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THE T}OMAII\S OF ITORMATITY
OF A1\ EI\TIRE FUITCTIOI\

I. N. BAKER

1. Introiluction

If / is a rational or entire function of the complex variable z its natural
iterates fn are defined by fr(z) : f(") , f ,*t(") : f(f-(z)) , 'tL : 1,2, ... .

The theory developed by X'atou [7,8] and Julia [f 1] deals with the set
g : g(/) of points of the complex plane in whose neighbourhood. {f,(z)}
is a normal family. It is convenient to express many results in terms of the
complement $ff) of 0 , i.e. the set of non-normality. We shall assume

throughout that f is not a rational function of order 0 or I . Then

I : $ff) has the following properties (see [7] and l8l).
I. $(fl ,ts a non-empty perfect set.

III. $(f) and, 6,(f) are compl,etely 'i,naar'iant und,er the mapping z ---> f(z) .

fn general a set B is called completely invariant under z ---> f(z) if
aeS implies that /(oc) e S and that d=B for every solution B of
f(F) : ".The components Go of g(/) are maximal domains of normality for
{f,} . The theory considers the various ways in which I may separate
these components and the limit functions which arise from those
subsequences of {/, } which are locally uniformly convergent in Ga.

It may happen for rational / that I is totally d.isconnected
(a 'discontinuum') so that O consists of a single domain. This occurs for

f(z) : zz - p, where p > 2 is a constant, in which case 8ff) is
a bounded, totally disconnected subset of the real axis (Myrberg ll2l). At
the end of 18] n'atou raises the question as to whether there are transcen-
dental entire functions / for which $ff) is totally disconnected.

Concerning the set g(/) H. Töpfer [15] has shown:
ilI. If f is transcenilental, and, ent'i,re and, if g(f) has an unbaund,ed,

carnponent G , then euery other companent of 6,(f) is si,mply-connected,.

If i,n add,i,tiott, G i,s mul,ti,ptl,y connecteil, then G is comgtl,etel,y 'i,nuari,ant

und,er the mappi,ng z ---> f(z) .
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In this note we shall prove the
Theorem l. If f i,stranscend,ental,anilent'ire,then g(/) hasno

unbounil,ed, multipl'y-connecteil, component.

Since the total discontittoity of 8(/) implies that O(/) is an unbounded
connected. domain tr'atou's question is answered by the

C o r o I I a r y. Xor transcend,ental enti're f the set 8m must conta'i'n

non - il, eg ener at e continua.
Various authors e.g. Brolin [6], Garber [9], Oba and Pitcher [13] have

investigated the metric properties of 8(/) , giving estimates of Hausdorff
dimensions, capacities, and so on. The only significant lower estimate in the
transcendental entire case was given in l9], where it was shown that the
logarithmic capacity of $ is strictly positive. Our corollary strengthens
this result considerably. We remark also that the set $ c&n eYen fill out
the whole plane in some cases (l4l).

Returning to the components of g(/) in the theorem: it is indeed
possible that multiply-connected. components exist for transcendental
entire ,f , as shown by an example in ll]. In this case the multiply-connected
domains are of course bounded.

If / is a transcendental entire function, any completely invariant com-

ponent of O(/) is unbounded and hence, by our theorem, simply-con-
nected. It was shown in [3] that there can be at most one such completely
invariant component. P. Bhattacharrya [5] deduced from this that the
number of components of g(/) is either I or infinite. He also showed that
for g(z) : eo+z - ea, a <0, 0(g) consists of a single (completely in-
variant) component. It is not clear whether the existence of a completely
invariant component of 0 precludes the existence of other components or
not. We ca,n prove

T h e o r em 2. If f i's a transcenilental, ent'i,re functi'on such tltat E(f)
hns a comgtletelE i,naari,ant comgtonent G , then'i'n eaery other component of
g(f) f is uni,tsalent

C oro llary. A functi,on f whi'ch sati,sfies the cond'iti'ons of Theorem 2

can haue at most one attractiae fi,rytoint.
An attractive fixpoint a is a point for which f(n) : n, l/(")l < t .

Two different, attractive fixpoints belong to different components of O(/)
and (c.f. l7,sl) f is not univalent in these components. The corollary
follows.Theexample g(z) : satz - Q^, & < 0, showsthatoneattractive
fixpoint is possible.
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2. Lemmas needed in the Proofs

Additional results about $(/) are proved in l7l for rational / and in
18] for entire ;f , except where mentioned below.

