Annales Academiz Scientiarum Fennica
Series A. I. Mathematica
Volumen 1, 1975, 309— 325

COVERING PROPERTIES OF HARMONIC
BL-MAPPINGS III

ILPO LAINE

1. Introduction

This article is devoted to the study of harmonic Bl-mappings between
harmonic spaces satisfying the general axiomatics of Constantinescu and
Cornea (see [5], p. 30). Actually we shall present an improvement of the
contents of Section 2 in our earlier article [8].

Suppose #(X) (resp. #(X’)) is a mapping which associates a family
Fy(X) (resp. F (X)) of numerical functions for all open sets U (resp.
U") in a harmonic space X (resp. X' ). We say that a continuous mapping
¢ X — X’ between two harmonic spaces X and X’ inversely preserves
the above collections of families of functions, if f’o¢ € F yyun(X) ,
whenever U’ C X' isan open set such that ¢~ Y(U’) # 0 and f’ € #,.(X').
In this notation, the earlier presentations mainly define a harmonic map-
ping as a continuous mapping which inversely preserves harmonic functions
(see e.g. [3], [8] —[11]). These articles have been devoted to harmonic
mappings either between Brelot spaces ([3], [8], [9]) or between Bauer
spaces satisfying the convergence axiom of Doob ([10], [11]).

In the general axiomatics the inverse preservation of the sheaf of
harmonic functions is too weak a condition to give a sufficiently interesting
class of continuous mappings. Therefore we define in this article harmonic
mappings as continuous mappings which inversely preserve the sheaf of
hyperharmonic functions. In a certain sense the idea for this definition,
which reduces back to the usual one whenever X’ is a Bauer space (in the
sense of [5]), goes back to Sibony ([11], p. 91 and Définition 19). The same
idea has been used also by Fuglede to define finely harmonic mappings [6].
Our definition of a harmonic mapping and its basic consequences are
introduced in the second section. The third and fourth section contain
some results on covering properties of Bl-mappings similar to those
presented in Section 2 in [8]. However, the definition of a normal map-
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ping is now slightly more general. It appears, roughly speaking, that the
exceptional covering set, which was a polar set in [8], is now either polar
or else possesses a non-empty interior. As soon as the range space X' is
elliptic, the exceptional set reduces to a polar set. In the fifth section
similar results will be proved for open Bl-mappings.

2. The definition of harmonic mappings

Lemma 2.1. (See also [2], Satz 2.1.1.) Let ¥ be a base for the
neighbourhoods of a point © € X such that ¥ contains only relatively compact
resolutive neighbourhoods of x and let  s: V>R be a hyperharmonic
function on a neighbourhood V of x . Then

s(x) = sup u" s(x).
wWey~

Proof. We note that

s@) = sup 4 s(x)
wey”

trivially. To prove the converse inequality, let o« < s(x). We may assume
that there is a strictly positive harmonic function 2 on We v, el W C ¥V,
such that h(z) = 1. Thus we get oh(r) < s(x). We may also assume
that «h < s on cl W . Then

a = ahl@) = ap’hx) = plah)@) = pu¥s@)
and so
o« =< sup u" s(x).
WE’V

The lemma follows.

Definition 2.2. A continuous mapping ¢: X — X' dnversely
preserving the sheaf of hyperharmonic functions is a harmonic mapping.

Remark 2.3. Obviously a harmonic mapping inversely preserves also
the sheaf of harmonic functions. The converse result is not true in general.
In fact, let us consider two harmonic spaces R; = (R, %;) and
R, = (R, %,) over the real axis R where the hyperharmonic sheaf
U, (resp. U,) is formed by lower semi-continuous, lower finite functions
w: U—>R on the open sets U C R which are increasing (resp. de-
creasing) on the components of U (see [5], Theorem 2.1.2). We denote by
g: R, —~R, the ordinary exponential function. Obviously ¢ inversely
preserves the harmonic sheaf, but it does not inversely preserve non-
constant hyperharmonic functions.
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Theorem 2.4. A continuous mapping ¢: X — X' into a Bauer
space X' inversely preserving the harmonic sheaf is a harmonic mapping.

Proof. This proof follows the well-known idea used in [3] to prove the
corresponding Theorem 3.1.

