Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 1, 1975, 285-296

ON CERTAIN IRREDUCIBLE MODULES OF THE LIE ALGEBRA gi(4, C)

JOUKO MICKELSSON

Introduction

Let g be a complex Lie algebra and f a reductive subalgebra in g. We study irreducible f-finite g-modules by means of the step algebra $S(\mathfrak{g}, \mathfrak{k})$ of the pair $(\mathfrak{g}, \mathfrak{k})$. If V is a g-module and V_{α} is the sum of all irreducible finite-dimensional \mathfrak{k} -submodules of V with maximal weight α , we denote by $A_{\beta,\alpha}$ the subspace of the enveloping algebra $U(\mathfrak{g})$ of g such that $A_{\beta,\alpha} V_{\alpha}^+ \subset V_{\beta}^+$ for any g-module V; by definition, V_{α}^+ consists of all maximal vectors in V_{α} . Let $M_{\alpha} = \sum_{\beta < \alpha} A_{\beta,\alpha}$ and let D be the zero-step algebra, $D V_{\alpha}^+ \subset V_{\alpha}^+$ for any g-module V. It is shown that the equivalence classes [V] of irreducible g-modules V, such that $V_{\alpha} \neq 0$ and $V_{\beta} = 0$ for $\beta < \alpha$, are in natural 1-1 correspondence with the equivalence classes of irreducible $D / D \cap U(\mathfrak{g}) M_{\alpha}$ -modules. Using this result, the case $\mathfrak{k} = \mathfrak{gl}(2, \mathbb{C}) \oplus \mathfrak{gl}(2, \mathbb{C})$, $\mathfrak{g} = \mathfrak{gl}(4, \mathbb{C})$ is studied in detail.

1. Preliminaries

Let g be a complex Lie algebra, f a non-commutative reductive subalgebra in g and h a Cartan subalgebra of f. Let \mathfrak{h}^* be the (complex) dual of \mathfrak{h} , $\Delta \subset \mathfrak{h}^*$ a set of simple roots and Λ the set of dominant integral elements in \mathfrak{h}^* . By definition, an element $\alpha \in \mathfrak{h}^*$ is dominant integral if the restriction of α , to the subalgebra of \mathfrak{h} which belongs to the semi-simple part of f, is dominant integral with respect to the choice Λ of simple roots.

Next we choose a basis $\{h_1, ..., h_l\}$ for \mathfrak{h} , such that $h_1, ..., h_p$ are in the semi-simple part of \mathfrak{k} and $h_{p+1}, ..., h_l$ commute with \mathfrak{k} ($p \leq l$). We introduce a partial ordering "<" on Λ by putting $\lambda < \mu$ if $\lambda(h_i) \neq \mu(h_i)$ for some $i \leq p$ and the first non-zero member in the sequence $\lambda(h_1) - \mu(h_1)$, $\lambda(h_2) - \mu(h_2)$,... is negative. We assume furthermore that the choice $\{h_1, ..., h_l\}$ is such that the ordering "<" is compatible with the strong partial ordering defined by the choice of the simple roots. We split

$$\mathfrak{k} = \mathfrak{k}_+ \oplus \mathfrak{h} \oplus \mathfrak{k}_-$$

where f_+ corresponds to positive roots and f_- to negative roots.

We denote by $U(\mathfrak{a})$ the enveloping algebra of an arbitrary Lie algebra \mathfrak{a} . We define

$$S(\mathfrak{g},\mathfrak{k}) = \{ u \in U(\mathfrak{g}) \mid \mathfrak{k}_+ u \subset U(\mathfrak{g}) \mathfrak{k}_+ \}.$$

Let g' be an adf-invariant complement of f in g and $\{t_1, ..., t_n\}$ a basis of g' such that t_i has weight λ_i , $\lambda_i \ge \lambda_j$ when i > j, with respect to \mathfrak{h} . If $(i) = (i_1, ..., i_n)$ is a sequence of non-negative integers we put $t(i) = t_1^{i_1}...t_n^{i_n}$ and

$$U_1 \;=\; \sum_{\scriptscriptstyle (i)} t(i) \; U(\mathfrak{h}) \;.$$

We can now write

$$U(\mathfrak{g}) = U_1 \oplus U(\mathfrak{g}) \mathfrak{k}_+ \oplus U_1 U(\mathfrak{k}_-) \mathfrak{k}_- .$$

Let $P': U(\mathfrak{g}) \to U_1$ be the projection on the first summand and let P be the restriction of P' to $S(\mathfrak{g}, \mathfrak{k})$.

It is shown in [2, 4] that the mapping $P: S(\mathfrak{g}, \mathfrak{k}) \to U_1$ is injective modulo $U(\mathfrak{g}) \mathfrak{k}_+$. Furthermore, for each t_i there exists $s_i \in S(\mathfrak{g}, \mathfrak{k})$ such that $P(s_i) = t_i u_i$, where $u_i \in U(\mathfrak{h})$ is such that $u_i(\lambda) \neq 0$ if $\lambda + \lambda_i \in A$; any $u \in U(\mathfrak{h})$ can be identified with a polynomial on \mathfrak{h}^* .