IY. Iorang'i,nteger n>l wehaue $ff,) - 8(/).
Y. Ior eaery o" e }ff) and, for euery compl,er B @rctud,i,ng at most two

erceptional, B-ual,ues) there euist a, sequence of posi,tiue ,integers {nn} and,
a selluence of co,ntpler numbers { ao} such that

f,o@) : f , limxo: q'

A fixpoint oc of order n of f is a solution of f,(a.) : a; d. is said to
have exact order ra if fo@) * q. for r < k <n and in this case the multi-
plier of a is the number f'_(") . ff V;@")l > 1 the fixpoint oc is called
repulsive and belongs to 8(/) . Moreover one has

VL 8(/) is the d,eriuatiue of the set of fi,rpoi,nts of al,l, orrlers or f . It is
eaen true tlmt the repul,siue firgtoints are d,ense 'in $ (shown in l2l for entire f ),

fn addition we need
L e m m a 1. (P6lya ]{). Let e, g anil, h be enti,re functions satisfyi,ng

(1)

(2)

Tltere ,i,s a, constant

(3) M(e , r)

wlr,ere M (e , r) denotes max
lzl: r

e(z) - s(h(z)) ,

IL(O) - 0 .

c>0 (i,nfact c:1/S) ,ind,ependentof e,0, fL suchtluat

Ie(z)l -

Lemma 2. (Schottky's theorem, see e.g. [10]). There etists an
absolute constant c such that for euery functi,on f(z) whi,ch i,s regular and,
satisfdes f(z) I O, t,i,n lzl < | we haue for

lvf(f ,r) : 
T,?:lf@l

+ r) log max (1 , l/(0) l) + 2 Cr)]

3. Proof of Theorem I

Suppose thaf f is a transcendental entire function and that G is an
unbounded, multiply connected component of 0(/) . Property VI shows
that there are in $ two repulsive fixpoints ?1 1 ?2 of order say p and q
respectively, which may be taken to be different from the exceptional values
in v. Both are repulsive fixpoints of fpo and rv shows we can reprace
foo by f and &ssume z17 z2 are repulsive fixpoints of /. Replacing f(z)
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by (f(a+bz)-a)lb, a', å constant,merelysubjects I and g to
a linear transformation, so we may without loss of generality assume that,

?t : 0 and zr: I are first order repulsive fixpoints of /, i.e. 0, I e$,
and that 0 is not an exceptional point in the sense of V.

Now if any of the locally-convergent subsequences of { /, } in G has

a finite and hence regular limit it follows that the conYergence remains
uniform in the interior of any Jordan curve in G, so lhat' G is not multiply-
connected. Thus f(z) must converge locally uniformly to co in G .

The multiply-connected domain G must contain a Jordan curve y
in whose interior lie points of I , and so by V-points of the form /-,(0)
for some arbitrarily large n. Thus for sufficiently large n the set 7, : f"(y)
is (by III) a curve in G which winds round 0 at least once and whose

minimum distance r from 0 is as large as we please. We choose ro so

large that

(1/8) M(f ,tl4)

We next choose a,rL rn such that yz : f*(y) is a curve in G which
winds round. 0 and which has a minimum distance s from 0 satisfying

I

(4)

(5)

where -E is the greatest distance of 7, from 0 . Join yt to yz by a path

h h G and denote by K the union of yr, y, and yt '
Denote by a ö the distance of the compact set ,I( from I . Then

ö > 0 . There is a finite collection C of say -l[ discs of radius ö whose

centres lie on K and whose union corrers K . Since K is connected, there
is for any pair l, , t, in K a chainof p < y'/ points tr : 'tur, 'tl)2t...t

wp : tz in K such that a;1 , u;+t lie in a common disc of C . Thus

lwr+r-wnl < 2ö.
Suppose that in a (3 ö)-neighbourhood L of K the function g is

regular, satisfies lg@)l > t and omits the values 0 and I . The disc

l. - wol < 3 ö lies in L andcontains'rpr+r . Applying Lemma 2 to the
function g(wn + 3 ö z) in the unit disc we see that there is an absolute
constant A>l suchthat

ls@n+t)l < Alg(wn)lu.

Hence for tr, t, as above

(6) lg(tr)l < Bls(t')|"

where the constants C : bN, B : 1r+s+"'+5N are ind.ependent of S

or of the choice of \, tz in K .

Since f,- @ locally uniformly in G , while f-(G) C G so

f,(z) + 0,1e $ for zeG, weseethatforallsufficienllylarge n the
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functions /, satisfy lf"@)l>|, f*(")+0,L n L. Thusby(6)if ,1

is any point of Tt and if l, is the point of y, al which l"f"l ir a maximum,
we have

(7) lf"Q)l < B lf\r)|", tL 2'no.
However by the choice of s in (5)

lf*Qr)l > M(f*, s)

> M(f" , M(f2,2 n))

> M(f,+z,2 R\

> M(f , (u8) M(f"+, , fi))

by Lemma l. But on /r we have f,(z) --- oo and so M(f*ar,.E) -+ oo as

n --> @ . Thus the last expression above is, for all sufficiently large n ,

greater than

B (M(f,+r, A))" > B Q[ff", (rF) n[$ , Rlz)))"

> B (M(f", R))c

> B lf"(tr)|"
by (+). Thus we have a contradiction with (7). The theorem is proved.