We may consider the inverse preserving property for positive continuous
superharmonic functions s" on a Z-set U’ C X’ only. In fact, let s be
hyperharmonic on U’ and let { V,C U’ | « €I} be an open cover of
U’ by @P-sets relatively compact in U’ such that on any V,, «a€l,
there is a bounded harmonic function A’ which satisfies infZ,(V,) > 0.
Hence there is b, € R such that « = s +b,h, = 0 on V,. Since
@ inversely preserves harmonic functions, then

sop = (8 +byh)op —byhop = wop—bhop

is hyperharmonic on ¢ (V,) # @ as soon as this is true for positive
hyperharmonic functions. Moreover, we get by [5], Corollary 2.3.1,
uwog = (supug)og = sup (u,;°<p)
BeJ Bel
on ¢ (V,), where {u;| peJ} is the family of positive continuous
superharmonic functions dominated by «  on V,. Hence the theorem
follows.
We now proceed under the additional assumptions. Let U # O be
a relatively compact set in ¢~(U’) # O, hence ¢(cl U) C U’ is a compact
non-empty set. Let us consider the collection { ¥} of all finite open covers
v of ¢(cl U) by regular sets which are relatively compact in U". Let
¥ be such an open cover. If V' ey’ and y' €oV’, then
lim inf 4" ¢'(2') = s'(y') .
Vs x—sy
since V' is regular. Therefore the Poisson modification s, of s’ defined in
U’ , which is hyperharmonic by [5], Corollary 2.1.2, takes the form
, s'(x") for ' e U N\ V'
i - (1
w8 (@) for 2" e V'.
Let us define a hyperharmonic function s:f, on U’ by
s'(@')y  for 2" e U\ U TV’
’ ’ ( /) inf ’ ( ,) V’E’V’
' > s, @) = inf sp(2) = .
4 viey v inf W @) fora'e U V.
vevey vey
Obviously st, o g is lower semi-continuous on U . To prove its hyper-

harmonicity, let € U and let V be a relatively compact resolutive set
such that
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xeV, «dV C N ¢XV)nU.
owevey”’

We then define t: N ¢ (V') — R as follows:

tp(x)eV’e"//'
z > tz) = inf sp(pk) = inf 478 (p@).
o evey” owevey”

Since s’ is superharmonic on U’, (W s") o @ is harmonic on ¢ (U’),
hence ¢ is superharmonic. Moreover, ¢ = S:V, op and ) = s://,(<p(x)).
Therefore

hence s://, o @ is hyperharmonic on U by [5], Corollary 2.3.4.
The family { s://, } restricted into ¢(cl U) is upper directed. In fact,

since U’ is a 2-set, the intersection of any two regular sets in U’ is
again regular ([5], Corollary 6.3.8). Therefore, if ¥ and ¥~ , are two open
covers in the collection { ¥}, then

W o= {(VinVy# Q| Vievy, Voevy}
belongs to the same collection. If we define, for W' = VinVyew',
, s'(x')  for o’ e eW' n aV;
x> sy(x) = { . ,
urs'(@) for 2’ edW' n Vg,
then, by [5], Proposition 2.4.4, we get
wis = HY = CIHZ:Z' < HY = v

on W', hence obviously

s:,//, > max (s'y, ,s://,)
on @cl U).
Finally we get
s’ = sups, .,
v’ 7

on g¢(cl U). In fact, if &' ep(cl U) and « < s'(z’), then we may take
a regular neighbourhood W' of 2’ relatively compact in U’ such that
u” §'(@') > o by Lemma 2.1. Obviously we may construct a finite open
cover V' of ¢(cl U) in the collection { V'} such that if 2" ecl V' and
V'ey’, then V' = W’. Then we get
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Therefore

s'op = (sups. )o@ = sup (s,.oq)
‘2 VI’) ) P e gt ° P
is hyperharmonic on U, hence by the sheaf property of hyperharmonic
functions on ¢~ 1Y(U").
Theorem 25. If ¢: X — X' is a homeomorphic harmonic mapping
into a Bauer space X', then ¢=': X' — X is a harmonic mapping.
Proof. (See [3], Theorem 3.4.) Let U C X be an open set and let

s: U—R be a hyperharmonic function. Then so ¢! is hyperharmonic
on ¢(U). To prove this, we may assume that s is a finite continuous
superharmonic function. In fact, by [5], Corollary 2.3.1, we may take an
open cover of U by relatively compact Z-sets W,C U, a«el, such
that s | W, can be represented as the supremum of its continuous super-
harmonic minorants {s,|p €J }. Hence, if s;°¢™ is hyperharmonic
on @(W,) forall feJ, then

sogt = (supsg) ot = sup (sz°7)
BeJ BeJ
is hyperharmonic on ¢(W,) and by the sheaf property of hyperharmonic
functions on the whole ¢(U).

