Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 1, 1975, 277 – 283

THE DOMAINS OF NORMALITY OF AN ENTIRE FUNCTION

I. N. BAKER

1. Introduction

If f is a rational or entire function of the complex variable z its natural iterates f_n are defined by $f_1(z) = f(z)$, $f_{n+1}(z) = f(f_n(z))$, n = 1, 2, The theory developed by Fatou [7,8] and Julia [11] deals with the set $\mathfrak{C} = \mathfrak{C}(f)$ of points of the complex plane in whose neighbourhood $\{f_n(z)\}$ is a normal family. It is convenient to express many results in terms of the complement $\mathfrak{F}(f)$ of \mathfrak{C} , i.e. the set of non-normality. We shall assume throughout that f is not a rational function of order 0 or 1. Then $\mathfrak{F} = \mathfrak{F}(f)$ has the following properties (see [7] and [8]).

I. $\mathfrak{F}(f)$ is a non-empty perfect set.

II. $\mathfrak{F}(f)$ and $\mathfrak{C}(f)$ are completely invariant under the mapping $z \to f(z)$.

In general a set S is called completely invariant under $z \to f(z)$ if $\alpha \in S$ implies that $f(\alpha) \in S$ and that $\beta \in S$ for every solution β of $f(\beta) = \alpha$.

The components G_i of $\mathfrak{C}(f)$ are maximal domains of normality for $\{f_n\}$. The theory considers the various ways in which \mathfrak{F} may separate these components and the limit functions which arise from those subsequences of $\{f_n\}$ which are locally uniformly convergent in G_i .

It may happen for rational f that \mathfrak{F} is totally disconnected (a 'discontinuum') so that \mathfrak{C} consists of a single domain. This occurs for $f(z) = z^2 - p$, where p > 2 is a constant, in which case $\mathfrak{F}(f)$ is a bounded, totally disconnected subset of the real axis (Myrberg [12]). At the end of [8] Fatou raises the question as to whether there are transcendental entire functions f for which $\mathfrak{F}(f)$ is totally disconnected.

Concerning the set $\mathfrak{C}(f)$ H. Töpfer [15] has shown:

III. If f is transcendental and entire and if $\mathfrak{C}(f)$ has an unbounded component G, then every other component of $\mathfrak{C}(f)$ is simply-connected. If in addition G is multiply connected, then G is completely invariant under the mapping $z \to f(z)$. In this note we shall prove the

Theorem 1. If f is transcendental and entire, then $\mathfrak{C}(f)$ has no unbounded multiply-connected component.

Since the total discontinuity of $\mathfrak{F}(f)$ implies that $\mathfrak{C}(f)$ is an unbounded connected domain Fatou's question is answered by the

Corollary. For transcendental entire f the set $\mathfrak{F}(f)$ must contain non-degenerate continua.

Various authors e.g. Brolin [6], Garber [9], Oba and Pitcher [13] have investigated the metric properties of $\mathfrak{F}(f)$, giving estimates of Hausdorff dimensions, capacities, and so on. The only significant lower estimate in the transcendental entire case was given in [9], where it was shown that the logarithmic capacity of \mathfrak{F} is strictly positive. Our corollary strengthens this result considerably. We remark also that the set \mathfrak{F} can even fill out the whole plane in some cases ([4]).

Returning to the components of $\mathfrak{C}(f)$ in the theorem: it is indeed possible that multiply-connected components exist for transcendental entire f, as shown by an example in [1]. In this case the multiply-connected domains are of course bounded.

If f is a transcendental entire function, any completely invariant component of $\mathfrak{C}(f)$ is unbounded and hence, by our theorem, simply-connected. It was shown in [3] that there can be at most one such completely invariant component. P. Bhattacharyya [5] deduced from this that the number of components of $\mathfrak{C}(f)$ is either 1 or infinite. He also showed that for $g(z) = e^{a+z} - e^a$, a < 0, $\mathfrak{C}(g)$ consists of a single (completely invariant) component. It is not clear whether the existence of a completely invariant component of \mathfrak{C} precludes the existence of other components or not. We can prove

Theorem 2. If f is a transcendental entire function such that $\mathfrak{C}(f)$ has a completely invariant component G, then in every other component of $\mathfrak{C}(f)$ f is univalent.

