Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 1, 1975, 343-353

ON THE IWASAWA INVARIANTS OF IMAGINARY ABELIAN FIELDS

TAUNO METSÄNKYLÄ

1. Introduction

Let E be an absolutely abelian number field and let p be a prime. A Galois extension of E is called a Z_p -extension if its Galois group is isomorphic to the additive group of Z_p , the ring of p-adic integers.

Fix a natural number m not divisible by p. For $n \ge 0$, denote by F_n the cyclotomic field of $m q p^n$ th roots of unity, where q = p if p > 2 and q = 4 if p = 2. If $E = F_0$, then the union F_{∞} of all the fields F_n is a \mathbb{Z}_p -extension of E. More generally, if E is a subfield of F_0 with conductor m or mq, then there exists a unique \mathbb{Z}_p -extension E_{∞} of E, called the basic \mathbb{Z}_p -extension, which is contained in F_{∞} .

Denote by $\lambda = \lambda(E)$ and $\mu = \mu(E)$ the Iwasawa invariants of E, i.e. the Iwasawa invariants of the basic \mathbb{Z}_p -extension \mathbb{E}_{∞}/E . It is well known that λ and μ are non-negative integers having the following connection with the class numbers h_n of the intermediate fields E_n of Eand E_{∞} : if $[E_n:E] = p^n$ and if the highest power of p dividing h_n is $p^{e(n)}$, then, for all sufficiently large n, e(n) is of the form $\lambda n + \mu p^n + \nu$, where ν is also an integer independent of n. Iwasawa [9] has conjectured that $\mu = 0$ for every E and p; the conjecture has been proved by B. Ferrero in the cases p = 2 and p = 3 (as yet unpublished).

In what follows we shall assume that E is imaginary, and put $\lambda = \lambda^+ + \lambda^-$, $\mu = \mu^+ + \mu^-$, where λ^+ and μ^+ are the Iwasawa invariants of the maximal real subfield of E. Thus, if $p^{a(n)}$ denotes the highest power of p dividing the first factor of the class number of E_n , we have $a(n) = \lambda^- n + \mu^- p^n + r^-$ (r^- an integer) for all large n. While the normal approach to λ and μ is via the general theory of Z_p^- extensions (see [6], [10]), there is also another way of introducing λ^- and μ^- , namely the use of Iwasawa's theory of p-adic L-functions (see [7]). This method has been applied by Iwasawa [8] in case $E = F_0$. In the

present note we shall first apply the same method to the case of a general E and an arbitrary odd prime p, and show the existence of the invariants λ^- and μ^- as sums of certain components which arise naturally from considering the characters of E. Furthermore, using results from [11] we shall obtain immediately a criterion for the vanishing of μ^- . This criterion, together with some facts proved essentially in [11], will then be applied to give a relationship between the invariants λ^- and μ^- of two abelian fields of a certain type.

2. Characters and *p*-adic *L*-functions

Throughout the following, let p be a fixed odd prime. As usual, let Z, Q, Z_p , and Q_p stand for the ring of rational integers, the field of rational numbers, the ring of p-adic integers, and the field of p-adic numbers, respectively. Denote by |.| the p-adic valuation on a fixed algebraic closure Ω_p of Q_p .

Let χ be a Dirichlet character. We shall always assume that χ is primitive, and denote its conductor by f_{χ} . Let U(f) denote the group of all characters χ with $f_{\chi} \mid f$.

Suppose that m is a natural number prime to p. For each $n \geq 0$, denote by G_n the multiplicative residue class group mod $m p^{n+1}$, consisting of all elements $\sigma_n(a) = a + m p^{n+1} \mathbf{Z}$, where (a, m p) = 1. It is known that $G_n = \Delta_n \times \Gamma_n$ (direct product), where

$$\begin{split} \mathcal{A}_n &= \{ \sigma_n(a) \mid a^{p-1} \equiv 1 \pmod{p^{n+1}} \}, \\ \Gamma_n &= \{ \sigma_n(a) \mid a \equiv 1 \pmod{m p} \} \end{split}$$

(see e.g. [5], pp. 78-81, [8], p. 67). From this it follows that

 $U(m p^{n+1}) = U(m p) \times T_n,$

where T_n is the group of all characters π satisfying the conditions $f_{\pi} | p^{n+1}$ and $\pi(a) = 1$ whenever $\sigma_n(a) \in \mathcal{A}_n$. Usually the elements of U(m p) and T_n are called characters of first and second kind, respectively. Note that T_n is a cyclic group of order p^n .