Let now V' C ¢(U) be an open relatively compact resolutive regular
set such that ¢=Y(V’) is a relatively compact MP-set. Since so ¢t is
continuous on oV’ , then f*: ¢l V’'— R defined as

Viso gt for ' e V'
2 s PR = th (8 ° @)
so g Ha') for " e aV’

is its continuous extension into ¢l V' which is harmonic on V’. Therefore

s(y) = slg7HeW®) = fHe) = lim [f*@') = lm (f*oq)()
V'3 %' —p(y) PN V)2 2>y
and so
liminf (s — f*eq@)(x) = sy) — lim (ffeg)@) = 0
V)2 x>y @7 (V')3 x>y

for all y € op~X(V') . Since p~1(V') is, by assumption, a relatively compact
MP-set, we get s — f*op = 0 on ¢ 1(V’). Hence

pwiseg™) = f* < segon V.

Since the open sets V' satisfying the conditions described above form
a base for the topology of ¢(U), seo ¢ is hyperharmonic on ¢(U) by
[5], Corollary 2.3.4. The theorem follows.
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3. Covering properties of harmonic Bl-mappings

Definition 3.1. A harmonic mapping ¢: X — X' inversely
preserving locally bounded potentials is a Bl-mapping.

Theorem 3.2. If ¢: X — X' is a harmonic Bl-mapping, of U" C X’
is a P-domain such that ¢~W(U') # @, iof V is the union of a non-empty
subfamily of the components of ¢~ (U') and if ¢(V) is an open set, then either
U' N\ @(V) is a polar set in U’ or else cl (p(V)) is a non-trivial absorbent
set in U'.

Proof. The notation ¢ in this proof means the restricted mapping
@: V—U'".Wedenote by #, the family of all locally bounded potentials
on U’ not vanishing identically on H; = U’ \ ¢(V) . Let us assume that
B} is a non-polar set in U’ . By assumption E; is closed in U’ . If there is
a' e U\ E, and p’ € Z, such that

¢@) = B )p@) > 0,

then ¢’ ° ¢ isa potential on V not vanishing identically, since 2’ € (V).
On the other hand, ¢’ is harmonic on U’\ E, by [5], Proposition 5.3.1,
and therefore ¢’ o ¢ is harmonic on V , a contradiction.

Hence we must have ¢’(z') = 0 for any point 2’ € U’ \ E; and any
p' € P, . Actually, we shall prove that

(R%)y = 0 on U\ intEy, = U\ int,Hy C U’
for all p’ € 2, . This implies, by [5], Proposition 5.3.1,
p  on int K,
0 on U’'\ int K,
hence there is an absorbent set F'(p’) D U’ \ int E, .Since U’ isa 2P-set,

c (p(V) = el (U \ Ey) = U\ int B, = n F'(p)
pedP.

@ = |

is a non-trivial absorbent set in U’ ([5], Proposition 6.1.2). To complete
the proof we observe, by [5], Proposition 7.1.2 and Proposition 7.1.5, that
there is p’ € #; such that

(B} )y # 0,
since H, is non-polar. Further, int By # O, since otherwise K, = ol

and there is 2’ € U’ \ K, such that

(RE)p(@') > 0.
If now
(R ) ly") > 0
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for some 7' € 2, and some p’ €2, then also there is 2’ € U'\ H,
such that

(BE) o) = 0.
Therefore we get, for any p’ € 2, ,

(R%)y = 0 on oH,
hence
(l%fﬁ')v, = 0 on U\ intE,.

If 4’ € @K, , then there is p’ € Z; such that
P'y) > EB)ely) = 0,

since U’ isa Z-set. Hence, by [5], Proposition 5.3.1, aB; C K, \ int, B,
which implies int By = int, B . The theorem follows.

Theorem 3.3. (See also [3], Corollary 3.7.) If ¢: X — X' s
a harmonic Bl-mapping, if U’ C X' s an elliptic P-domain such that
o NU') # @ and if V 1is the union of a non-empty subfamily of the com-
ponents of ¢ Y U'), then every closed set F' C U\ @(V) 1is a polar set
m U’

Proof. Using the notations in the proof of the preceding theorem we
note that every potential p’ € 2, is strictly positive. Let us assume that
there is a non-polar closed set F" C U’ ¢(V). We may assume that F’
is compact ([4], Theorem 8 and [5], Exercise 6.2.6). There is a potential
p’ €, such that

¢ = By

is a strictly positive potential on U’ ([5], Proposition 7.1.2 and Proposition
7.1.5), hence ¢'°o¢ is a strictly positive potential on V. This is
a contradiction, since ¢’ is harmonicon U’ \ F’ and so ¢’ ° ¢ is harmonic
on V.

Theorem 34. If ¢: X— X' s a harmonic Bl-mapping, if
U ' C X" 4s a one-dimensional orientated P-Bauer domain such that
e N U") = O, if V is the union of a non-empty subfamily of the components
of oY (U') and if @(V) is an open set, then U’ \ ¢(V) =0 and
p: V—U" is a surjective mapping.

