
determined continuous bilinear mapping B’ : &, x &, — C .

We show that the restriction of B’ to the space 7 (S ; K)x 4 (T ; L)
coincides with B .

Suppose f e (S; K). Clearly, B*(|f|, |v]) <o forall ved&,.
Thus, using again the result of Morse and Transue ([5, p. 494]) mentioned
above, we see that the pair (f,») is B-integrable for all » € &, . Further-
more, since the function f can be uniformly approximated by the functions
of &, (Bourbaki [1, p. 162]) it follows from the definition of the bilinear
form B': &, x &y — C using the Radon measure B(.,v) that

B'(f,v) = fde(.,v), v €E .
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Furthermore, since the pair (f,v) is B-integrable, we get

B(f,v) - /vdB(f,.), v e &y,

As above, we see using the Radon measure B(f,.) that

B0 = [odBif.);
thus
B'(f,9) = B(f.9).
Suppose feA(S;K), geAx(S;L). We show that
B(f.9) = ws(f9).

Let &> 0. Then there exists u,v €&, such that sup [u—f] <e,
sup [v—g¢g| < e and sup |v| < 2sup |g| (Bourbaki [1, p. 162]); thus
(wv—fgl < Juwe—fol + [fo—fg| < 2esuplg| + esup|f].

On the other hand, since u ,v € &, there exist the representations

m

n
w o= > ay Hagjo U= kzla% Xdgy

j=1

Moreover, by the relation (10) we get

B'(w,v) = z Z Ay Ay, B(XAU ) xAgk)

j=1k=1

m
= Z 2, @yj Aoy, B(XAljﬂAgk ) %AljﬁAZk)

2 2“1]‘“% Xaq;nag, duy, = fh,dyﬁ,

j=1 k=1

I
~

where

m n
h = Z Zalj Aok Xaq;0 dgy -
1

j=1 k=

Therefore we get by using the relations (9) and (11)

| B(f,9) —us(f9)| < |B(f.g9) — B'(w,v) | + ‘fhdﬂn“ﬂn(fg)’

< 2e[|B(., xo)ll (sup |f| + 2suplg]),
which proves that B(f,g) = us(f9g) .
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The uniqueness of the Radon measure u, follows immediately from
the relation B(f,g) = pp(fg) for all f,g e (S).

The theorem is proved.

Next we show that the conditions stated in Theorem 10 are satisfied for
all bimeasures B on SxS8 for which supp B C 4g, .

Lemma 11. Let B:AS)xA(T)—C be a bimeasure. If
KCS, LCT are compact sets such that KxL C SxT\supp B, then

B(yg, 7)) = 0.

Proof. Note that by Lemma 9 the pair (x4, y,) is B-integrable.
Therefore it is enough to show that

fXLdB(XK>') = 0.

Since K x L is compact and since K x L C SxT\supp B, there exist
by Lemma 2 relatively compact open sets ¢{ C S, G5 C T and continuous
functions f;: S —[0,1], g¢,: T—[0,1], j=1,...,m, k=1,.,n,
such that the conditions (1) — (4) are satisfied. Denote

n
f 27 ! vk
G =v@, G, = VG,
j=1 k=1

b= gfja K = kzlgh-

Note that G, x G, C SxT\supp B, supph C ¢; and supph” C G, .
Let & e (T) besuchthat Kxsupph C SxTsupp B. We show
that

(12) f hdB(gg,.) = 0.
Denote v, = B(.,h). If geA(S), then
ml(lg) = sap (f)l = sup [B(f,h)].
1< lel <l
fe A c(S) e oS

By Lemma 4 we get B(f,h) = 0 forall fex (S) such that (f®g)(s,t) =0
for (s,t) esupp B. Therefore [v,[(lg]) = 0 for all g e #'(S) satisfying
the condition

(g®h)(s , 1) = 0 for (s,t) € supp B .

Furthermore, since 7' > y, = 0, k' €4 (S) and since (A'®h)(s,t) = 0
for (s,t) esupp B we get

W l(xg) < [mlB) = 0.
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Therefore
f v dB(. k) = 0.

