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FOURIER TR ANSFORMS OF I\OI\COMMUTATIYE
AiTATOGUES OF YECTOR MEASURES AND

BIIVIEASURES WTTH APPTICATIOI\S
TO STOCHASTIC PROCESSES

KARI YLINEN

1. Introduction

f. Kluvånek [fa] has studied Fourier-Stieltjes transforms of Banach
space valued regular Borel vector measures on a locally compact Abelian
topological group L Let us think of f as the dual group of its own dual
group G .If "U is a (complex) Banach space, the X'ourier-Stieltjes trans-
form of a regular ,O-valued Borel vector measure rn on l" is the function
q: G--->,8 defined by 

f _
v@: J @,Y)d'm(Y), seG'

The principal results i" tl; concern the problem of characterizing those

"0-valued functions on G which arise as Fourier-Stieltjes transforms of
.E-valued regular Borel vector measureson l-. Kluvånek proved, generaliz-
ing two classical theorems of W. F. Eberlein [7] on X'ourier-Stieltjes trans-
forms of scalar valued measures, that a function g : G --->.8 is the X'ourier-
Stieltjes transform of such a vector measufe if and only if q is bounded
and weakly continuous and the integrals [" V dp form a relatively weakly
compact subset of E , when pr ra,nges over the bounded absolutely con-
tinuous (resp. finitely supported) regular complex Borel measures on G
whose X'ourier-Stieltjes transforms are bounded by I (see Theorems 2 and
3 in [a]). These conditions even imply thab g is strongly continuous ll4,
p. 269]. The present article originated in an attempt to extend the results
quoted above to the case of a not necessarily Abelian locally compact
group G. A complete generalization is contained in Theorems 3.2 and 3.5.
Instead. of entering a detailed discussion in this introductory section we
only mention that one replaces vector measures by weakly compact linear
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operators from C*(G) to -8, where C*(G) , the so-called group C*-
algebra of G , can be regarded as a generalization of Co(I) (see Sections 2

and 5). This approach is motivated by the fact that the "0-valued regular
Borel vector measures on l- are known to be via integration in a bijective
correspondence with the weakly compact operators from Co(J-) to E .

The second main purpose of this pa,per is to define and characterize the
X'ourier transforms of bounded bilinear forms on the Cartesian product of the
group C*-algebras of two locally compact groups Gr and G, . This is done

in Section 4. Our definition depends on the extending of the bilinear form to
C*(GJ** X C*(Gz)**. That this extension can be effected in a satisfactory
way is guaranteed by a result of C. A. Akemann [], which says that any
bounded linear operator from a C*-algebra to the predual of a von Neumann
algebra is weakly compact. The Fourier transform of a bounded bilinear
form on C*(Gt) x C*(Gz) is a bounded continuous function on G, X Gr'
The principal result of Section 4 is Theorem 4.7, which singles out, in a

m&nner analogous to the two theorems of Eberlein referred to above, those

functions on G, x G, which arise as such X'ourier transforms. Theorems

4.10 and 4.12 deal with positive-definiteness properties of bounded bilinear
forms.

Our study of the X'ourier transforms of bounded bilinear forms on

C*(Gr) x C*(Gz) is largely motivated by applications to the theory of
stochastic processes indexed by a general locally compact group. This theme
is discussed in Section 6. There our main concern is the generalization of
the classical spectral representation theory. Our approach resembles that
of H. Niemi ll7]. X'or example, we extend to the noncommutative case the
notion of the covariance bimeasure of a stochastic measure considered in
[7]. This provides the essential link between Sections 4 and 6.

We use the same basic techniques of noncommutative harmonic analysis
as e.g. P. Eymard [8]. The general framework will be explained in the next
section. In the commutative case, the notions reviewed there reduce to
standard concepts of harmonic analysis on locally compact Abelian groups.

The implications of this reduction in the situations considered in Sections

3 and 4 will be discussed in Section 5. This is done mainly for the purpose

of illustration; of course the commutative theory could be reached by
a more direct route. At certain points, however, the application of C*-
algebra techniques (for example, the use of Kaplansky's density theorem
in the proofs of Theorems 3.5 and 4.I0) sheds new light even on the com-

mutative case.
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2. Preliminaries

The notation, terminology and results set out in this section will be
used throughout the paper, usually without explicit reference. The scalar
field will always be the complex field C . Let fr be a Banach space. Then

"E* denotes its (topological) dual, o(E , D*) is by definition the weak
topology on E , ar'd o(E* , E) is the weak* topology on E* . The value
of f e E* at' r e E is denoted interchangeably by (f , r) or (r ,f) .

The basic theory of Banach spaces and topological vector spåces is assumed
to be known. X'or example, we frequently use the fact that if two vector
spaces E and I are in duality, then any linear subspace ILC F which
suffices to separate the points of ,O is o(F , E)-dense in -F (see e.g. [22,
p. 125]). For the theory of C*-algebras, von Neumann algebras, and group
representations we refer to [4], 15] and [21]. A von Neumann algebra may
be defined as a C*-algebra M which is the dual of a (necessarily unique)
Banach space ,44* , called the predual of M . fn any von Neumann algebra
M , invoilntion is o(M , M*)-continuous and multiplication separately
o(M , M*)-continuous (see e.g. l2L, p. 181). The bidual of any C*-algebra
.4 is a C*-algebra, which can be identified with the so-called enveloping
von Neumann algebra of ..4 [5, p. 236]. We shall always consider 1**
to be equipped with this structure. The canonical embedding of .4 into
A** is then a *-homomorphism. Kaplansky's density theorem will be
used in the following form: if ,4. is a o(M,,|1*)-dense *-subalgebra of the
von Neumann algebra M , then the unit ball of A is o(M , Jl[*)-dense in
the unit ball of M (see [4, pp. 41, 43],l2I, p. 221).

If X is a locally compact Hausdorff sp&ce, Co(X) denotes the C*-
algebra of all continuous complex functions on X vanishing at infinity,
equipped with the supremum norm. As usual, Co(X)* is identified with
lW(X), the space of bounded regular complex Borel measures on X. The
subspace of M(X) consisting of all finite linear combinations of the Dirac
measures ö", I €X, is denoted by Moo(X). The basic theory of measure
and integration that we use can be found e.g. in [2].

Let G be a locally compact (Hausdorff) topological group with a fixed
left Haar measure ds. We shall regard the Banach space Zr(G) consisting
of the (equivalence classes of) complex Borel functions on G integrable
with respectto d,s as a closed subspace of M(G) by identifying geLt(G)
with the me&sure p for which dp : S ds . Equipped with the convolution
product and a natural involution p + p* (see e.g. [5, p. 252], ll2, p. 2991),

M(G) is a Banach *-algebra having LL(G) as a closed *-ideal.
Each continuous unitary representation n of G on a Hilbert space

11" determines a *-representation (also denoted by n) of M(G) on Ho
satisfying
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(n(p) t I
(n(s) E l ri dp(t) for p e M(G) , t , rt e Hn

(the inner product of a Hilbert space is in this paper always denoted by
(. I .) ).The restriction of n to Lt(G) is essential ("non d6g6n6r6e" in the
terminology of [5]), and each essential x-representation of -[/1(G) is obtained

in this way from a unique continuous unitary representation of G 15, p.

2531. Tf p e M(G) , we let llprll' denote the supremum of the operator

norms ll"k)ll where z ra,nges over all continuous unitary representations

of G. Then llpll' < ilpll [5, p.7]. The completion of Lt(G) with respect t'o

the norm ll 'll' is a C*-algebra, which is denoted by C*(G) and called

the group C*-algebra of G (see 15, p. 27fl). Leb o: C*(G) ---> L(H.) be

the universal representation of C*(G) [5, p. 43] .If t: Lt(G) -+ C*(G) is
the inclusion map, ar o z is an essential r.-representation of ,L1(G) . We

d.enote ar o z and the corresponding continuous unitary representation of
G on the Hilbert space fI. simply with ro . The von Neumann algebta A
generated in L(H.) by ar(C*(G)) is just the enveloping von Neumann

algebra of C*(G) mentioned. earlier, and it can be identified with the bidual
of C*(G) as described e.g. in 15, p. 2361. In this identification the canonical

embedding x : C*(G) + C*(GI){'* corresponds to a : C*(G) -> L(11,) , which
shows that a(p) : x(ti whenever p e Lt(G) C C*(G). Since a(p) e A
for all p e M(G) [8, p. 193], or will usually be regarded as a mapping

from M(G) into C*(GI)*{' (although we continue to let al also denot'e

its restriction to G which is considered canonically embedded n M(G)) .

X'or each p, e M(G), llpll^ will denote the supremum of the operator

norms ll"k)ll where n ra,nges over the continuous (topologically) ir-
red,ucible unitary representations of G . We have llfrll" : llt ll' :
ilrk )ll if p, e Lt(G) [5, pp. 40, 254-255]. X'rom Lemma l'23 in [8, p.

lsgl it follows therefore that llpll" : llpll' : llrk)ll for all p e M(G) .

fn particular, the x-algebra homomorphism a: M(G) +C*(C;)** is

injective, because |lpll' > 0 for each nonzero p e M(G) ll2, p' 3421.