We define here the step algebra $S_0(\mathfrak{g}, \mathfrak{k})$ with unit 1 as the subalgebra of $S(\mathfrak{g}, \mathfrak{k})$ generated by s_1, \ldots, s_n and $U(\mathfrak{g}) \mathfrak{k}_+$. We denote by D the centralizer of \mathfrak{h} in $S_0(\mathfrak{g}, \mathfrak{k})$.

2. Description of irreducible g-modules by the action of D

Let V be a g-module. We say that it is \mathfrak{k} -finite if it is a direct sum of irreducible finite-dimensional \mathfrak{k} -modules, when V is considered as a \mathfrak{k} module through the restriction of \mathfrak{g} to \mathfrak{k} . If α is any dominant integral element of \mathfrak{h}^* , we denote by V_{α} the sum of all irreducible \mathfrak{k} -modules with maximal weight α , contained in V. It is known that V is \mathfrak{k} -finite if it is generated by some V_{α} , $\alpha \in \mathcal{A}$, [1]. We define

$$V^{+} = \{ x \in V \mid \mathfrak{t}_{+} x = 0 \}, \quad V^{+}_{\alpha} = V^{+} \cap V_{\alpha}.$$

It is shown in [5] that $(U(\mathfrak{g}) x)^+ = S_0(\mathfrak{g}, \mathfrak{k}) x$ for any \mathfrak{k} -finite \mathfrak{g} -module and for any $x \in V^+$. In particular,

$$V^+ = S_0(\mathfrak{g}, \mathfrak{k}) x$$

if V is irreducible and $0 \neq x \in V^+$. We set

 $A_{\beta,\alpha} = \{ u \in U(\mathfrak{g}) \mid u \, V_{\alpha}^+ \subset V_{\beta}^+ \text{ for any } \mathfrak{g}\text{-module } V \}$

and

$$M_{\alpha} = \sum_{\beta < \alpha} A_{\beta, \alpha} .$$

We denote by I_{α} the annihilator in $U(\mathfrak{k})$ of the vector of maximal weight in an irreducible \mathfrak{k} -module with maximal weight α ; it is clear that $U(g) I_{\alpha} \subset M_{\alpha}$ for any α and

$$D \subset \bigcap_{\alpha} A_{\alpha,\alpha} , \qquad C \subset \bigcap_{\alpha} A_{\alpha,\alpha}$$

where C is the centralizer of \mathfrak{k} in $U(\mathfrak{g})$. It follows that we can consider any V_{α}^{+} as a D-module or as a C-module. In the case $V_{\beta} = 0$ for $\beta < \alpha$, the D-module V_{α}^{+} is in a natural way also a D_{α} -module, where

$$D_{\alpha} = D / D \cap U(\mathfrak{g}) M_{\alpha}.$$

We say that V_{α} is a minimal component of V if $V_{\alpha} \neq 0$ and $V_{\beta} = 0$ for $\beta < \alpha$. It follows from our choice of ordering in Λ that any \mathfrak{k} -finite g-module has at least one minimal component and the minimal component is unique if \mathfrak{k} is semi-simple.

Theorem 1. Assume that $D_{\alpha} \neq 0$. Then the mapping $V \mapsto V_{\alpha}^{+}$ induces a bijection between the set \hat{G}_{α} of equivalence classes [V] of irreducible g-modules with minimal component V_{α} and between the set \hat{D}_{α} of equivalence classes of irreducible non-zero D_{α} -modules.

Proof. Let us first consider the g-module $W = U(\mathfrak{g}) / U(\mathfrak{g}) M_{\alpha}$. It is clear that W_{α} is the minimal component of W. Now W is generated by the vector $0 \neq x = \mathbf{1} + U(\mathfrak{g}) M_{\alpha} \in W_{\alpha}$; thus it is \mathfrak{k} -finite and

$$W^+ = S_0(\mathfrak{g}, \mathfrak{k}) (\mathbf{1} + U(\mathfrak{g}) M_{\alpha}).$$

Since $C(\mathbf{1} + U(\mathfrak{g}) M_{\alpha}) \subset W_{\alpha}^+$ we have

$$C \subset D + U(\mathfrak{g}) M_{\alpha}$$
.

In [1, 3] it is shown that a g-module V with minimal component V_{α} is determined (up to equivalence) by the $C/C \cap U(\mathfrak{g}) M_{\alpha}$ -module V_{α}^{+} ; it then follows from the inclusion above that the mapping $\hat{G}_{\alpha} \rightarrow \hat{D}_{\alpha}$, $[V] \rightarrow [V_{\alpha}^{+}]$, is injective.

