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MULTIPLIER PRESERVING ISOMORPHISMS
BETWEEN MOBIUS GROUPS

PEKKA TUKIA

Let us consider the case that we are given two groups G and G’ of
conformal mappings acting in the unit disk D = {zeC: [z| < 1} such
that D /G and D /G’ are Riemann surfaces. Let ¢: G — G’ be an
isomorphism. We would want to know under what circumstances ¢ is a
conjugation in a group F containing at least all conformal self-mappings
of D, ie.

p(T) = fTf', TeG, feF.

If the group F is the group of all homeomorphisms of ¥, then D /G
and D [ G are homeomorphic (and ¢ is induced by this homeomorphism);
if F is the group of all quasiconformal mappings of D, then ¢ defines
a point in the Teichmiiller space of ¢ ; and finally if F is the group of all
Mébius transformations of D, then ¢ defines the same point as id : G — @
in the Teichmiiller space of G .

The above problem in the theory of Riemann surfaces and Teichmiiller
spaces is our starting point in this paper. We generalize it in such a way
that instead of the group of conformal mappings of the unit disk we consider
the group of Méobius transformations of the n-sphere S*. It also turns
out that we need not demand that our groups act discontinuously; in fact
a much weaker condition (concerning the existence of loxodromic mappings
in the group) suffices. Under these conditions we prove that an isomorphism
between two groups of Méobius transformations of S” is a conjugation
by a Mobius transformation if and only if it has the property of “preserving
multipliers” (Theorem 2). We also show that if such an isomorphism is a
conjugation in the group of all quasiconformal mappings of S*, then it
cannot deform these ‘“multipliers” arbitrarily: one can show that there
is an upper limit to the deformation of multipliers (Theorem 1).

A Mobius transformation of S”, the n-dimensional sphere, is a con-
formal or anticonformal self-map of S”. Such mappings can be classified
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as loxodromic, parabolic or elliptic (if distinct from the identity) (see Martio-
Srebro [2], where a Mobius transformation was assumed to be orientation
preserving, but the anticonformal case is not essentially different from
that). If S is a loxodromic Mobius transformation, it is conjugate in the
group of all Mobius transformations of S* to a transformation of the form

(1) Tz) = O(Az) = A0(z), =zeR", 1< l1eR,
0eO(n) (T(wo) = o),

where O(n) is the group of orthogonal transformations of R*. We denote
by SO(n) the group of orthogonal transformations of R” with deter-
minant 1. Then 7 is orientation preserving if and only if O € SO(n) .
The element O € O(n) is not unique: only its conjugacy class depends
on S (= RT R for some Mobius transformation R). In contrast, 2 is
unique, supposing that oo is the attracting fixed point of 7'. This is
equivalent to the fact that 4> 1.

Henceforth we shall denote the attracting fixed point of a loxodromic
transformation S by P(S); the repelling fixed point is N(8) . The group
of all conformal and anticonformal Mébius transformations is denoted
by GM(n) ; the subgroup consisting of all orientation preserving Mobius
transformations is SGM(n) . This does not seem to be the common usage:
as a rule GM(n) is what we denote by SGM(n) .

The real number A specified by (1) is called the multiplier of S
(= RT R') and denoted mulS. We denote by rotS the conjugacy
class of O in O(n). If 8 is already in the form (1), i.e.it fixes 0 and oo,
we denote the element O by rotS. If rot S = id € O(n) we say that
S is hyperbolic.

If a Mobius transformation 7' of S is not loxodromic it is elliptic or
parabolic (if not the identity). It is elliptic if it (or its extension to Srt1)
can be put into the form (1) with 2 = 1 by conjugation. It is parabolic
if it can be put into the form

Tiz) = Ok) + a, for z e R* (T'(0) = ),

where @ e R*\_ {0}, 0 €Om), O) =a. If T eGM(n) is not loxo-
dromic we set mul7 = 1. If 7T is parabolic we consider that the at-
tracting and repelling fixed points of 7' are defined and set P(T') = N(T) =
the fixed point of 7'. If 7T is elliptic or the identity, P(T) and N(T')
are not, defined.