The set of linear combinations of all continuous positive-definite

[5, p. 255] complex functions on G will be denoted by B(G) .Hvery
function in B(G) is bounded [5, p. 256]. For future reference we collect

into two lemmas some properties of B(G) from [8].
Lemma 2.1. Let f : G'->C bebound,ed,anil,cont'i,nuaus. Then

ri: 
{

(1)
f rr4

f r'4
*"n 

t

: *"nt

I t, e Lr(G) , llpll'

p e Mdd(G), llpll'

Thi,s quantity i,s fini'te i,f and, only i,f f e B(G)



Fourier transforms of noncommutative analogues of vector measures 359

Proof . Lel a (resp. b ) denote the left (resp. right) side of (r). Then
a<6 if and only if f eB(G) [8, p. r9l]. If f eB(G), then b<a
and o : å (see (2. 13) in 18, p. l95l). Thus it suffices to show l},.at f e B(G)
if b < oo . The proof of this implication will be reduced bo (2.2a) in [8, p.
2021. Since llp" - pll' +0 if Fn+tr in M(G): Cr(G)*, we have

b: *"n{ ftr4tuerId(G), ll,rll'

IVI (G) . Let Gd denote
for peLL(G)- M(Go)
unitary representations

where M oG) is the norm closure of M oo(G) in
equipped with the discrete topology. If llpllo
M nG) is the supremum of llrk)ll over all
of Go , then clearly llttllL

sup I t, e Lr(G o) , llt lln

:
7A

ll rd*

f r orlL p e Md(G) , llpll _b

Therefore, if b f e B(G) [8, p. 191], and so using the con-

tinuity of / on G we get f e B(G) by (2.2\ in [8, p. 202].
There is a bijection T : B(G) ---> C*(G)* which maps the set of the

positive-definite functions in B(G) onto the set of the positive linear
functionals on C*(G) and satisfies

(Tf ,p) : Ithr for all f eB(G), p,eLl(G)CC*(G)

[8, p. 192]. Clearly, llf fll is the same as either side of (I) in Lemma 2.1.

Lemma 2.2. If f eB(G), then (a(p),f D: lfdp for all,

peM(G).
Proof. See [8, p. 193].

This lemma shows, in particular, that (r(s) , T f) : f(s) for all
f eB(G), se G. ft follows that if geC*(G)x, then the function
s + (ar(s) , g) on G belongs to B(G) , and that a: G'-> C*(GI){'d' is
weak* continuous. X'urthermore, a(M*(G)) suffices to separate the points
of C*(G)* , so that it is weak* dense in C*(Gl)'r* .

Whenever we consider two locally compact, groups Gt and Gr, the
notation introduced in this section will be adapted to that situation without
further comments. Thus, for j : I,2, lhe symbols a,, T7 etc. will have
their obvious meanings.

As mentioned in the introduction, the concepts discussed above have
simple interpretations in case G is Abelian. By Bochner's theorem [20, p.
l9], B(G) is the set of the X'ourier-Stieltjes transforms of the measures in
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M(l) , where l- is the dual group of G . Since the set of the (equivalence

classes of) continuous irreducible unitary representations of G can be

identified with f , the number llpll^ ( : ll,"ll' : lir(p)ll) is for eyery
p e M(G) equal to ilrll- , where p is the X'ourier-Stieltjes transform of
p . X'rom well-known properties of the Fourier transformation on L1(G) if
follows that C*(G) is isometrically *-isomorphic to Co(-I) . We shall
return to the Abelian case in Section 5.

3. Fourier transforms of weakly compact operators lrom C*(G) to a
Banach space

Throughout this section, G is an arbitrary locally compact group, and
Z is a Banach space. The Fourier transform of a weakly compact, operator
iD : C*(G) ->.4 defined here generalizes the notion of the Fourier-Stieltjes
transform of an il-valued regular Borel vector measure on the dual group
of a locally compact Abelian group. We postpone the explanation of this
statement, to Section 5, and consider only the general situation in this
section.

In the next definition, and elsewhere, we shall regard the second adjoint
@** of a weakly compact operator @ : C*(G) --> E as a mapping from
C*(61)t{. tnto E, because @xx(C*(Gl)*x) C E (C E**) 16, p. a821.

D efinit i o n 3.1. If @ : C*(G) --->.& is aweakly compact operator,

the function 6: G-+.8 defined by d(") : @x*(ar(s)) , s eG, is called

lhe Fourier transform of @ .

The following theorem exhibits some basic properties of the Fourier
transform. Observe that since a : G -> C*(61)** is weak* continuous and
@** is continuous from o(Cx(G)** , C*(G)*) to o(E , E*) , it is obvious

fhat 6 is weakly continuous. The proof of its norm continuity, however,

turns out to require a considerably more refined method.
Theorem 3.2. A @1:C*(G)->E and, <Dr:C*(G)--->E &re

weakly comgtact ogterators such that 6r: 6r, then @t" : @2. The fiourier
transform of any weakl,g compa,ct operator @ : C*(G)'--> E i's strongly

conti,nuous, and, 1166111< ll@ll for attr s e G.
Proof . If 6r: 6r, then Qt : @z by virtue of the fact that

(f"@t,ar(s)) : <f "@2,a\s)) forall seG, f eE*,andar(G) separates

the points of C*(G)*. We have llötulll < ll@**ll llr(s)ll : ll@ll if
s e G . Our proof of the norm continuity of 6 is based on a characterization
of the relatively weakly compact subsets of the predual of a von Neumann
algebra due to C. A. Akemann [1]. Fix s e G , and let (s,)n.t be an arbitrary
net in G converging to s . We intend to prove that 61s,;-* d(u) i"
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norm. Let I denote the identity element of C*(G)**
for all i e I are unitary, we have

As ar(s) and o(sa)

with respectto o(C*(G)** , C*(G)*) by the weak* continuity of ar combined
with the fact that involution is weak* continuous and multiplication
separately weakx continuous in C*(G)** . Similarly,

(ar(sJ - ar(s)) (ar(s) - ,(s))* -> 0 for o(C*(G)** , C*(G)*) .

By Gantmacher's theorem 16, p.4851, {@*f lf eE*, ll/ll < 1} is

a relatively weakly compact subset of C*(G)* . Let e ) 0 be given.
Theorem II.3 in [, p. 2S9] yields a positive functional g e C*(G)* and
ö>0 suchthat l(u,@*f)l<tlz forall f efr* with |l/ll <1,
whenever ueC*(G)**, llrrll <1 and g(u*u*uu*) < d. Choosing
ua:2-Llto(s,) -ar(s)l for ieI, wehave

Iim g(uf un + unuf) : 0 .

Thusthereis fo e 1 such lhat i > do implies | (@**(a,t(sn) - ar(s)) ,/) |

l(2ur,o*f> | < e forall f eE*,ll,fll <1, i.e. ll 6(s,) -61u111 < ".
T h e o r e m 3.3. A function E : G --> E is the Xour'i,er transform of

same weakly comltact operator (D : C*(G) -> E if and' onl,y i'f f 'q e B(G)

for all, f .E* and, the set {T(f "dl f eE* , ll/ll < 1} i's relati'uely

weakly compact in C*(G)* . If these cond'iti'ans hold', then ll@ll :
sup{ ll"(/'s)ll I / eE*, ll/ll < I }.

Proof. Suppose first that v : 6 for a weakly compact operator
@: C*(G)--->E . If f eE* , then @*f e C*(Gl)*, and so the function
s+(@*/,ar(s)) : (/, @**(ar(s))) : /(q(s)) on G belongs to B(G).
By Gantmacher's theorem 16, p. 485], <D*: E* -+C*(61){' is a weakly
compact, operator, and we have (T(f . g) , ar(s)) : /(E(s)) : <0* f , ar(s))
for all f .E*, seG, so that T(f"d:A*f. Thus the set

{fff"dlf eE*, li/ll < I } is relatively weakly compact, in C*(G)*.
Furthermore, ll@ll : ll@*ll : sup{ll"(/.8)ll I/e E*, ll/ll <l}. Sop-
pose, conversely, that f.EeB(G) for all f.E*, and that
{T(f "d I f e D*, ll/ll < I } is relatively weakly compact. Then we

have a weakly compact operator f ,-rfff.g) from E* to C*(G)*.Its
adjoint B : f,*(@)** --> E** is weakly compact by Gantmacher's theorem,
and continuous from o(C*(G)** ,C*(G)*) t'o o(E**,2***) [6, p. 48a].

If s eG and f eE*, then (B(ar(s)) ,f) : (r(s), T(f "d) : (E(s) ,/).

lim
i
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Thus S(uu(ll4ooG)) C .8. Since M*(G) is weak* dense in C*(G)** , and
.E , being & norm closed convex subset of E**, is o(-E** , Z**x)-closed in
E** , we have B(C*(G)**) C .E , so that B may be regarded as a weakly
compactoperatorfrom C*(61)** to E. Writenow @:B"x,where
x: C*(G) -+ f,x(@)x* is the canonical embedding. Then @ is a weakly
compact operator. Both @** : C*(GI)** --> E and rS are continuous from
o(C*(G)** , C*(G)*) to o(E , E*) , and since they coincide on the weak*

dense subspace x(C*(G)) of C*(G)**, (D** : B. In particular, ö(") :
B(ar(s)) : q(s) for all s e G , and the proof is complete.

In [4, p. 266] it, is shown that if g : G --> Z is bounded and weakly
pr-measurable for some p e M(G) (for example, weakly continuous), then
there is a (clearly unique) element I V dp e "E satisfying

: f <vOl ,f > dP(s) for all f e E*

Thus the symbol IEdp, which appears e.g. in the following lemma and
theorem, is well defined. We mention in passing that in the situations which
we encounter quite an elementary approach would suffice to define I E dp.
One could consider a weak integral of g as an element of E**, and then
conclude by weak compactness arguments that actually it belongs to D .

L e m m a 3.4. The flourier transform 6 of any weahly comgtact operator

@ : C*(G) ---> E sati,sfies

(1)

fu oll p e M(G) .

Proof. For an arbitrary
such that

6 ap : @*8 (*(ti)

p e It(G) there is a net (pr,)n,, in Mon(G)

<f vdr,,f>

2 r, ö,,
j:l r

I

lim a(P'a) : a(tt)

with respect to o(C*(G)** , C*(G)*) . As (t) holds for all pn in place of pr

(in fact, if

e rr dd(G), then I a o, O(s7) : @**(r(r))) ,

n.i.,
L"jj:L

the following simple pa,ssa,ge to the limit proves it for p . Since
E*x ' Q*(G)** --- Z is continuous from o(C*(G)** , C*(G)*) to o(E , fr*) ,

and / " 6 e B@) for all f e D* (Theorem 3.3.) we get



tr'ourier transforms of noncommutative analogues of vector measures 363

<f 6 a,, ,f> : I ,, " 6) ar, : @oi ,r(f" 6)>

: ur (,0,) , r(f" ö)> : ur <f 6 aro,f>

- ttf <(D**(r 0d) ,f > _ <(D**(, ktD ,f > , i.e.