To prove the surjectivity of our mapping one can use a similar argument as in [1, 3]: Let W be an irreducible D_{α} -module. Let L be the annihilator in D of a non-zero vector $x \in W$ (note that W is a D-module through the quotient map $D \to D_{\alpha}$) so that $W \cong D/L$ as D-modules. Put

$$N = \{ u \in U(\mathfrak{g}) \mid U(\mathfrak{g}) u \cap D \subset L \}$$

and consider the irreducible g-module $U(\mathfrak{g}) / N = V$. We have to show that $V_{\alpha}^+ \cong W$ as D-modules. Now $D \cap U(\mathfrak{g}) \ M_{\alpha} \subset L$ and therefore $U(\mathfrak{g}) \ M_{\alpha} \subset N$; it follows that the vector $x = \mathbf{1} + N \in V$ is annihilated by $I_{\alpha} \subset U(\mathfrak{g}) \ M_{\alpha}$ i.e. $x \in V_{\alpha}^+$. Then

$$V^+_{\alpha} = D x = D + N.$$

The mapping $\varphi: V_{\alpha}^{+} \to D / L \simeq W$, $\varphi(d + N) = d + L$ (where $d \in D$) is a *D*-linear isomorphism; the injectivity of φ follows from the fact that $D \cap N = L$. If $\beta < \alpha$ then $V_{\beta}^{+} = A_{\beta,\alpha} V_{\alpha}^{+} = 0$ because of

$$A_{eta, \alpha} \subset U(\mathfrak{g}) \ M_{\alpha} \subset N \quad (ext{when } \beta < \alpha \) \ .$$

We conclude that V_{α} is the minimal component of V.

If $D_{\alpha} = 0$ it is not difficult to see that $\hat{G}_{\alpha} = \emptyset$.

3. Step algebra $S_0(\mathfrak{gl}(4), \mathfrak{gl}(2) \oplus \mathfrak{gl}(2))$

Let $g = gl(4, \mathbb{C})$ be the complex reductive Lie algebra consisting of 4×4 -complex matrices with the basis

$$\{e_{ij}\}_{i,\,j=1}^4$$
; $(e_{ij})_{kl} = \delta_{ik} \, \delta_{jl}$

and commutation relations

$$[e_{ij}, e_{kl}] = \delta_{jk} e_{il} - \delta_{il} e_{kj}.$$

The subalgebra $\mathfrak{k} = \mathfrak{gl}(2, \mathbb{C}) \oplus \mathfrak{gl}(2, \mathbb{C})$ with the basis

$$\{e_{12}, e_{21}, h_1, h_3\} \cup \{e_{34}, e_{43}, h_2, h_4\}$$

is reductive in g. The elements $h_1 = e_{11} - e_{22}$, $h_2 = e_{33} - e_{44}$, $h_3 = e_{11} + e_{22}$, $h_4 = e_{33} + e_{44}$ span a Cartan subalgebra \mathfrak{h} of \mathfrak{k} . Note that \mathfrak{h} is also a Cartan subalgebra in g. If $\alpha \in \Lambda$ we set $\alpha_i = \alpha(h_i)$ and $\alpha < \beta$ if $\alpha_1 < \beta_1$ or $\alpha_1 = \beta_1$ and $\alpha_2 < \beta_2$. An element $\alpha \in \mathfrak{h}^*$ is dominant integral, $\alpha \in \Lambda$, if α_1 and α_2 are non-negative integers and α_3 , α_4 arbitrary complex numbers.

A f-invariant complement g' of f in g has now the ordered basis

$$\{ e_{41}, e_{23}, e_{31}, e_{24}, e_{13}, e_{42}, e_{14}, e_{32} \}.$$

As described in Section 1, we associate with each $e_{ii} \in \mathfrak{g}'$ a step s_{ii} :

$$\begin{cases} s_{41} = e_{41} h_1 h_2 + e_{42} e_{21} h_2 - e_{31} e_{43} h_1 - e_{32} e_{43} e_{21} \\ s_{31} = e_{31} h_1 + e_{32} e_{21} \\ s_{24} = e_{24} h_1 - e_{14} e_{21} \\ s_{23} = e_{23} h_1 h_2 - e_{13} e_{21} h_2 + e_{24} e_{43} h_1 - e_{14} e_{43} e_{21} \\ s_{13} = e_{14} \\ s_{13} = e_{13} h_2 + e_{14} e_{43} \\ s_{32} = e_{32} \\ s_{42} = e_{42} h_2 - e_{32} e_{43} \end{cases}$$

The set R_{-} of first four elements correspond to negative roots under the adjoint action of \mathfrak{h} and the set R_{+} of last four elements correspond to positive roots.

Let $S_0(\mathfrak{g}, \mathfrak{k})$ be the algebra generated by the s'_{ij} s and by $U(\mathfrak{g}) \mathfrak{k}_+$, where $\mathfrak{k}_+ = \mathbf{C} \cdot e_{12} + \mathbf{C} \cdot e_{34}$.

Note that the projection P acting on an element s_{ij} gives the first term in s_{ij} . Let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$. It is known that $Z(\mathfrak{g})$ is generated by the Gelfand-elements

$$\begin{array}{rcl} z_{1} & = & \sum e_{ii} \; , \\ z_{2} & = & \sum e_{ij} \; e_{ji} \; , \\ z_{3} & = & \sum e_{ij} \; e_{jk} \; e_{ki} \; , \\ z_{4} & = & \sum e_{ij} \; e_{jk} \; e_{kl} \; e_{li} \end{array}$$

with a summation over repeated indecis. The projection of a z_i on U_1 is easily calculated from the formulas above when one remembers that \mathfrak{k}_{\pm} on the right gives zero (when the elements (*) appear in correct order). For example,

$$\begin{array}{rcl} P(z_1) &=& h_3 \,+\, h_4 \\ P(z_2) &=& 2 \, \left(e_{41} \,e_{14} \,+\, e_{31} \,e_{13} \,+\, e_{23} \,e_{32} \,+\, e_{24} \,e_{42} \right) \,+\, \frac{1}{2} \sum\limits_{i=1}^4 h_i^2 \,+\, 3 \,h_1 \,+\, h_2 \,. \end{array}$$

We denote by J_{α} the left-ideal in $U(\mathfrak{g})$ generated by \mathfrak{k}_{+} and by the set $\{h - \alpha(h) \cdot 1 \mid h \in \mathfrak{h}\}$. Let Z_{0} be the subalgebra of $Z(\mathfrak{g})$ generated by 1, z_{2} and z_{3} .