The unit group of Z_p can be written in the form $V \times D$, where V is the group of all (p-1)st roots of unity and D the group of principal units. For any p-adic unit a, let $\omega(a)$ denote the projection of a on V under this decomposition. Then ω can be regarded, in an obvious manner, as a character with order p-1 and conductor p. In particular, $\omega \in U(m p)$.

Now let $L_{p}(s; \chi)$ be the *p*-adic *L*-function for an even character

 $\chi \in U(m \ p^{n+1})$. For our purposes it suffices to consider the value of $L_p(s; \chi)$ at s = 0; a well-known formula ([8], p. 30) asserts that

(1)
$$L_{p}(0; \chi) = -(1 - (\chi \omega^{-1})(p)) B_{1}(\chi \omega^{-1}),$$

where $B_1(\chi)$ denotes the first generalized Bernoulli number belonging to the character χ . Put $\chi = \theta \pi$ with $\theta \in U(m p)$ and $\pi \in T_n$; then $f_{\theta} = m_0$ or $m_0 p$ with $m_0 \mid m$. Let K be a finite extension of Q_p in Ω_p , containing the numbers $\theta(a)$ for all $a \in \mathbb{Z}$, and let \mathfrak{o} be the ring of local integers in K. It follows from Iwasawa's theory of p-adic L-functions that

(2)
$$L_{p}(0; \chi) = 2f(\pi (1 + m_{0} p)^{-1} - 1; \theta)$$

([8], p. 87), where $f(x; \theta)$ is a certain power series with coefficients in \mathfrak{o} , if $\theta \neq \chi_0$ (i.e., θ is non-principal), and $f(x; \chi_0)$ is a quotient of two such power series.

3. The invariants λ^- and μ^- of imaginary abelian fields

Let $E \mid Q$ be a finite imaginary abelian extension. When investigating the invariants λ^- and μ^- of the basic Z_p -extension $E_{\infty} \mid E$ we may assume without loss of generality that the conductor of E is of the form m or m p.

Let F_0 , F_1 ,... denote the cyclotomic fields defined in the introduction. We shall identify Gal (F_n/Q) , the Galois group of F_n/Q , with the group G_n in the usual manner. Then

$$Gal (F_n / F_0) = \Gamma_n, \quad Gal (F_0 / Q) = G_0 = \Delta_0.$$

Moreover, the character group $\operatorname{Ch}(F_n)$ belonging to the extension $F_n \mid Q$ is $U(m \ p^{n+1})$.

Put Y = Ch(E) and note that Y is a subgroup of U(m p). Let

$$E = E_0 \subset E_1 \subset \ldots \subset E_n \subset \ldots$$

be the infinite tower of fields determining the Z_p -extension $E_\infty\,/\,E$. Then we have Gal $(E_n\,/\,E)\,\simeq\,\Gamma_n\,$ and

$$F_n = F_0 E_n, \qquad E = F_0 \cap E_n$$

for every $n \ge 0$. Hence Gal $(F_n \! / \, E_n)$ is a subgroup of \varDelta_n and it follows easily that

$$\operatorname{Ch}(E_n) = Y \times T_n$$

Now let

$$X = X(E) = \{ \theta \omega \mid \theta \in Y^{-}, \theta \neq \omega^{-1} \},$$

where by Y^- is meant the subset of Y consisting of all odd characters. Note that the set X is empty if and only if E is the cyclotomic field of 3rd roots of unity. Let h_n and h_n^+ denote the class numbers of E_n and its maximal real subfield, respectively. We shall prove the following lemma on $h_n^- = h_n / h_n^+$.

