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1. Introduction

This article is devoted to the study of harmonic Bl-mappings between
harmonic spaces satisfying the general axiomatics of Constantinescu and
Cornea (see [5], p. 30). Actually we shall present an improvement of the
contents of Section 2 in our earlier article [8].

Suppose F(X) (resp. g(X') ) is a mapping which associates a family
gu(X) (resp. fro,(X')) of numerical functions for all open sets U (resp.
U' ) in a harmonic space X (resp. X'). We say bhat a continuous mapping
V : X -+ X' between two harmonic spaces X and X' inversely preserves
the above collections of families of functions, if /' " g e Fr_ry,1(X) ,

whenever U'C X' isanopensetsuchthat E-L(U') + g and f, efo,,1x,1.
rn this notation, the earlier presentations mainly define a harmonic map-
ping as a continuous mapping which inversely preserves harmonic functions
(see e.g. [3], [8]-tlll).These articles have been devoted to harmonic
mappings either between Brelot spaces ([3], [8], [9]) or between Bauer
spaces satisfying the convergence axiom of Doob (tl0l, tlll).

rn the general axiomatics the inverse preservation of the sheaf of
harmonic functions is too weak a condition to give a sufficiently interesting
class of continuous mappings. Therefore we define in this article harmonic
mappings as continuous mappings which inversely preserve the sheaf of
hyperharmonic functions. rn a certain sense the idea for this definition,
which reduces back to the usual one whenever x' is a Bauer space (in the
sense of [5]), goes back to Sibony ([1t], p. 9l and Ddfinition t9). The same
idea has been used also by X'uglede to define finely harmonic mappings [6].
our definition of a harmonic mapping and its basic consequences are
introduced in the second section. The third and fourth section contain
some results on covering properties of Bl-mappings similar to those
presented in section 2 in [s]. However, the definition of a normal map-
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ping is now slightly more general. It appears, roughly speaking, that the

exceptional covering set, which was a polar set in [8], is now either polar

or else possesses a non-empty interior. As soon as the range space X' is

elliptic, the exceptional set reduces to a polar set. In the fifth section

similar results will be proved for open Bl-mappings.

2. The definition of harmonic mappings

L e m m a 2.1. (See also l2l, Satz 2.f .f ') Let { be a base for the

neighbourhood,s of a gtoi,nt r e X such that { contai,ns an'Iy relatiaely comYtact

resoluti,ae nei,ghbourhooils of r anil' let 
" 

t Z * -R be a hygterharmon'ic

functiononaneighbourhood, V of r. Then

Proof. We note that

trivially. To prove the converse inequality, let a < s(r) . we may assume

that,there is a strictlypositiveharmonic function h on W e {, clw C V,
such that h(r) : L . Thus we get ah(r) < s(r) ' We may also assume

that ah < s on clW. Then

(t : 6.h(r) : u pw h(r) : p,w(uh)(r) { pw s(r)

and so

or ( sup pw s(r) .

we{
The lemma follows.

Definition 2.2. A continuous mapping E: X->X' inaersely

Ttreseru,ing the sheaf of hypterhnrmoni,c functi,ons 'i,s a harmoni,c mapping.

Remarlc 2.3. obviously a harmonic mapping inversely preserves also

the sheaf of harmonic functions. The converse result is not true in general.

In facl, let us consider two harmonic spaces R1 : (R , aU1) and

Rr: (R,Q/2) over the real axis R where the hyperharmonic sheaf

%, (resp. %r) is formed by lower semi-continuous, lower finite functions

u: u--R on the open sets uc R which are increasing (resp. de-

creasing) on the components of u (see l5], Theorem 2.1.2). we denote by
g : R, -+ R, the ordinary exponential function. obviously g inversely

preselves the harmonic sheaf, but it does not inversely preserve non-

constant hyperharmonic functions.
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Theorem 2.4. A continuous mapp'i'ng g: X--->X' 'i'nto a Buuer
space X' 'i,nuersel,y presera'i,ng the harmon'i,c sheaf i,s a harmonic mappi'ng.

Proof . This proof follows the well-known idea used in [3] to prove the
corresponding Theorem 3.1.

We may consider the inverse preserving property for positive continuous
superharmonic functions s' on a T-set a' C X' only. In fact, let s' be

h;ryerharmonic on (J' and let {V'"C U'l aell be an open cover of
U' by 7-sets relatively compact in (J' such that on any Vd, a e I ,

there is a bounded harmonic function h' which satisfies irrfh:(l/")> o.
Hence there is bi e R such that 'u" : s' + b!"h!" > 0 on V'". Since
g inversely preserves harmonic functions, then

s' o (p : (s' + b'ohlr)" q - b:"h:"o E :'tt' o V - b'oh!,",

is hyperharmonic on E-tV'") + g as soon as this is true for positive
hyperharmonic functions. Moreover, we get by [5], Corollary 2.3.1,

LL'o(p - (sop uB)og _ sup (uB"g)
FeI FeJ

where { uB I P e J } is the family of positive continuous
functions dominated by rtr' on Y: . Hence the theorem

We now proceed und.er the additional assumptions. Let U + A be

a relatively compact set in g-1(U') + A , hence g(cl U) C U' is a compact
non-empty set. Let us consider the collection {{'} of all finite open covers

!'' of g@l U) by regular sets which are relatively compact in U' . Let
'l'' be such an open cover. If V' e {' and, y' e 0V' , then

li^iof F'' s'(*') Z s'(A'),

since 7' is regular. Therefore the Poisson modification s'r, of s' defined in
U' , which is hyperharmonic by [5], Corollary 2.1.2, takes the form

on v-r(v'o) ,

superharmonic
follows.