Lemma 1. Let $s \in R_{-}$, $s' \in R_{+}$ and $\alpha \in \Lambda$.

(1) If $a_1 \geq 1$ then $s s' \in \mathbf{C} \cdot R_+ R_- + \mathbf{C} \cdot \mathbf{1} + J_{\alpha}$

(2) If $\alpha_1 = 0$ then $s \ s' \in \mathbb{C} \cdot R_+ R_- + Z_0 + J_{\alpha}$ provided that $[h_2 + h_3, s \ s'] = \varepsilon \cdot s \ s'$ with $\varepsilon = 0, \pm 4$.

(3) If
$$\alpha_1 = 0$$
 then $s_{31} s_{42} \equiv -\frac{\alpha_2}{\alpha_2 + 2} s_{41} s_{32}$, $s_{24} s_{13} \equiv -\frac{\alpha_2}{(\alpha_2 + 2)} s_{23} s_{14}$, $s_{31} s_{14} \equiv s_{24} s_{32}$, $s_{23} s_{42} \equiv s_{41} s_{13} \mod J_{\alpha}$

 $\textit{Proof.} \hspace{0.2cm} \text{Since the mapping} \hspace{0.2cm} P: \hspace{0.2cm} S_0(\mathfrak{g} \hspace{0.2cm}, \mathfrak{k}) \rightarrow U_1 \hspace{0.2cm} \text{is injective modulo}$ $U(\mathfrak{g})$ \mathfrak{k}_+ , it is sufficient to consider the projections $P(s_{ij} s_{kl})$ when proving the relations (1) - (3); this is a great simplification in the computations. By a direct calculation,

$$\begin{split} s_{41} \, s_{42} &= \, s_{42} \, s_{41} \, , \qquad s_{31} \, s_{32} \, = \, s_{32} \, s_{31} \, , \\ s_{23} \, s_{13} &= \, s_{13} \, s_{23} \, , \qquad s_{24} \, s_{14} \, = \, s_{14} \, s_{24} \, , \end{split}$$

so that we are left with twelve pairs from the total sixteen. We consider as an example the pair $\,s_{41}\,s_{14}$. We have three different cases:

a) $\alpha_1 \ge 1$. After brute calculations one gets

$$s_{41} s_{14} \equiv \frac{1}{\alpha_1} \cdot s_{42} s_{24} + \frac{\alpha_1 + 1}{\alpha_1 (\alpha_2 + 1)} s_{13} s_{31} \\ + \frac{(\alpha_1 + 1) (\alpha_2 + 2)}{\alpha_1 (\alpha_2 + 1)} \cdot s_{14} s_{41} + a \cdot \mathbf{1} \mod J_{\alpha}$$

where $\alpha \in \mathbf{C}$ depends on α ; we have been too lazy to compute it (it is not necessary to know the value of a here).

b) $\alpha_1 = 0$, $\alpha_2 \ge 1$. Comparing $P(s_{41} s_{14})$ with $P(z_2)$ and $P(z_3)$ one sees that

$$s_{41} \, s_{14} \equiv (1/4) \left(lpha_2 \, + \, lpha_3 \, + \, lpha_4 \, + \, 14/3
ight) z_2 \, + \, (1/3) \, z_3 \, + \, a \cdot \mathbf{1} \, \mod J_{lpha}$$

for some $a \in \mathbf{C}$ depending on α .

c) $\alpha_1 = \alpha_2 = 0$. In the same way as above one gets

 $s_{41} s_{14} \equiv (1/2) z_2 + a \cdot \mathbf{1} \mod J_{\alpha}$.

The remaining terms $s s' (s \in R_{-}, s' \in R_{+})$ are treated in a similar way.

4. Non-singular f-finite g-modules

For $\mathfrak{g} = \mathfrak{gl}(4, \mathbb{C})$, $\mathfrak{k} = \mathfrak{gl}(2, \mathbb{C}) \oplus \mathfrak{gl}(2, \mathbb{C})$ let again

where D is the centralizer of \mathfrak{h} in $S_0(\mathfrak{g}, \mathfrak{k})$.

Theorem 2. If $\alpha \in \Lambda$ such that $\alpha_1 \geq 1$ then $D_{\alpha} \simeq \mathbf{C}$.