Corollary. A function f which satisfies the conditions of Theorem 2 can have at most one attractive fixpoint.

An attractive fixpoint α is a point for which $f(\alpha) = \alpha$, $|f(\alpha)| < 1$. Two different attractive fixpoints belong to different components of $\mathfrak{C}(f)$ and (c.f. [7,8]) f is not univalent in these components. The corollary follows. The example $g(z) = e^{a+z} - e^a$, a < 0, shows that one attractive fixpoint is possible.

2. Lemmas needed in the Proofs

Additional results about $\mathfrak{F}(f)$ are proved in [7] for rational f and in [8] for entire f, except where mentioned below.

IV. For any integer $n \ge 1$ we have $\mathfrak{F}(f_n) = \mathfrak{F}(f)$.

V. For every $\alpha \in \mathfrak{F}(f)$ and for every complex β (excluding at most two exceptional β -values) there exist a sequence of positive integers $\{n_k\}$ and a sequence of complex numbers $\{\alpha_k\}$ such that

$$f_{n_k}(\alpha_k) = \beta$$
, $\lim \alpha_k = \alpha$.

A fixpoint α of order n of f is a solution of $f_n(\alpha) = \alpha$; α is said to have exact order n if $f_k(\alpha) \neq \alpha$ for $1 \leq k < n$ and in this case the multiplier of α is the number $f'_n(\alpha)$. If $|f'_n(\alpha)| > 1$ the fixpoint α is called repulsive and belongs to $\mathfrak{F}(f)$. Moreover one has

VI. $\mathfrak{F}(f)$ is the derivative of the set of fixpoints of all orders or f. It is even true that the repulsive fixpoints are dense in \mathfrak{F} (shown in [2] for entire f). In addition we need

L e m m a 1. (Pólya [14]). Let e, g and h be entire functions satisfying

(1)
$$e(z) = g(h(z)) ,$$

(2)
$$h(0) = 0$$
.

There is a constant c > 0 (in fact c = 1/8) independent of e, g, h such that

(3)
$$M(e, r) > M(g, c M(h, r/2)),$$

where M(e, r) denotes $\max |e(z)|$.

L e m m a 2. (Schottky's theorem, see e.g. [10]). There exists an absolute constant C such that for every function f(z) which is regular and satisfies $f(z) \neq 0$, 1 in |z| < 1 we have for

$$M(f, r) = \max_{|z|=r} |f(z)| < \exp\left[\frac{1}{1-r}\left((1 + r)\log \max\left(1, |f(0)|\right) + 2Cr\right)
ight].$$

3. Proof of Theorem 1

Suppose that f is a transcendental entire function and that G is an unbounded, multiply connected component of $\mathfrak{C}(f)$. Property VI shows that there are in \mathfrak{F} two repulsive fixpoints z_1 , z_2 of order say p and q respectively, which may be taken to be different from the exceptional values in V. Both are repulsive fixpoints of f_{pq} and IV shows we can replace f_{pq} by f and assume z_1 , z_2 are repulsive fixpoints of f. Replacing f(z)

by (f(a + b z) - a)/b, a, b constant, merely subjects \mathfrak{F} and \mathfrak{C} to a linear transformation, so we may without loss of generality assume that $z_1 = 0$ and $z_2 = 1$ are first order repulsive fixpoints of f, i.e. $0, 1 \in \mathfrak{F}$, and that 0 is not an exceptional point in the sense of V.

Now if any of the locally-convergent subsequences of $\{f_n\}$ in G has a finite and hence regular limit it follows that the convergence remains uniform in the interior of any Jordan curve in G, so that G is not multiplyconnected. Thus $f_n(z)$ must converge locally uniformly to ∞ in G.