Lemma 1. Put

$$A(x) = \prod_{\theta \in X} f(x; \theta);$$

then

$$|h_n^- / h_0^-| = | \prod_{\zeta \in W_n} A(\zeta - 1) | \qquad (n \ge 1) ,$$

where W_n denotes the set of all $p^n th$ roots of unity except 1. Proof. We start from the formula ([4], p. 12)

$$h_n^- = Q_n w_n \prod_{\chi} \left(- \frac{1}{2f_{\chi}} \sum_{a=1}^{f_{\chi}} a \ \chi(a) \right) \quad (n \ge 0) ,$$

where $Q_n = 1$ or 2, w_n is the number of roots of unity in E_n , and the product is extended over all odd characters χ in $Y \times T_n$. Let us fix a generator π_n of T_n . Noting that

$$f_{\chi}^{-1} \sum_{a=1}^{f_{\chi}} a \chi(a) = B_1(\chi)$$

(see e.g. [8], p. 14) we then obtain

$$(3) \qquad |h_n^-/h_0^-| = |(w_n/w_0) \prod_{\theta \in Y^-} \prod_{k=1}^{p^n-1} (-\frac{1}{2} B_1(\theta \pi_n^k))| \qquad (n \ge 1)$$

Consider a character $\chi = \theta \omega \pi_n^k$ with $\theta \in Y^-$, $1 \leq k \leq p^n - 1$. We have $\chi(-1) = 1$, $(\chi \omega^{-1})(p) = 0$ and $f_{\theta\omega} = m_0$ or $m_0 p$, where $m_0 | m$. Hence, by combining (1) and (2) we find that

$$- \ B_1(\theta \ \pi_n^k) \ = \ 2 \ f(\zeta_{\chi} - 1 \ ; \ \theta \ \omega) \qquad (\zeta_{\chi} \ = \ \pi_n \ (1 \ + \ m_0 \ p)^{-k}) \ .$$

It is easy to see that ζ_{χ} ranges over W_n as k runs through $1,\,...,\,p^n-1$. Thus (3) becomes

(4)
$$|h_n^-/h_0^-| = |(w_n/w_0) \prod_{\theta \in Y^-} \prod_{\zeta \in W_n} f(\zeta - 1; \theta \omega)| \quad (n \ge 1).$$

Now we have to distinguish between two cases, according to whether E contains the *p*th roots of unity or not.

Assume first that $\ W_1 \subseteq E$. Then $\omega \in Y^-$ and the right hand side of (4) contains the factor

$$|\prod_{\zeta \in W_n} f(\zeta - 1 ; \chi_0)| = |p^n|^{-1}$$

([8], p. 92). On the other hand, $w_n = w_0 p^n$, so that the assertion of the lemma follows.

If W_1 is not contained in E, we have $\omega \notin Y^-$ and $w_n = w_0$. Thus our assertion is immediate from (4).

Remark 1. If $|A(\zeta-1)| < 1$ for some $\zeta \in W_n$, then |A(0)| < 1 and so $|A(\zeta-1)| < 1$ for every $\zeta \in W_n$. Consequently, it follows from Lemma 1 that

(i) p divides $h_n^-/h_0^ (n \ge 1)$ if and only if p divides h_1^-/h_0^- ;

(ii) if p divides $h_n^-/h_0^ (n \ge 1)$, then p^n divides h_n^-/h_0^- .

In particular, if m = 1 (i.e., E is a subfield of the cyclotomic field of pth roots of unity), then an obvious modification of the proof of Lemma 1 leads to the formula

$$|h_n^-| = |\prod_{\zeta \in W_n \cup \{1\}} A(\zeta - 1)| \quad (n \ge 0),$$

so that we obtain the following simpler results:

- (i') $p \mid h_n^-$ if and only if $p \mid h_0^-$;
- (ii') if $p \mid h_n^-$, then $p^{n+1} \mid h_n^-$.

Another proof for (i') and (ii') has been given by Adachi [1].

Now suppose that the field K associated with the power series $f(x; \theta)$ is the extension of Q_p generated by all numbers $\theta(a)$, where $\theta \in X(E)$ and $a \in \mathbb{Z}$. Let e denote the ramification index of K / Q_p , let π be a fixed prime element of the ring \mathfrak{o} , and let $\mathfrak{p} = \pi \mathfrak{o}$.