Proof. Consider an arbitrary monomial $s = s_{ij} s_{kl} \dots s_{nm}$ in D. If the last factor on the right belongs to R_{-} then $s \equiv 0 \mod M_{\alpha}$. Thus let us assume that the last factor belongs to R_{+} . Since s commutes with \mathfrak{h} , not all factors can be in R_{+} ; let s_{ba} be the last one in R_{+} , when reading from right to left, and let s_{dc} be the first one in R_{-} ,

$$s = s_1 s_{dc} s_{ba} s_2$$

where s_2 contains only elements from R_+ . Using Lemma 1 we can write

$$s_{-} = \sum_{t \in R_{+}} \sum_{t' \in R_{-}} a_{tt'} \cdot s_{1} t t' s_{2} + \text{ terms of lower degree } \mod M_{\alpha}$$

where $a_{\mu'} \in \mathbf{C}$. Using induction on the degree of s and s_2 one sees that the elements from R_{-} can be shifted to the left giving zero mod M_{α} . It follows that any element of D is in $\mathbf{C} \cdot \mathbf{1} \mod M_{\alpha}$. On the other hand, it is easy to see that $\mathbf{1} \notin D \cap U(\mathfrak{g}) M_{\alpha}$.

Corollary. For each $\alpha \in \Lambda$ such that $\alpha_1 \geq 1$ there exists a unique equivalence class [V] of irreducible \mathfrak{k} -finite \mathfrak{g} -modules V such that V_{α} is minimal in V. Furthermore, the minimal component V_{α} is uniquely determined i.e. $V_{\beta} = 0$ if $\alpha_1 = \beta_1$, $\alpha_2 = \beta_2$ but $\alpha \neq \beta$.

Proof. The first part follows directly from Theorems 1 and 2. As was proven in [5], any element in V_{β}^+ can be written as a linear combination of elements $s_{ij} s_{kl} \dots s_{nm} x = s x$ where $s_{ij}, \dots, s_{nm} \in R_{-} \cup R_{+}$ and $0 \neq x \in V_{\alpha}^+$. If now $\alpha_1 = \beta_1$, $\alpha_2 = \beta_2$, the element s has to commute with h_1 and h_2 ; it follows that there are as many factors from R_{-} as from R_{+} in s. The reduction modulo M_{α} used in the proof of Theorem 2 can be applied and it follows that s x = a x for some $a \in \mathbf{C}$ i.e. s x = 0 if $\alpha \neq \beta$.

Let V be a finite-dimensional irreducible g-module. Using the wellknown results about reducing $\mathfrak{gl}(4, \mathbb{C})$ -modules with respect to $\mathfrak{gl}(2, \mathbb{C}) \oplus \mathfrak{gl}(2, \mathbb{C})$ it is seen that there always exists $V_{\alpha} \subset V$ with $\alpha_1 = 0$. Thus all g-modules described in Corollary of Theorem 2 are infinitedimensional.

We call the modules of the Corollary above non-singular because they are completely labelled by the minimal component V_{α} .

5. The 1-singular case

In this section we classify all the irreducible \mathfrak{k} -finite g-modules with minimal component V_{α} such that $\alpha_1 = 0$, $\alpha_2 \geq 2$.

Theorem 3. If $\alpha \in \Lambda$ such that $\alpha_1 = 0$, $\alpha_2 \ge 2$ then $D_{\alpha} \cong Z_0$.

Proof. 1) Using the same argument as in the proof of Theorem 2 it is seen that any element in $D_{\alpha} = D / D \cap U(\mathfrak{g}) M_{\alpha}$ can be written as a linear combination of terms of the type $u_1 \dots u_n + D \cap U(\mathfrak{g}) M_{\alpha}$ where $u_1, \dots, u_n \in R_- R_+$. We denote

$$egin{array}{rcl} u_+&=&s_{31}\,s_{14}\,,&&u_-&=&s_{23}\,s_{42}\,,\ u_0&=&s_{41}\,s_{32}\,,&&u_0'&=&s_{23}\,s_{14}\,. \end{array}$$

Using (2) and (3) in Lemma 1 it is shown that it is sufficient to study only products of the elements u_{\pm} , u_0 and u'_0 modulo M_{α} .

2) By a direct calculation one can show that

(1)
$$u_0 u_+ \equiv \frac{\alpha_2 + 4}{\alpha_2 + 2} u_+ u_0$$

(2)
$$u_0 u_- \equiv \frac{\alpha_2}{\alpha_2 + 2} u_- u_0$$

(3)
$$u'_0 u_+ \equiv \frac{\alpha_2 + 4}{\alpha_2 + 2} u_+ u'_0$$

(4)
$$u'_0 u_- \equiv \frac{\alpha_2}{\alpha_2 + 2} u_- u'_0$$

(5)
$$\alpha_2^2 (\alpha_2 - 1) u_0 u_0' \equiv -(\alpha_2 + 2)^2 \alpha_2 u_+ u_- - (1/9) (\alpha_2 - 1) (\alpha_2 + 2)^2 [x_3 - (1/2) (3 \alpha_0 + 4) x_2 - 3 \alpha_2 (\alpha_0 - \alpha_4 + 2)] [x_3 - (1/2) (3 \alpha_0 - 3 \alpha_2 + 4) x_2]$$

(6)
$$\alpha_2^2 (\alpha_2 - 1) u_0' u_0 \equiv -(\alpha_2 + 2)^2 \alpha_2 u_+ u_- - (1/9) (\alpha_2 - 1) (\alpha_2 + 2)^2 [x_3 - (1/2) (3 \alpha_0 - 3 \alpha_2 + 4) x_2 + 3 \alpha_2 (\alpha_0 - \alpha_2 - \alpha_4)] [x_3 - (1/2) (3 \alpha_0 + 4) x_2 - 6 \alpha_2 (\alpha_0 - \alpha_4 + 1)]$$