T h e o r e m 3.5. for a wealtly continuous bounded function
tlte follou;ing four condit'i,ons ofe equiualent:
(i) V is the Fourier transform rf some useakly compact
(p : C*(G) --> E ;

(l) holds.

V:G+fr

operator

( ii) f vaulpe M(G),lkrll

trrrl 
{ / E dp I p e XI *(G), ll,rll' < I } i,s relatiuels weahl,y compact i,n E ;

,*, {f vdplpeLL(G), llpll'< l} is rel,ati,aely weakty compact,i,n E.
If these equi,aalent conditions are satisfied,, then llcDll is equal to the supremum
of the norms of the elements i,n any one of the sets appearing in (ii), (iii) and,

(iv).
Proof. Assume first (i). We may regard O** as a weakly compact

operator from C*(Gl){'* to D (see 16, pp. a82-4851). Combined with
Lemma 3.4 this shows that (ii) holds. Clearly, (ii) implies both (iii) and
(iv). Assume now (iii). We intend to prove (i) by applying Theorem 3.3.
From Lemma 2.1 it follows fhat f " g e B(G) for all f e E*, because by
assumption 7 " g is continuous, and the set

Ir )

\J ff"q)dpl peMoo(G) , Il,rll' = tl

is bounded. To prove that {T(f "dl f eE*,ll/ll <l} is relatively
weakly compact in C*(G)x we proceed. as follows. Let y : D* ---> C*(G)*
be defined by ,p(f) : T(f " d. Let I denote the norm closure of
a(M*(G)) in C*(G)** . Each g e C*(G)* determines a functional
@ g eE* by (@ g,u) : (u,g), u e I. Sincetheunitballoftheweak*
dense sub-C*-algebra I of Cx15l;xx is by Kaplansky's density theorem
weak* dense in the unit ball of C*(G)**, the linear operator
@ : C*(G)x ---> F* is an isometry. Thus @(C*(G)*) is norm closed, hence
o(X*,/**)-closed in -F*, and since o(F*,.F'**) restricted to @(C*(G)*)
corresponds (by the Hahn-Banach theorem) via @ to o(Cx(G)* , C*(G)**) ,

any set in C*(61){< is relatively weakly compact if its image under @ is so.
Let now S: a(M*(G))-E be defined by B(ar(p)) : IEdp, p,eMoo(G)
(as o : M(G) -+ C*(C)** is injective, this makes sense). By assumption, S
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can be extended to a weakly compact operator from .F' to E , also denoted

by B . X'or all f e E* we have

(,S*f ,r}r))- <f ,E(r(p))) : (f"ddp

e It dd(G) ,: @0i ,7(f " d)
so that S*,f : O(rp(f)). Since B* is by Gantmacher's theorem a weakly
compact operator, the set {O(rp(f))l f eE*, ll/11 < 1}, andhence the
set {',pff)lf eE*, Ii/ll <1}: {T(f"dlf eE*,ll/ll <l}, is

relatively weakly compact. By Theorem 3.3, (i) holds, i.e. I :6 fo" *oro"
weakly compact operator <D : C*(G) --- E . Furthermore, applying
Theorem 3.3 and the fact that ll8*/ll : llo(v(/))ll : ll"(/"q)ll for
all f eE*,weget

(r,lrdtr>: I
: @0t) ,rp(f)> if p

ll@ll :
: lls*ll : llsll

e E*, ll/ll < 1)

I t, e M dd(G), llpll'

sup { ll7 (f " s)ll I f
: suptll /'or\\

Assume
extended

@_V.
because
bedding.

next (irr). Then the mapping p>[Vdp, Fe Lr(G),can be

to a weakly compact operator Q : C* (G) --> E . We claim that

For all p e Lr(G) ( C C*(G)) *" have A0r) - Q**(rQt)) ,

@kr) - n(p) , where ?d: C*(G) ---> C*(G;xx is the canonical em-

Thus Lemma 3.4 shows that

Irr"ddp: @0,),f>

: Irr.6)ap forall peLr(G),f eE*

As f .V and f .6 arecontinuous,the
isvalidforall s e G, f eE*,i.e. 6-
Lemma 3.4 we get

equation <f , p(s)) - <f , ö(t)>
g , so that (i) holds. IIsing again

ll@ll - sup
ll /,or\lt peLL(G), upir

ll /,or\\t *eM(G), nprt

which completes the proof.
C o r o I I a r y 3.6. If V, G ---> E i's the Touri,er transfurm of some

weakly campact operator from C*(G) to E , the same is true of the function
s+g(s-l), seG.
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Proof . Since s * E(s-t) is weakly (even strongly) continuous, it is in
view of the above theorem sufficient to show that

llpll' : 11f ",a".-ll' 
forall p : iz,ö,,eM*(G).j:r t t:t

Since /e B(G) for arry f eB(G), and ll?/ll : ll"/ll [8,p. 1e7], we get

llpll' : lirk)ll : Ilrk)*ll

: sup{l>'if$i') llf eB(c),llTfll
j:L

n

- sup{l>zjf@j\ llf eB(G),llTfll
j:L

: sup{ tär",f(ri\l l f eB(G),llrfll

4. Bounderl bilinear lorms on C*(Gr) x C*(Gz), and their
Fourier transforms

The following lemma is well known (it is mentioned without proof in
pl, p. 5]). We give a proof for the sake of completeness.

Lemma 4.1. Let E and, I beBanachspacesanil' B:ExF'-->C
a bound,eil, bilinear form. Let the operators B,: fr -'> I* and, B,: I -'> E*
be d,efined, by (Brr,A) : (r,B,y) : B(r,A) fo, r eE , y eI .

The followi,ng fi,ae cond,itions are equ'i'aalent:

(i) (Bf*u,u): (u,Bf*a) forall ueU**, aeF**;
(ii) (resp. (iii)) B, (resp. B,) i,s a wealtly compact operator;
(iv) (resp. (v)) the bilinear form (u , a)',-> (Bfx u , u) (resp. (u , a) v>

(u , Bf* a) ) on E** x F*x i,s separately wealc* continuous.

If these equi,aal,ent cond,iti,ons are satisfi,eil, then E : E** X -t'x* ---> C d,efined'

by hp,u): <Bf*u,a): (u,Bf*u), ueE**, 1)eI**, isthe
snl,y sepd,ratel,y wealc* cantinuous bilinear form on fi** y !** sati'sfying

86,il) : B(r, y) for att r e E, a e I, and, their canon'i,cal images

i e E** , il .I** . Eurthermore, 1|,åll : llBll .

Proof . We shall establish the following chain of implications:
(i)>(ii)>(iv)>(ii)+(i). The implications (i)+(iii)>(v)+(iii)+(i) can be

proved similarly. Assume first (i). Then (Bf* u , u) : (u , Bf* u) :
(Bf u,a) forall ueE**, a e -X'**,sothat Bf*1n*'r1 -- Bfp**', C .F*.
This yields (ii) by Theorem 2 in 16, p. a821. Next, assume (ii). Again we
apply Theorem 2 n 16, p. 4821, and conclude that Bf*1n**7 C I* . There-
fore the functional u > (Bf* u , u) on I** is o(nx* , 1*)-continuous
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for each ueD**. The o(E**,2*)-continuity of u->(Bf*u,a) on
E** for each a e .F'x* is immediate. Thus (iv) holds. Assume now (iv).
Sincethefunctional ur->(u,Bf u) : (Bf*u,u) on 1** is o(X**,I*)-
continuous for every u e E** , Bf ' I** > E* is continuous from
o(X*tr , X*) to o(E* , E**) .By Lemma 7 in [6, p. 484], (ii) holds. Assume
(ii) once more. This time we prove (i). Since B, : Bf l F is a weakly
compact operator [6, pp. 484-485], (v) is obtained in the same way as
(iv) was deduced from (ii) above. Since (the canonical image of) "&' (resp.

-F) is wea\* dqlrsg in .Er* (resp. 1**), we get (i) by applying (iv) and (v)
together with the fact that <Bf* fr , il> : B(r , y) : <i , Bf* il> for
all reE, AeI . Moregenerally, itis clearthattherecanbeatmostone
separately weak* continuous bilinear form on E** x .F'** extending B.
Finally, ll8ll - lpf*ll - llB,ll : llBll

Definition 4.2. If thefive
are satisfied, then the bilinear form
is called the canonical ertens,ion of B

Remark 4.3. C. A. Akemann fl, p. 293] has proved that an arbitrary
bounded linear map from a C*-algebra to the predual of a von Neumann
algebra is a weakly compact operator. In particular, if A, and A, are
C*-algebras, then any bounded linear operator from A, fo Af is weakly
compact, because A{* is a von Neumann algebra. Therefore the canonical

extension E of any bounded bilinear form B : A, x Ar--->C exists.
Throughout this section, G, and G2 will be arbitrary locally compact

groups. We are now able to define the Fourier transform of a bounded
bilinear form on C*(Gr) x C*(Gz). The motivation for our use of this
term will become clear in the next section, where the case of Abelian groups
is discussed.

Definition 4.4. Let B:C*(Gr)xC*(Gr)-->C be a bounded

bilinear form. If E : C*(Gr)x* x C*(Gz)** -> C is its canonical extension,

the function k: GrxGr-->C defined by 66,t1 : .6(arr(s) ,@z(t)),
s e G, , t e Gr, is called the Fourier transform of B .

It is obvious in view of the continuity properties of a-r, and E tlr"t k
is separately contihuous. The next theorem, which is a counterpart of
Theorem 3.2, says tliaf B is even jointly continuous.