L e m m a 2. For $\theta \in X(E)$, define non-negative integers $\lambda_{\theta} = \lambda_{\theta}(E)$ and $\mu_{\theta} = \mu_{\theta}(E)$ by

$$egin{array}{rll} f(x\,;\, heta) &=& \pi^{\mu_{ heta}}\sum\limits_{k=0}^{\infty}lpha_k\,x^k \qquad \left(lpha_k\in\mathfrak{o}
ight)\,, \ lpha_k&\equiv& 0 \pmod{\mathfrak{p}} \; for \;\; 0\,\leq k<\lambda_ heta\,, \ lpha_k&
otin 0 \pmod{\mathfrak{p}} \; for \;\; k=\lambda_ heta\,. \end{array}$$

Then the numbers

$$\lambda^- = \sum_{\theta \in X} \lambda_{ heta} , \qquad \mu^- = e^{-1} \sum_{\theta \in X} \mu_{ heta}$$

are the invariants $\lambda^-(E)$, $\mu^-(E)$ of the extension E_{∞}/E . Proof. We have

$$A(x) = \prod_{\theta \in X} f(x; \theta) = \pi^{e\mu^-} B(x) ,$$

where

$$B(x) = \sum_{k=0}^{\infty} \beta_k x^k \qquad (\beta_k \in \mathfrak{o})$$

with $\beta_k \equiv 0 \pmod{\mathfrak{p}}$ for $0 \leq k < \lambda^-$ and $\beta_k \neq 0 \pmod{\mathfrak{p}}$ for $k = \lambda^-$. Let t be the least non-negative integer such that $e \lambda^- < (p-1) p^t$. Assuming that n > t and $\zeta \in W_n - W_{n-1}$ we then find that $|\pi| < |\zeta - 1|^{\lambda^-}$ and so, furthermore,

$$|A(\zeta-1)| = |\pi^{e\mu^-} B(\zeta-1)| = |p^{\mu^-}| |\zeta-1|^{\lambda^-}.$$

This together with Lemma 1 yields

$$|h_n^-| = |p^{a(n)}|, \quad a(n) = \lambda^- n + \mu^- p^n + \nu^- \quad (n > t),$$

where ν^- is an integer independent of n.

Remark 2. Suppose that $E \subset E'$, where E' is abelian with conductor m' or m' p, m' being prime to p. Then $X(E) \subset X(E')$. Therefore, if $\theta \in X(E)$ then $\lambda_{\theta}(E) = \lambda_{\theta}(E')$ and $e' \mu_{\theta}(E) = e \mu_{\theta}(E')$, where e' is the ramification index of the extension K' / Q_p determined by X(E').

It should be noted that the numbers $\lambda_{\theta}(F_0)$, $\mu_{\theta}(F_0)$ have been introduced and investigated by the author in [11]. (Cf. [11], Remark (ii) of Section 4.)

4. On the vanishing of λ^- and μ^-

As an immediate consequence of Remark 1 we may state that the condition

$$\lambda^{-} = \mu^{-} = 0$$

is equivalent to $(p, h_1^-/h_0^-) = 1$, and if m = 1, (5) is equivalent to $(p, h_0^-) = 1$. The latter statement is also implied by the following stronger result, proved essentially in [11] (Lemma 2): for $\theta = \omega^u \in X(E)$, $\lambda_{\theta}(E) = \mu_{\theta}(E) = 0$ if and only if the *u*th Bernoulli number B_u is prime to p. Indeed, if m = 1 then $(p, h_0^-) = 1$ is equivalent to the fact that the numbers B_u are prime to p whenever $\omega^u \in X(E)$ (see [2], [1]).