Clearly, the pair (yx,h) satisfies the condition B*(y , |k]) < oo, thus
it is  B-integrable, which implies that

fth(xK,.) ~ 0.

Denote v, = B(yx,.). Asabove,

Vel(x) < |velA”).

Since k" e (T), " =0 and Kxsupph” C SxT\suppB we get,
using the relation (12),
el = sup | [ B, | = o0,
n<n"
1eA clT)

thus

fXLdB(XKa') = 0,

which proves the lemma.
Lemma 12. Let B: X (S)xA (T)—=C
UCS, VCT arerelatively compact Borel sets such that U x V C 8 x T\

Therefore |vg|(yx;) = 0,

be a bimeasure. If

supp B, then
B(xv,aw) = 0.

Proof. Note that by Lemma 9 the pair (y,, y,) is B-integrable.

Therefore it is enough to show that

/XVdB(XUw) = 0.

Denote v, = B(yy,.). Let > 0. Since y, € £L(vy) there exists
a compact set L C V such that

ullximy) < &
(Bourbaki [1, p. 152]).
Denote v, = B(., ;). As above, there exists a compact set K C U
such that

!”L|(XU\K) < £.
It follows that
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< &

fodB(xU,~)—fodB(xu,-)

and, using the fact that the pair (y, , x;) is B-integrable,

‘fodB(xU,-)—fxde(-,xL)
1/%UdB("xL)—fXKdB("XL)

Moreover, since K x L is a compact set and since K x L C 8xT\supp B,
we get, using Lemma 11 and the considerations made above

UdeB(xU,.) < fodBuU,.)—fodB(xU,-)‘

< €.

+ fxudB(-,xL)—/deB(-,xL)

< 2¢,

+ fXKdB('=XL)

which proves the lemma.
Lemma 13. Let B: A (S)x A (S)—C be a bimeasure on S x5S .
If supp B C 4g,s and if U,V C S are relatively compact Borel sets, then

By xv) = B(yunv s Xvnv) -

Proof. Note that by Lemma 9 the pairs (y, ., %) and (xyny s Zvnv)
are B-integrable.
If UnV =0, then

UxV C SxSN dsys € SxS\supp B.

Thus, in this case we get by Lemma 12
Byy, aw) = 0.

It follows that in the general case we have

B(xy s xv) = Bayavsay) + Blruns) 1v)
= B(yunyv:xv) = Bltvavs xvav)
+ B(tuny s tvnsiw) = B(xuny > Xunv) -

The following theorem is one of the main results in this paper.

Theorem 14. Let B: A (S)xA(S)—C be a bimeasure on
SxS8. Then supp B C Ag,s if and only if there exists a unique Radon
measure pg: A (S)—C such that
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(13) - B(f.,9) = pu(f9 for all f,g € A (S).

Proof. It is clear that in case the Radon measure u; on S satisfying
the relation (13) exists, it is uniquely determined.

Suppose the bimeasure B on Sx8 is defined by the relation (13),
where u; is a given Radon measure on S. Then fg =0 for all
fr9 €A (S) such that suppf N suppg = @ . Thus B(f,g) = 0, which
proves that supp B C A, .

On the other hand, if B: x# (S)x # -(S)— C is such a bimeasure that
supp B C 4s.s. Then it follows from Lemma 13 that the assumptions
stated in Theorem 10 are satisfied, which proves the theorem.

The following characterization is a direct consequence of Theorem 10,
Theorem 14 and Lemma 13.

Theorem 15. Let B: A (S)x A (S)—C be a bimeasure on Sx S .
Then supp B C Adg.s if and only if

B(xa, > 24) = 0

for all relatively compact Borel sets A, , Ay C S such that A, N Ay = O .

Next we consider some special properties of the bimeasures B on
Sx 8 for which supp B C A, .

Theorem 16. Let B: A (S)x A (S) — C be a bimeasure on Sx S .
If supp B C 4dg,s, then B is defined by a Radon measure.