Theorem 4.5. Let B : C*(Gr) x Cx(Gz) ---> C be a bouniled, bi,l,i,near

form. Then k i,s continuous on G, x G, (equi,gryted, wi,th the gtrod,uct togtology),

and, 1å1s, r;1 < llBll fo, atl s e G, , t eGr. If B' : C*(Gr) x
Cx(Gr) --> C i,s any bound,ed, bi,Ii,near form whose Faurier transform equals

B,thenB':8.
Proof. Let, Bt: C*(Gr,) -> C*(Gr)*

equivalent conditions in Lemma 4.I

E , E** X y'** -+ C defined there

be defined by (B,r , U) -
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B(r, y), r e C*(Gr), y e C*(Gr). Since B, is a weakly compact operator

by Remark 4.3,it has a Fourier transfor^ å,, Gr--->C*(Gr)*.By defini-

tion, ,å1r,l; : (B,**@r(s) ,@z(t)): (4(u) ,ar(t)):f;116,1s111t; for
all s e G, , t e Gr. Using Theorem 3.2 and the fact that ll"ttll < I
(which follows from the inequality llpll' < llpll , p e Lt(Gr)), we see

that d(u, .) e B(Gr) for all s e G, and that the map 
" 

,-.å1" , .1 is
continuous with respect to the supremum norm topology of B(Gr) . Since

each functionin B(Gr) is continuous, it follows easily that å is continuous.

We have |å1s, t;
uniqueness statement is a consequence of the fact that alM6a(G)) is

weak* d.ense in C*(G)**, j: l, 2, and, å i* *"pu"utely weak* continuous.
We shall follow I. Glicksberg [9] in giving a sense to the expression

I I "u , t) d,p(s) ita(t) ,

where K is a bounded separately continuous complex function on G, x G2 ,

and. p e M(Gr), t e M(Gr) . In fact, the functions

fft* I K(s,t)dp(u), t eGr, and s r-> | K(s,t)d,a(t), I eG1,
JJ

are bounded and continuous, and

I(l "o
(see [9, pp. 205 - 208]). The common value of the two sides of this equation
will be denoted by

I I ur' , t) dpt(s) d,t(t) .

The integration of bounded separately continuous functions is not really
needed until Theorem4.7, but we introduced it here to stress thefact that
the next lemma is independent of the joint continuity of å .

- L e m m & 4.6. The Fouri,er tra,nsform h a,nd, canalli,cal ertens,i,on
B ?f any bouniled, bi,l,inear form B : C*(Gr) x Cx(Gr)-+ C sati,sfy

I I UO,t)d,p(s)dn(t) : 6@r@),.r,zr.l)) for att pe M(Gr), ue M(G,) .

Proof . The operators B, : C*(Gr) ---> C*(G)* and B,: C*(Gr) -+ C*(G1)*
introduced in Lemma 4.1 are weakly compact (Remark 4.3). Thus
Bf*(a4(t)) eC*(Gr)* for all t eG, [6, p. 482], and similarly

, t) dp,',) d,u(t) : f (f "rs 
, t) d,A)) dp(r)

Bf*(rrjrD e C*(Gr)*
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Since

å1u,1; : (alr(s) ,Bf*ar(t)), sGGr,tecz,
we obtain

(Bf*^r!i , @r(t)) : (o,r(tr) , Bf* a4(t)) I Urt , t) d'p(s)

by Lemmas 4.1 and 2.2, and so

h@,@) , oh(t)) : (Bf**,(p) ,o204) : t (1.d1", r; ap61) aapl .

We are now ready to characterize t'he Fourier transforms of bounded
bilinear forms on C*(Gr) x C*(Gr) .

Theo r em 4.7. Let K : Gt x Gr---> C be a bounileil, separately can'

tinuous function, and, consid,er the i,nequality

(1) I f K@ , t) dr,g) d,a(t)

I K(s,/)d,a(t)

where p, e M(Gr), a e M(Gr), and, C is a positiue constant. The foll,owing
si,u cand,it,isns are equ,iaalent:
(i) K is the Tau,rier transform of some bound'ed' bil,inear form B : Cx(Gt) x

C*(Gr)--> C wi,th ll,Bll < C;
(ii) for all p e M(Gr) anil, v e M(Gr) , (t) hold,s;

(iii) for all, p. e M*(Gr) anil v e M*(Gr), (I) hold's;

(iv) for all, p eM*(Gr) and, v eLt(Gr), (l) hol'd's;

(") for all, p elt(Gr) anil, v e M*(Gr), (r) holil's;

(vi) for all. p e Lt(Gr) anil, v e Lt(Gr) , (t) hold,s.

Proof . It follows at once from Lemma 4.6 that (i) implies (ii). Clearly,
(ii) implies all the statements from (iii) to (vi). Assume now (iii). For all
s e G, , K(s ,') is a continuous function on G, and satisfies

if v eM*(Gr), and so K(s,') eB(Gr) (Lemma 2.1). Define E:Gr-->
C*(Gr)* by E(s) : Tz(K(s,')) . Then

I I , o,\\: -'n 
{

ll'il' l

if p, e Moo(Gr) (see Lemma 2.1) . As ar: M(Gt) ->C*(G1)** is injective
there is a bounded linear map I from the norm closure of ar(M*(Gt))
to C*(Gr)* such that I(rrjtD : JE(s) dp(t), p eM*(Gt). Since the

I uO , t) drr@) d,a(,) 
I 
I u e Moo(Gr) ,
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domain of -F is a C*-algebra, it, follows from the result of Akemann referred
to in Remark 4.3 that .F' is a weakly compact operator, so that -F(a-lr(Gr))
is contained in some o(C*(Gr)*, C*(Gr)**)-compact subset of C*(Gr)*.
On that set the topologies o(C*(Gr)*, C*(Gr)**) and o(C*(Gr)* ,

ar(M*(Gr))) agree, because the latter is also Hausdorff, and coarser than
the former. Thus q is weakly continuous, because it is by assumption
(and Lemma 2.2) continuous with respect to o(C*(Gr)*,a4(Moo(Gr))).
Since .F' is a weakly compact operator and ll7ll < C , Theorem 3.5 yields
a weakly compact operator @ : C*(Gr) --> C*(G2)* such that ll@ll < C
and g is the Fourier transform of <D . We now define a bounded bilinear
form B: C*(Gr) xC*(Gr)-->C by B(r,U) : (@r,y). Then |lBll :
ll@ll <C, andforall seG1, teG2, wehave

d(u,t) : 6(rr(") ,.2(t))
(@**(art(s)) ,@zQ)) : (q(s) ,ar(t))
(Tr(K(s , ') , rr(t)) : K(s , t) ,

i.e. (i) holds. A simple modification of the preceding argument yields a proof
that (iv) implies (i). The only changes that need to be made concern the
construction of F . Now we have

so that K(s,') eB(Gr), and 9:Gr--->C*(Gr)* can bedefined by E(") :
Tr(K(s,')) as before. The proof that lllEdp ll < C llpll' , tt eM*(Gr)
involves this time a, supremum over the measures a e L1(Gr) with
iirll' < I . When the roles of G, and G, ate exchanged, the same proof
shows that (v) implies (i). X'inally, assume (vi). Then we get at once a
bounded bilinear form B : C*(Gr) x C*(Gr) --> C such that II,BII < C
and

E@rQi,,or(y)) : B(rr, t) : [ [ uA, l d,p(s) d,v(t) for
JJ

p e Lt(Gr) C C*(G), u e Lt(Gr) C C*(Gz)

(recall that e.g. arr(p) is simply the canonical image of p in C*(Gr)**) .

By Lemma 4.6,

I "rs 
, t) d,a(t)

I I å(, , t) d,1t(s) cta(t) : f I K@ , t) dt g) d,a(t) for all

Since the functions

peLL(Gr),',)eLL(Gr)



370 I(anr Yr,rNEx

llK@,
preceditg

t*> I I o,

are continuous on Gz

shows that

s , t) dp(t) and t v->

(see the discussion

t) d,p(s)

Lemma 4.6), this

f n f
I B(t,t)d,p(s) : I K(t,t)dp(s) forall p, eLl(Gr), t eGr.

JJ

In view of the continuity of the functions 6( , r) and K(' , f) we have

therefore 66,t1 : K(s,t) forall seGl , teGr.Thus(i) holds,and
the theorem is proved.

Corollary 4.8. If K : G, x Gr---> C is the Fourier transform of
some bouniled, bil,inear form on C*(Gr) x C*(Gr) , the same is true of each

one of the functi,ons (s,t)r->K(s-L,t), (s,f) +K(s,t-1) and, (s,f)r>
K(s-t , t-t) on G, x G,,

Proof. Since K is bounded and continuous (only separate continuity
is needed), the corollary follows from the above theorem and the fact
that e.g.

ö,, e Mno(Gr)

(see the proof of Corollary 3.6).
fn the rest of this section we discuss positive-definite bilinear forms

(defined below). Such bilinear forms arise naturally in the study of stochastic
processes (Section 6).

Definition 4.9. Let A be a C*-algebra and B: A xA--->C
a bilinear form. If B(r,rx) > 0 for all r eA, then B is said to be
gt osi,tiu e - d, efinit e.

Theorem 4.10. Let M be a aon Neumann al,gebra with pred,ual,

M*, anil, let D be a o(M, M*)-d,ense *-subalgebra of M . Ior a separately
o(M,M*)-cont'i,nusus bil,i,near farm B: MxM--->C the foll,owing three

cond,itions are equiaalent :
(i) B(r,r*) > 0 forall, reD;
(ii) there is a Hi,lbert space H and, a bound,ed, linear map (D : D ---> H such

that B(r,A): (DrlOA*) forall, *, AeD;
(iii) B is posi,ti,ue-ilefi,nite.