Proof. By [7], Theorem 2.2, there is an open dense subset V' of U’
such that V' is an elliptic Bauer space, hence all of its components
V., « el are elliptic #-domains. Let again ¢ denote the restricted
mapping ¢ : V— U’ . By Theorem 3.3, for the mappings ¢ : o~ X(V.) =V, ,
xel, any closed set in V,\ ¢(@g~(V,)) is polar in V,, respectively.
Since V. is a one-dimensional manifold, all of its points are non-polar,
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hence ¢(p~1(V.) = V., forall « € I. Therefore weget ¢(p~X(V')) = V'.
Since V' is dense in U’

U = oV = g (V) C @) C U.

Therefore U’ ¢(V) is a polar set in U’ by Theorem 3.2. Since U’ is
a one-dimensional manifold, ¢(V) = U".

Theorem 3.5. If ¢: X— X" is a harmonic Bl-mapping, if
U'CX, ¢YU')#@, is a domain possessing a pseudoexhaustion
(U.| ieN} by eliptic P-domains (for the definition of a pseudo-
exhaustion, see [4], p. 382) and if V is the union of a non-empty subfamily
of the components of ¢ (U’'), then every closed set F'C U’ (V) s
a polar set in U’ .

Proof. Since { U.|i eN} is a pseudoexhaustion,

U\ TV = UNU U
i=1

is a polar set in U’. Let ¢ denote the restricted mapping ¢: V — U’
and denote A, = U.\ @(@~}(U;)) forevery ieN. If F' C U\ ¢(V)
is a closed set, then F' n U; C A4; is a closed set in U;. Since U; is
an elliptic #-domain, F’ N U! is a polar set in U; by Theorem 3.3. By
[5], p. 142, there is an open cover ¥, of U. such that for every W'e %",
we get W' C U; and

AE AU W
REovANWy — 0,

The family of sets # = U {#;| ieN} is an open cover of V’.
If W ew , then W e for some ¢eN, hence

(REOVIOW), = (RENUIOW), — 0.
Therefore F' N V' is a polar set in V' . By the definition of a pseudo-
exhaustion, V' is a K, -set, hence F' n V' is polar in U’ ([5], Exercise
6.2.2). Since F'\ V' is polar in U’ , the theorem follows.

Remark 3.6. In the above Theorem 3.2, both of the given possibilities
can actually appear. In fact, let the real axis R be endowed with the
decreasing hyperharmonic sheaf introduced in Remark 2.3. Then the
ordinary exponential function ¢g: R—R is an open harmonic BI-
mapping such that cl (9(R)) = Ry U {0} is a non-trivial absorbent set
in R. This example also demonstrates that Theorem 3.4 does not hold
for general one-dimensional harmonic spaces. We also note that cl (g(R))
is not an absorbent set in R, if R is endowed with the corresponding
increasing hyperharmonic sheaf. This is explained immediately by the fact
that ¢ is not a Bl-mapping in this case.
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Theorem 3.7. Let, under the assumptions of Theorem 3.2,
F' = cl (p(V)) be a non-trivial absorbent set and let F' be endowed with the
wnduced hyperharmonic sheaf (see [1], p. 893 and [5], Hwercise 6.1.8).
Then ¢ : V — F' is a harmonic mapping. If F' is connected, then F' ™\ ¢(V)
s a polar set in the harmonic space F' if and only if ¢: V —F" is a Bl-
mapping.

Proof. In this proof we shall speak about F’-hyperharmonic functions,
U’-potentials etc., the meaning of these notions being self-evident.

If W' C F’ is open in F’', then W' = V' n F’ for some open set
V' in U’. Hence W’ is closed and finely openin V'. If A" is F’-hyper-
harmonic on W', then (R}'), is U’-hyperharmonic on 7’ by [5],
Corollary 5.1.3.  Thus (R})c¢ = A o@ is hyperharmonic on
e (W') = ¢7Y(V'), hence ¢: V —F" is a harmonic mapping.

Let us assume now that F’ is connected. If ¢: V —F' is a Bl-
mapping, then the assertion follows by Theorem 3.2, since I’ is a 2-
domain. If, on the other hand, F'\_ ¢(V) is a polar set in the connected
space F’', thenlet p’ be alocally bounded F’-potentialon W' = V' N F’
open in F’. Let us denote ¢ = p' | W ne(V) = p" | V' ne(V) and
let »* =0 be a F’-harmonic minorant of ¢'. Then %2’ possesses a I'-
harmonic extension into the whole F’ by [5], Corollary 6.2.5, the extension
being obviously majorized by »’ ([5], Theorem 6.2.1). Hence A’ vanishes
identically and ¢’ is a locally bounded F’-potential on W’ n ¢(V).
Obviously ¢’ is also a locally bounded U’-potential on W' n (V) =
V' A @(V). Therefore p'op =q'o@ is a potential on ¢ }(W') =
o (V' ne(V)), hence ¢: V—F is a Bl-mapping.