Let ¢ and G’ be two subgroups of GM(n) and let

p: G—=>G

be an isomorphism with
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mul 7' = mul ¢(7)

for every 7' € (¢ . Then we say that ¢ is a multiplier preserving isomorphism.

Closely related to the concept of a multiplier preserving isomorphism
is that of the dilatation of an isomorphism (cf. Sorvali [5]). Suppose that
there is a real number k > 1 such that, given an isomorphism ¢ : @ — G’ ,

(mul T)YY* < mul o(T) < (mul T)t,

for every 7' € ¢'. Then we say that the dilatation of ¢ is less than or
equal to k£ . The dilatation of ¢ is the smallest number £ for which these
inequalities are valid. Of course, the dilatation of an isomorphism need
not be finite. It is seen that to say that ¢ is multiplier preserving amounts
to the same as to say that the dilatation of ¢ is 1 . If ¢ is conjugation
in the group of conformal and anticonformal Mé&bius transformations, then
the dilatation of ¢ is 1. We shall show that if trivial cases are excluded,
then the converse is also true.

Next we prove that if ¢ is a conjugation by a K-quasiconformal self-
map of S*, then the dilatation of ¢ is less than or equal to K . In view
of the fact that I1-quasiconformal self-maps of S” are just the Mobius
transformations of S* (see Mostow [3]) this generalizes the statement that
conjugation by a Mobius transformation does not change multipliers.

Theorem 1. Let G and G’ be groups of Mobius transformations of S
(n>1) andlet f: S*— 8" be K-quasiconformal. If G = fGf1 and

o) = foTof1, for Ted,
then the dilatation of ¢ is less than or equal to K .

Proof. 1If T €@ is loxodromic, 7" = ¢(T') is also loxodromic. We may
assume that both 7" and 7" fix 0 and oo and are of the form

T(z) = O(Lz), zeR", 0 eO(n), 1< ieR,
T'(z) = O(Xz), =zeR", 0" €0(n), 1< eR,
and we must show that
(log 2)/K < log A < (log 4) K .
Let D, be the shell
D, = {zeR: 1< |z| <A}
and
D, = f(D,).

Since f is K-quasiconformal we have

K-'mod D, < modD, < KmodD,,



330 PEKKA TUKIA

where mod D, is defined by means of the conformal capacity of a shell
(see Mostow [3] p. 80). We make use of the following facts concerning the
modulus of a shell:

() If D' ¢ D, then mod D" < modD .
(b) If D, = {zeR*": a < |z] <b}, then
mod D, = log (b/a) .
Using (a) and (b) we have
Klogi* = KmodD, > modD, > modD,,n, = log (A" m/M)

where

M max { |f(x)]: x e 8”1},

m = min{ |f(x)|: v eS8},
ie.,
Klog 2 = log A" + (1/n)log (m/M) .

Since this is true for every n € N, we must have

Klog 2 > log A" .
Similarly one shows
K-1log A < logA'.

Remark. If n =1 and f is k-quasisymmetric (this implies that
f(o0) = oo and that f is increasing) then one can show that the dilatation
of ¢ is not greater than log 2/log (1 + 1/k) (cf. Sorvali [5]). Sorvali’s
conditions are too strict; he assumes that ¢ and @ are covering groups. In
fact his proof is valid, without any change, also if this assumption is
dropped.

Next we prove that if the dilatation of ¢ is 1 then it is a conjugation
in the group of all (conformal or anticonformal) M&bius transformations.
For this we need the following lemmata.

Lemma 1. Let Q € SO(n) be fixed. Then there is a K-quasiconformal
mapping f: R*— R* such that

f(z):z’ 2| < 1,
f) = Q@), |zl =7,

where 1 < r and where K depends on r in such a way that there is a con-
stant c, (depends on Q) such that, beginning from some fixed r,

K < 1+ cyflogr.
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Moreover, we have
¢ = sup{cy: QeSOMm)} < oo and lime, = 0.
Q—id
Proof. The linear space R* has a representation as a direct sum (see
Greub [1]),
Rt = B,®..0H,,

where each K, is a one- or two-dimensional linear subspace of R”, each
E, is invariant under ), the mapping @ | £, is the identity if B, is one-
dimensional, and ¢ | ¥, is an orientation preserving rotation of FE, if
E, is two-dimensional. Let K, ,...,E, be one-dimensional, K, ,,...,H, be
two-dimensional and let @ | E,, / <1 < k, be the rotation through the
angle 0, .