Proof. Assumefirst(i) anddefine h(r,y): B(n,y*) for r,yeD.
Then å is linear in the first argument and conjugate-linear in the second,
and satisfies the polarization identity  h(r,y): h(**A,r+A)-
h(r - U,r - A) + i,h(r + iy,* + i,a) - ih(r -'iA,* - iy), so that
by our assumption h(r,il : h@,A for all r, AeD. Thus h is
a positive Hermitian form. A standard construction now yields the Hilbert
space ä required for (ii). In fact, if -l[ : {r eD I h(r,r) : 0 }, the

ll Z ,i ö,ill' - ll Z riö,i-'ll' for all lr,j:I " j:t " ,:t



Ilourier transforms of noncommutative analogues of vector measures 321

Cauchy-Schwarz inequality shows that /rI is a linear subspace of D ,

and. H is then defined as the completion of the pre-Hilbert space D / .l/
equipped with the (in view of the Cauchy-Schwarz inequality well-defined)
scalarproduct (prlpA) : h(r,A), r, AeD, where p: D-->DlN
is the quotient map. It is immediately seen that (ii) holds with @ : p (the
boundedness of @ is a consequence of the well-known fact lhat B is by
virtue of the uniform boundedness principle a bounded bilinear form on
M x M ). Assume next (ii). We may suppose that iD(D) is dense in H ,

and thus identify @(D) with a dense subspace .E of H* by defining
(<Dr,[): Gl<Dr), reD, EeH. Then (D is by the separate
o(M , M*)-continuity of B continuous from o(D , M*) lo o(H , E) . We
shall consider ä embedded. canonically into the algebraic dual I of E .

Since .F' is known to be o(1 ,.&)-complete, @ can be extended to a linear
map 6: lUt+F, which is continuous from o(M,M*) to o(F,D).
As every bounded set in a Hilbert space is relatively weakly compact, @

maps the unit ball D, of D into a o(H, äx)-compact subset K of H .

Since K is also compact ry.ith respect to the coarser Hausdorff topology
o(H ,E), and ,p, is by Kaplansky's density theorem o(M , M*)-donse in
the unit ball M, of M , 6@r) is by continuity contained in (the ca,non-

ical image of) K, and so 6 
"un 

be regard.ed. as a bound.ed operator from
M inlo fl . We now show that

6rl6a\: B(r,il forall r,YeM.
Clearlywemayassumethat llrll < f , llyll < l. Since ö is continuous
from o(M,M*) to o(E,t), and o(H,E) agrees with o(H,H*) on
bounded subsets of H (recall that "& is norm dense in l1*), the restriction
6 I U, is continuous from the relative o(M, M*)-topology to o(H, H*) .

Since the involution in M is o(M , M*)-continuous, the map
(u , a) r-> (6 u | 6 a\ is therefore separately o(M , M *)-continuous when
restricted to MrXMr..That map agrees with B on DrXDt.Using
ag_ain the fact that D, is o(M , M*)-dense in Mr, we obtain the formula

@rl<Dy*): B(r,y) forall r and y in M, (andin M).Inparticular,
B(r,n*)> 0 if reM, and so (iii) holds. As (iii) trivially implies (i),
the theorem is proved.

Let us recall the followirg well-known
Definition 4.II. I'oranyset X,

called a pos,itiue-defi,n,ite kernel if

definition.
afunction K: XXX+C is

,å ,7:@t "vt 
K(s ,t)

for every finitely supported function a : X -+ C .
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Theorelrn 4.I2. Let A bea C*-algebra. Iorabound,ed,bilinearform
B : A x A --> C the fol'lowing three cond,i,ti,ons are equi,ualent:

(i) B is Ttosi,tiue-il,efi,nite ;
(ii) there is a Hil,bert sgtace H and, u bound,ed, trinear map @ : A -'> H such

that B(r,A): (DrlAA*) forall, *, UeA;
(iii) the canonical' ertension B of B i's Ttositiae-d'efini'te.

In case A : C*(G) for a l,ocal'ly compact group G , these equiual'ent con-

d,i,ti,ons are sati,sfi,ed, if and' only if for the Fourier transform k of B tne

functi,on (s, l) + d(", l-t) qn G x G i's a Ttosi,ti,ae-d,efi'ni,te lcernel,.

Proof. The equivalence of (i), (ii) and (iii) follows from Theorem 4.10,

when ,4 is considered canonically embedded in .4** . (Not nearly the full
force of Theorem 4.10 is needed; since @ : A -'> fl now has the obvious

extension Qft* ' A** + H , the use of Kaplansky's density theorem can

be avoided.) Since

å ,?""(") "fr) 
BA ,rt) : d1.1; 

"1"1 
o") ,r(,åo(,) d,)*)

for every finitely supported function a: G --- C , and a(Moo(G)) is a weak*

d.ense *-subalgebra of f,*(fi)** , the second assertion is also a consequence

of Theorem 4.10.

5. Fourier transforms of regular Boret vector measures

and bounded bimeasures

The results in Sections 3 and 4 involving a locally compact, group G ,

or two such groups G, and Gr, bake on & more palpable appearance if
these groups happen to be commutative. The present section is devoted to
a study of the commutative case. Throughout the rest of this section, .E is
a Banach space, G , Gt and G, are locally compact Abelian groups, and

their dual groups are denoted by l-, I, and J-2 , respectively. We con-

tinue to use the multiplicative notation for the group operations. The value

ofacharacter yel al s eG isdenotedby (s,Z).
We begin with a lemma dealing with two natural ways of identifying

C*(G) with Co(J-) . X'or each p,eM(G), the functions /: T'-->C and

i t f -+ C are defined by

fr tyl (t J/) dp(t) a,nd i tyl (s , Z) dp(t):!:!
Similatly, we write
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(t ,y) dr(y) and

z (s) y) dr(y) fory e M(l), s e G

L e m m a 5.1. There is a unique isametric *-i,somorphisn/L d. i C*(G) -->
CoQ) @esp. B : C*(G)---> Co(l) ) such that "(d 

: t @esp. fQi : ir)
for all p =LL(G) C C*(G) . Wehaue oc*(z) : T1ir and, f*(r) : f 1i1 7o,
all, y e MQ) . If o : Co(l) + Co(J-) is the,i,somorphism satisfyi,ng o(f)(y) :
f(y-') fo, f eCoQ), yel, then f :o"n.

Proof. The existence and uniqueness of a and p follow from the
definition of C*(G) and the equalities ll,"ll' : llpll" : llålL :,1lill_,
p eLl(G), combined with the fact that both p>fr and pr->p. are
x-homomorphisms from Lr(G) onto a dense *-subalgebra of Co(I) .

Clearly, B : o oa. The equations a*(v) : T(i) and, f*(o) : 
"1i; 

fottow
from Fubini's theorem. For example, if a e M(f ) and p e Lt(G) C Ctk(G) ,

we get

T-Lu*(r)(s) dp(t) - (o* (r) , tD -- (u , a(p))

o (')

: I r',

:!

!
(r , ?4 Ap(r)) d,r(y) -/

ä (r) dp(') ,

so that f_tr/-*(y) : y. .

When Cu(f) takes the role of C*(G) in accordance with the above
lemma, the two types of Fourier transforms discussed in sections B and 4
can be introduced by means of integration. Let us first consider the case
of a weakly compact operator from C*(G) to E .

Let 0 be the Borel o-algebra of J- (i.e. the o-algebra generated by
the open subsets of f ). We call any countably additive mapping
m : 9 -> E a Borel, aector nxeasure on .l- . The set of all .O-valued regular
(for the definition, see e.g. [14, p. 2G2]) Borel vector measures on l- will
be denoted by M(1, .E) . The set of all weakly compact operators from
co(r) to .E is known to be via integration in a bijectiye correspondence
wilh M(l , E) (see e.g. Lemma 2 in lt4, p. Z6al). One may consult [6]
and fra] as to details and references on the theory of integration with
respect to vector measures. x'or example, if g is a bounded continuous
complex function on -l' , and m e M(l ,E), therc is a unique element
I g d* e "E which satisfies

:lV

<f s dm ,f> : I , d,(f o nL) for arr

!

f eE*
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Let d and B be as in Lemma 5.1. X'or each m e M(f , E) , we let
nzo (resp. mp) sland, for the weakly compact operator from C*(G) t'o E
defined by m*(r) : I a.(rc) d,m (resp. mB@) : I B@) d'm ) for all
re C*(G). The Fourier transforms å,o and Å'u of mo and mu (in the

sense of Section 3) have the following interpretations:
Lemma 5.2. If meM(l ,E),then

h*(t)

Proof . By Lemma 5.1,

An elementary calculation
and so

h"(s) = J@,y)d*(y).
The proof of the second formula is similar.

tI a t C*(G) --> E is a weakly compact operat'or, there is obviously

exactly one meM(f ,E) (resp. neM(f,.U) )such that @:rrLo
(resp. <D : np). This fact along with Lemma 5.2 enables us to deduce

from Theorems 3.2 and 3.5, and corollary 3.6 the following result, which is

due to L Kluvånek (see [14], Theorem 2, its corollary 3, Theorem 3, and.

the last paragraph in its proof.)
T h e o r e m 5.3. Ior a funct'ion E : G -> E the fol'lowing four con-

d,i,ti,ons are equiaalent :

(i) (reqt. (i1)) there is m e M(f , fr) such that

f- / r ..\
q(s) : l@,y)d,*@ (res1t' E@): l(s,r)am|)) forall seG;

J \- J /
(iii) (resp. (iv)) q ,i,s bound,ed, anil, wealtl,y cont'i,nuous, anil one (res1t. eaery

one)of tiesets {[vdpl peM(G), llpll*,< I], {[Edpl peMoo(G),

llill- 
-< 

I ) oni {[qdpl p, eLL(G), llill. = 1] 'i's rel'ati'uel's wealdv

compact i'n E .

17 tt nt, equ'i'ualent cond,itions hol'd,, then E i's strangl'y conti'nuous'

The latter part of this section deals with the interpretation of the

X'ourier transform of a bounded bilinear form on C*(Gr) x C*(Gr1 in the

commutative case. one is led to consider the problem of extending

a bound.ed bilinear form originally defined on co(J-r) x co(Ir) to other

pairs of functions (in particular, continuous characters) on l, and fr.