Let us define a hyperharmonic function t'{, on u' by

€ ,, \u ,yr,n,
for fr'

fr' F> t'tr,@')
, ru' s'(r' ) for fr' c u V'

V'e{l

Obviously t'{.,o g is lower semi-continuous on U . To prove its hyper-

harmonicity, let, * e [/ and let' V be a relatively compact resolutive set

such that

- inf s;,(fr') _
V',{,

s' (r')

inf
fi'eV' el/
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rev ' clv sro,,l,of-t(v')nu'

We then d.efine å: n V-'(V')--* R- u, follows:
E@)eV'e{t

z r-> t(z) : inf s1n,191211 : inf p'' s'(E@D .

E@'1ev'e{t E(x)eV'e{t

Since s' is superharmonic on U' , (lt'' t') " E is harmonic on g-L(U') ,

hence I is superharmonic. Moreover, t Zt|, og a,nd t(r): s'r,(V@\.
Therefore

pu(u'lr,'d@) < pv 4d < t(r) : s''",(E@)) ,

hence t'{.,o V is hgrerharmonic on U by [5], Corollary 2.3.4.

The family { t'./r,) restricted into g(cl U) is upper directed. fn fact,

since fJ' is a T-set,, the intersection of any two regular sets in U' is

againregular ([5], Corollary 6.3.8). Therefore, if "/'', and' "1"', are two open

covers in the collection { {' } , then

l/r, : {y', n V', + A I Vte{'r, V;ef;}

belongs to the same collection. If we define, for W' : Vt nV're"y'/'' ,

r, F> sL,-',, (s'(r') fot r' e oW' n oV''
\n ) : \pr{ r'(*,) for r, eoW, r'v,r,

then, by [5], Proposition 2.4.4, we get

trvl e' - Hnj : cl7(i S Hy' : p*'s'

on W', hence obviously

s'^y1r, ) max (s'r,,,s'r,")

on E(cl U).
X'inally we get

s, : s\s,,!/,,

on g(cl U) . In fact, if n'eE@lU) and oc <s'(x'), then we may take
a regular neighbourhood W' of r' relatively compact in U' such that
lt'' s'(*') ) oc by Lemma 2.1. Obviously we may construct a finite open
cover V' of g(cl U) in the collection {V' } such that if r' eclV' and'

V' e {' , then V' : W' . Then we get

l"*' s'(r') : s'..,(r') .
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Therefore

s'o(p- (sups'u.,)"V_
{'/

,;y (''r," v)

is hyperharmonic on U, hence by the sheaf property of hyperharmonic
functions on p-L(U') .

T h e o r e m 2.5. If q, X --> X''i,s ahameomorphia harmonic mapping
i,nto a Bauer space X' , then g-L: X' --> X is a harmon'i'a mapping.

Proof. (See [3], Theorem 3.4.) Let U C X be an open set.and let
s : fJ --> R t" a hyperharmonic function. Then s o g-1 is hyperharmonic
on E(U). To prove this, we may essume that s is a finite continuous
superharmonic function. In fact, by [5], Corollary 2.3.1, we may take an
open cover of U by relatively compact ?-sets W"C U, uel, such
that s lWo cara be represented as the supremum of its continuous super-
harmonic minorants { + I f e J } . Hence, if su o g-1 is hyperharmonic
on E(W") for all p eJ ,then

s o s-1 : (::f su) o s-1 : 
?:g 

("p o e-')

is hyperharmonic on p(W,) and by the sheaf property of hyperharmonic
functions on the whole q(U) .

Let now V' C E(U) be an open relatively compact resolutive regular
set such that g-t(V') is a relatively compact MP-set. Since s " g-1 is
continuous on 0V' , then f * : cl Z'-> R defined as

r' F+ f*(*') -
for fr' €V
for fr' e aV'

I uYi ts " e-L)

\, " p-L(r')

is its continuous extension into cl 7' which is harmonic on V'. Therefore

s(a) : s(v-'@(y)))

and. so

-f*@(y))- lim f*(*') - lim (f*"d@)
V' e *'-+q(y) g-'(V') 3 2c-->y

liminf ("-"f*"s)(r) >s(g)- lim (f*"d(r) :0
q-t(V') > *+y p-r(V') > r+y

for all y e ilg-L(V') . Since E-t(V') is, by assumption, a relatively compact
MP-set,weget s-f*og ) 0 on q'(V'). Hence

t"v'(soq-r) : fll < sog-l on V' .