4, Covering properties of normal mappings

The following Definition 4.3 for normal mappings is more general than
our earlier one ([8], Definition 2.1.5). Also we allow less restricted harmonic
spaces than in [8].

Lemma 4.1. Let U be a P-domain, let F be a closed polar set in
U and let BC U\ F be non-polar in U. Then B is non-polar in U\ F .

Proof. If B is polar in UN_F, then (I%f)U\F = 0 for all potentials
p on UN F. Let now p be any finite continuous potential on U. Let
hy =0 be a harmonic minorant of p | (U F). Then

lim sup Ay(x) = limsupp(r) < +©
UNF 3 #—y U\ F 3 x>y

for all y e . By [5], Corollary 6.2.5, h, can be extended to a harmonic
function 2 on U. Obviously 0 <h <p, hence % = 0. Therefore
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A

p | (UN F) is a potential on U\ _F and (Rf)U\F = 0. According to [5],
Theorem 6.2.1, we easily verify that (ﬁf)U | (UN_F) = 0 and, by lower
semi-continuity, (f%f)U = 0. By [5], Proposition 7.1.2, u” = 0 for every
measure p € A(U) ([5], p. 159). By [5], Proposition 7.1.5, B is a polar set
in U, a contradiction.

Lemma 4.2. If AC U is a closed non-polar set, then there is x € A
such that G n A is non-polar in G for any G € G(x), where 9(x) is the
family of open connected relatively compact neighbourhoods of x . Any point
x € A satisfying the assertion of this lemma is called & strong point of A in U .

Proof. Otherwise let, for all x €4, G, € %(x) be selected such that
G, N A ispolarin ¢,. Let then #, = { W,C G, |ael,} be an open
cover of G, such that (RZ""=), = 0 forall «el, . Then

{UN4, W, | Wyew,, xed}

is an open cover of U which implies the polarity of 4 in U .

Definition 4.3. A4 harmonic Bl-mapping ¢: X — X' is a normal
mapping, if D, = {a'eX' | Jzee ') with n(p,x)>1} s
nowhere dense and if the subset of its polar points is a polar set in X' and if
moreover n(p,x’ , V) is lower semi-continuous (see [8], Remark 2.1.4) for
any P-domain U' C X' and for the union of any non-empty subfamily of
the components of ¢~ (U’').

Theorem 44. If ¢: X — X" is a normal mapping, if U C X’
18 @ P-domain such that ¢~ (U') # @ and if V is the union of a non-empty
subfamily of the components of ¢=*(U’), then

F' = {2"eU | ng,2", V) < supn(p,z',V) = N}
el
is either a polar set in U’ or else int F' + O .

Proof. The restricted mapping ¢ : V — U’ is again denoted by ¢ in
this proof. Further we denote H, = {a' €U’ | n(p,a’,V) = p} for
p=0,.,Nand F, = E,U - U E, for r = 0,.., N. Bynormality,
F, is closed in U’ for any r < + oo . If F’ is non-polar, then we may
take the smallest k& such that F, is non-polar in U’. If k = 0, then
int / D int Fy = int By, = U'\ cl (U N\ EBy) # O by Theorem 3.2.
Hence we may assume that 1 <k < N .

Let us suppose first that at least one point %’ € @F, is non-polar.
Obviously ¥’ € E,. Let us denote ¢7'(y') = {2, ..,2 }, where s < k.
Let further G’ € %(y’) be constructed by [8], Lemma 1.3.4 and let
Vis ... Vi be the components of ¢=1(G") corresponding respectively to the
points zy, ..., 2,. Since y’ € oF, , then n(p,2’, V) = k + 1 in an open set
W' C G'. Since D;, is nowhere dense, there is 2’ € W' \D; . Since V,

(3
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is a minimal neighbourhood of z,, ¢ = 1,..,s ([8], p. 23), we get
n(e,z' , V;U - U V) < k, hence there are some components V, of
@ 1(G") which are distinct from V7, ..., V. Let W denote their union. The
normal mapping ¢ : W — (' omits the non-polar point y' . By Theorem
3.2 cl(p(W)) is a non-trivial absorbent set in G, hence G, =
@'\ cl (p(W)) is a non-empty open set. Let us take an arbitrary 2’ e G .
Since D, is nowhere dense, ' is a cluster point of Gy\ D, . If
w' € Gy \ D), then

ne,w ,V) = ag,w ,U V) =ne,w,uV,) <k,

hence w’ € F,. Since F, is closed, 2’ €F,. Thus G;C F, and so
int 7" Dint F, # O .

