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ON CERTAIN IRREDUCIBLE MODULES
OF THE LIE ALGEBRA g(4,C)

JOUKO MICKELSSON

Introduction

Let g be a complex Lie algebra and f a reductive subalgebra in g .
We study irreducible f-finite g-modules by means of the step algebra
S(g, f) of the pair (g,f). If V isa g-module and V, is the sum of all
irreducible finite-dimensional f-submodules of V' with maximal weight «,
we denote by A4,, the subspace of the enveloping algebra U(g) of g
such that 4, , V5 C V; for any g-module V; by definition, V" consists
of all maximal vectors in V,. Let M, = >, _,A4,, and let D be the
zero-step algebra, DV, C VI for any g-module V. It is shown that the
equivalence classes [V] of irreducible g-modules V', such that V, = 0
and V, =0 for f < o, are in natural 1—1 correspondence with the
equivalence classes of irreducible D | D n U(g) M, -modules. Using this
result, the case ¥ = gl(2,C) ® gl(2,C), g = gl(4, C) is studied in detail.

1. Preliminaries

Let g be a complex Lie algebra, f a non-commutative reductive sub-
algebra in g and f a Cartan subalgebra of f. Let §H* be the (complex)
dual of ), 4 C h* a set of simple roots and A the set of dominant
integral elements in §*. By definition, an element « eh* is dominant
integral if the restriction of «, to the subalgebra of ) which belongs to
the semi-simple part of f, is dominant integral with respect to the choice
A of simple roots.

Next we choose a basis { Ay, ..., h,} for fy, such that &, .., h, are
in the semi-simple part of f and A, ,, ...k, commute with t (p <<7).
We introduce a partial ordering <27 on A by putting i <p if
Ah;) # u(h;) forsome 1 < p and the first non-zero member in the sequence
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Ahy) — plhy) , A(hg) — u(hy) ,... is negative. We assume furthermore that
the choice { Ay, ...,k } is such that the ordering <" is compatible with
the strong partial ordering defined by the choice of the simple roots. We split

f=f @)L

where f, corresponds to positive roots and f_ to negative roots.
We denote by Uf(a) the enveloping algebra of an arbitrary Lie algebra
a . We define

Sg,f) = {uel(g)| t,uC U@t }.

Let ¢’ be an adf-invariant complement of f in g and {{,...,f,} a basis
of g’ such that #; has weight 4,, 2, = 4, when 7 > j, withrespect to ).
If () = (4,...,17,) is a sequence of non-negative integers we put
(i) = tp.tin and
Up = 2 13) U .
®
We can now write

Ug = U, @U@t @ U Ut

Let P’: U(g) — U, be the projection on the first summand and let P
be the restriction of P’ to S(g,f).

It is shown in [2, 4] that the mapping P : S(g,f) — U, is injective
modulo  U(g) f, . Furthermore, for each ¢, there exists s, €S(g,¥)
such that P(s,) = t,u,, where w, e U(h) is such that wu, () # 0 if
A+ A ed; any uw e U()) can be identified with a polynomial on §* .

We define here the step algebra Sy(q , ) with unit 1 as the subalgebra
of S(g,f) generated by s,,...,s, and U(g) f, . We denote by D the central-
izer of §) in Sy(g,¥).

2. Description of irreducible g-modules by the action of D

Let V' be a g-module. We say that it is f-finite if it is a direct sum of
irreducible finite-dimensional f-modules, when V' is considered as a ¥-
module through the restriction of g to f. If « is any dominant integral
element of h* , we denote by V, the sum of all irreducible f-modules with
maximal weight o, contained in ¥V . It is known that V' is f-finite if it is
generated by some V_ , a«e 4, [1]. We define

Vt = {zeV]|t,a =0}, Vi=7VrnV,.

It is shown in [5] that (U(g)2)" = Sy(g,f)x for any f-finite g-module
and for any @ e V' . In particular,
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V+ = SO(g ’ f) €
if V isirreducibleand 0 2 e V. Weset

Az = {uelU(g) | wViC VS forany g-module V }
and

o

M, = 24,
Bl
We denote by [, the annihilator in U(f) of the vector of maximal weight

in an irreducible f-module with maximal weight o ; it is clear that
Ulg) I, C M, for any « and

D C n4d,, 0CCnd,,

where (' is the centralizer of f in U(g) . It follows that we can consider
any V; asa D-module or as a C-module. In the case V, =0 for f<«,
the D-module V; is in a natural way also a D -module, where

D, = D|DnUg) M,.

o

We say that V, is a minimal component of V if V, 0 and V; = 0
for f < «. It follows from our choice of ordering in A that any f-finite
g-module has at least one minimal component and the minimal component
is unique if f is semi-simple.