Proof. It is enough to show that the linear form B S)® A (8)—=C
is continuous, when % (S)®# (S) carries the topology induced by
H(Sx8) .

Since supp B C 4g,5, there exists by Theorem 14 a unique Radon
measure u, on S such that

B(f,9) = us(fg)  forall f,g € A (S).
Suppose
b= kflfk®gk € H(S)BH (S) .
Then i

- "

B(h) = z B(f,,9,) = HB( ka 9k> .
k=1 k=1
Moreover, since

kzlfk Jp € H(8),

and since u, is a Radon measure on S, there exists a constant M such
that
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[BN(h)I = |MB <k21fk gk> < M sup k21fk 9r | -
It follows that
Byl = |B(Shea)| = Msup| 30 60
< M sup |2 (i®g)(s, )|,
(5,8) €SS | k=1

which proves the theorem.

Let B: A o(S)x A (S)—C be a bimeasure. The following theorem
gives a characterization of B-integrable functions in case supp B C Ag, .
For the theorem we recall some definitions.

Let u be a Radon measure on S. A function f: §— C is called
locally u-integrable if fg € Li(u) for all g € #°(S) . We remark that for
a locally u-integrable function f: §— ' the mapping f.pu: A (S) —C,

(. w)lg) = ffgdu, g€ HelS),

is a Radon measure, which is called the measure with density f with respect
to p (for the details see Bourbaki [2, pp. 41 —44]).

In the proof of the following theorem we use a result proved in Bourbaki
[2, p.47]. Tt states: For a Radon measure p on S and for a locally u
-integrable function w: S-—>C one has fe%¢(u.pu) if and only if
uf € Li(p); and in this case

/fd(u.,u) = ffud‘u.

Theorem 17. Let B: A o(S)x A (S)—C be a bimeasure on S xS .
Let supp B C Ay, s and let uy be the unique Radon measure on S satisfying

B(f,9) = ws(fg)  fordl f.g € H(S).

A pair (w,v) of functions w: S —~C, v: S->C is B-inlegrable if and
only if w and v are locally p,-integrable and wv € L(uy) . In this case
Bu,v) = / wvdpy .

Proof. Since
B(f,9) = ws(f9) forall f,g € A (S),
we get

B(f,.) Joug and  B(.,g9) = g.u,

I
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when f,g € 4 .(S). Moreover, it follows that a function w: §—C is
locally ug-integrable if and only if it is B(f, . )-integrable for all fe 7 .(9),
or equivalently, if and only if it is B(.,g)-integrable for all g e (S).
Therefore w is locally ug-integrable if and only if w e Z{(uy), or
equivalently, if and only if w e #{(u};). Moreover, in this case we get,
using the result of Bourbaki [2, p. 47] mentioned above,

fde(f,.) ~ fwfdﬂg, fe xS,

[want.o = [wodu. gexas.

Suppose the pair (u,v) of functions w: S—C, v: S—C is B
-integrable. The considerations above show that u and v are locally u,
-integrable. Thus, it is enough to show that

fvdB(u,.) = /'u,v(l,u]g.

Since the Radon measure B(u ,.) is defined by the relation

Blu, . )(g) = fudB<.,g>, g € Ao,

and since « is locally pu,-integrable, it follows that B(u,.) = . uz.
By assumption (u, ) is B-integrable, thus v € Z{(B(u,.)). Again by
the result of Bourbaki [2, p.47], we get wv € ZlL(u,;) and

Bu,v) = / vdBuw,.) = f wodu, .

On the other hand, suppose the functions u: §—C, v: §—C are
locally u,-integrable and uwv € Z¢(uy) . It follows from the considerations
made above that

w e Leuy), v e Leluy) .

Thus, the theorem is proved if we show that

[vdB(u,.) = fudB(.,v).

By symmetry it is enough to show that

fvdB(u,.) = /uvdy,i.

Also in this case we have B(u,.) = u.u,. By assumption wv € Z(ug) .
Thus, using the result of Bourbaki [2, p. 47] we get v € Z{(B(u,.)) and
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fvdB(u,.) = fuvd,uB.