We shall now give a general criterion for the vanishing of $\mu_{\theta}(E)$. For $n \geq 0$, let $\gamma_n(a)$ be the projection of $\sigma_n(a)$ on Γ_n under the direct decomposition $G_n = \Delta_n \times \Gamma_n$, so that $\gamma_n(a)$ runs through the elements of Γ_n , say g_{nk} $(k = 0, ..., p^n - 1)$, as $\sigma_n(a)$ runs through G_n . For $\theta \in X(E)$, put

$$\xi_n = - (2 m p^{n+1})^{-1} \sum_{\substack{a=1\\(a,mp)=1}}^{mp^{n+1}} a \theta(a) \omega^{-1}(a) \gamma_n(a)^{-1} = \sum_{k=0}^{p^n-1} S_{nk} g_{nk}.$$

We know that ξ_n belongs to the group algebra $\mathfrak{o}[\Gamma_n]$, i.e. the numbers $S_{nk} = S_{nk}(\theta; E)$ belong to \mathfrak{o} , and that $\xi_{n+1} \mapsto \xi_n$ under the morphism $\mathfrak{o}[\Gamma_{n+1}] \to \mathfrak{o}[\Gamma_n]$, induced by $\sigma_{n+1}(a) \mapsto \sigma_n(a)$ ([8], pp. 72–76). Let R

denote the inverse limit of the $\mathfrak{o}[\Gamma_n]$ with respect to these morphisms. Then $\xi = \lim \xi_n$ is a well-defined element of R and closely connected with the power series $f(x; \theta) \in \mathfrak{o}[[x]]$. Indeed, ξ is the image of $f(x; \theta)$ under the unique isomorphism $\tau: \mathfrak{o}[[x]] \to R$, determined by the condition $\tau(1+x) = \lim \gamma_n(1+m p)$. This enables us to formulate the following lemma (see [11], Lemma 5).

Lemma 3. A necessary and sufficient condition for $\mu_{\mu}(E) > 0$ is that

(6)
$$S_{nk}(\theta; E) \equiv 0 \pmod{\mathfrak{p}}$$

 $for \ all \ n \ \geqq \ 0 \ and \ all \ k \in I_n = \{ \ 0, \ ..., \ p^n - 1 \ \} \ .$

From this it is seen that $\mu^{-}(E) > 0$ if and only if there is at least one $\theta \in X(E)$ such that the infinite system of congruences (6) is satisfied.

Remark 3. If $\theta \in X(E)$, then $\lambda_{\theta}(E) = \mu_{\theta}(E) = 0$ is equivalent to the condition $S_{00}(\theta; E) \neq 0 \pmod{\mathfrak{p}}$. This is proved in [11] under the assumption that the conductors of θ and $\theta \omega^{-1}$ are equal to m p. However, this restriction is unnecessary, since an inspection of the above isomorphism τ shows that, in any case,

$$f(0;\theta) = S_{00}(\theta;E) .$$

Remark 4. A sufficient condition for $\mu_{\theta}(E) > 0$ is that

$$S_{nk}(\theta ; E) \equiv S_{n0}(\theta ; E) \pmod{\mathfrak{p}}$$

for all $n \ge 1$ and all $k \in I_n$, as can be verified in the following way. By considering the morphism $\mathfrak{o}[\Gamma_{n+1}] \to \mathfrak{o}[\Gamma_n]$ mentioned above one finds that

$$S_{nk} = \sum_{k} S_{n+1, k}$$
 ,

the sum being extended over those $h \in I_{n+1}$ for which $g_{n+1, h} \mapsto g_{nk}$. Obviously, the number of such h is p, so that

$$S_{nk} \equiv \sum_{h} S_{n+1,0} \equiv p S_{n+1,0} \equiv 0 \pmod{\mathfrak{p}}$$
 $(n \ge 0, k \in I_n)$.

For the rest of this section we assume that m = 1 and p > 3. Denote by P the cyclotomic field of pth roots of unity; then

$$X(P) = \{ \omega^{u} \mid u = 2, 4, ..., p-3 \}$$

and E is a subfield of P.

We shall introduce some further notation. Let s = (p-1)/2, let r be a primitive root mod p^{n+1} for all $n \ge 0$, and let $r_n(i)$ be the least positive residue of $r^i \pmod{p^{n+1}}$. Denote by α the primitive (p-1)st root of unity satisfying

$$\omega(a) = \alpha^i \quad \text{for } a \equiv r^i \pmod{p}$$
.