From now on we may assume that all points in ¢F, are polar in U’ .
Obviously @F, is non-polar in U’ ([5], Proposition 6.2.5), hence

B = eF,\ D,U F,_, = eF,\ (D, nE)uU F,_,

isnon-polarin U’ . The set D, N K, is closed in the open set U’ F;_, .
In fact, if 2" is a cluster point of D) n B, in U’ F,_,, then obviously
Zel,. Let G e9@r), ¢CUNF,,, be constructed by [8],
Lemma 1.3.4. If 2'¢ D, then all points in the components V,, .., 7V,
of ¢7(G") corresponding to the points z,, ..., 2, , respectively, are of simple
local multiplicity ([8], Lemma 1.3.6). By normality,

(V) N (V) # 0

isopen and n(p ,y" , ViU - U V,) = kforall y ep(Vy) N nglV,).
For all y' € By n (V) N np(V,) weget ¢i(y) C VU UV,
hence y'¢ D, , a contradiction. Therefore 2’ € D) .

Since D, N B, is closed in U'\ F,_,, then
Uy = UND, nE)U F,

is an open set and B’ = @F, n U, is closed in U/ . The set B’ is non-
polar in U; by Lemma 4.1 and by Lemma 4.2 there is a strong point 3’
of B in U, . Let us fix G’ € %(y’) according to [8], Lemma 1.3.4 and let
Vi, ..., V, be the components of ¢=1(G') corresponding respectively to
the points of ¢7Y(y'). Let W' denote the component containing
y" of the non-empty open set (Vi) N - N eV, . Obviously
W' N (U N F,) # 0. Since all points in V, U ... U V, are of simple
local multiplicity, there are some components V, of ¢ 1(G’) which are
distinet from V,, ..., V, . Let W denote their union. The normal mapping
¢: W — G omits the set B’ n W’ which is non-polar in G’ . By Theorem
3.2 cl (p(W)) is a non-trivial absorbent set in G, hence G’ cl (p(W))
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isanon-empty open set. Exactly as to above weseethat G\ cl (¢(W)) C F,,
hence int F' =+ O .

Corollary 4.5. If U’ is an elliptic P-domain, then F' is a polar
set in U’ .

Corollary 4.6. If U’ is a one-dimensional orientated 2-Bauer
domain, then F' = @ and n(p,x',V) =N forall z' €U’ .

Proof. Let us suppose F’ = @ . Since ¢: V — U’ is surjective by
Theorem 3.4, we may take the smallest k> 1 such that F, # O . Let us
take y’ € @F, . Obviously ¥’ is non-polar and y’ € E,. Let G' €%(y’') be
constructed by [8], Lemma 1.3.4 and let V,, ..,V  be the com-
ponents of ¢~1(G’) corresponding respectively to the points of ¢7'(y') =
{2102, }, 8 <k. Obviously n(p,2",V) = k+ 1 in an open set
W’ C @' . Since D, is nowhere dense, there is 2" € W'\ D, . Since V, is
a minimal neighbourhood of z;, 7 = 1,..,s, we get

n(p,z',V;u-uU¥l) <k,

hence there is at least one component V., of ¢=(G') which is distinct
from V,, ..., V.. The normal mapping ¢: V,, , — G omits y", a con-
tradiction to Theorem 3.4.

Corollary 4.7. If ¢: X—X' is a normal mapping, if
UCX, ¢YU)# 0O, is a domain possessing a pseudoexhaustion
(U |ieN} by eliptic P-domains and if V is the union of a non-
empty subfamily of the components of ¢~ (U’) , then F' is a polar set in U’ .

Proof. Letusdenote V' = U {U;| 1 eN}. Suppose F’ is non-polar
in U’ and let us take the smallest & such that F) is non-polar in U’.
By Theorem 3.5 we may assume that 1 <k < N . Obviously it is
V'AF,%@ and V' A (U N F;) # O, hence V' n aF, + 0. Since
V' A oF, is non-polar in V', there is a strong point 3 of V' N éF,
in V'. Let G'e%(y) be constructed by [8], Lemma 1.3.4 and let
Vi, ..., V. be the components of ¢~'(G") corresponding respectively to the
points of ¢ (y') = {2z, ...%}, § =k. We may assume that G’ is an
elliptic #2-domain. By Corollary 4.5 the normal mapping

p: Viy UV, =6

satisfies n(p,2’ , V, U - U V) = k forall points 2’ outside of a polar
set B’ in @' . Therefore there is at least one component V., of ¢=1(G")
which is distinct from V,, ..., V. The normal mapping ¢: V  ;— G
omits obviously the non-polar set (G'\ E') N F} . Since G’ is an elliptic
#-domain, we get a contradiction to Theorem 3.3.
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5. Covering properties of open Bl-mappings

Preliminary versions (for mappings between Brelot spaces) of the
results to be presented in this section appear in [8], Theorem 2.2.11 and
in [9], Section 3.2. The following results are similar to those ones of the
preceding section. Therefore the following proofs are not presented in
full detail.