:I
< I (' , ?4 d*(y) ,f>

f
@ r,) dm(y) anil Å,u@) : J @ ,y) d*(y) for alt I e G
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Defini,tion 5.4. Let X and y be locally compact Hausdorff
spaces and B: Co(X)x Q(f -+C a bounded bilinear form. Then B
iscalled a bound,ed,bi,measureon XxY. Let f : X--> C and g: Y--->C

be bounded Borel functions, and define j e M$)* by

(f,D f "- J f dp for pe M(X),

e IVI (Y)* . \Me use the notationand similarly A

(1)

where B: Co(X)**X
and call B(f , g) the
bimeasure B

B(f ,s) : B(f ,d),

C o(f)*x -+ C is the canonical extension of B ,

'i,ntegral of the pair (f , g) with respect to the

Remark 5.5. The existence of "B was noted in Remark a.3 (in the
present situation it suffices to use a special case of the result of Akemann
referred to in Remark 4.3, namely, the fact due to A. Grothendieck 110]
that anyboundedlinearoperatorfrom Co(X) fo M(T) is weakly compact).
Obviously (1) agrees with the original meaning of B(f ,g) ,f f eCo(X),
g eCo(Y). Let us observe that (r) is for any bounded Borel functions /
and g consistent with the notation of E. Thomas [23] (transferred to the
case of complexscalars). X'irst of all, it is clear Lhat' B(f ,') and B(' ,g)
in the sense of [23, p. I45] exist, and that g is B(f , ')-integrable and /
B(. , g)-tntesrable. Here e.g. B(' , g) e M(X) is the bounded. linear func-
tional

nr- f sd,B(h,')
J

on Co(X) (where B(h,.) is of course the measure k->B(h,k),
k eCo(Y)). If Bt: Co(X) ->M(Y) is the operator h->B(h,'), then

<Bf*j,i> : <i,af A> : I fou(. ,il,J

because Bf i : B(' , il by virtue of the fact that

<h,Bri> : (B,h,s> : I san@,.) for atl heco(x).' J"
By a similar argument,

<f ,ntr*d): Itd,a(f ,.),

where B,: Co(Y) ---> M(X) is defined Uy _ Jh , B,k) : B(h , k) ,

h eCo(X), lc eCoV). Thus the equality B(f ,d) : (Bf*f ,i> :
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<f , Btr* /; , which is guaranteed by Lemma 4.1 and the weak compactness
of e.g. B, , shows that the pair (f , g) is B-integrable in the sense, of
[23, p. 145], and (l) gives the same value to B(f , S) as the definition in
[23, p. I45]. The (complex analogue of the) proposition in [23, p. fa5]
could also be used to prove the B-integrability of the patr (f , g) .

The following lemma relates the integral of a pair of continuous char-
acters on l-1 and J-, with respect to a bounded. bimeasure on -l-, x 12
to the X'ourier transforms of certain bounded bilinear forms on
C*(Gt) X C*(Gr) . For any locally compact Abelian group G and s eG,
(s,.) denotes the continuous character y+(s,y) on the dual group
of G.

L e m m a 5.6. Let B be a bound,ed, bimeasure on /lrx lr. Let us
d,efi,ne four bound,ed, bilinear forn'Ls o7?, C*(Gr) x C*(Gr) by

Bo,o(*,A) : B(ur(r),oz@D, Bo,p(n,A) : B(ur(r),fr(y)),
Bu,o@,U) : B(fr(r),oz@D, Br,u(r,U) : B(Fr@),Fr(y)),

where et, fi: C*(G)--->Co(f), j :1,2, coryespond, to the 'i,somorphi,sms
a and, p in Lemma 5.1. Then the Xourier transforms of these bi,l,inear forms
satisfy

B((s'') '(t '')) 
|7;"-'^',',,:',?:: i;:0,;;:ar, seG,, teG,.

Proof. We prove, for example, the equation

B((s, ') ,(t,')) : 6o,p@-t ,t).
X'or s e G, , let 3 e M(lr)* be defined by

(G,D : [ @,y) dt,(y), a e M(tr) .

Then 3 : af*(cor(s-t)) , because by Lemma 5.1,

("f *(rr(t-')) , r) _ (a;r(s-l) ,

_ i 1s-t; -

- (a;r(s-r),Tri)

,y) dr(y) for all y e M(Tr)

"{(r))

fr'
Similatly, pt*@r(t))

h@f* u , pt* o) for

B((r,'),(t,.)) _

The next, result is

i , if t e Gz. rt is easily seen

IL e C*(Gr)** , 't) e C*(Gr)** ,

- E o, frfu)r(s-l) , @z(t))

that Eo,p@ , a) -
so that

: 6o,B(s-1 , f) '

all

B(; ,77

the commutative version of Theorem 4.7 in con-
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junction with Theorem 4.5 and Corollary 4.8. Its proof is an obvious
application of the preceding lemma.

T h e or em 5.7. Ior a funct'i,on K ; Grx Gr---> C onil' constant

C > 0 , the foll,owi,ng four cond,'iti,ons are equiual'ent:
(i) (resp. (ii)) one (resp. euery one) of the formulas

K(s,t) : Br((t ,'),(t,')), K(s,t) : Br((", ') , (r-1, ')),
K(s,t) : Ba((s-1,') , (f ,')) , K(s,t) : Bn((s-1,') , ('-1,')),

s e G, , t e G, , is aalid, for some bound'ed, bimeasure

B,: Cr(fr)xCo(l)--->C wi,th llB)l 3 C, i : I,...,4;

(iii) (respt. (iv)) K is bound'ed' and, segtarately continuous, and' one (resp.

euery one) of the cond,iti,ons (ii) through (vi) i'n Theorem 4.7 i,s sati'sfi'ed' when

ll,"ll' : Ilrll-, llrll' : llill- .

If these equi,aalent cand,it'ions hold,, then K 'i's conti'nuous wi,th respect to the

prod,uct toytology of GrX Gz.
The last theorem in this section characterizes positive-definite bounded

bimeasures. Before stating it, let, us recall the well-known fact that if X
is any locally compact Hausdorff sp&ce, and A denotes the C*-algebra
of bounded Borel functions on X (with pointwise algebra operations, the

supremum norm, and complex 
-conjugation 

f -f as the involution),

then the injection /+/ (where / has the same meaning as in Definition
5.4) from A to the enveloping von Neumann algebra M(X)* of Co(X)
preserves the *-algebra structure. One way of seeing this is to note that
the involution is weak* continuous and multiplication separately weak*
continuous in M(X)*, then to show that the corresponding statements are
true of the operations of ,4 and the topology o(A , M(X)) , and finally to
use the fact that Co(X) is o(..4. , M(X))-dense in .4 and the restriction

of f +>i to Co(X) is a x-homomorphism. The separate o(A,M(X))-
continuity of the pointwise multiplicationin A is clear, because

ff
I fsdp: lf d(gp) for f , seA, peM(X),

JJ
where gp isthemeasure h*[(hg)dp, heCo(X). The o(A,M(X))-
continuity of f r-> f follows from the identity

r- f
I fdp : I fdtt, feA, peM(X),

JJ

where 1t e l[(X) is the measure nr-<ii> , h eCo(X). This identity
can be proved e.g. by interpreting p as a set function and writing
F : Ft-t dp, forrealme&sures Ft, FzeM(X),sothat p: pt- iltr.
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T h e o r e m 5.8. Let I be a locally cornpact Hausd,offi space and, B
a bounil,ed, bimeasure on f x T . Let D be any *-subalgebra of the C*-
algebra of bounil,eil, Borel, functi,ons mL I such that, for p e M(l) ,

Ifor: o foralt f eD

anly i'f F : O . Then the fol'l'owi'ng two cond'i't'ions are equ'iaalent:

(i) B@ ,n)
(ii) B(f ,f) > 0 foral,l f eD.
If I i,s a locally compact Abeli,an grouTt with il,ual grougt G , then e.g.

(i) hold,si,f and,onlyi,f thefuncti,on (s,l)+B((s,.) ,(t-1,.)) on GxG
is a posi,ti,ae-d,efi,ni,te kernel.

Proof . In view of the preceding discussion, and the fact that the image

of D (and of CoQ)) under the map f ,-j is weak* d.ense in M(l)*,
the first assertion is an immediate consequence of Theorem 4.10 and the
definition of B(f ,7; . th" second assertion follows from the first, when D
is taken to be the set of all trigonometric polynomials on .1.

6. Applications to stochastic processes

fn the present section, as in the previous one, we apply to a special case
the theory presented in Sections 3 and 4. This time we are in the non-
commutative situation again, but our operators and their X'ourier trans-
forms have their values in a Hilbert space. Throughout, G is an arbitrary
locally compact group, and H (unless otherwise specified) is any Hilbert
space.

Definition 6.1. Everyfunction V: G--->H iscalled
process, and the function (s, f) ?> B(s, f) _ (q(s) I q0) ort
called its coaar,;ance functiurL.

This terminology is of course modelled on the case where
(complex) space

L1(o,"il,P) : {t.",1e,il,ey1 lyar: r}

for some probability space (l? , ,il , P) . Nearly all of the ensuing discussion
is independent of this kind of interpretation, but we continue to use the
suggestive language of probability theory. Another name for g : G ---> H
would be rand,am fielil.

The next definition recalls a notion introduced (with R in place of G )
by S. Bochner [2]. We limit our attention to weakly continuous processes.

a stocha,st'i,c

GxG is

H is the
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D e f i n i t i o n 6.2. A bounded weakly continuous stochastic process

p : G ---> fl is said to be V-bound,ed, if the set

J rdpl peLt(G), llpll' < t)
is bounded in H .

Remarlc 6.3. Since every bounded set in ll is relatively weakly compact,
Theorem 3.5 shows that a bounded and weakly continuous stochastic
process g: G--> ff is Z-bounded if and only if g is the Fourier transform
of some bounded (hence weakly compact) linear operator <D : C*(G) ---> H .