For rational integers h and u, put

$$R_n(h, u) = \sum_{i=0}^{p-2} r_n(i p^n + h) \alpha^{i(u-1)} \qquad (n \ge 0) .$$

Then we have the following supplement to Lemma 3.

Lemma 4. If $E \subseteq P$ and $\omega^u \in X(E)$, then

$$-2 p^{n+1} S_{nk}(\omega^u; E) = R_n(k, u) \alpha^{k(u-1)} \qquad (n \ge 0, k \in I_n),$$

provided the elements g_{nk} of Γ_n are suitably ordered.

For the proof, see [11], proof of Lemma 8.

It will be useful to notice that $R_n(h, u)$ satisfies the conditions

(7)
$$R_n(h, u) = 2 \sum_{i=0}^{s-1} r_n(i p^n + h) \alpha^{i(u-1)} - 2 p^{n+1} (1 - \alpha^{u-1})^{-1},$$

(8) $R_n(h, u) \alpha^{j(u-1)} = R_n(g, u)$ for $h \equiv j p^n + g \pmod{(p-1) p^n}$.

5. An example: the invariants of a quadratic field

Let $E = Q((-3)^{1/2})$ and p > 3. Then X(E) contains only one element, namely $\theta \omega$, where $\theta(a) = (a/3)$ (the Legendre symbol). Hence, in this case $\mathfrak{o} = \mathbb{Z}_{\phi}$. Moreover,

$$\lambda^+(E) \;=\; \lambda(Q) \;=\; 0 \;, \qquad \mu^+({
m E}) \;=\; \mu(Q) \;=\; 0$$

([6], p. 225) and so $\lambda(E) = \lambda^-(E) = \lambda_{\theta\omega}(E)$, $\mu(E) = \mu^-(E) = \mu_{\theta\omega}(E)$. We shall first employ Lemma 3 to prove that $\mu(E) = 0$.

Now

$$S_{nk} = - (6 p^{n+1})^{-1} \sum_{a} a (a/3) ,$$

where the summation is extended over the values of a satisfying the conditions $1 \leq a < 3 p^{n+1}$, (a, 3p) = 1, $\gamma_n(a)^{-1} = g_{nk}$. Let $c_{n1}(i)$ and $c_{n2}(i)$ be positive integers less than $3 p^{n+1}$ such that

$$egin{array}{lll} c_{n1}(i) &\equiv c_{n2}(i) \equiv r^i \pmod{p^{n+1}}\,, \ c_{n1}(i) &\equiv 1, \ c_{n2}(i) \equiv -1 \pmod{3}\,. \end{array}$$

Then Δ_n can be written in the form

$$\mathcal{A}_n = \{ \sigma_n(a) \mid a = c_{n1}(ip^n) \text{ or } a = c_{n2}(ip^n) \text{ , } i = 0, ..., p-2 \}.$$

After a suitable rearrangement of the elements g_{nk} of Γ_n we therefore get

$$S_{nk} = - (6 p^{n+1})^{-1} \sum_{i=0}^{p-2} [c_{n1}(i p^n + k) - c_{n2}(i p^n + k)] .$$

Furthermore, $c_{n1}(i p^n + k) - c_{n2}(i p^n + k) = \pm b_i p^{n+1}$, where each b_i is equal to 1 or 2 and, as is easy to see, $b_i = b_{i+s}$. Hence

$$S_{nk} \;=\; - \; rac{1}{3} \sum\limits_{i=0}^{s-1} \; (\;\pm\; b_i) \;, \qquad \left| \sum\limits_{i=0}^{s-1} (\;\pm\; b_i) \; \right| \;<\; p \;.$$

Now, if $\mu > 0$ then Lemma 3 shows that all the numbers S_{nk} vanish. But this would imply that $f(x; \theta \omega) = 0$, which is impossible by Lemma 1. Consequently, $\mu = 0$.