Theorem 1. Assume that D, + 0. Then the mapping V>V
mduces a bijection between the sel ém of equivalence classes [V] of irreducible

g-modules with minimal component V., and between the set ]ja of equiva-
lence classes of irreducible non-zero D -modules.

Proof. Let us first consider the g-module W = U(g)/ Ul(g) M, .
It is clear that W, is the minimal component of W . Now W is generated
by the vector 0+ a =1+ U(g) M, € W, ; thus it is f-finite and

W+ = Syg.f (1 + Ulg) M) .
NSince C(1 + U(g) M,) C W, we have
¢ C D+ Ulg) M, .
In [1, 3] it is shown that a g-module } with minimal component V_ is
determined (up to equivalence) by the C/C n U(g) M, -module V| ; it
then follows from the inclusion above that the mapping GAa—>lA)a,
[V]-—[V}], is injective.

To prove the surjectivity of our mapping one can use a similar argument
as in |1, 3]: Let /" be an irreducible D -module. Let I be the annihilator
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in D of a non-zero vector x € W (note that W is a D-module through
the quotient map D - D, ) so that W =~ D | L as D-modules. Put

N = {uelU(g | UgunDCL}

and consider the irreducible g-module U(g) /N = V. We have to show
that V5 =~ W as D-modules. Now D n U(g) M, C L and therefore
U(g) M, C N ; it follows that the vector @ =1 + N €V is annihilated
by I,C U(g) M, ie. z eV} . Then

Vi =Da = D+ N.

The mapping ¢: Vi —-D|L=W, ¢(d + N) = d + L (where d D)
is a D-linear isomorphism; the injectivity of ¢ follows from the fact that
DAN=L. If <o then VS =4, V} =0 because of

A,, C U@ M, C N (when f << a).

We conclude that V, is the minimal component of V.
If D, = 0 it is not difficult to see that (I, = @ .

3. Step algebra S, (gl(4) , gl(2) ® gl(2))

Let g = gl(4,C) be the complex reductive Lie algebra consisting
of 4 x4 -complex matrices with the basis

{eij}f,;ﬂ,,ﬁ ((’fj)kt = 0 (S_jl
and commutation relations
[eij’ekl] = 5]‘1; ey — 0y €rj -
The subalgebra f = gl(2, C) ® gl(2, C) with the basis
{ ey oy s by byt U {egy e, Dy, hy

is reductive in . The elements 7y = e, — ey, hy = €45 — €4, hy =
€11 + €, hy = €55 + €, span a Cartan subalgebra §) of f. Note that
h is also a Cartan subalgebra in g. If «ed we set o« = a(h;) and
a << fif ay < p, or ay = p; and «, << f, . Anelement « € h* is dominant
integral, o e A4, if «, and o, are non-negative integers and ay, o
arbitrary complex numbers.

A finvariant complement ¢ of f in g has now the ordered basis

m hl
(%) Cqp s Cog s €315 €15 Cr3s €y s €1y Cgo 1 -
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As described in Section 1, we associate with each e; € g’ a step s;:

S = ey hyhy + ey en by — €3 €30 — €33 €45 €5
Sy = ey by + egp ey
Soy = €y hy — ey ey
Sog = oz hy by — €30 by + €r 50y — €445 €5
Sie = €y
Si3 = ehy + €14y
Sz = €39
[ Syp = ey hy — €55 045

The set R_ of first four elements correspond to negative roots under the
adjoint action of §) and the set R, of last four elements correspond to
positive roots.

Let Sy(g,f) be the algebra generated by the s;s and by U(g)f, ,
where f, = C-e, + C-ey,.

Note that the projection P acting on an element s; gives the first
term in s;. Let Z(g) be the center of U(g). It is known that Z(g) is
generated by the Gelfand-elements

4 = zeii7

= N

Ze = 2,60 i

7 = €ij €t Cri »
= Z €5 € €1 Ci

with a summation over repeated indecis. The projection of a z; on U,
is easily calculated from the formulas above when one remembers that f,
on the right gives zero (when the elements (x) appear in correct order).
For example,

P(z) = hy + by

N
&
|

4
o) = 2 (e €5y + €5 €15 + €€ + €y €4) + 5> BT 4+ 3y + By
1=1

We denote by J, the left-ideal in U(g) generated by f,_ and by the
set {h —ah) 1| helh}. Let Z, be the subalgebra of Z(g) generated
by 1, z, and z,.

Lemma 1. Let seR_, sseR,_ and aecd.