The theorem is proved.

5. An application to orthogonally scattered vector measures. In this chapter
H stands for a Hilbert space with complex scalars. Moreover, by (.].)
we denote the inner product and by || .|| the norm of H .

Let A4 be an arbitrary set and let 2 be a semiring (or a pre-ring) of
subsets of 4. Werecall that Masani [4, pp. 63 — 64] defined an orthogonally
scattered vector measure (with values in a Hilbert space) as a completely
additive set function u: 2 — H such that

(u(dy) | udy) = 0 forall 4,,4, ¢ 2, A,n 4, = 0O

(see also the definition given by Sundaresan and Woyczynski [8, p. 345]).

In this section we define an orthogonally scattered vector valued Radon
measure (with values in a Hilbert space) and give two characterizations of
such vector measures. Moreover, we show that Masani’s basic results for
orthogonally scattered vector measures can be proved for orthogonally
scattered vector valued Radon measures by using the results concerning
bimeasures B : # (S)x A (8) — C with the property supp B C 4g
proved in Section 4.

First we recall some results and definitions concerning vector measures
with values in a Hilbert space and their integration. For the details see
Thomas [9, pp. 65—82] or our paper [7, pp. 15—17].

A continuous linear mapping u: A (S)— H is called an H-valued
vector measure on S or a vector measure on S with values in H . 1f u
is an H-valued vector measure on S, then we denote by #L(u) the set of
all p-integrable functions.

Definition 18. Let p be an H-valued vector measure on S . Then
the (continuous) bilinear form B : A (S)x A (S) — C

B(fag) = (/‘(f)]:u(g))a f:g G%/C(S),

18 called the bimeasure defined by u .

Before stating the following lemma, which is due to Thomas [9, p. 101],
we recall that a function f: S — €' is said to be a Borel function, if f~(@)
is a Borel set in § for all open sets & C C'.

Lemma 19. If w s an H-valued vector measure on S, then every
Borel function f: S — C with compact support is u-integrable.

The following result is proved in our paper [7, pp.29—30] by using
a different terminology, i.e., we considered there stochastic measures and
their covariance bimeasures instead of vector measures with values in
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a Hilbert space and bimeasures defined by these vector measures. The
difference is only terminological.

Before stating the lemma we remark that for an H-valued vector
measure u we have

ffdy e H forall f e Li(n) .

Lemma 20. Let p be an H-valued vector measure on S and let
f:8—=C, g: 8S—C be u-integrable functions. If B 1is the bimeasure
defined by ., then the pair (f,g) is B-integrable and

B(f.,g9) = <ffdu{f9dﬂ>~

Now we go on to the case of orthogonally scattered vector measures.
Definition 21. An H-valued vector measure pn on S s called
orthogonally scattered, if

(u(f) | mg) = 0

for all f,q €4 (S) such that suppf nsuppg = O.

Next we give two characterizations of orthogonally scattered vector
mesures.

Theorem 22. Let u be an H-valued vector measure on S and let
B be the bimeasure defined by . Then w is orthogonally scattered if and only
if supp B C s, .

Proof. Suppose p is an orthogonally scattered vector measure on S
with values in H . If s,s €8, s+# s, then there exist relatively
compact open sets ¢, ¢, C S such that (s,s) e (;x G, C SxS\ 4.5 .
Moreover, since u is orthogonally scattered, we get

Bis xe, = 0.
Thus, (s,s) €S xS\supp B, which proves that
supp B C 4. .

On the other hand, suppose u is an H-valued vector measure on S
such that the bimeasure B defined by u satisfies the condition
supp B C Ag.5. If f,g € (S) are such that suppf nsuppg = 0,
then (f®g)(s,s) = 0 forall seS. Thus, by Lemma 4,

(u(f) | wlg)) = B(f,9) = 0;

which proves that g is orthogonally scattered.
The theorem is proved.
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Theorem 23. An H-valued vector measure p on S 1is orthogonally
scattered if and only if

<f%A1dMI/XA2d/‘> =0

for all relatively compact Borel sets A, , Ay C S such that A, N 4, = O .