We are also able to determine those primes p for which $\lambda = 0$. In fact, using (2) and (1) we may calculate $f(0; \theta \omega)$ as follows:

$$f(0\;;\;\theta\;\omega)\;\;=\;\; \tfrac{1}{2}\;L_{p}(0\;;\;\theta\;\omega)\;\;=\;\;-\;\,\tfrac{1}{2}\;(1\;-\;(p/3))\;B_{1}(\theta)\;\;=\;\;(1\;-\;(p/3))/6\;.$$

From this we infer that $\lambda = 0$ if and only if $p \equiv 2 \pmod{3}$.

We note that the Iwasawa invariants of imaginary quadratic fields have been examined by Gold in several papers (e.g. [3]).

6. A relationship between the invariants of certain fields

Let p > 3 and let l be a prime, $l \equiv 1 \pmod{p}$. From now on, we shall assume that E is the abelian field with conductor l p, which is of degree p over P.

Put t=(l-1)/p and denote by ψ a generating character $\mod l$. Then

$$\mathrm{Ch}\;(E)\;=\;\{\;\psi^{tv}\,\omega^u\;|\;\;0\;\leq v\;\leq p-1\;,\;\;0\;\leq u\;\leq p-2\;\}$$

and so

$$X(E) \;=\; \{ \; \psi^{tv} \, \omega^{u} \; | \; \; 0 \; \leq v \; \leq p-1 \; , \; \; 2 \; \leq u \; \leq p-3 \; , \; \; 2 \; | \; u \; \} \; .$$

It follows from [11] (Lemma 10) that if $\chi = \psi^{tv} \omega^{u} \in X(E) - X(P)$, then

(9)
$$S_{nk}(\chi; E) \equiv -p^{-n-1} \sum_{i=0}^{s-1} [r_n(i \ p^n + k) - r_n(i \ p^n + k - d_n)] \ \alpha^{(i+k)(u-1)} \pmod{\mathfrak{p}}$$

 $(n \ge 0, k \in I_n)$, where d_n is defined by $l \equiv r_n(d_n) \pmod{p^{n+1}}$. This result expresses a certain connection between the μ^{-} -invariants of E and P. In fact, we may formulate the following theorem, the first part of which is essentially proved in [11].

Theorem. (i) If $\mu_{\theta}(P) > 0$ for some $\theta = \omega^u \in X(P)$, then $\mu_{\chi}(E) > 0$ for all $\chi = \psi^{tv} \omega^u \in X(E)$.

(ii) Suppose that $l \not\equiv 1 \pmod{p^2}$. If $\mu_{\chi}(E) > 0$ for some $\chi = \psi^{tv} \omega^u \in X(E) - X(P)$, then $\mu_{\theta}(P) > 0$ for $\theta = \omega^u$.

Proof. For the proof of (i), see [11], proof of Theorem 3. We shall now prove (ii). Using Lemma 3 we get that

$$S_{nk}(\psi^{tv}\,\omega^u\,;E) \equiv 0 \pmod{\mathfrak{p}}$$

whenever $n \ge 0$ and $k \in I_n$. This implies, by (9), that

$$\sum_{i=0}^{s-1} r_n(i \ p^n + k) \ \alpha^{i(u-1)} \ \equiv \ \sum_{i=0}^{s-1} r_n(i \ p^n + k - d_n) \ \alpha^{i(u-1)} \pmod{p^{n+2}}$$

for all these n and k. In view of (7) and (8) it then follows that

(10)
$$R_n(h, u) \equiv R_n(h-d_n, u) \pmod{p^{n+2}}$$

for all $n \ge 0$ and all $h \in \mathbb{Z}$.

Since $l \equiv 1 \pmod{p}$, we have $r_n(d_n) \equiv 1 \pmod{p}$ and so d_n is divisible by $p-1 \pmod{p}$. On the other hand, $l \not\equiv 1 \pmod{p^2}$ so that d_n is not divisible by p for $n \ge 1$. Let us fix some $n \ge 1$ and some $k \in I_n$. Let z satisfy the congruence $d_n z \equiv k \pmod{p^n}$. Then

$$k \equiv k p^n + d_n z \pmod{(p-1) p^n}$$

and therefore, by (8),

$$R_n(k, u) \alpha^{k(u-1)} = R_n(d_n z, u)$$
.