(7)
$$\alpha_2 (\alpha_2 - 1) u_- u_+ \equiv (\alpha_2^2 + 3 \alpha_2 + 4) u_+ u_- + z(\alpha) \mod J_{\alpha}$$

where $z(\alpha)$ is some element in Z_0 and

$$\begin{array}{rcl} \alpha_0 &=& (1/2) \left(\alpha_1 \,+\, \alpha_2 \,+\, \alpha_3 \,+\, \alpha_4 \right) \\ x_2 &=& z_2 \,-\, \gamma(z_2) \;, & x_3 \;=\; z_3 \,-\, \gamma(z_3) \end{array}$$

and $\gamma: Z(\mathfrak{g}) \to U(\mathfrak{h})$ is the Harish-Chandra homomorphism.

From the first four equations it follows that any product of the elements u_{\pm} , u_0 and u'_0 can be written in the form $a \cdot v w \mod J_{\alpha}$, where v contains only factors u_0 , u'_0 and w consists of u_{\pm} ; a is a complex number. Using the commutation argument in the proof of Theorem 2 it follows from equation (7) that $w \in Z_0 + D \cap U(\mathfrak{g}) M_{\alpha}$; note that the

number of factors u_+ in w is equal to the number of the $u_-'s$ because of $[h_2, u_{\pm}] = \pm 2 u_{\pm}$ and $0 = [h_2, v w] = v[h_2, w]$.

3) We have shown that any element of D is a polynomial of u_0 , u'_0 , z_2 and z_3 modulo M_{α} . Let us consider a product v of the elements u_0 and u'_0 . Now $[h_3, u_0] = 2 u_0$ and $[h_3, u'_0] = -2 u'_0$ so that h_3 commutes with v (and $v \in D$) only when the number of u_0 's contained in v is equal to the number of the elements u'_0 . Using equations (5) and (6) and the fact that $[h_2, u_-] = -2 u_- \in M_{\alpha}$, we conclude that $v \in Z_0 \mod M_{\alpha}$. Thus $D_{\alpha} \cong Z_0 / Z_0 \cap U(\mathfrak{g}) M_{\alpha}$.

4) Finally, we have to show that $Z_0 \cap U(\mathfrak{g}) M_{\alpha} = 0$. Sketch of the proof: Let $z = \sum u_i v_i$ be an element of $Z_0 \cap U(\mathfrak{g}) M_{\alpha}$ where the v_i 's belong to M_{α} and the u_i 's are elements of $U(\mathfrak{g})$. From the fact that $(U(\mathfrak{g}) x)^+ = S_0(\mathfrak{g}, \mathfrak{k}) x$ for any \mathfrak{k} -finite g-module V and for any $x \in V^+$ it follows that the u_i 's and v_i 's can be assumed to be in $S_0(\mathfrak{g}, \mathfrak{k})$. Let I_{α} be the annihilator in $U(\mathfrak{k})$ of a maximal vector in an irreducible \mathfrak{k} -module with maximal weight α ; clearly $J_{\alpha} \subset U(\mathfrak{g}) I_{\alpha}$. If now $v \in M_{\alpha}$ such that $[h_1, v] = q \cdot v$ with q < 0, then $v \equiv 0 \mod U(\mathfrak{g}) I_{\alpha}$ because $\alpha_1 = 0$. Using this fact together with Lemma 1 and with the formulas (1) - (7) one can show that z must be of the form

$$\sum_{k=1}^{n} y_k (u_+ u_-)^k \mod U(\mathfrak{g}) I_{\alpha}$$

where $y_1, \ldots, y_n \in Z_0$. By a direct calculation one sees that

$$u_{+} u_{-} \equiv (1/4) (\alpha_{2}^{2} + 3 \alpha_{2} + 4) z_{4} + y \mod J_{\alpha}$$

where $y \in Z_0$. It follows that $z = w_1 z_4 + w_2 \mod U(\mathfrak{g}) I_{\alpha}$ where w_1 , $w_2 \in Z_0$ and $w_1 = 0$ only if $w_2 = 0$ (in the case $\alpha_2 \ge 2$). On the other hand, it is easy to see that $U(\mathfrak{g}) I_{\alpha} \cap Z(\mathfrak{g}) = 0$ (when $\alpha_2 \ge 2$). Since the generators z_i of $Z(\mathfrak{g})$ are independent, we conclude that $z \in Z_0$ only when z = 0.

Combining Theorems 1 and 3 we get:

Corollary. For each $\alpha \in \Lambda$ such that $\alpha_1 = 0$, $\alpha_2 \ge 2$, and for each pair (c_2, c_3) of complex numbers there exists a unique equivalence class [V] of irreducible \mathfrak{k} -finite \mathfrak{g} -modules V such that V_{α} is minimal in V and z_i is represented by the scalar c_i (i = 2, 3).