We define the mapping f, as follows. For 1 < |z| <7, 7y > 1 let

(2) foz) = 0@z,
where O(z) € SO(n) is the orthogonal mapping for which

OR) | E, = id, 1<i<l,
O@z) | B, the rotation through the angle ((|z|—1)/(r,—1)) 0,,
l<i<k.

Il

It is clear that O(z) depends only on r = |z| . We compute the derivative
fo:
(3) fo@)h = (0'()h)z + Oz)h, heR", 1 < |z| <rg.

As we have already observed it is possible to regard O as a function
of » only. We do this and denote it also by O, it being clear from the

context whether O is regarded as a function of z (€ R*) or » (e R). We
have

(4) O'(2)h

(O'(r) o dr|dz)h
O(r)z°,h), z,heR, 1<|z]<rg,

I

where 2° = z/|z] ,

and where the dual space of R” is identified with R* via the usual inner
product (,) of R*.

Thus
folz) B ((O'(r) o dr[dz) h)z + O(z)h

= r(0'(r)2°, k)2 + O}, =2z, heR? 1<zl <ry.

The function f; defined by (2) has continuous derivatives in the shell
{z:1< 2| <7y}, fle) =2 if |z =1 and f(z) = Q(z) for |z| =7r,.
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Thus we see that there is such a function as specified by the lemma for this
particular r,. We must study the behaviour of K as r varies. To do
this we choose another r; > 1 and define a function f; using f, .
Let 7, > 1 be arbitrary and set
log 7,

log 7, .
Then r"l‘ = r, . Further, we define

fie) = follz[*2%) [z['™* = O(Jz]" 2%z
= O@*)e (for z e R*, 1 <zl <ry, 2° definedineq.(4)).

Then
fi)h = ar* 1 ((0'(r") o dr/dz) h)z + O(r*)h
= ar*(O'(r*)(z°, h))2° + O@F*)h
Let || ]| denote the usual norm in the space of linear mappings between

two linear spaces. Since the matrix function O has continuous derivatives,

sup |O'(r)| = ¢, <
1<r<7

and c¢; — 0 as the original orthogonal mapping ¢ tends to the identity.
We have

(5) sup |l r* (O’ (r*) o drjdz)| = acy, ¢y << 0O,
1<r<rn
where the same remark applies to ¢, as to c; .
Since a = log ry/log ry,
(6) fiz) = O@) e (id + O(r)/log ry)

where C(r) is a linear mapping R* — R” depending on r in such a way
that
(7) sup [CO)| < ¢ < oo

1<r<n
where ¢, depends only on r, and @ and c¢; tends to zero as ¢ tends
to the identity. But if the derivative of f; is of the form (6) and C(r)
fulfils (7), then the dilatation K of f; satisfies

K < 1+ cflogr,

where ¢-— 0 if the original orthogonal transformation ¢ tends to the
identity. Thus we have proved Lemma 1.

Lemma 2. Let S and T be two loxodromic transformations of S” .
Then, of P(S) = P(T), (or N(S) = N(T)),
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mul 8! 7" = ((mul S) (mul T')")*1!,

for 1, meZ (the exponent +1 is so chosen that the resulting number is
greater than 1).
Proof. We can assume that S is of the form

S) = 21 04(z) for z e R” (04 € O(n), 1< 1, eR),
and that 7 is of the form
T(z) = Ay0y(z—a) +a for zeR* (aeR*, 0,e0(n), 1<1eR).
Then we have
SETE) = 22y OY0p() — 24 3 O40(@) + X O(a)

for z e R*, and the lemma follows.

Lemma 3. Let G bea subgroup of GM(n) generated by two loxodromic
transformations S and T of S* without common fived points. Let G’ be
another subgroup of GM(n) and ¢: G— G be a multiplier preserving
isomorphism. Then ¢(S) and @(T) do not have common fived points.