Lemma 51. Let ¢: X—>X' be an open harmonic mapping,
U C X' a domain such that ¢\(U') # O and V the union of a non-
empty subfamily of the components of ¢ HU'). Then

SF, = {a' €U | n(p,2",V) <p}

18 closed in U’ for any p €N, .

Theorem 5.2. Let ¢: X — X' be an open harmonic Bl-mapping
such that D, is a polar set. If U C X' is a P-domain such that
e HU’) # O and if V is the union of a non-empty subfamily of the components
of = W(U'), then

SF' = (&' eU' | nlg,o', V) < supnlg,z,V) = N}
y el
18 @ polar set in U’ or else int SF' + O .
Proof. If SF" is non-polar in U’, then let us take the smallest &
such that

SF, =

k
i=

k
SE;, = u{z'elU | nlp,2",V) =1}
0 i=0
is non-polar in U’. If k = 0, then int SF’ D int SFy = int B, # @ by
Theorem 3.2. Therefore we may assume that 1 <kt < N .

We shall construct a point ¥y’ € éSF, n SE, n (U'\ D,) and a set
B’ C SE, suchthat B’ n ¢’ isnon-polarin ¢ forall ¢’ C G, when-
ever (' €%(y’) and where G, € 4(y’) is a fixed neighbourhood of 7’ con-
structed by [8], Lemma 1.3.4, for the points of ¢ 1(y") = {2, ...,2, }.
To proceed, let V,, .., V, be the minimal components of ¢1(G) cor-
responding respectively to the points z;, ...,z, and let W’ be the com-
ponent containing %" of the open set g@(Vy) - ne((V,) # 0.
Obviously W' N (U'\ SF,) # O, hence there are some components
V, of ¢7Y(G;) which are distinct from V,, ..., V,. Let W denote their
union. The open Bl-mapping ¢: W —G; omits B n W’ which is
non-polar in G . By Theorem 3.2 cl (W) is a non-trivial absorbent set
in Gy, hence the non-empty set G\ clg(W) is open. Obviously
Go N\ clo(W)C SF,, hence intSF’ DintSF;, # 0.

To construct %’ and B’ described above, suppose first that at least
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one point 3’ € oSF; is non-polar. Trivially y’ € aSF, n SE, n (U'\ D,)
is the required point with B’ = SH; .
Hence we may assume that all points in 8SF, are polar in U’ . Then

B = oSF,\ D) SF,_, = aSF,\ (D, n SE;) U SF,_,

is non-polar in U’. The set D, N SE, is closed in U’ SF,_, . In fact,
if 2’ is a cluster point of D, N SE, in U\ SF, ,, then 2’ eSE;.
Let Gy € %(2') be constructed by [8], Lemma 1.3.4. We may assume that
Gy C UNSF,_,. If 2/¢D,, then n(g,y , VU -V, =k for
all ' ep(Vy) N no(V,) # ©O. Henceweget 97'(y') C VU U T,
for all 4 € SE, N o(Vy) N - N @(V,) . Hence y'¢ D, , a contradiction.
Exactly as in the proof of Theorem 4.4 we find now the required point
y' € aSF, n SE, n (U'\ D,), the required set being

B = eSF,\ D, SF,_, C SE,.

The theorem follows.

Corollary 5.3. If U’ isan eliptic P-domain, then SF' is a polar
set in U’ .

Corollary 54. If U is a one-dimensional orientated P-Bauer
domain, then SF' = F' = 0.

Proof. The proof of this corollary proceeds exactly as the proof of
Corollary 4.6, if we only note that U’ n D), = 0 . By the same argument
SF' = TI".

Remark 5.5. The following Theorem 5.6 has the same form as Theorem
4.4 treating normal mappings. However, the situation in Theorem 5.6 is
quite different as one can see by looking for Theorem 5.2. More precisely,
in Theorem 5.2 one can not weaken the supposition D), to be a polar set in
U’ . In fact, the Example 2.2.8 in [8] demonstrates that the assertion of
Theorem 5.2 can fail, if D, contains only one (non-polar) point. On the
other hand, the example in Remark 4.2 in [8] states that the assertion of
Theorem 5.2 can hold even if D, = U’. We also note that under certain
additional assumptions (see [8], Theorem 2.2.11) D/ is allowed to contain
some non-polar points as soon as we consider F’ instead of SF'.