However, unlike in the case $\alpha_1 \geq 1$, not all of the equivalence classes described above are distinct. We denote by $V[\alpha; c_2, c_3]$ an irreducible g-module of the Corollary. A module $V = V[\alpha'; c'_2, c'_3]$ can be isomorphic with $V' = V[\alpha'; c'_2, c'_3]$ only if $c'_2 = c_2$, $c'_3 = c_3$ and $V_{\alpha'}$ is a minimal component in V_{α} , according to Theorem 1. This is possible only when $\alpha'_2 = \alpha_2$ and $\alpha'_3 + \alpha'_4 = \alpha_3 + \alpha_4$ since $\alpha_3 + \alpha_4$ is the value of the central element z_1 in V. Let $0 \neq v \in V_{\alpha}^+$. Then $V \simeq V'$ iff there exists $s \in S_0(\mathfrak{g}, \mathfrak{k})$ such that $s v \neq 0$ and $h_i s v = \alpha'_i s v$ for i = 1, 2, 3, 4. In this case $[h_i, s] = 0$ for i = 1, 2 and $[h_i, s] = (\alpha'_i - \alpha_i) s$ for i = 3, 4. From the commutation relations of the h_i 's with the generators s_{ii} of $S_0(\mathfrak{g}, \mathfrak{k})$ it follows that $\alpha'_3 - \alpha_3 = -(\alpha'_4 - \alpha_4)$ is an even integer.

In the following we denote by $x_i(\beta)$ the value of $x_i = z_i - \gamma(z_i)$ when z_i takes the value c_i (i = 2, 3) and $\gamma(z_i) \in U(\mathfrak{h})$ is evaluated at $h_j = \beta_j$ (j = 1, 2, 3, 4).

Now we have a complete description of equivalences between different modules $V[\alpha; c_2, c_3]$:

Theorem 4. The irreducible g-modules $V[\alpha; c_2, c_3]$ and $V[\alpha'; c_2, c_3]$ with $\alpha'_1 = \alpha_1 = 0$, $\alpha'_2 = \alpha_2 \ge 2$ and $\alpha'_3 - \alpha_3 = -(\alpha'_4 - \alpha_4)$ an even integer (for example, let $\alpha'_3 - \alpha_3 \ge 0$) are equivalent if and only if

 $\begin{array}{l} x_3(\beta) \ - \ (1/2) \ (3 \ \alpha_0 \ - \ 3 \ \alpha_2 \ + \ 4) \ x_2(\beta) \ \neq \ 0 \ \ and \ \ - \ x_3(\beta) \ + \ (1/2) \ (3 \ \alpha_0 \ + \ 4) \ x_2(\beta) \\ \\ + \ 3 \ \alpha_2 \ (\alpha_0 \ - \ \beta_4 \ + \ 2) \ \neq \ 0 \ \ for \ \ any \ \ \beta \in \ \Lambda \ \ with \ \ \beta_1 \ = \ 0 \ , \ \ \beta_2 \ = \ \alpha_2 \ , \\ \\ \beta_3 \ + \ \beta_4 \ \ = \ \ \alpha_3 \ + \ \alpha_4 \ \ and \ \ \ \beta_3 \ = \ \ \alpha_3' \ - \ 2 \ , \ \ \alpha_3' \ - \ 4, \ \ldots, \ \alpha_3 \ . \end{array}$

Proof. Let $\beta_1 = \alpha_1 = 0$, $\beta_2 = \alpha_2$, $\beta_3 = \alpha_3 + 2k$, $\beta_4 = \alpha_4 - 2k$ where k is a non-negative integer. Let $0 \neq v \in V_{\alpha}^+[\alpha; c_2, c_3]$. From equations (4) and (5) on page 8 it follows that

$$\begin{array}{rcl} (*) & u_0^{k+1} \, u_0^{\prime k+1} \, v &=& [x_3(\beta) \, - \, (1/2) \, (3 \, \alpha_0 \, - \, 3 \, \alpha_2 \, + \, 4) \, x_2(\beta)] \\ & \times \left[- \, x_3(\beta) \, + \, (1/2) \, (3 \, \alpha_0 \, + \, 4) \, x_2(\beta) \, + \, 3 \, \alpha_2 \, (\alpha_0 \, - \, \beta_4 \, + \, 2) \right] \\ & \times \, u_0^k \, u_0^{\prime k} \, v \; . \end{array}$$

If the conditions of the Theorem are fulfilled then $u_0^n u_0'^n v = a \cdot v$ where $0 \neq a \in \mathbf{C}$ and $n = (1/2) (\alpha_3' - \alpha_3)$. Thus $v' = u_0'^n \neq 0$ and $V[\alpha'; c_2, c_3] \cong V[\alpha; c_2, c_3]$.

Assume then that $V[\alpha; c_2, c_3] \cong V[\alpha'; c_2, c_3]$. It follows that there exists $s \in S_0(\mathfrak{g}, \mathfrak{k})$ such that $s v \neq 0$ and $h_i s v = \alpha'_i s v$ $(1 \leq i \leq 4)$. Using the same method as in the proof of Theorem 3 it is shown that $s v = a \cdot u'_0 v$, where $a \in \mathbb{C}$. We denote v' = s v. A similar argument shows that there exists $s' \in S_0(\mathfrak{g}, \mathfrak{k})$ such that s' v' = v and $s' v' = b \cdot u_0^n v'$ for some $b \in \mathbb{C}$; thus $u_0^n u_0'^n v \neq 0$ and the rest follows from the equation (*) above.