Since the open sets T/' satisfying the conditions described above form
a base for the topology of E(U) , I o g-L is hyperharmonic on 9(U) by
[5], Corollary 2.3.4. The theorem follows.
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3. Covering properties ol harmonic Bl-mappings

Definition 3.1. A harmsnic mappi'ng q; X"+X' inuersel,y

preserai,ng locally bounileil potential's is a Bl-mappi,ng.
Theorem 3.2. If q: X-->X' 'i,s aharmoni,cBl'-mapgti'ng,i'f U'CX'

i,s a T-d,orna'i,n such that g-t(U') + A , i'f V i's the uni'on of a non-empty
subfamily of the camponents of V-t(U') and, if V(V) i,s a'n open set, then either

U'\E(Z) 'is a pol'ar seti,n U' m else cl(q()) 'i,s a non-tri,a'i'al' absorbent

set'i,n A'
Proof. The notation g in this proof means the restricted mapping

E i V ---> (J' . We denote by g'o the faurily of all locally bounded potentials
on fJ' not vanishing identically on E'o : U' \ EV) . Let us assume that
E', is anon-polar set, in U' . By assumprion E'o is closed in U' . ff there is
r' e (J'\.Ei anä p' e g; such that

s'(r'): $:f!)o,{*') > o,

then q' o g is a potential on Z not vanishing identically, since r' e VV) .

On the other hand, { is harmonic on (J' \r'å by [5], Proposition 5.3.1,

and therefota qt o g is harmonic on V , a contradiction.
Hence we must have q'(r') : 0 for any point r' e(J' \.U'i and any

p' e g[. Actually, we shall prove that

(h,?')r, : o on fJ' \int.E'i : t/'\intr.Ei C (J'

for all p' e g;. This implies, by [5], Proposition 5.3.I,

on int E'o

on U'\ int E; ,

) (J' \ int E; . Since (J' is a 7-set,

cl(9(7)) : cl((J' \r'å) : U'\int EL : a I'(p')
P'.9i

is a non-trivial absorbent set in U' (151, Proposition 6.1.2). To complete
the proof we observe, by [5], Proposition 7.L.2 and' Proposition 7.1.5, that
there is p' e gL such that

6!n'), + o,

1åp;,)r, : 
{oo'

hence there is an absorbent set F'(p')

. nlsince E; is

and there is

If now

non-polar. Further, int E'o + g , since otherwise E;_ aE;

r' € U'\ Z; such that

6,F,')u'(*') > o

(rt"p{)r,(a') > o
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for some A' e aE; and
such that

some p' e g;, then

(R"i')r,(*') > o.

also there is fr' € U' \ Zå

Therefore we

hence

1frp'),, : 0

Tf y' e aU'o , then there is p' e 3t such that

P'(v') > 6;i1u'1Y'1 : o,

since U' isa 7-set. Hence, by l5], Proposition S.S.t, ail'o C ,;\ intr4|,
which implies int E'o : intrBå. The theorem follows.

Theorem 3.3. (See also [3], Corollary 3.7.) If V, X-->X' tls

a harmon'i,c Bl-mappi,ng, if U'C X' i,s an el'l'i,gtti,c 7-d,omai,n such that
q-'(U') * A and i,f V is the union of a non-emgtty subfami'ly of the cam-
ponents of V-t(U') , then eaery closed, set I' C U'\ g(Z) 'i,s a polar set

i,n U'
Proof . Using the notations in the proof of the preceding theorem we

note that every potential p' e 9[ is strictly positive. Let us assume that
there is a non-polar closed set .d'' C t/'\ EV) . We may &ssume that' I'
is compact ([4], Theorem 8 and l5], Exercise 6.2.6). There is a potential
p' e g| such that

q, : (itrl:)r,

is a strictly positive potential on U' (15], Proposit'ion 7.1,2 and Proposition
7.1.5), hence q'"q is a strictly positive potential on V. This is
a contradiction, since q' is harmonic on U' \ 1' and so q' " g is harmonic
onV.

Theorem 3.4. If p: X--->X' 'i,s a harmoni'c Bl-mapping, ,f
U' C X' i,s a one-d,'imensional, ori,entated, T-Bauer iloma'i,n such that
q-'(U') + A , df V i,s the uni,on of a non-emptty subfamily of the components

"f q-'(U') and, if gV) 'i,s an ope,n set, then U'\q(V) : 0 and,

q i V ---> U' 'i,s a surjecti,ue mapgting.
Proof. By [7], Theorem 2.2, there is an open dense subset V' of U'

such that V' is an elliptic Bauer sp&ce, hence all of its components
V'*, n e I , are elliptic Z-domains. Let again E denote the restricted
mapping E : V --+ U' . By Theorem 3.3, for the mappings g : g-L(V,) --V: ,

x e I , any closed. set in 7l \ q(q-t(Zl)) is polar in Zi , respectively.
Since V'" is a one-dimensional manifold, all of its points are non-polar,

get, for any p' e g'o 
,

(frfi),, : 0 on aE; ,

on U'\ int Es
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hence V@-r(V'")) -
Since Y' is dense in

V: for all q. e I . Therefore we get V@-L(V')) - V'
U"

U' : clV' : cl (q@-\(V'))) 9 cl (9(Z)) C U'

Therefore t/'\E(Z) is a polar set in U' by Theorem 3.2. Since U' is
a one-dimensional manifold, E(V) : U' .

