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THE DOMAINS OF NORMALITY
OF AN ENTIRE FUNCTION

I. N. BAKER

1. Introduction

If f is arational or entire function of the complex variable z its natural
iterates f, are defined by f,(2) = f(z), f,.1(2) = f(f,2), » = 1,2, ...
The theory developed by Fatou [7,8] and Julia [11] deals with the set
€ = G(f) of points of the complex plane in whose neighbourhood {f,(z) }
is a normal family. It is convenient to express many results in terms of the
complement F(f) of €, i.e. the set of non-normality. We shall assume
throughout that f ismnot a rational function of order 0 or 1. Then
& = §(f) has the following properties (see [7] and [8]).

I. F(f) is a non-empty perfect set.

II. &(f) and C(f) are completely invariant under the mapping z — f(z) .

In general a set S is called completely invariant under z-— f(z) if
o €S implies that f(«) €S and that peS for every solution g of
JB) = o

The components ¢, of E(f) are maximal domains of normality for
{f,}. The theory considers the various ways in which $§ may separate
these components and the limit functions which arise from those
subsequences of { f } which are locally uniformly convergent in ¢, .

It may happen for rational f that § is totally disconnected
(a ’discontinuum’) so that € consists of a single domain. This occurs for
fz) = 22 —p, where p>2 is a constant, in which case F(f) is
a bounded, totally disconnected subset of the real axis (Myrberg [12]). At
the end of [8] Fatou raises the question as to whether there are transcen-
dental entire functions f for which F(f) is totally disconnected.

Concerning the set €(f) H. Topfer [15] has shown:

IIL. If f is transcendental and entive and if C(f) has an unbounded
component G, then every other component of C(f) s simply-connected.
If in addition G is multiply connected, then G is completely invariant
under the mapping z — f(z) .
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In this note we shall prove the

Theorem 1. If f s transcendental and entire, then E(f) has no
unbounded mulliply-connected component.

Since the total discontinuity of F(f) implies that €(f) is an unbounded
connected domain Fatou’s question is answered by the

Corollary. For transcendental entive [ the set F(f) must contain
non-degenerate continua.

Various authors e.g. Brolin [6], Garber [9], Oba and Pitcher [13] have
investigated the metric properties of F(f), giving estimates of Hausdorff
dimensions, capacities, and so on. The only significant lower estimate in the
transcendental entire case was given in [9], where it was shown that the
logarithmic capacity of § is strictly positive. Our corollary strengthens
this result considerably. We remark also that the set § can even fill out
the whole plane in some cases ([4]).

Returning to the components of E(f) in the theorem: it is indeed
possible that multiply-connected components exist for transcendental
entire f, as shown by an example in [1]. In this case the multiply-connected
domains are of course bounded.

If f is a transcendental entire function, any completely invariant com-
ponent of @(f) is unbounded and hence, by our theorem, simply-con-
nected. It was shown in [3] that there can be at most one such completely
invariant component. P. Bhattacharyya [5] deduced from this that the
number of components of €(f) is either 1 or infinite. He also showed that
for g(z) = et —er, a <0, G(g) consists of a single (completely in-
variant) component. It is not clear whether the existence of a completely
invariant component of § precludes the existence of other components or
not. We can prove

Theorem 2. If f is a transcendental entire function such that €(f)
has a completely invariant component G, then in every other component of
C(f) [ is univalent.

Corollary. A function [ which satisfies the conditions of Theorem 2
can have at most one attractive fixpoint.

An attractive fixpoint « is a point for which f(a) = «, [f(e)] < 1.
Two different attractive fixpoints belong to different components of €E(f)
and (c.f. [7,8]) f is not univalent in these components. The corollary
follows. The example g(z) = e*™* — e*, a << 0, shows that one attractive
fixpoint is possible.
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2. Lemmas needed in the Proofs

Additional results about (f) are proved in [7] for rational f and in
[8] for entire f, except where mentioned below.

IV. For any integer n =1 we have F(f,) = F(f) .

V. For every o e F(f) and for every complex B (excluding at most two
exceplional  f-values) there exist a sequence of positive integers {m,} and
a sequence of complex numbers { a, } such that

Jalo) = ., limoe, = «.

A fixpoint « of order n of f is a solution of f,(x) = «; o is said to
have exact order n if f,(x) # « for 1 <k < n» and in this case the multi-
plier of o is the number f(«). If |f/(x)] > 1 the fixpoint o is called
repulsive and belongs to & (f) . Moreover one has

VL. §(f) s the derivative of the set of fixpoints of all orders or f. It is
even true that the repulsive fixpoints are dense in § (shown in [2] for entire f).

In addition we need

Lemma 1. (Polya[l4]). Let ¢, g and h be entire functions satisfying

(1) ez) = gh(z))

(2) h(0) = 0.

There is a constant ¢ > 0 (in fact ¢ = 1/8) independent of e, g, h such that
(3) Mie,r) > Mg, e Mk, r[2)),

where M(e , 7) denotes max |e(z)] .
|g|=r

Lemma 2. (Schottky’s theorem, see e.g. [10]). There exists an
absolute constant C' such that for every function f(z) which is regular and
satisfies f(z) # 0,1 in |z| <1 we have for

1
M(f,r) = max [f(z)] < exp[m (I + 7) log max (1, [f(0)]) + 207‘)] .

|z]|=r

3. Proof of Theorem 1

Suppose that f is a transcendental entire function and that G is an
unbounded, multiply connected component of €(f). Property VI shows
that there are in § two repulsive fixpoints z;, z, of order say p and ¢
respectively, which may be taken to be different from the exceptional values
in V. Both are repulsive fixpoints of f, ~and IV shows we can replace
fpg by [ and assume z,, z, are repulsive fixpoints of f. Replacing f(z)
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by (fl@ +b2) —a)/b, a, b constant, merely subjects § and € to
a linear transformation, so we may without loss of generality assume that
z; = 0 and z, = 1 are first order repulsive fixpoints of f,ie. 0,1 €,
and that 0 is not an exceptional point in the sense of V.