(" If a; =1 then ss"eC-R, R_4+ C-1+J,

(2) If o, =0 then ss e€C-R, R_+ Z,+J
[y + hy, 58] = ¢-8s8 with ¢ =0, +4.

. provided that
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o
2
(B) If ay = 0 then s5 8, = — o Sum, SuSy =
oy +
%2
T o+ 2523514 S8 = Sau Sz S8 = Sy i3 mod J,, .
(o5 + 2)

Proof. Since the mapping P : Sy(g,f)— U, is injective modulo
Ul(g) t, , it is sufficient to consider the projections P(s;s,) when proving
the relations (1) —(3); this is a great simplification in the computations. By
a direct calculation,

S41 842 = Sg2 8415, S31832 = 832831,
S23 813 = S13S23, Sau 14 T S1482
so that we are left with twelve pairs from the total sixteen. We consider as

an example the pair s, s, . We have three different cases:
a) oa; > 1. After brute calculations one gets

1 o, + 1
S41 814 = ;; " Syo Sy F o (o + 1) S13 S31
(¢ + 1) (o + 2)

oy + 1)

“S8148y + a1 mod.J,

where @ € C depends on « ; we have been too lazy to compute it (it is not
necessary to know the value of @ here).

b) oy = 0, o, = 1. Comparing P(sy s;,) with P(z,) and P(z;) one
sees that

Sy Sy = (1/4) (g + o5 + op + 14/3) 2, + (1/3)2; + @+ 1 mod . J,

for some « € C depending on o .
c) oy = ay = 0. In the same way as above one gets

S8y = (1/2)zy + a -1 mod J, .

The remaining terms ss’ (s e R_, s' € R,) are treated in a similar way.
g B -+ y

4. Non-singular f-finite g-modules

For g = gl(4,C), f=gl(2,C) ® gl(2,C) let again

Ay, = {uelU() | u VicC V,;’r for any g-module 7'},
M, = S4,,. D, = D|DnUgM,
p<a

where D is the centralizer of f) in Sy(g,f).
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Theorem 2. If o €A suchthat oy > 1 then D,~C.

Proof. Consider an arbitrary monomial s = s;s,..5,, in D.
If the last factor on the right belongs to R_ then s =0 mod M,. Thus
let us assume that the last factor belongs to R, . Since s commutes with
b, not all factors can be in R, ;let s,, be the last one in R, when read-

ing from right to left, and let s, be the first one in R_,
§ = 8154 Spa S2
where s, contains only elements from R, . Using Lemma 1 we can write

s = >  >a,-s tt' s, + terms of lower degree  mod M,
teR t'eR__
where a, € C. Using induction on the degree of s and s, one sees that
the elements from R_ can be shifted to the left giving zero mod M, . Tt
follows that any element of D isin C-1 mod M, . On the other hand, it
is easy to see that 1¢ D n U(g) M, .

Corollary. For each o € A such that o, > 1 there exists a unique
equivalence class [V] of rreducible t-finite g-modules 'V  such that V.
18 minvmal in V. Furthermore, the minimal component V
determined i.e. Vg =0 if oy =f;, oy = fy but a # f.

Proof. The first part follows directly from Theorems 1 and 2. As was
proven in [5], any element in V; can be written as a linear combination
of elements s;s,..5,,2 = sx where s, ..s,€R UR,  and
0#aeV;. If now o, =f,, o, = ff,, the element s has to commute
with %2, and &, ; it follows that there are as many factors from R_ as
from R, in s. The reduction modulo M, used in the proof of Theorem 2
can be applied and it follows that sx = aa for some a € C ie. sax =0
if o f.

Let V' be a finite-dimensional irreducible g-module. Using the well-
known results about reducing gl(4,C) -modules with respect to
gl(2, C) @ gl(2, C) itisseen that there always exists V', C V' with «; = 0.
Thus all g-modules described in Corollary of Theorem 2 are infinite-
dimensional.

We call the modules of the Corollary above non-singular because they
are completely labelled by the minimal component V7 .

o

o U8 uniquely

5. The 1-singular case

In this section we classify all the irreducible f-finite g-modules with
minimal component V_ such that o, = 0, «y > 2.
Theorem 3. If aed such that oy =0, ay =2 then D,~7,.
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Proof. 1) Using the same argument as in the proof of Theorem 2 it is
seen that any element in D, = D /D n U(g) M, can be written as
a linear combination of terms of the type w, ...u, + D n U(g) M, where
Uy, ., u, € R_R . Wedenote

Uy = 83154 U_ = Sy3 842

Uy = S48, U = So3uy-
Using (2) and (3) in Lemma 1 it is shown that it is sufficient to study only

products of the elements u, , u, and u, modulo M, .
2) By a direct calculation one can show that