Theorem 3.5. If p: X--->X' is a harmonic Bl-mapping, if
U'CX', V-l(U')+Q, i,s & d'omai,n possess'i,ng a pseuil,oerhaust'i,on

1 Uj 1 ; e tt 1 by ell,i,ptic 7-d,ornai,ns (for the d,efini,tion of a pseu.d,o-

erhaustian, see f4l, p. 382) anil, i'f V is the union of a non-emltty subfami,l,y

of the comytonents of E-'(U'), then eaery closed, set F'C U' \E(7) i's

a polar set'i,n U'
Proof. Since t 4 | i € N ) is a pseudoexhaustion,

U'\ Z' : U'\'J Ui
d:1

is a polar set in U' . Let E denote the restricted mapping g: V ---> U'
anddenote Ai : Uj\E(E-t(Ui)) forevery rl eN. If P'C U'\E(Z)
is a closed set, then I' n Ui C A', is a closed set in Uj . Since U; is
an elliptic Z-dolrrrain, X' o tJ'a is a polar set in a', bV Theorem 3.3. By
[5], p. lL2,tlnere is an open cover 4/''a of Ui such that for every W'elti
we get W'C (J'n and

6,f'nui)nw')w, - 0.

Thefamilyof sets 7/r: v{4/,;l deN} isanopencoverof Y'.
Tf W'el/r, t]nen W'e*[i for some d eN, hence

lkrrnrtnw')w, : (åS'" ur'tnw'1*, - o.

Therefore I' n Y' is a polar set in V' . By the definition of a pseudo-
exhaustion, Y' is a Ko-set, hence F' A V' is polar in U' ([5], Exercise
6.2.2). Since -F' \ 7' is polar in U' , the theorem follows.

Remark 3.6. In the above Theorem 3.2, both of the given possibilities
can actually appear. fn fact, let the real axis R be endowed with the
decreasing h;rperharmonic sheaf introduced in Remark 2.3. Then the
ordinary exponential function g : R + R is an open harmonic Bl-
mapping such that cl (g(R)) - R+ u {0} is a non-trivial absorbent set
in R . This example also demonstrates that Theorem 3.4 does not hold
for general one-dimensional harmonic spaces. We also note that cl (g(R))
is not an absorbent set in R , if R is endowed with the corresponding
increasing hSryerharmonic sheaf. This is explained immediately by the fact
that g is not a Bl-mapping in this case.
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T h e o r e m 3.7. Let, uniler the assumpt'i,ons of Theorem 3.2,

F' : cl (VV)) be a non-triaial' absorbent set and, let F' be eniloweil wi'th the
,i,nd,uceil, hyperharmoni,c sheaf (see fll, p. 893 and' l5l, Erercise 6.1.8/.
Then, g : V --> E' 'i,s aharmonicmappi,ng. If F' i's connecteil,,then F'\ q(7)
'i,s a polar set in the harmon'i,c space X' i,f and' only if E i V -> n' i,s a Bl'
mappi,ng.

Proof. In this proof we shall speak about -F'-hyperharmonic functions,
U'-potentials etc., the meaning of these notions being self-evident.

If W' C "F' is open in -F', then W' : V'nl' for some open set
V' in U'. Ilence W' is closed and finely open in V' .If å' is 1'-h54per-
harmonic on W' , then (RY)u, is U'-hyperharmonic on V' by [5],
Corollary 5.1.3. Thus (RY')u,o g - h' " g is h5rperharmonic on

E-l(W') : g-L(V'), hence q : V --+.F' is a harmonic mapping.
Let, us assume now that f is connected. If E : V --> F' is a Bl-

mapping, then the assertion follows by Theorem 3.2, since -f" is a 9-
domain. If, on the other hand, .t" \ E(Z) is a polar set in the connected
space -d" , then let' 7t' be a locally bounded -F'-potential on W' : V' n F'
open in E' . Let' us denote 8' : p'lW' nE(V) : p'lV'n q(Z) and
let h')0 be a .F'-harmonic minorant of q'.Then h' possesses a F'-
harmonic extension into the whole I' by [5], Corollary 6.2.5, the extension
being obviously majorized by p' (15f, Theorem 6.2.1). Hence å' vanishes
identically and g.' is a locally bounded -E'-potential on W' nE(V).
Obviously q' is also a locally bounded U'-potential on W' n E(V)
V'nE(V). Therefore p'oE:!I'"8 is a potential on V-|(W') :
E-r(V'Aq(V)), hence E: Y -+.x' isaBl-mapping.