Proof. We assume that S = ¢(S) and 7" = ¢(7') have common
fixed points and derive a contradiction from this. If this were the case,
there would be, by Lemma 2, infinitely many (/,m)eZ X Z such that

mul St T» e U

where U is a given neighbourhood of 1 eR.

Since S and 7' do not have common fixed points, ( can be supposed
to be Schottky-like. (We can replace G by the group generated by &S*
and 7" for large enough [.) This means that there are four disjoint closed
balls 4, B, C, D C S* such that

PS)ed, N@®)eB, PT)eC, NT)eD

and that (S*\ (AU BuUCUD)NRS"\NAUVBUCUD) =0
for R e G {id}. Then it is easy to see that

SiTmA)y C A, (STWND) C D, 1,m >0,

ie. S'7T7 is loxodromic with P(S'7T") ed, N(S'T™) €D . Moreover,
there is a real number k > 1 depending on 4 and D (but not on /
and m) such that

mul 87" > k

is valid for all I,m > 0, as is easily seen. In the same manner one
can see that mul St 7 . (I, m) # 0, is bounded away from 1. But this
contradicts Lemma 2 if ¢(7') and ¢(S) have common fixed points and
@ preserves multipliers.



334 PeEKKA TUKIA

Lemma 4. Let G and G' be two subgroups of GM(n) such that G
18 generated by loxodromic T and S without common fixed points.

If ¢ : G — G is multiplier preserving, then there is a Mébius transformation
R e GM(n) such that

R(P(T)) = P@T),  RNT) = N@T),
R(P(S)) = P(g(S)),  RN(S) = N(@(S).

Proof. We assume n > 3. (If ¢ C GM(n), then G C GM(m) for
m>mn.) Let T"=¢T), S = ¢). We may suppose that S and
T are conformal; otherwise we replace § and 7' by S? and 72%. (We
do this substitution also if S" or 7" is anticonformal.) Further, we can
suppose that 7' and 7" fix 0 and oo and that § and S’ fix points
in R?. If R is a loxodromic Mébius transformation we define R, to be
the unique hyperbolic transformation with the same attracting and repelling
fixed points as R and for which

mul B, = mul R .

Let G = (T, 8™ be the group generated by 7 and S™, and
denote G’ = (T'm , S Gy = Ty, Sy, Gy = Ty, 8, , and let
" G — G and @' G'™ — (" be the mappings defined by

Tm—Tr, 8S»—8y and T'" T, Smrs8m.

We wish to obtain an estimate for the dilatation K, of ¢” and K,
of ¢ . We show that, beginning from some m ,

K, < 1+ crotT”,rot S")m = 1 + c,[/m,

m

(8) ’ .
K, < 1+c(otT, rot S'"™m = 1+ ¢,[m,

m =

where ¢(O, P), O, P eSO(n), are bounded and ¢(O, P) — 0 as O, P—id
in SO(n) . (Since rot7 and rotS are determined only up to the con-
jugacy class in SO(n), ¢(O,P) depends only on the conjugacy class of
O and P.) 4 similar remark applies to ¢'(O, P).

To prove (8) we note that, for large m , @, is Schottky-like, i.e. there
are closed disjoint n-balls of S*, denoted by 4, , B, , C,, D, , such
that

m 3 m

P(T)ed,, N(T)eB,, P®S)eC,, N®) eD,,

F, = cd(S"\ (4, v B,uC,UD,) being a fundamental domain
for G™. It is clear, at least for large m , that the balls can be so chosen
that F, is also a fundamental domain for G} . Schottky-groups are free,
and so G” and (@} are free, hence ¢” is an isomorphism. Since 7' is
normalized to fix 0 and oo, we can assume that B, is the unit ball
S»=1 C R* and that A, = (mul7)" B,, .
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Now we can use Lemma 1 to find a K-quasiconformal self-mapping f
of the set {xeR*: 1 < |z] < (mulT)**”}, where m, keZ, m is
large and fixed and £ > 0 varies, such that the following conditions are
fulfilled:

i) fl{xeR: 1 < |z <(mulT)"} = id,
(ii) f] (mul T)ktmS»=1 = rot Th+m| (mul T)k+mSn-1
(iii)) K < 1+ ¢/(klog (mul 7)),

where ¢ depends on rot 7%*” in such a way that it tends to 0 as rot 7+
tends to the identity in SO(n). We fix m so that C,u D, C{zeR":
1 < [z] <mul 7"} for every [ >m .