Theorem 56. Let ¢: X X' be an open harmonic Bl-mapping
such that D, is a polar set. If U' C X' is a P-domain such that ¢ (U’) # O
and if V is the union of a non-empty subfamily of the components of ¢=(U’),
then

F' = {2eU | nlp,x,V) <supn(p,2’,V) = N}
el
s a polar set in U’ or else int I + O .

Proof. Let us suppose that SF’ is non-polar in U’ and let & be the

smallest integer such that SF, is non-polar in U’. By Theorem 3.2 we
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may assume that 1 <k < N . Furthermore int SF; # 0 by the proof
of Theorem 5.2. By the same proof we observe that D), n SE, is closed in
U\ SF,_,. Hence

(it SF)\ 8F;_) o (U SF_)\ (D, A SE)
= ((int SF) \SF,_ )\ D, # 0
is an open set in U’ \_SF,_,, hence open in U’ . Obviously
(it SF}) \ SF,_)\ D, C SF,\.D, C Fy,

therefore
int 7' D int F, = 0.

If, on the other hand, SF" is polar in U’ and if N=N , then we get

F" C SF’ trivially, hence F’ ispolarin U’ . If N < N ,then N < +c0.
Hence

SE:V = U'\SF;VA = UNSF # 0

is an open set in U’ . Using the idea of the proof of Theorem 5.2 we see
that D, N SE;V is closed in U’ \_SF’, since N < + oo . Therefore

SE_\ D, = SE.\ (D, nSE,) + 0

is open, hence int #* > SEL\ D, # @. _

Remark 5.7. It remains open whether N = N in general. Anyhow,
using Corollary 5.3 instead of Theorem 3.1.5 in [9], we can prove the follow-
ing result repeating, word by word, the proof of Theorem 3.1.6 in [9],
under the suppositions of Theorem 5.6. _

Theorem 5.8. If U’ is an elliptic ?-domain, then N = N and
F' is a polar set in U'.

Theorem 5.9. Let ¢: X — X' be an open harmonic Bl-mapping
such that D(; is a polar set. If U'C X', o7 (U') # O, is a domain posses-
sing a pseudoexhaustion {U; | © e N} by elliptic P-domains and if V is
the union of a non-empty subfamily of the components of ¢=X(U’), then F’
(resp. SEF') is a polar set in U’ . Also in this case N=N.

Proof. Let us denote V' = U {U.| ¢eN}. Suppose F’ is non-
polar in U’ and let k& be the smallest integer such that F, is non-polar
in U’. By Theorem 3.5 we may assume that 1 <k < N . Obviously
SF; is non-polar in U’ and SF, is polar in U’ for every » < k. Hence
V' N SF, # ©. The set U’\ SF, is open and non-empty. In fact,
otherwise U’ = SF; which implies immediately U’ = F, , a contradiction.
Therefore V'\ SF, # @ and V' n oSF, # @ . Since V' n aSF, is
non-polar in ¥’ by Lemma 4.1, the set A’ of strong points of V' n aSF,
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in V' is non-polar in V’. In fact, since V' N aSF, = A’ U B’ is
closed in 7’ there is an open set W' such that 7'\ W’'C A’ and that
B’ is a polar set in W’ as one can see by using the definition of B’. If
now A’ ispolarin V', then V'\ W' is a closed polar set in V', hence
B’ is polar in ¥’ by Lemma 4.1, a contradiction. Therefore we may take
a strong point y €A’ such that y' e(V'\ D) n aSF, N SH,. Let
G’ €%(y’) be constructed by [8], Lemma 1.3.4 and let V,, ..., V, be the
minimal components of ¢~1(G’) corresponding respectively to the points of
e Yy') = {7, .2 . We may assume that G'C V' is an elliptic
#-domain. Since ¢ is an open mapping, SF, N ¢(Vy) N - N @(V,) is
a non-polar set in G'. Therefore n(p,z’, VU U V,) < k for all
@’ € G’ by Corollary 5.3. Since G’ \ SF, # O, there is at least one com-
ponent V,., of ¢~ YG') distinct from V,, ..., V, . The open harmonic Bl-
mapping ¢ : V,,,— G omits the non-polar set aSF; N (V) N+ N o(V})
in G, a contradiction to Theorem 3.3. B

The assertion for SF’ is contained in the above proof. If N < N,

then {2" e U’ | n(p,2",V)> JV} is a non-polar set in U’ . Hence D)
is a non-polar set in U’ , a contradiction.
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