4. Coverlng properties oI normal mappings

The following Definition 4.3 for normal mappings is more general than
our earlier one ([8], Definition 2.1.5). Also we allow less restricted harmonic
spa,ces than in [8].

Lemma 4.1. Let a bea 9-iloma'i,n,kt n beaclosed,polarsetin
U and,l,et BC U\/ benon-polari,n U.Then B'isnon-polari,n U\I.

Proof. If .B is polar in U\r'', then 1if)uy":0 for all potentials
p on U \ 1. Let now l, be any finite continuous potential on U . Let
ho2 0 be a harmonic minorant of p I (U \ -F) . Then

limsupåo(r) { limsupp(r) < *o
U\F: z+y U\F: *+y

for all y e X . By [5], Corollary 6.2.5, ho can be extended. to a harmonic
function lt, on U , Obviously 0 SL,5p, hence h,:0. Therefore
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plQ\-F) isapotential on [J\.f' a1d 1å;)uy":0. Accordingto [5],
Theorem 6.2.1, we easilyverify that, (Ri)u l(U\ F) : 0 and, bylower
semi-continuity, GtP)u :0. By l5l, PropositionT.l.2, FB :0 for every
measure p e tl(U) ([5], p. 159). By [5], Proposition 7.1.5, B is a polar set

in U, acontradiction.
Lemma 4.2. If AC U isaclose,il,non-Ttolarset,thentherei,s reA

such that G n A is non-ltolar i,n G for any G e9(r), where 9(r) i,s the

famiJy of open connecteil, rel,atiael'g comltact nei'ghbourhood's of r . Any poi,nt
r e A satisfgi.ng the assertion oJ thi,s lemma i's called, a strong point of A in U .

Proof. Otherwise let, for all r eA, G,e9(r) be selected such that
G*nA ispolarin G,. Letthen ly'r* : {W"C G,lrl-eI-) be anopen

cover of G, such that (-Bfn*o)*n:0 for all a e I,. Then

{ U\ A ,Wol W, e'{,, r e A}

is an open cover of U which implies the polarity of A in U .

Definition 4.3. Aharmanic Bl-mapping Vt X-->X' 'i,sanormal,
mappi,ng, ,f D'r: {r'eX' lilre q-L(r') with n(q,r)>l) 'i,s

nowhere d,ense qnd, i,f the subset of i,ts ltotrar poi,nts 'i,s a pol,ar set'in X' and, i,f
rnoreouer n(g,r' ,V) 'i,s lower sem'i,-cont'i'nuous (seel8f, Remailc 2.1.4) for
any T-ilonai,n a' I X' anil, for the uni,on of any non-empty subfami,l,y of
the components of g-L(U') .

Theorem 4.4. If E, X--->X' 'i,sanormalmappi,ng,if U'C X'
,i,s a T-ilomai,n such that g-L(U') + O anil, i,f V is the union of a non-empty
subfamily of the comgtonents of g-l(U') , then

n' : {r'eU'l n(q,n',V) a::f;,"(r,z',V) : nf }

,i,s ei,ther a polar set 'i,n U' or else inl I' + A .

Proof. The restricted mapping E: V -> U' is again denoted by g in
this proof. X'urther we denote n|:tr'e(J'I n(V,r',V) : p) for
F : 0,...,I[ and I: : ELu "'u D', for r : 0,...,.1tr. Bynormality,
-Fj is closed in (J' for any r I * oo . If n' is non-polar, then we may
take the smallest & such that, I| is non-polar in U' . Tf k:0, then
int n' ) int IL : int EL : U'\ cl (U'\ D'r) + A by Theorem 3.2.

Hence we may assume that I < lt < N .

Let us suppose first that at least one point y' e al| is non-polar.
Obviously A' eE;. Let us denote E-'(a') : {2t,...,2"), where s lk.
Let further G'eg(y') be constructed by [8], Lemma 1.3.4 and let
V1, ..., Z" b" the components of E-'(G') corresponding respectively to the
points 211 ...t?". Since A'eaP;, then n(V,z',V) > k + I in an open set
W'9 G'. Since D, is nowhere dense, there is z'eW' \Di. Since Vd
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is a minimal neighbourhood of zd , d : l, ..., s ([8], p. 23), we get
i(p,"' ,Vtu "" u Z") { k, hence there are some components Vo of
q-L(G') which are distinct from Vr, ..., V, . LeL W denote their union. The
normal mapping E: W ---> G' omits the non-polar point y' . By Theorem
3.2 cl (g(W)) is a non-trivial absorbent set in G' , hence G; :
G'\ cl (q(W)) is a non-empty open set. Let us take an arbitrary r' e G'o .

Since D; is nowhere dense, r' is a cluster point of Cå \ D; . If
w' e G!o\ Di , then

n(p,w' ,V) - n(V,w' , V) : n(v,u' , Vn)

hence w' eF'o. Since X; is closed, r' e?'u. Thus G;9 n; and so
inbF' )intF'u+ b.