Define

Fk=<T23Sk>: k>0,
and let y*: G* — F* be defined by
yHT%) = Ti,  yHSH) = St

Then y* are isomorphisms for large k. Let k > 0. Now we define a
homeomorphism f’: S» — §» |

@) = ") UR)(f(R(@))),

if RekFm* and R(x)ecl (S"\(4,:4 Y B,y UO,.,UD,.,,)). Since
a (n—1)-sphere is a removable singularity for quasiconformal mappings in
n-dimensional space, f’ is K-quasiconformal in the set where it is
now defined, i.e. in the regular set of F7t#. We can extend it also to the
limit set of F»+* . Notice that if x is a point of the limit set of Fm+#
then there is a sequence of elements 7', € F”**, i > 0, and n—1 spheres
E,e{bdd,,,, bdB,,,, bdC, .., bdD, ,}, >0, such that
lim, , , diam 7',(E;) = 0 (in the spherical metric of S*) and that { T,(E,) Yisj
and x are in the same component of S"\ 7' (E;) for all j. Now it is easy to
see that f'(T;(E,)),~, converges to a point y €S*. We set f'(x) = y.
Extended this way, f’ is a homeomorphism that induces (y"**)~1. We
know that it is K-quasiconformal outside the limit set of Fm+#
Let y'*: F*— G} be defined by

YHTh = T}, p*SH = 8§ for k> m.

As above, we can show that there is a homeomorphism f": 8% — §» such
that f”=1 induces y'7** for k > 0, and that f”’ is K’-quasiconformal
outside the limit set of G}'** with

K < 1+ ¢'/(klog (mul S)),
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where ¢ — 0 as rot 8”** —id. Thus f'of"’ is K K’-quasiconformal
outside the limit set of G7**. But G ** fixes S?, and consequently its
limit set is contained in S%. But S? is a removable singularity in §. Thus
f of" is K K’'-quasiconformal in the whole S". Since " * is induced
by (f f”)!, the first of the equalities in (8) is seen to be valid. The other
equality in (8) is proved in the same manner.

Since T,, S,, T, and 8, are Mébius transformations of R? they
can be represented as matrices of SL(2, C) . In view of the above normaliza-
tion we have

T~ T, = <g 2_1>, 2 = muT = mulT,

Sh:<zg>, ad —be =1, a+d = ¢+ 1, ¢ = (mulS)2,

S, = <Z' Z) dd b =1, d +d = 4

In diagonalized form we have

() 5 = <§J;»> (f) 21> (—3 _J;> N <6M e ~fg¢ N ehc-l>’

eh — fg = 1. Similarly, S} can be diagonalized by a matrix (¢'f" | g"A")
with the same diagonal matrix. We have
moam Am é‘m eh — A C—mfg .
Th Sh - < . —Am Cmfg + A—m é‘—m eh :
It follows from (8) that the mapping ¢j : Gy — G, TpeT,",
87> Sy has bounded dilatation for large m with dilatation less than
or equal to

(9) 1+ ¢, /m

where ¢/, < M < o beginning from some m and ¢, is near 0 if

rot T is near id and rot S” is near id. On the other hand, the multi-
plier of an element of SL(2, C) is

mul (1 7) = (i + 1 + o(lt + II™))?
kl
where o(x) tends to 0 as z tends to 0. Thus

1logmul T3 Sy = mlog A + mlog  + log |eh| + o(A + )

% lOg mul T}Lm Shm

mlog 2 + mlog & + log [¢h| + o(A™ + {™).



Multiplier preserving isomorphisms between Mébius groups 337

In view of (9) we have
mlog A + mlog ¢ + log |eh| + o(A™™ + ™)
< (1 + ¢ /m)(m log 2 + mlog & + log |¢' B'| 4+ o(A=™ + (™))

or
logleh | < logle'b'| + (c,/m)log ¢/ B
+ ¢y, (log 2 + log &) + o(A=™ 4 &=y .
Since the group O(n) is compact, there are arbitrarily large values of m
such that rot 77 and rot S are arbitrarily near id € O(n) and thus,

given m,, there is always m > m, such that ¢, < 1/m,. Therefore we
must have

log leh| < log e h'|.