The multiply-connected domain G must contain a Jordan curve γ in whose interior lie points of \mathfrak{F} , and so by V-points of the form $f_{-n}(0)$ for some arbitrarily large n. Thus for sufficiently large n the set $\gamma_1 = f_n(\gamma)$ is (by III) a curve in G which winds round 0 at least once and whose minimum distance r from 0 is as large as we please. We choose n so large that

(4)
$$(1/8) M(f, t/4) > t \quad \text{for} \quad t \ge r$$

We next choose an m such that $\gamma_2 = f_m(\gamma)$ is a curve in G which winds round 0 and which has a minimum distance s from 0 satisfying

(5)
$$s > M(f_2, 2R),$$

where R is the greatest distance of γ_1 from 0. Join γ_1 to γ_2 by a path γ_3 in G and denote by K the union of γ_1 , γ_2 and γ_3 .

Denote by 4δ the distance of the compact set K from \mathfrak{F} . Then $\delta > 0$. There is a finite collection C of say N discs of radius δ whose centres lie on K and whose union covers K. Since K is connected, there is for any pair t_1 , t_2 in K a chain of $p \leq N$ points $t_1 = w_1$, w_2 ,..., $w_p = t_2$ in K such that w_i , w_{i+1} lie in a common disc of C. Thus $|w_{i+1} - w_i| < 2 \delta$.

Suppose that in a $(3 \ \delta)$ -neighbourhood L of K the function g is regular, satisfies |g(z)| > 1 and omits the values 0 and 1. The disc $|w - w_i| < 3 \ \delta$ lies in L and contains w_{i+1} . Applying Lemma 2 to the function $g(w_i + 3 \ \delta z)$ in the unit disc we see that there is an absolute constant A > 1 such that

$$|g(w_{i+1})| < A |g(w_i)|^5$$
.

Hence for t_1 , t_2 as above

(6)
$$|g(t_2)| < B |g(t_1)|^c$$

where the constants $C = 5^N$, $B = A^{1+5+\ldots+5^N}$ are independent of g or of the choice of t_1 , t_2 in K.

Since $f_n \to \infty$ locally uniformly in G, while $f_n(G) \subset G$ so $f_n(z) \neq 0$, $1 \in \mathfrak{F}$ for $z \in G$, we see that for all sufficiently large n the

functions f_n satisfy $|f_n(z)| > 1$, $f_n(z) \neq 0$, 1 in L. Thus by (6) if t_1 is any point of γ_1 and if t_2 is the point of γ_2 at which $|f_n|$ is a maximum, we have

(7)
$$|f_n(t_2)| < B |f(t_1)|^C, \quad n \ge n_0.$$

However by the choice of s in (5)

by Lemma 1. But on γ_1 we have $f_n(z) \to \infty$ and so $M(f_{n+1}, R) \to \infty$ as $n \to \infty$. Thus the last expression above is, for all sufficiently large n, greater than

by (4). Thus we have a contradiction with (7). The theorem is proved.

Proof of Theorem 2

Suppose the transcendental entire function f has a completely invariant component G of $\mathfrak{C}(f)$. Then G is necessarily unbounded and simply connected. All other components of \mathfrak{C} are simply connected. Suppose that there is a component $H \neq G$ of $\mathfrak{C}(f)$ in which f is not univalent. Now by II f(H) lies in some component $K \neq G$ of $\mathfrak{C}(f)$.

Take a value k = f(p) = f(q) where $p \in H$, $q \in H$, $p \neq q$, $f'(p) \neq 0$, $f'(q) \neq 0$. Thus there are branches z = P(w) and z = Q(w) of the inverse f^{-1} of w = f(z) which are regular at $w = k \in K$ and satisfy p = P(k), q = P(k).

By Gross' star theorem we may continue P(w), Q(w) regularly to ∞ along almost any ray starting at k, in particular along some ray L which meets G. Denote by γ the segment of L from k to a certain point $g \in G$. Then $P(\gamma)$, $Q(\gamma)$ are disjoint curves joining $p \in H$ to $p' = P(g) \in G$ and $q \in H$ to $q' = Q(g) \in G$, respectively.