Proof. Let B be the bimeasure defined by p. Suppose 4,,4, C 8
are relatively compact Borel sets. By Lemma 19 we have y, , x4, € Z(u) .
Moreover, by L.emma 20

(/ xAldM{fo2 dﬂ) = B(x4,» xa,) -

Thus, the theorem is a direct consequence of Theorem 22 and Theorem 15.
The following theorem is one of the main results in this paper. It is
analogous to Theorem 5.9 of Masani [4].
For the theorem we recall that #%(v) is the closure of #.(S) in the
space ®
Fi) = {f: 8=C||"(|f]) < 0}

the topology of #Z(v) is the locally convex topology defined by the semi-
norm N, (f) = |p[*(|f)"*, feFir). Moreover, the space Zg(u) is
the closure of #.(S) in the space *

Felw) = {f: 8=>0] w(fl) <o}

the topology of Z¢(u) is the locally convex topology defined by the semi-
norm N, ,(f) = u*(f), [ e Feln) .

Theorem 24. Let p be an orthogonally scattered —H-valued vector
measure on S . Then there exists a unique Radon measure v on S such that

(u(f) | p(g) W(f9)
for all f,g €4 .(S). The Radon measure v s real-valued and positive,

ie, o(f) =o(f) for all fenc(S) and v(f) =0 for all feA(S),
[ = 0. Furthermore,

2

(14) pr(f) = Pl = 2 un(f)
for all f: SR+ U {0}, Liu) = L) and

</fdu fgd/»> = f.f?/d-v

for all f,9 € L) .
3 I*()r the details see Bourbaki [2, pp. 7—9]; note the terminological difference.
4 For the details see Thomas [9, pp. 65— 67] or our paper [7, pp. 15—16].
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Proof. The existence and uniqueness of the Radon measure
v: A (S)—C with the property

(u(f) [ n(g) = V(fg): fr9 € A(S),

follows from Theorem 22 and Theorem 14.

Let feA(S) and let U C S be an open relatively compact set
containing supp f. Then there exists a continuous function g:8 —[0, 1]
such that suppg C U and g(s) = 1 when sesuppf. It follows that

(u(f) | u(g) = »(fg) = »(f).
On the other hand

W(f) = wgf) = (ulg) | u(f) = @) | wg),

which proves that » is real-valued.
Moreover, for all fe# (S), f=0; we have

v(f) = »(f PP = () L) = 05

which proves that » is positive.
Next we show that the relation (14) is valid.
Suppose f € #.(S). Then

[*(f?) = sup [p|(h) = sup sup  [»(9)]
0<_h<f? 0<hlf? lg1<h
e A c(S) e A clS)  geH ¢(S)
= sup [v(g)].
lg1< s
ge A ¢S
On the other hand
w(f) = sup |u@l = sup Blg, 9"
g1t lg1<f
ge A clS) ge A clS)
= sup (g
lgl<f
ze A clS)
Since
sup  »(lgf) = sup (g,
lg1<f lgl<f?
ge A cS) ge A c(S)
we get

w() = Bl

Moreover, since » is positive we get
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pB)| = [»(Reh) + iv(Imh) | < 2(h)
for all A e (S). Thus

WA < 2 sup a(jg)'* = 2¥ sup  w(lg)t?

lgI< lgl<f?
ge A cS) ge A c(S)
= 2 sup WA = 2 ().
m<f
he fc(s)

The relation (14) is thus proved for all fe #.(S).

A straightforward calculation shows that the relation (14) is satisfied for
all f: §— R+ U {0} with compact support and therefore even for all
f: 8= R+ U {c0}.

The relation #%(u) = #%(») is a direct consequence of the relation (14)
and of the definitions of the spaces Z%(u) and Z2Z(v).

To show that

Bif.g) = [fgdy  forall f.g e 2iu)

it is enough to note that the assumptions stated in Theorem 17 are satisfied,
by Lemma 20, for all f,g € LL(u) .
The theorem is proved.
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