Since the reversed inequality is also valid,

(10) leh| = |e'b].

If we replace T Sy by T3 S,™, a similar argument shows that
(11) gl =19l

Since the matrices of SL(2,C) have determinant equal to 1,
eh —fg = 1 and ¢ A" — f'¢g = 1. If we combine this with (10) and
(11), we see that the triangle with vertices 0, 1 and eh is equilateral
with the triangle with vertices 0, 1, ¢ % . Since they have the common
side [0, 1], we must have either

(12) eh = ¢ b and fg = f'¢
or, alternatively,
(13) eh = ¢k and fg = f'g |

the bar — denoting the complex conjugation .
Suppose we have the case (12). Equation (x) for S, and a similar
(omitted) equation for S, show that

a = a, d = d,

ie, S, and S, have equal diagonal elements. If we conjugate S, by
a diagonal R € SL(2, C) we have

‘e (%0 a' b\ (x1 0\  [a A
s = (C) (006 0) = (e )

There is always x e C such that x2b = 0" and, consequently, as the
determinant of the matrix is 1, % 2¢" =c¢. But then S, = RS, R



338 PEKKA TUKIA

and in this case certainly P(S) = P(S,) = R(P(S},) = R(P(S)), and
N(S) = N(S,) = R(N(S},)) = R(N(S")) . Since T" and 7" were normalized
to fix 0 and oo and R can be extended to a Mobius transformation of
S», the lemma follows in case (12).

In case (13) we denote by R an element of GM(n) whose restriction
to S2 is the complex conjugation z+>z. Then conjugation by R reduces
this case to the above case.

Theorem 2. Let G and G be two groups of Mébius transformations
of 8* such that G has at least two loxodromic transformations without common
fized points. Let ¢: G — G be a multiplier preserving isomorphism.
Further, suppose that

Fix ¢ = {P(T): T €@ loxodromic }

is nmot contained in any k-sphere Sk or its image T(S¥) for k <mn,
T € GM(n) . Then ¢ is a conjugation in the group of all (conformal and
anticonformal) Mébius transformations of S* .

Proof. By assumption, there are two loxodromic transformations 7',
S €@ without common fixed points. We assume that N(T') =0,
P(T) = co and prove Theorem 2 step by step.
A, If @, Re@ are loxodromic and

{PQ) ., N@}n{PWR),NR} = 0,

then lim, P(@*R—") = PQ) and lim, , N(@Q"R™) = P(R).

The proof of A is based on the fact that for large n the group generated
by @ and R is Schottky-like. It is exactly similar to the proof of the
case where @, R eSL(2, R), presented in Tukia [6], p. 9.

B. If ReG is loxodromic, then there is @ € G such that R and @ do
not have common fixed points.

For in the set {P(T),N(T),P(S),N(S
points that do not belong to { P(R), N(R)
by A.

C. Suppose R, Qe are lovodromic, P(R) # P(Q). Then there is a
sequence of loxodromic T, € G such that, if T, = ¢(T,),
P(R

P(T,) = P(R), lim,, P(T,) = ) = Ple(R),
ow N(T,) = P@), lim,.,NT,) = P@Q) = P@) -

If the set { P(R), N(R), P(Q), N(Q) } contains four elements, C follows
by A and by Lemma 3. If it contains three or two elements, we can
find by A and B a series of loxodromic elements S, e such that
lim, . P(S,) = P@), lim, ,N(S,) # P(R) and # N(R) = N(@).
Now we can form a double series 7, with a subseries 7', , ~ fulfilling
our conditions.

)} there are at least two
V. Then the result follows

lim
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Note that C is of course valid also if P(R) = P(®), but we do not
need this.

We can define a mapping f,: Fix ¢ — Fix ' asfollows. Let R € be
loxodromic. Then we set

[o(P(R)) = P(p(R)).

We must show that this does not depend on the choice of R. Let
PQ) = P(R), @ €@ loxodromic. Then by Lemma 3, @ = ¢(@) and
R’ = ¢(R) have common fixed points. To see that P(R') = P(Q'), we
use the equation of Lemma 2. For then

(14) mul R Q7 = ((mul R) (mul @))*', 1, meZ.