By Theorem 3.2, @ is then unique, and g is strongly continuous. By
Theorem 3.5 again, in the above definition ZI(G) could be replaced by
M(G) or M*(G). This statement concerning M*(G) has in the case of
H : L\(a , ,il , P) the following reformulation:

Theorem 6.4. Let (a,"il,P) be a probabi'l'itg space anil

E : G -> L\(gl , .& , P) a wealcly cantinuous stochastic process. Then g is
V-boundnd, if and, only i,f there'is a constant C > o suck that for euery fi'nite
set { s1, ..., s,} C G anil, eaerA aector z : (21, ...,2*) e C* fo, which

ll2i:tzrö,,11' 3 I we haue E lz'ulz < C where z'rt is the scalar

prod,uct of z wi,th the ranil,om aector (prolterl,y speaki'ng, egu'iualence class)

t{ : (E(sr), ..., V@,)) , ani[, E d,enotes erltectat'i'on.

Proof. It suffices to observe that

E lr'ul'

The following result generalizes Theorem 3.2.6 in [f7, p. 38].
Theorem 6.5. A weakly continuous stochast'ic process E: G-'->H

is V-bound,eil i,f and, only i,f there 'i,s a bound'ed' bi'li'near form B : C*(G) x
C*(G) ---> C whose fiourier transform b is relateil to the coaari,ance functi,on
R of E by R(s,t): å(s,l-1;, s, teG. If thi,si,sthecase,then B
i,s uni,quel.y d,eterm'i,neil, anil positi,ae-d,efi,ni,te. In fact, B(r , y) : (@ r I @ y*)

for al.l. r, y e C*(G), where <D : Cx(G) --> H is the bound,ed, l'i'near magt

hau,ing E as'i,ts Tourier transform.
Proof. Suppose that g is Z-bounded, and let the bounded operator

@: C*(G) --> H satisfy 6 : V. Define B(r ,y) : (<D r | <D g*) for all
r , A e C*(G) . The bilinear form (u , a) r-> (@**u I dt**'?rx) on Cx(G)** x
C*(G)** is separately weak* continuous and extends B , so that it
coincides with B . fn particular, å1" ,l-t; : (@**ra(s) | @**(co(r-1))t') :
(p(s)lE(l)) : Ä(",f) , s, teG.ByTheorem4.S B isunique.Assume,
conversely, that B: C*(G) X C*(G)+ C is a bounded. bilinear form such

that å(s,t-t) : -B(s,l) , s, t eG. Then

: ! l,å 
zie'*)\' o, : 

ll,å 
,rv'r)ll',
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ll n ll2 n m

ll 2",p(',) ll --
ll j:t I I ,:: u:nt

\=lz-. L
j:L k:L

/n

- B(s" \,2,

?j zn @@) I s(tu))

"i 
ru E@(sj) , c0(så)*)

n

?j@(sj) ,(>
h:L

zn @(su))-)

for every ,j örj e Mon(G) ,

and so g is Z-bounded (Remark 6.3).
Adapting a definition from [17, p. 29], we introduce the following notion:
D efinit ion 6.6. Let E : G -> H be weakly continuous and

Z-bounded, and let @ and B be as in Theorem 6.5. Then B is called the
coaari,ancebi,Iinearform of @ (or of E).

Remark 6.7. Combining Theorem 6.5 with Theorem 4.7 and Corollary
4.8 one obtains seyeral characterizations of the Z-boundedness of a bounded
weakly continuous stochastic process g : G ---> H in terms of its covariance
function -8, analogous to Corolloary 3.2.5 in [I7, p. 37]. X'or example, g
is Z-bounded if and only if the set

n\Lj:I

,- 
ll' 

s 
'){ i i.",wnR(ri,tu)

t -7:1 h:L lä',u, ll

is bounded.
In the rest of this section we shall discuss the notion of stationarity

and the closely related. subject of orthogonally scattered operators and
bilinear forms.

Definition 6.8. A stochastic process g:G--->H is said to
be (wide-sense) I,eft (resp. right) stationary, if its covariance function -B

satisfies R(s,t) : R(us,ut) (resp. -R(s, f) : A(" u,tu) for all
u, s, teG or,equivalently,if thereisafunction p: G---> C suchthat
R(s,t) : q(l-rs) (resp. -B(s,t) : q(sl-t) ) for all s, teG.

A s;'nonym for "stationary" in this definition would be honr,ogeneous.

Both in the case of left and right stationarity the function g is obviously
positive-definite. It is a well-known elementary fact that g is strongly
continuous if and only if g is continuous, and the weak continuity of g
suffices for this to be the case. In the standard Abelian situation, g is
utilized in the construction of the spectral representation of a stationary
(rveakly) continuous g (see e.g. [3, p. 129]). In view of Remark 6.3 and
Theorem 6.5, the next theorem transfers that classical representation
theorem to the noncommutative case. The first sentence in our theorem
generalizes an observation mad.e by S. Bochner 12, p. 2I] with R in place
of G.
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Theorem 6.9. If q t G-> H i,s weaklg cantinuous and' left or right
stationary, then i,t is V-bounileil. A wealcly conti,nuous V-bound,ed' stochastic

process q : G --> H is left (resp. right) stationary if and, anly i'f there 'i's

f eC*(G)* suchthat thecoaariancebil,inearform B of E satisfies B(r ,y) :
(f ,y*) (resp. B(r,A): (f ,rA))foral'l' r, U€C*(G).Suchafunc'
ti,onal, f isuniqueanil,necessari,Iygtosi,tiae;i'nfact, f :f Q,where q isas
in Definiti,on 6.8.

Proof. We treat the case of left stationarity; the other case requires
only obvious formal changes. Let g be weakly continuous and left
stationary, and let p : G ---> C be the continuous positive-definite function
satisfying (q(s) lE(l)) : Q(t-L s) , s, t eG. Define the bounded bilinear
form B: C*(G) x C*(G)+C by B(r,y) : (f ,Ar), where / is the
positive functional TqeC*(G)*. Since (u,a)r->(f ,au) is separately
weak* continuous on C*(4)** X C*(G)'r* and extends B, it is the same

as the canonical extension E of B, and so we get

B6,r'1 : E1^1t1 ,e)(t-t)) : <f ,a,(l-ls))
: q(f-1s) (s(s) Ig(l)) , s, teG.

Thus E is Z-bounded by Theorem 6.5. Since B is by definition the
covariance bilinear form of g, the'oonly if" part of the second sentence

is also proved. Suppose now that g is weakly continuous and Z-bounded,
and /eC*(G)* satisfies B(r,y) : <f ,Ar), r, yeC*(G), where B
is the covariance bilinear form of E . Define Q : T-'f . As above, we find

that å(s,t-t): s(l-ls) , i.e. q(l-ls) : (E(s) lq(l)) forall s, teG.
Thus g is left stationary, and the expression for / has been established.

If (D : C*(G) ---> H is a bounded linear map, it follows from the above
theorem that the left or right stationarity of the X'ourier transform of @

implies that @ is "orthogonally scattered." in a sense to be presently
specified. Orthogonally scattered operators @ : C*(G) -> H are below
given a characherization which shows, in particular, that in the Abelian
case this statement can be reversed. In the Abelian case these results are
well known in various disguises (see e.g. [3], U3l, [I5], [f6], [9]). Let us
begin our study of this theme with a lemma.

L e m m a 6.L0. Let I be a toytological aector space, wh'i'ch is al'so an
al,gebra wi,th a segtarately conti,nuous multi,pl'i'cati'on (u , a) F> u u and, i'd'enti'ty

el,ement L . Let E C F be a set of pai,rwise carnmut'ing 'i'd'empotents such that
ef eE and, L-eeE wheneaer e, f eE. If Bo: IXI--->C is a

separately continuous bili,near form such that Bo@ , f) : 0 for aII' e and'

f in E wi'ththeproperty ef :0, then Bo(u,a) : Bo(ua,L) ftn all u
and, u in the closed, linear sgtan of E .

Proof. If e, f eE, then
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Bo@,f): Bo@Q-f),f) +Bo@f ,f(I e)) +Bo@f ,fn)
Bo@f ,nf): Bo@f ,rf) +Bo@f ,1 ef)

Bo@ f ,1) '

Our assumptions now imply the assertion at once.
In order to motivate Definition 6.13, we present a theorem on bimeasures.

The equivalence of (i), (ii), (iii) and (v) in the theorem has been obtained
by different methods (and in the case of a not necessarilv bounded bi-
mea,sure which obviously requires a modification of (iii); as to this point
see, however, Remark 6.12 below) by H. Niemi [8]. \Me give a proof,
because this can be done fairly quickly by using the canonical extension

E of a bounded bimeasure B . The characteristic function of a set B is
denoted by 6, . n'or the proof of the theorem, recall the discussion preceding
Theorem 5.8.

Theorem 6.11. Let X bealocallycompactHausilorff space,and, B
a bu,nd,ed, b'i,measure on X x X . The followi,ng fi,ae conditions are equ'i,aalent:

(i) B(f ,g):0,'i,f f , g, X-->C areconti,nuqusfunctionswi'thd,isjoi'nt
compact sugtports;
(ii) B(t*,,6*") : 0, if Kt and' K, are d,i'sjoi,nt compact sets i'n X ;
(iii) B(6s,,f",) : 0, i,f S, and, S, are d,i,sjoint Borel sets in X;
(iv) B(e,f) : 0, if e, f eCo(x)** are prajections such that ef : o;
(v) there'i,s a (necessari,ly uni,que) nxeasure p e M(X) such that B(f , S) :
Q,f S) for all f , I eCo(.X) .