Proof of Theorem 2

Suppose the transcendental entire function f has a completely in-
variant component G of O(/) . Then G is necessarily unbounded and
simply connected. All other components of g are simply connected.
Suppose that there is a component fI + G of E(f) in which / is not
univalent,. Now by fI f@) lies in some component K + G of E(f) .

Take a value k: f(p): f(q) where peH, eeH, g*9,
f'(.p) + 0, f'(q) + 0 . Thus there are branches z : P(w) and. z : Q(w)
of the inverse "f-1 of w : f(z) which are regular at w : lt e K and satisfy
p:P(k), q.:P(h).

By Gross' star theorem we may continue P(w), Q@) regularly to
co along almost any ray starting at k, in particular along some ray L
which meets G . Denote by y the segment of -L from lc lo a certain
point geG. Then P(y), Q@ aredisjointcurves joining peH to
gt':P(g)eG and q.e H to q':Q@) e G,respectively.

Jotn p to q by asimple arc p in H, and. p'to q'by asimplearc
F'eG. LeI p bethelastintersectionof B with P(y), q thefirstinter-
section with Q(7) . Let B be the subarc of p which joins p to a . Simi-
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larly define 1r' as the last intersection of p' with P(y) , q' the first inter-

section l.rrfh QW) and. p' as the subarc b'q' of B' . Denote by z the

subarc pp' of P(y) , by z the subarc q q' of Q(7) . Then , y1r1-'1B'1-'

is a Jordan curve C whose interior D maps under z --> f (z) into a bounded
region /(D) whose boundary is contained in f(C) C f(,f) v f(f') v y .

The /(B) and f(p') are closed bounded and disjoint, curves. The un-

bounded component M of their complement contains $(/). Thus M
meets y since $(/) does. Now /(z) is a segment of y which joins /(p)
to f(F') . If t is the last point of interesction of 7 with /(B) and t' t'he

first intersection with f(B') , then the segment' tt' of 7 is a crosscut of
lll whose ends belong to different components of the frontier. Thus tt'
does not disconnect -44 . Since ff' belongs t'o f(n) every point of tr' is

a boundary value of f(D) . Thus /(D) must contain the whole of M - tt' ,

i.e. an unbounded set. This contradicts the boundedness of D and the
result is proved.

References

tll BAKER, I. N.: Multiply connected domains of normality in iteration theory. -
Math. Z. 81, 1963, 206-214.

tzl BaxEn, L N.: Ropulsive fixpoints of entire functions' - Math. Z, L04, 1968'
252-256.

t3l BexEn, L N.: Completely invariant domains of entire functions. - Math.
essays dedicated to A. J. Maclntyre, Ohio Ilniversity Press, Athens,
Ohio, 1970.

t4l BerEn, I. N.: Limit functions and sets of non-normality in iteration theory. -

Airn. Acad. Sci. Fenn. Ser. A I 467' 1970, l-lI.
t5l Brr.tTaecnanrrve P,: Iteration of anal;-tic functions. - Ph. D. thesis, IIni-

versity of London, 1969.

t6] BRor,rN, II.: Invarirant sets under iteration of rational functions. - Ark. Mat'
6, 1965, r03-r44.

Ul FÄfou, P.: Sur los 6quations fonctionelles. - Bull. Soc' Math. France 47,1919,
16I-271 and 48, 1920, 33-94' 208-314.

t8] FaTou, P.: Sur l'itdration des fonctions transcendantes entiöres. - Acta Math.
47, 1926,337-370.

t9l GaRBER, Y.: The iteration of rational and entire functions. - Ph. D. dissertation,
Cambridge, 1975.

tf0l llevltlw, W. I(.: Meromorphic functions. -The Clarendon Press, Oxford, 1964.

tIIl Jur,re, G.: M6moire sur l'it6ration des fonctions rationelles. - J. Math. Pures
Appl. (8) 1, 1918, 47-245.

ll2l MvnnEnc, P. J.: Eine Verallgemoinerung des Arithmetischgeometrischen
Mittels. - Ann. Acad. Sci. Fenn. Ser. 4I253, 1958, l-19.

tlSl One, M. I(., and T. S. PTTcHER: A new charactorisation of the F set of a rational
fimction. - Trans. Amer. Math. Soc' 166, 1972, 297 -308.

tl4l P6r,ve, G.: On an integral function of an intogral function. - J. London
Math. Soc. l, 1926, 12-15.



The domains of normality of an entire function 283

lfSl TöPFER, H.: Uber dio Iteration der ganzen transzondonten Funktionen, insbe-
sondere von sin z und cos z. - Mafh. Ann. ll7, Ig4l, 65-84.

fmperial College
Mathematics Department,
London SW7 2AZ
England

Received 26 May 1975


	IMG
	IMG_0001
	IMG_0002
	IMG_0003
	IMG_0004
	IMG_0005
	IMG_0006