X'rom now on we may assume that all points in aT'u are polar in (J'
Obviously aP| is non-polar in (J' ([5], Proposition 6.2.5), hence

B' : a4\ D;v I'o_, : a4\ (D, A E') v F'u_,

is non-polar in [J' . The set D'* n .Ei is closed in the open set U'\ Xl-, .

fn fact, if z' is a cluster point of D, n D| in (J' \1i_, , then obviously
z' e E'0. Let G' e g(z') , G' C I/'\ .F'l_r , be constructed by [8],
Lemma 1.3.4. If z' f D'r , then all points in the components Vr, ..., Vh

of E-t(G') corresponding to the points ?y2 ...; zp, respectively, are of simple
local multiplicity ([8], Lemma r.3.6). By normality,

c(Vr) n... n E(V) + A

isopen andn(g,!' ,V1u ...u Vu) : ft forall A'eg(Vr) n... n EV).
For all y' en; n V(V) n... n q(Yu) we get E-L(A') C Vr.u ...u Vu,
hence y' # D;, a contradiction. Therefore z' e D', .

Since Di n "Ei is closed in t/'\ Xi_, , then

UL : u'\ (D; 
^ 

n;) v FL-,

is an open set and 3' : aP| n Ui is closed in t/i . The set B' is non-
polar in U'o bV Lemma 4.1 and by Lemma 4.2theye is a strong point, g'
of .B' in U'0. Let, us fix G' eg(A') according to [8], Lemma 1.3.4 and let
V1, ..., Vp be the components of E L(G') corresponding respectively to
the points of V-L(A'). Let W' denote the component containing
A' of the non-empty open set, V(V) n ..' n g(Ve). Obviously
W' n(U' \4) + g. Since all points in Vtu ...\.) Vu are of simple
local multiplicity, there are some components Vo of E-1(G') which are
distinct from Y1, ..., Vo . Let W denote their union. The normal mapping
g i W --> G' omits the set B' A W' which is non-polar in G' . By Theorem
3.2 cl (VWD is a non-trivial absorbent set in G' , hence G'\ cl (EW))

s

U
i:t

s

U
i:1
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is a non-empty open set. Exactly as to above we see that G' \ cl (9( W)) C F|,
hence int I' + A .

Corollary 4.5. If (J' 'i,sanelli'ptic 7-d'omain,then F''i'sapolar
set i,n a' .

Corollary 4.6. If (J' is a one-d,i,mensi,onal or'ientated' T-Bauer
il,oma'i,n,then X':0 and, n(q,r',V):N forall r'eU'

Proof. Let us suppose n' + Q' Since E i v --> U' is surject'ive by
Theorem 3.4, we may take the smallest k> I such t'haf I'o * A . Lellus
take y'eaIL. Obviously gr' isnon-polarand y'eE;. Let G'e?(y') be

constructed by [S], Lemma 1.3.4 and let V1,...,V, be the com-

ponents of q-t(G') corresponding respectively to the points of q-t(y') :
{21,...,2,}, s {k. Obviously n(E,z' ,V) > k + I in an open set

W'9 G'. Since D', Is nowhere dense, there is z' eW' \D;.Since Zn is
a minimal neighbourhood of za, 'i, : l, ...,s , we get

n(E,z' ,Vru "'u 7.) < lc,

hence there is at least one component Z"+r of q-t(G') which is distinct
from V1,...,7". The normal mapping E: V,*r-">G' omits y', a con-

tradiction to Theorem 3.4.

Corollary 4.7. If E: X-->X' is a normal, mapp'i'ng, if
tl'9X', q-l([J')+b, is a d,oma'i'n possess'i,ng a pseud,oerhausti'on

{U; ldeN} by ellipti,c 7-ilamai'ns and, i'f V istheunionof anon-
emltty subfamily of the components of E-t(U') , then I' 'i,s a polar set in U'

Proof. Letusdenote V' : \) {a;l i €N}. Suppose -F' isnon-polar
in [J' and let us take the smallest /c such that I'o is non-polar in U' .

By Theorem 3.5 we may assume that I < k < lf . Obviously it is

V'nI|+ A and V'n(U' \4) + A, hence l/'naT'u4A. Since

V' n aF'a is non-polar in V' , there is a strong point y' of V' n aFL

in V' Let G'e9(y') be constructed by [8], Lemma 1.3.4 and let
Vy, ..., V, be the components of E-t(G') corresponding respectively to the
points of E-t(A') : {2t,...,2"}, I ( b. We ma,y a,ssume that G' is an

elliptic 7-domain. By Corollary 4.5 the normal mapping

gi Vt u .'. \J V,-->G'

satisfies n(V,r' ,Vtu... u 7,) : It for allpoints z' outsideof apolar
set E' in G' . Therefore there is at least one component Z.*1 of E-t(G')
which is distinct from Vy, ..., V" . The normal mapping E: V,*t--> G'

omits obviously the non-polar set (G' \ ä') n -Fi . Since G' is an elliptic
Z-domain, we get a contradiction to Theorem 3.3.
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5. Covering properties of open Bl-mappings

Preliminary versions (for mappings between Brelot spaces) of the
results to be presented in this section appear in [8], Theorem 2.2.LI and
in [9], Section 3.2. The following results are similar to those ones of the
preceding section. Therefore the following proofs are not presented in
full detail.