Join p to q by a simple arc β in H, and p' to q' by a simple arc $\beta' \in G$. Let \overline{p} be the last intersection of β with $P(\gamma)$, \overline{q} the first intersection with $Q(\gamma)$. Let $\overline{\beta}$ be the subarc of β which joins \overline{p} to \overline{q} . Simi-

larly define \overline{p}' as the last intersection of β' with $P(\gamma)$, \overline{q}' the first intersection with $Q(\gamma)$ and $\overline{\beta}'$ as the subarc $\overline{p}'\overline{q}'$ of β' . Denote by π the subarc $\overline{p}\overline{p}'$ of $P(\gamma)$, by \varkappa the subarc $\overline{q} \ \overline{q}'$ of $Q(\gamma)$. Then $\pi \ \overline{\beta}'(\varkappa)^{-1}(\beta')^{-1}$ is a Jordan curve C whose interior D maps under $z \to f(z)$ into a bounded region f(D) whose boundary is contained in $f(C) \subset f(\beta) \cup f(\beta') \cup \gamma$.

The $f(\beta)$ and $f(\beta')$ are closed bounded and disjoint curves. The unbounded component M of their complement contains $\mathfrak{F}(f)$. Thus Mmeets γ since $\mathfrak{F}(f)$ does. Now $f(\pi)$ is a segment of γ which joins $f(\beta)$ to $f(\beta')$. If t is the last point of interesction of γ with $f(\beta)$ and t' the first intersection with $f(\beta')$, then the segment tt' of γ is a crosscut of M whose ends belong to different components of the frontier. Thus tt'does not disconnect M. Since tt' belongs to $f(\pi)$ every point of tt' is a boundary value of f(D). Thus f(D) must contain the whole of M - tt', i.e. an unbounded set. This contradicts the boundedness of D and the result is proved.

References

- BAKER, I. N.: Multiply connected domains of normality in iteration theory. -Math. Z. 81, 1963, 206-214.
- [2] BAKER, I. N.: Repulsive fixpoints of entire functions. Math. Z. 104, 1968, 252-256.
- [3] BAKER, I. N.: Completely invariant domains of entire functions. Math. essays dedicated to A. J. MacIntyre, Ohio University Press, Athens, Ohio, 1970.
- [4] BAKER, I. N.: Limit functions and sets of non-normality in iteration theory. -Ann. Acad. Sci. Fenn. Ser. A I 467, 1970, 1–11.
- [5] BHATTACHARYYA P.: Iteration of analytic functions. Ph. D. thesis, University of London, 1969.
- [6] BROLIN, H.: Invariant sets under iteration of rational functions. Ark. Mat. 6, 1965, 103-144.
- [7] FATOU, P.: Sur les équations fonctionelles. Bull. Soc. Math. France 47, 1919, 161-271 and 48, 1920, 33-94, 208-314.
- [8] FATOU, P.: Sur l'itération des fonctions transcendantes entières. Acta Math. 47, 1926, 337-370.
- [9] GARBER, V.: The iteration of rational and entire functions. Ph. D. dissertation, Cambridge, 1975.
- [10] HAYMAN, W. K.: Meromorphic functions. The Clarendon Press, Oxford, 1964.
- [11] JULIA, G.: Mémoire sur l'itération des fonctions rationelles. J. Math. Pures Appl. (8) 1, 1918, 47-245.
- [12] MYRBERG, P. J.: Eine Verallgemeinerung des Arithmetischgeometrischen Mittels. - Ann. Acad. Sci. Fenn. Ser. A I 253, 1958, 1-19.
- [13] OBA, M. K., and T. S. PITCHER: A new characterisation of the F set of a rational function. - Trans. Amer. Math. Soc. 166, 1972, 297-308.
- [14] Pólya, G.: On an integral function of an integral function. J. London Math. Soc. 1, 1926, 12-15.

[15] TÖPFER, H.: Über die Iteration der ganzen transzendenten Funktionen, insbesondere von sin z und cos z. - Math. Ann. 117, 1941, 65-84.

Imperial College Mathematics Department London SW7 2AZ England

Received 26 May 1975