Now if any of the locally-convergent subsequences of {f,} in G has
a finite and hence regular limit it follows that the convergence remains
uniform in the interior of any Jordan curve in ¢/, so that ¢/ is not multiply-
connected. Thus f (z) must converge locally uniformly to co in G .

The multiply-connected domain ¢ must contain a Jordan curve y
in whose interior lie points of & , and so by V-points of the form f_,(0)
for some arbitrarily large n . Thus for sufficiently large n the set y, = f,(y)
is (by III) a curve in (¢ which winds round 0 at least once and whose
minimum distance » from 0 is as large as we please. We choose n so
large that

(4) (1/8) M(f,t/4) >t for t=>r.

We next choose an m such that y, = f,(y) is a curve in ¢ which
winds round 0 and which has a minimum distance s from 0 satisfying
(5) s > M(f,,2R),

where R is the greatest distance of y; from 0. Join y, to y, by a path
ys in G and denote by K the unionof y,, y, and y,.

Denote by 4§ the distance of the compact set K from g . Then
0 > 0. There is a finite collection C' of say N discs of radius 6 whose
centres lie on K and whose union covers K . Since K is connected, there
is for any pair ¢, f, in K a chain of p <N points ¢, = w,, w,,..,
w, = t, in K such that w;, w;;, lie in a common disc of C'. Thus
Wiy — w| < 20.

Suppose that in a (3 §)-neighbourhood L of K the function g¢ is
regular, satisfies |g(z)] > 1 and omits the values 0 and 1. The disc
lw — w,| < 36 liesin L and contains w,.,. Applying Lemma 2 to the
function ¢(w; + 3 d2) in the unit disc we see that there is an absolute
constant 4 > 1 such that

lg(wis)| < A lg(w)[? .

Hence for ¢;, ¢, as above

(6) lg(ta)| < B lg(t)[°

where the constants € = 5%, B = A'"5+-+5" are independent of ¢
or of the choice of ¢;, ¢, in K.

Since f,— oo locally uniformly in ¢, while f/(G¢)C G so
f.z) # 0,1e® for ze@, we see that for all sufficiently large n the
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functions f, satisfy |f,(2)] > 1, f,(2) # 0,1 in L. Thus by (6) if #
is any point of y, and if ¢, is the point of y, at which |f,| is a maximum,
we have

(7) [f,()] < BIf(t)]C  n =mng.
However by the choice of s in (5)
b)) = M(f, )
= M(f,, M(f;, 2 R))
= M(fy12,2R)
= M(f, (1/8) M(f,41, R))

by Lemma 1. But on y, we have f (z) — co and so M(f,.,;, R)— oo as
n— oo . Thus the last expression above is, for all sufficiently large =,
greater than

B (M(f,1, R)° = B(M(f,, (1/8) M(f, R[2))°
= B(M(f,, R)°
= Bf,t)]°

by (4). Thus we have a contradiction with (7). The theorem is proved.

Proof of Theorem 2

Suppose the transcendental entire function f has a completely in-
variant component G of E(f). Then ¢/ is necessarily unbounded and
simply connected. All other components of € are simply connected.
Suppose that there is a component H = (¢ of E(f) in which f is not
univalent. Now by II f(H) lies in some component K = ¢ of E(f).

Take a value %k = f(p) = flq9 where peH, geH, p+q,
f'(p) # 0, f(q) # 0. Thus there are branches z = P(w) and z = Q(w)
of the inverse f~! of w = f(z) which are regular at w = k € K and satisfy
p =Pk, q=2Pk).

By Gross’ star theorem we may continue P(w), @Q(w) regularly to
co along almost any ray starting at £k, in particular along some ray L
which meets /. Denote by 3 the segment of L from £ to a certain
point ge@. Then P(y), Q(y) are disjoint curves joining p € H to
p'=Plg)el@ and qeH to ¢ = Qy) € G, respectively.

Join p to ¢ by a simple arc f in H, and p’ to ¢’ by a simple arc
f €@ . Let p be the last intersection of f with P(y), ¢ the first inter-
section with Q(y) . Let B be the subarc of § which joins p to ¢ . Simi-
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larly define p’ as the last intersection of f’ with P(y), ¢ the first inter-
section with Q(y) and B’ as the subarc p’q’ of p’. Denote by = the

subarc pp’ of P(y), by x the subarc qg¢ of Q(y). Then z p'(x)*(f')"
is a Jordan curve O whose interior D maps under z— f(z) into a bounded
region f(D) whose boundary is contained in f(C) C f(8) U f(B') U y .

The f(B) and f(8') are closed bounded and disjoint curves. The un-
bounded component M of their complement contains &(f). Thus M
meets y since §{(f) does. Now f(m) is a segment of y which joins f(f)
to f(B') . If t is the last point of interesction of y with f(f) and ¢" the
first intersection with f(f’), then the segment #' of yp is a crosscut of
M whose ends belong to different components of the frontier. Thus '
does not disconnect M . Since #’ belongs to f(w) every point of #’ is
a boundary value of f(D). Thus f(D) must contain the whole of M — ",
i.e. an unbounded set. This contradicts the boundedness of D and the
result is proved.
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