Lemma 5.1. Let g: X-->X' be &n open harmoni,c mapping,
U'C X' a d,omai,n such that E-L(U') + g and, V the uni,on of a non-
empty subfami,ly of the corrytonents of E-t(U') . Then

BF; : {rc' e[J' I n(E,n' ,V) < p]
,i,s closed, in U' for ang ? e No .

Theorem 5.2. Let E: X-->X' beanopenharmonic Bl-mappi,ng
such that D; ,i,s a polar set. If (J'C X' is a g-d,omai,n such that
q-'(a') * A and, if V i,s the union of a non-emltty subfamily of the com4tanents
of E-t(U') , then

B_F, : {r, e(J, I n(q ,n, ,V) a 
,:}y.n(q 

,",, Z) : tr[ ]

is apol,ar set in U' or else intB-F' + A .

Proof. If /S.F' is non-polar in U' , then let us take the smallest k
such that

SF; Sfr;: å {*'€(I'ln(v,n',T/)_ i}

isnon-polar in U'.If k:0, then int8-F')intB-fi :intE'o+ 0 by
Theofem 3.2. Therefore we may &ssume that I < Ic < I{ .

We shall construct a point y' e aSF'u a SE'u A (J'\ r;) and a set
B' C SE; such that B' A G' is non-polar ]n G'o for all G' C G;, when-
ever G'e9(y') andwhere G'oe?(y') isafixedneighbourhoodof y' con-
structed by l8], Lemma 1.3.4, for the points of E-'(y') : {2t,...,2n} .

To proceed, let V1, ..., Vp be the minimal components of E-L(G',) cor-
responding respectively to the points z1t ..,t ?p and let W' be the com-
ponent containing A' of the open set E(V) a ... a V (V) + A .

Obviously W' n (U'\ B-F'i) * A , hence there are some components
Vo of E-tGb which are distinct from V1,...,Vu. Lel lll denote their
union. The open Bl-mapping p: W --> G'o omits B' A W' which is
non-polar in G'r. By Theorem 3.2 clq(W) is a non-trivial absorbent set
in G;, hence the non-empty set Gi \ cl E(W) is open. Obviously
Gi \ cl E(W) C SF; , hence int S-F' ) int S-F'; + g .

To construct y' and B' described above, suppose first that at least

h

-UA:0
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one point y' e aSF; is non-polar. Trivially y' e aSF; n SE; n (U'
is the required point with B' : SE;

Hence we may assume that all points in aSI h are polar in (J' .

B' _ aSI k\ l?,1 u SF'u-, : aSF|\ (D; n Sn') u SF u-,

\D;)

Then

is non-polar in (J' . The set D* n SE'u is closed in (J'\ B/i-t . fn fact,
if z' is a cluster point of D, n SE'u in U'\ Bl';-1 , then z' e BE| .

Let G'o e9(z') be constructed by l8], Lemma 1.3.4. We may assume that
G',9 u'\B-F;_l rf z'+D;, l]nen n(E,!',V1u...u V) : lc for
ally'eE(Vt) n...nq(Vu) + g. Henceweget v-'(y') C Vtv "'v Vu

for all y'eSE'uaV(Vr) n...n E(V).Hence y'f Dr, a contradiction.
Exactly as in the proof of Theorem 4.4 we find now the required point
y' e al/.'o a SE| n (tI'\ r;) , the required set being

B', : asl; \ DE v Sr;-1 C SE; .

The theorem follows.
Corollary 5.3. If (J' 'i,sunelli'ptti'c 7-d,oma'i,n,then SI' 'i,sapolar

set i,n U' .

Corollary 5.4. If a' 'i's a one-d,imensional or'i'entateil' T-Bauer
ilomain, then S-f'' : I' : A .

Proof. The proof of this corollary proceeds exactly as the proof of
Corollary 4.6, if we only note that U' n D', : A . By the same argument
SF' : F'

Remarlc 5.5. The following Theorem 5.6 has the same form as Theorem
4.4 treating normal mappings. However, the situation in Theorem 5.6 is
quite different as one c&n see by looking for Theorem 5.2. More precisely,

in Theorem 5.2 one can not weaken the supposition D* to be a polar set in
fJ' . In fact, the Example 2.2.8 in [8] demonstrates that the assertion of
Theorem 5.2 can fail, if D', contains only one (non-polar) point. On the
other hand, the example in Remark 4.2 in [8] states that the assertion of
Theorem 5.2 can hold even if D;: U' .We also note that under certain
additional assumptions (see l8l, Theorem 2.2.11) Di is allowed to contain
some non-polar points as soon as we consider f instead of B1' .