(1) Ug U, = w,

(2) Uy U_ = S U Uy

(3) Up U, = ——3 U, Uy

(4) 'u(, U_ = —

(5) “3 (g — 1) uy “(; = — (% + 2)2 G U U_ — (1/9) (2 — 1) (2 + 2)? £
— (1/2) (Bog + 4) @y — By (g — g + 2)] [w5 — (1/2) By — B oy + 4) @]

6) @G — Dupuy = — (o + Drayu, u_ — (19) (a — 1) (a + 2)° [,
— (1/2) Bog — By + 4) @y + B0y (g — oy — ay)] [
—(1/2) By + 4) 2y — 6og (g — oy + 1)]

7 o (0t — V) u_u, = (05 + 3oy + 4) u, u_ + 2(x mod J
2 + 2 2 4 o

where z(a) is some element in Z, and

ay = (1/2) (o + op + o5 + 0)

Xy = 2y — Y(2), xy = 23 — p(z)

and y: Z(g) — U(f) is the Harish-Chandra homomorphism.

From the first four equations it follows that any product of the elements
u, , u, and uy can be written in the form «-vw modJ,, where v
contains only factors u,, u, and w consists of w,; a is a complex
number. Using the commutation argument in the proof of Theorem 2 it
follows from equation (7) that w e Z, + D n U(g) M, ; note that the
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number of factors «, in w is equal to the number of the u_’s because of
[hy,u,] = + 2u, and 0 = [hy,vw] = v[hy,w].

3) We have shown that any element of D is a polynomial of w,, wu,,
z, and zz; modulo M, . Let us consider a product v of the elements u,
and wuy. Now [hy,u,] = 2u, and [hy,uy] = — 2u, so that h; com-
mutes with » (and v € D) only when the number of w,’s contained in
v is equal to the number of the elements w,. Using equations (5) and (6)
and the fact that [, ,u_] = — 2u_eM,, we conclude that v eZ,
mod M, . Thus D, =~ Z,|Z, n U(g) M, .

4) Finally, we have to show that Z, n U(g) M, = 0. Sketch of the
proof: Let z = > w,v; be an element of Z, n U(g) M, where the vs
belong to M, and the wu/s are elements of U(g). From the fact that
(U(g) ®)* = Sy(g,f) « for any f-finite g-module V and for any x e V"
it follows that the s and v’s can be assumed to be in Sy(g,f). Let
I, be the annihilator in U(f) of a maximal vector in an irreducible f-
module with maximal weight «; clearly J,C U(g),. If now »e M,
such that [k, ,v] = ¢ v with ¢ < 0, then v =0 mod U(g) I, because
o, = 0. Using this fact together with Lemma 1 and with the formulas
(1)—=(7) one can show that z must be of the form

>y (wyou )t mod Ulg) 1,
k=1

where vy, ...,y, € Z,. By a direct calculation one sees that
wyu_ = (1/4) (3 + 3oy + 4)2, +y  modJ,

where y eZ,. It follows that z = w, 2z, + w, mod U(g) I, where w,,
wy € Zy and w; = 0 only if w, = 0 (in the case «, > 2). On the other
hand, it is easy to see that U(g) [, N Z(g) = 0 (when «, > 2). Since
the generators z; of Z(g) are independent, we conclude that z € Z; only
when z = 0.

Combining Theorems 1 and 3 we get:

Corollary. For each o€ A such that o = 0, oy, > 2, and for
each pair (cy ,c;) of complex numbers there exists a unique equivalence class
(V] of irreducible f-finite g-modules V such that V, is minimal in V
and z; s represented by the scalar c; (i = 2,3).

However, unlike in the case o, > 1, not all of the equivalence classes
described above are distinct. We denote by V[a;ec,,c;] an irreducible
g-module of the Corollary. A module V = V[« ;cy,c;] can beisomorphic
with V' = V[« ;¢y,¢c5] onlyif ¢y =c¢,, ¢; = ¢y and V, isa minimal
component in ¥, according to Theorem 1. This is possible only when
ay = op and oy + oy = oy + «, since ay + o, is the value of the central
element 2z in V. Let 0 wveV}). Then V=V’ iff there exists
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s €8y(g,f) such that sv # 0 and h;sv = a;sv for 7 = 1,2,3,4.
In this case [h;,s] = 0 for ¢=1,2 and [k ,s] = (« — ;) s for
1 = 3,4 . From the commutation relations of the %,/s with the generators
s; of Sy(g,¥) it follows that ap — oy = — (g — a,) is an even integer.