Next we ask: Which of the modules $V[\alpha; c_2, c_3]$ are finite-dimensional?

Let $W[\lambda]$ be an irreducible finite-dimensional g-module with maximal weight $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4)$, where we have defined $\lambda_i = \lambda(e_{ii})$. As is well-known, $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4$ and all the differences $\lambda_i - \lambda_j$ are integers. Using the branching rules for the reduction $\mathfrak{gl}(4) \downarrow \mathfrak{gl}(2) \oplus \mathfrak{gl}(2)$ of finite-dimensional $\mathfrak{gl}(4)$ -modules one sees that the minimal component W_{α} of $W = W[\lambda]$ has the weight

$$egin{array}{rcl} lpha_1 &=& 0 \;, \ lpha_2 &=& |\lambda_2 \,+\, \lambda_3 \,-\, \lambda_1 \,-\, \lambda_4 \;|\;, \ lpha_3 &=& 2\; \lambda_3 \;, \ lpha_4 &=& \lambda_1 \,+\, \lambda_2 \,+\, \lambda_4 \,-\, \lambda_3 \;, \end{array}$$

where $\alpha_i = \alpha(h_i)$. The values c_i of the central elements z_i in W are obtained using the Harish-Chandra homomorphism γ ; $c_i = \gamma(z_i)(\lambda)$. In the case $\alpha_2 = |\lambda_2 + \lambda_3 - \lambda_1 - \lambda_4| \geq 2$ we have therefore $W[\lambda] \simeq V[\alpha; c_2, c_3]$, where α , c_2 and c_3 are obtained from λ by the recipe above.

6. The 2-singular case

In order to avoid tautology, we shall in this section give results without proofs.

We consider now the cases $\alpha_1 = 0$, $\alpha_2 = 0$ or $\alpha_2 = 1$. As before,

$$D_{\mathfrak{a}} \,\cong\, Z \mid Z \,\cap\, U(\mathfrak{g}) \,\, M_{\mathfrak{a}} \,.$$

a) The case $\alpha_1 = \alpha_2 = 0$. The algebra $Z \mid Z \cap U(\mathfrak{g}) \ M_{\alpha}$ is generated by z_2 and z_4 ;

$$z_3 \;=\; (1/2)\; (3\; \alpha_0 \;+\; 4)\; z_2 \;-\; \alpha_0^3 \;-\; 2\; \alpha_0\; \alpha_3 \; \mod U(\mathfrak{g})\; I_\alpha\;.$$

For each two pairs (c_2, c_4) and (α_3, α_4) of complex numbers there exists a unique equivalence class of irreducible f-finite g-modules $V[\alpha_3, \alpha_4, c_2, c_4]$ such that the central element z_i takes the value c_i (i = 2, 4) in V and V_{α} with $\alpha = (0, 0, \alpha_3, \alpha_4)$ is a minimal f-type in V.

For most values of α_i 's and c_i 's the module $V[\alpha_3, \alpha_4, c_2, c_4]$ is equivalent with $V[\alpha_3 + 2n, \alpha_4 - 2n, c_2, c_4]$ where n is a positive or negative integer; the computations are rather tedious and we will not present them here.

Note that the irreducible g-modules, corresponding to the principal series of unitary irreducible representations of the pseudo-unitary group U(2, 2), are all contained in this class.

b) The case $\alpha_1 = 0$, $\alpha_2 = 1$. The algebra D_{α} is now isomorphic with the subalgebra of Z generated by z_2 , z_3 and z_4 . For each pair (α_3, α_4) and each triple (c_2, c_3, c_4) there exists a unique equivalence class of \mathfrak{k} -finite g-modules $V = V[\alpha_3, \alpha_4, c_2, c_3, c_4]$ such that z_i takes the value c_i (i = 2, 3, 4) in V and V_{α} with $\alpha = (0, 1, \alpha_3, \alpha_4)$ is a minimal \mathfrak{k} -type in V.

Again, except for special values of α_i 's and c_i 's, the modules $V[\alpha_3 + 2 n, \alpha_4 - 2 n, c_2, c_3, c_4]$ are equivalent when n is an arbitrary integer.

References

- LEPOWSKY, J., and G. W. MCCOLLUM: On the determination of irreducible modules by restriction to a subalgebra. - Trans. Amer. Math. Soc. 176, 1973, 45-57.
- [2] MICKELSSON, J.: Step algebras of semi-simple subalgebras of Lie algebras. -Rep. Mathematical Phys. 4, 1973, 307-318.
- [3] -»- On irreducible modules of a Lie algebra which are composed of finitedimensional modules of a subalgebra. - Ann. Acad. Sci. Fenn. Ser. A I 598, 1975, 1-16.
- [4] VAN DEN HOMBERGH, A.: A note on Mickelsson's step algebra. Mathematisch Instituut, Katholieke Universiteit, Nijmegen, 1974 (to appear in Indag. Math.).
- [5] -»- On some indecomposable Harish-Chandra modules. Mathematisch Instituut, Katholieke Universiteit, Nijmegen, 1974.

University of Jyväskylä Department of Mathematics SF-40100 Jyväskylä 10 Finland

Received 3 June 1975