Theorem 5.6. Let g: X-'>X' beanopenharmon'ic Bl-mappi'ng
suchthat D', i,sapolarset.If U'C X' isag-d,ornai'nsunhthat g-t(U') 1A
and, if V i,s the uni,on of a non-emptty subfami'ly of the components of E-L(U') ,

then
I' : {r'eU'ln(E,n',Y) a:if;,"(r,z',V): lf }

'is a polar set in U' or el,se inrl I' + A .

Proof. Let us suppose that Bf is non-polar in (J' and let k be the
smallest integer such that S.Fi is non-polar in U' . By Theorem 3.2 we
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may assume that I <k<
of Theorem 5.2. By the same
u'\ sP'o_r,. r{ence

Är . Furthermore int Er'i + g by the proof
proof we observe that D; n SE; is closed in

( (int s Fi ) \,;*'f{'läi3)rt i' ;n 
szi I I

is an open set in [/'\ SZi-, , hence open in U' . Obviously

11int s-ai)\ Bli_,)\ D; ! s,E1\ D; g x;,
therefore

int, F' ] int l| + A .

If, on the other hand, B.F is polar in U' and if -1,' : .l[, then we get

E' C SF' trivially, hence -F' is polar in (J' . ff ,1,' ( n- , then i[ ( * oo .

Hence

s4u : u'1s-ni-_, : u'\s-F' ;a a

is an open set in [/' . Using the idea of the proof of Theorem 5.2 we see

fhat D!* n B,Orl is closed in fJ' \,S7', since -lf < +oo. Therefore

,S,ErlyD;: B.E'rly(D,ABE*) + a

is open, hence irrt I' 2 SZ"- \ lå + g .

Remark 5.7. ft remains open whether -l[: l[ in general. Anyhow,
using Corollary 5.3 instead of Theorem 3.1.5 in [9], we can prove the follow-
ing result repeating, word by word, the proof of Theorem 3.1.6 in [9],
under the suppositions of Theorem 5.6.

Theorem 5.8. If U'i,sanellipti,c T-d,omain,then N:N anil,
I' 'i,s a polar set ,i,n U' .

Theorem 5.9. Let g: X-->X' bea,nopenharmon'i,c Bl-maltpi,ng
such that D', i,s a polar set. If tl' C X' , q-t(U') * 0 ,,i,s a d,amain posses-

singapseud,oerhaustion {ail d e N} öy el,l,i,pti,c T-d,omai,nsanil,i,f V i,s

the uni,on of a non-emgttg subfami,ly of the camponents ol Va(U') , then n'
(resgt. SX' ) i,s a polar set in (J' . Also i,n thi,s 

"ot" 
N : fV .

Proof. Letusdenote V' : v{ai I deN}. Suppose n' isnon-
polar in (J' and.let & be the smallest integer such that -Fi is non-polar
in U' . By Theorem 3.5 we may assume that | < lt < -nf . Obviously
B.Fi isnon-polar in U' and ,S-Fj ispolar in U' forevery r <k. Hence
V' n SF| # A . The set U'\ B-f'; is open and non-empty. In fact,
otherwise U' : SF'n which implies immediately (J' : I'e , a conlradiction.
Therefore V'\SI',+ b and lt' n aSI'e+ g. Since V' a aSn'n is
non-polar in V' bylemma4.l,the set A' of strongpoints of V' n aSF'e
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in V' is non-polar in V' . In fact, since lt' n aSF'e : A'v B' is

closed in V' , there is an open set W' such that I/'\ l7 ' ! .4' and that
B' is a polar set in W' €[s one can see by using the definition of B' . ff
now A' is polar in V' , then Z'\ tr4l' is a closed polar set in V' , hence

B' is polar in V' by Lemma 4.1, a contradiction. Therefore we may take
a strong point U' eA' such that A' e(V' \D;) n aSF'n n BE'u. Let
G' e?(y') be constructed by [8], Lemma 1.3.4 and let V1,...,V0 be t'he

minimal components of g-l(G') corresponding respectively to the points of
V-l(A') : {2t,...,2n). We may assume that G'C V' is an elliptic
Z-domain. Since g is an open mapping, aSI'u n v(Vt) a... n g(Zu) is
a non-polar set in G' . Therefore n(g,r' ,Vtu ... v V) < ft for all
r' e G' by Corollary 5.3. Since G'\ B4 * b , there is at least one com-

ponent Vo*, of E-t(G') distinct from Vr, ..., Vu .The open harmonic Bl-
mapping g i Vn+r-> G' omits the non-polar set aBl; o V(V) n ... n g(Vo)

in G', a contradiction to Theorem 3.3.

The assertion for B-F' is contained in the above proof. If -ltl < .[r ,

then { r' e(I' I n(q,r' ,Y) > lf 1 is a non-polar set in tJ' . IJ;ence D',
is a non-polar set in U' , a contradiction.
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