In the following we denote by «,(8) the value of x; = 2, — y(z)
when z; takes the value ¢; (7 = 2,3) and y(z,) € U(f)) is evaluated at
hy=B; (j = 1,2,3,4).

Now we have a complete description of equivalences between different
modules Vo ;c, ,cy] :

Theorem 4. Theirreducible g-modules Vo ;c, ,cg] and Via'; ¢, , ¢y
with oy = o, =0, oy =0y, >2 and oy — g = — (g — o)) an even
integer (for example, let ay — ay = 0) are equivalent if and only if

2y(B) — (1/2) B oy — By + 4) 2(B) # 0 and — w5(f) + (1/2) By + 4) 2,(B)
+ 8oy (g — By + 2) %= 0 forany fed with =0, By = a,
Bo+ By = a5+, and By = oy — 2,05 — 4, .., 0.

Proof. Let fy=a, =0, fo=0y, fy=03+2k, B, =0, —2k
where k is a non-negative integer. Let 0 # v e V,[a;¢,,¢;] . From
equations (4) and (5) on page 8 it follows that
() gttt = [a(B) — (1/2) By — By + 4) 2(f)]

X [=a3(B) + (1/2) By + ) 25(f) + 3oy (g — fy + 2)]

X Ul ut v
If the conditions of the Theorem are fulfilled then w}u)*v = a-v where
0+aecC and n = (1/2) (25 — o) . Thus o' = u)* = 0 and V[a';¢,,c,] ~

Vies ¢y, 5]

Assume then that V[w;c,,cy] = V[ ;¢,,c5]. It follows that there
exists s €8,(g,f) such that sv # 0 and hsv = o sv (1 <@ <4).
Using the same method as in the proof of Theorem 3 it is shown
that sv = a-u," v, where a € C. We denote v' = sv . A similar argument
shows that there exists s €S)(g,f) such that s'v" =wv and 2" =
b-utv for some beC; thus ujuv # 0 and the rest follows from
the equation (x) above.

Next we ask: Which of the modules V[« ; ¢, , c;] are finite-dimensional?

Let W[A] be an irreducible finite-dimensional g-module with maximal
weight A = (A, 2, 43, 4,) , where we have defined 2, = A(e;) . As is
well-known, 4, > A, > 43 > 4, and all the differences 1, — 4; are
integers. Using the branching rules for the reduction gl(4) | gl(2) @ gl(2)
of finite-dimensional g[(4)-modules one sees that the minimal component
W, of W = WI[A] has the weight
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o, = 0,
a = |+ — A — A4,
g = 24,

a = Ayt Ay — Ay,

where o, = a(h;) . The values ¢, of the central elements z;, in W are
obtained using the Harish-Chandra homomorphism y; ¢, = y(2)(4) .
In the case ay, = |+ A — A — 4| = 2 we have therefore
WI[2A] = V[a;cy,cy], where o, ¢, and ¢y are obtained from A by the
recipe above.

6. The 2-singular case

In order to avoid tautology, we shall in this section give results without
proofs.
We consider now the cases o; = 0, o, =0 or o, = 1. As before,

D, ~Z|ZnU@gM,.

a) The case o, = oy = 0. The algebra Z | Z n Ulg) M, is generated
by z, and z;

zg = (1/2) By + 4) 2y — &8 — 2055  mod U(g) I, .

For each two pairs (cy,c¢,) and (o3, of complex numbers there
exists a unique equivalence class of irreducible f-finite g-modules
View, oy, €5, ¢,] such that the central element 2z, takes the value ¢,
(¢=2,4) in V and V, with « = (0,0, 0;,«,) isa minimal f-type
in V.

For most values of o’s and ¢’s the module V[uy, o, ,cy,c] is
equivalent with V{]ey + 2% ,0, — 20 ,¢,,c¢,] where n is a positive or
negative integer; the computations are rather tedious and we will not
present them here.

Note that the irreducible g-modules, corresponding to the principal
series of unitary irreducible representations of the pseudo-unitary group
U(2,2), are all contained in this class.

b) The case «, = 0, a, = 1. The algebra D, is now isomorphic with
the subalgebra of Z generated by z,, z; and z, . For each pair (g, o)
and each triple (c,,cy,c,) there exists a unique equivalence class of
f-finite g-modules V = V[ag, oy, ¢y,05,¢4 such that 2z, takes the
value ¢, (¢ = 2,8,4) in V and V, with « = (0,1, a,,0,) is a mini-
mal f-typein V.
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Again, except for special values of o’s and ¢’s, the modules
Vi + 20,04 — 2n,¢y,¢5,¢,] are equivalent when #n is an arbitrary

integer.
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