If P(R) = N(Q), we must replace m by —m in the right side of (14).
Since ¢ is multiplier preserving, we must have P(R') = P(Q’) .

We denote 7" = ¢(7') and S = @(S), where T and S are the
elements of ' defined in the beginning of the proof. We suppose that
T" fixes 0 and oo with P(7") = oco. Moreover we suppose that
P(S) = P(8'). This can always be achieved by conjugation which leaves
0 and oo fixed.

Now we claim:

(i) |P(R)| = [P(R')|,for R e loxodromic, R = ¢(R), |[P(R)] < oo,
(i) (P(R),PQ)) = (P(R),P@Q)), for R, @ e@ loxodromic
R = oR), @ = ¢@), (PR, [P@) < ).

We prove (i) first. Assume P(R) # P (S). By C there is a sequence
T, of loxodromic elements of ¢ such that

P(T,) = P(R), lim,., P(T,) = P(R), (T, = ¢(T,),

lim, N(T,) = P(S), lim,  N(T,) = P®K).

n—>0

By Lemma 4 there are orthogonal linear mappings O, € O(n) and real
numbers 4, > 0, m > 0, such that

i 0,(P(T,)) = P(T,) and 2,0,WN(T,) = N(T,).

The family {0,}, m > 0, is a normal family and therefore there is a

subsequence O, , O, ... for which the limit lim, ,, O, is an orthogonal
linear mapping. Since [P(S)| = |P(S")| , we must also have lim; A, = 1.
Therefore |P(R')| = lim, ., [P(T,)| = lim,_,, 2, 0, (P(T,))| = [P(R).

The proof of (ii) is the same; we only replace S by @ .
But if a mapping satisfies (i) and (ii) then it must be the restriction
of an orthogonal mapping of R”, which, moreover, is unique, since Fix G
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spans R*. For simplicity, we can now assume that this orthogonal trans-
formation is the identity and thus Fix ¢ = Fix ¢’ and the mapping
P(R) — P(p(R)) is the identity, R € loxodromic.

The proof of the theorem can now be concluded. We show that 7' = 7",
the normalized loxodromic transformation of . We have

T(z) = 20(), z e R, 0 €0(n), A=mul7 = mul 7",
T (z) = 20'(z), z e R, 0" eO(n).

Thus 7 =17 if O = 0. But since O|FixG = 0" |Fix¢ and since
Fix ¢ spans R*, O = 0. It is clear that R = ¢(R) also for other
loxodromic R € G'. Finally, if R € @ is arbitrary, there is a loxodromic
Q €G such that R @ is loxodromic. This shows that ¢(R) = R.
This concludes the proof.

Some related theorems. Sorvali [5] has proved our theorem for
SL(2, R)/{1, —1} . His theorem is stated only for discrete groups but the
proof does not make use of the discreteness of the groups. Selberg [4] has
also proved similar results for deformations of groups of SL(n,R), stated
in terms of traces of matrices of SL(n, R). The group of Mébius trans-
formations of S* can be identified with O(1,n+1) /{1, —1} and in
view of this we might ask what the relation is between the multiplier and
the trace of an element of O(1, 7+ 1) which is a subgroup of SL(n+2,R).
For SL(2,R) we have [tr T'| = (mul 7)¥2 4+ (mul 7)2.

If 7eO(,n+1) is loxodromic when regarded as a transformation
of §*, it can be conjugated to the form

4 0
7 = (50)
where /1 is a real 2 X2 -matrix

Lo g (A A
BIEAVES S R Ay

and O € O(n) and A2 = mul7 (Mostow [3]). It follows:

(15) mul 7 = lim, ., [tr T%1" .

Thus Theorem 2 is also valid if we replace the words ‘“multiplier preserving”
by “trace-preserving”. Finally, we remark that if the Mobius group of S?
is identified with SL(2, €)/{1,—1}, then the right side of (15) gives the
square root of mul 7'. Thus in this case also the property that an iso-
morphism between Mdbius groups preserves multipliers can be replaced by
the requirement that it preserves the absolute values of traces.
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