Combined with (10) this yields

$$R_n(k \ , \ u) lpha^{k(u-1)} \ \equiv \ R_n(0 \ , \ u) \pmod{p^{n+2}} \ .$$

We now apply Lemma 4 to rewrite the last congruence as

$$S_{nk}(\omega^u\,;P)\ \equiv\ S_{n0}(\omega^u\,;P)\ (\mathrm{mod}\ p)$$
 .

Because this holds for all $n \ge 1$ and $k \in I_n$, our assertion follows from the result stated in Remark 4.

Corollary. (i) If $\mu^{-}(P) > 0$, then $\mu^{-}(E) > 1$.

(ii) Provided that $l \neq 1 \pmod{p^2}$, if $\mu^-(P) = 0$ then $\mu^-(E) = 0$ and $\lambda^-(E) \geq (p-1) (p-3)/2$.

Proof. For (i), it is enough to apply part (i) of the theorem to

$$\mu^-(E) = \mu^-(P) + e^{-1} \sum_{\chi \in X(E) - X(P)} \mu_{\chi}(E) \; .$$

To establish (ii), let $\mu^{-}(P) = 0$. Then the result $\mu^{-}(E) = 0$ is immediate from part (ii) of the theorem. Moreover, since $d_0 \equiv 0 \pmod{p-1}$ it follows from (9) that $S_{00}(\chi; E) \equiv 0 \pmod{p}$ for every $\chi \in X(E) - X(P)$. But $\mu_{\chi}(E) = 0$ and so the result of Remark 3 tells us that $\lambda_{\chi}(E) > 0$. Accordingly, $\lambda^{-}(E)$ is greater than or equal to the number of elements of X(E) - X(P), as was to be proved. The above result that $\mu^{-}(P) = 0$ implies $\mu^{-}(E) = 0$ follows also from a more general result proved by Iwasawa ([9], p. 10) by another method.

As pointed out in [11], it follows from part (i) of the theorem that $\mu^-(P) > 0$ implies the existence of Z_p -extensions F_{∞}/F_0 with arbitrarily large μ^- . Similarly, if $\mu^-(P) = 0$, part (ii) gives us Z_p -extensions F_{∞}/F_0 with arbitrarily large λ^- . It also gives, for every regular prime p, infinitively many basic Z_p -extensions E_{∞}/E with $\mu^- = 0$, $\lambda^- > 0$.

References

- ADACHI, N.: Generalization of Kummer's criterion for divisibility of class numbers. - J. Number Theory 5, 1973, 253-265.
- [2] CARLITZ, L.: The first factor of the class number of a cyclic field. Canad. J. Math. 6, 1954, 23-26.
- [3] GOLD, R.: The nontriviality of certain Z_l -extensions. J. Number Theory 6, 1974, 369-373.
- [4] HASSE, H.: Über die Klassenzahl abelscher Zahlkörper. Akademie-Verlag, Berlin, 1952.
- [5] -»- Vorlesungen über Zahlentheorie. 2. Aufl. Springer-Verlag, Berlin-Göttingen-Heidelberg-New York, 1964.
- [6] IWASAWA, K.: On Γ -extensions of algebraic number fields. Bull. Amer. Math. Soc. 65, 1959, 183-226.
- [7] -»- On p-adic L-functions. Ann. of Math. 89, 1969, 198-205.
- [8] -»- Lectures on *p*-adic *L*-functions. Princeton University Press, Princeton, 1972.

[9] $- \rightarrow -$ On the μ -invariants of \mathbf{Z}_l -extensions. - Number theory, algebraic geometry and commutative algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973, 1-11.

- [10] -On \mathbf{Z}_l -extensions of algebraic number fields. Ann. of Math. 98, 1973, 246-326.
- [11] METSÄNKYLÄ, T.: On the cyclotomic invariants of Iwasawa. Math. Scand. 37, 1975, 61-75.

University of Turku Department of Mathematics SF-20500 Turku 50 Finland

Received 10 June 1975