Proof . Assume first (i). Let K, and K, be disjoint compact subsets of
X. Recall from Definition 5.4 the notation f for the elemeni of M(X)*
determined by a bounded Borel function f : X --- C . Let Uo and Vo be
disjoint open neighborhoods of K, and Kr, respectively. When the set
4/ of the open sets U satisfyin1 KtC U C Uo is directed by the natural
order opposite to inclusion, and there is assigned to each U e alt & con-
tinuous function f , : X -- [0 , 1] with compact, support such that /(s) : f
for all s e K, and supp (fr) C U , it follows from the regularity of the
measures in M(X) that the net (fu)v.qt converges to Ex, in
o(M(X)* , lW(X)). Similarly, we find a net (gr)u..yr of conlinuous functions
who3e supports are contained in 70, such that the net (i )v,^//- corrverges

b Er, n o(M(X)*,M(X)). Since always E(Tu,io) :0, the separate

weak* continuity of å norv shows that B(f*,,€*") : E(Fo,,Fo,) : O.
Assume next (ii), and let B, and B, be disjoint Borel sets in X . This
time we consider Lhe set tr of the compaot subsets of B, directed by
inclusion, and note that by the regularity of the measures in Jll(X) the
net (i*)*,36 conyerges 6o Er, in o(M(X)*, M(X)). Choosing analogously
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a net convering to Er" uttd using the separate weak* continuity of E
we see that B(fr,, fr,) : 0 ' Assume now (iii)' Whenwe lake I : M(X)*
withtheweak*topology, F, Bo:B,and S : {frlSC X isaBorel
set ) satisfy the hypotheses of Lemma 6.10. Since d separates the points

of M(X), its linear span is weak* dense in M(X)*, and so 61u,a7 :
E@a,t) for all 11 , aeM(X)*. We define peM(X)_by (p,f) :
h(i,\, f eCo6).Then (p,fs): Etfd,l) : B(f ,A): B(f ,s)
for all f , g e Co(X) , i.e. (v) holds, the uniqueness of p being obvious.

Since (iii) implies !v), of course (iv) does so, too. X'inally, it is clear that if
(v) holds, then B(u,u) : luu , p) for all 11 , a e M(X)*, because

(u , a) r> (u u , p) is separately r,veak* continuous. Thus (v) implies all the
statements (i) through (iv).

Remark 6.12. It is not difficult to extend (the appropriate form of) the
above theorem to cover the case of not necessarily bounded bimeasures.
Let tr(X) : {f : X ---> C | / is continuous and supp (,f) is compact }
be regarded in the usual way as the locally convex inductive limit of the
Banachspaces tr(X;K) : {f e/{(X) I topp(f)C K } where Kranges
over the compact subsets of X. X'or example, if B: tr(X)xtr(X)->C
is a bimeasure (i.e. a continuous bilinear form) which satisfles B(f , , fr) : 0

when /, , fz e tr(X) have disjoint supports, there is a Radon measure

p: /d(X) -+ C (i.e. a continuous linear functional) such that B(ft,fr) :
pffif) for all fr, fre tr(X). To see this, choose for each f e {(X) some

g e /d(X) which has the value I on an open set containing supp(/) and
define p(f) : B(f , S). X'rom the assumption it follows that this definition
does not depend on the choice of g. ClearlY, /,r is linear and continuous,
and Theorem 6.ll can be used to proye that' p(ftfr) : B(ft,/r) for all

ft, f, e ff(X) .

fn view of Theorem 6.11, the following definition is consistent with
Definition 21 of [r8].

Definition 6.13. Let A bea C*-algebraand Br_AxA--->C
a bounded bilinear form. If its canonical extension B satisfies B(e , f) : 0

for all projections e, f e/.x* such that ef : 0, then B is said to be

orthogonally scattered,. A bounded linear map iD : A'--> H is said to be

orthogonally scattered, if the bilinear form (r , y) r-> (<D r | <D y*) is

orthogonally scattered (or, equivalently, if (@**e I @**/) : 0 whenever

e , f e,4*x are projections such that ef : 0).
Theorem 6.14. Let iD : C*(G)--->H be a bound'ed' linear map and'

B itscouarianceb'i,I'inearform,i.e. B(r,y) : (iDrlcDU*), n, y eC*(G).
Then (D is orthogonally scattered, if anil only i'f there i's f e C*(G)* such that

Ep , u1 : (u u , f) wheneuer u anil a are cmnrnuting normal el,ements of
C*(61)d'{' . If this 'is the case, then f is a uni'quel'y d,etermineil, posi'ti,ae func-
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t'i,onal, and, the conti,nuous gtosi,ti,ae-d,efini,te function T-L f : Q on G

satisfdes

tåt') I 6Oll : p(s r-')

wheneuer s and, t are commuting el,ements of G .

Proof. Suppose lhat <D is orthogonally scattered and define f e C*(G)*

by (f , r) : h@ , y where i 6 Qx(Q)** is the canonical image of
r eC*(G) and I is the identity element of f,x(@;*x. Then (w,f) :
Ep,y for all w eC'r(G)**, because (the canonical image of) C*(G) is

weakx dense in C*(61)xx , and å i, *"purutely weak* continuous. Let u
and o be commuting normal elements of f,'x14;xx , and denote by E
the set of projections in the (commutative) weak* closed x-subalgebra
M of C*(G)** generated. by u , z and I . It is a well-known consequence
of spectral theory that the linear span of E is o(C*(G)** , C*(G)*) -dense
(even norm dense, but we do not need this fact) in M (see e.g. [4, p. 3],

120, p. 261). Thus we can apply Lemma 6.10 to I : Qx161xx and

Br: b, and conclud.e that (uu,f) : E@a,T) : Ep,u1. It is,
convetsely, clear that the existence of / with the stated. property implies
lhat Q is orthogonally scattered. X'urthermore, only one linear functional

f eC*(G)* can satisfy 86,u1 : (ua,f) for all commuting normal
elements of C*(Gl)**, because we have w: u*ia with self-
adjoint 1r, a EQx(Q)xx for any zu e C*(G)**, so that (w,f) :
((u + i,u)L,f) : E@,t) + i,Ep,q : E(*,t). Since every u > 0
i: C*(C)** has the form u: z.r2 with a 6Q*(Q)**, a ) 0, (u,f) :
B(u,a) : (<D**ul(D**a) 2 0, i.". f is positive. Thus n:T-rf is
a continuous positive-definite function on G . If s, t e G commute,
then ar(s) and a(t-t1 &re commuting unitar/, hence normal, elements
of f,*(@)xx , and so

Q (s r-1' 
:',I.ffil']:,.r," lH l'ä,,,

References

tll ArEueNN, C. A.: The dual spaco of an operator algebra. - Trans. Amer. Math.
Soc. L26, I967, 286-302.

BocHNEn, S.: Stationariblr, boundedness, almost periodicity of random-valued
functions. - Proceedings of the Third Berkeley symposium on rnathe-
matical statistics and probability. If, University of California Press,

2 Berkeley-Los Angeles, 1956, 7 -27.
CnevrER, H., and M. R. LEaoSETTEn: Stationary and related stochastic proc-

esses. - John Witey & Sons, fnc., New York-London-Sydney, 1967.

tzl

t3l



Fourier transforms of noncommutative analogues of vector measures 385

t4l DunnER, J.: Les algåbres d'op6rateurs dans I'espaco hilbertien (Algebres de

von Neurnann). 2iemo 6d. - Cahiers scientifiques, Fas' XXV' Gauthier-
Villars, Paris, 1969.

t5l DrxrrrEn, J.: Les C*-algebres et leurs repr6sentations. 2iöme 6d. - Cahiers

scientifiques, Fas. XXIX, Gauthier-Villars, Paris, 1969.

t6] DuNFoRD, N. and J. T. Scrrwearz: Lineat operators. Vol. I: General theory. -

Pure and Appl. Math., vol. 7, Interscience, New York' 1958'

3l EBERT,ETN, W. F.: Cha,rachefiza,tions of Fourier-Stieltjos transforms' - Duke
Math. J. 22, 1955, 465-468.

t8] Evueno, P.: L'algebre de Fourier d'un groupe localement compact. - Bull.
Soc. Math. France 92, 1564, f 8t-236.

tgl GUcKSBERG, I.: Weak compactness and separate continuity. - Pacific J.
Math. 11, 1961, 205-214.

tl0l GnoTnENorEcx, A.: Sur les applications lindaires faiblement, compactes
d'espaces du type C(K). - Canad. J. Math. 5, 1953, 129-173.

tIIl GRoTHENDTEcT, A.: Rdsum6 de la thdorie m6trique des produits tensoriels
topologiques. - Bo1. Soc. Mat. Såo Paulo 8 (1953), 1956' 1-79.

lI2) IIEwrtt, E., and I{. A. Ross: Abstract harmonic analysis. Vol. I. - Springer'
Verlag, Berlin-Göttingen-Heidelberg, 1963.

tlSl KAREUNEN, I(.: tlber lineare Methoden in der Wahrscheinlichkeitsrechnung. -

Ann. Acad. Sci. Fenn. Ser. A I 37,1947, L-79.
t14l Kr,uvÅNer, I.: Charactetiza,tion of Fourier-Stieltjes transforms of vector and

operator valued measures. - Czechoslovak Math. J. L7 (52), 1967'
26t-277.

I15l f.oivo, M.: Probability theory. 3rd ed. - D' Van Nostrand Company, Inc.,
Princeton, N. J. - Toronto - London- Melbourne, I 963'

tl6] MaSANr, P.: Orthogonally scatterod measures. - Advances in Math. 2, 1968,

6l-117.
tl7] NrErut, H.: Stochastic processos as Fourier transforms of stochastic measures. -

Ann. Acad. Sci. Fenn. Ser. A I 5gI, 1975, l-47.
t18] NIEMT, H.: On the support of a bimoasure and orthogonally scattered voctor

measures. - Ann. Acad. Sci. Fenn. Ser' A I I, 1975, 249-275.
t19l NEMr, H.: On stationary dilations and the linear prediction of certain

stochastic processos. (In preparation.)

t20] RuorN, W.: Fourier analysis on groups. - Interscience Publishors, NewYork-
London, 1962.

l2Il Sexet, S.: C*-algebras and lZ*-algebras. - Springer-Verlag, Berlin-Heidel-
berg-New York, 1971.

L22) ScHAEFER, II. H.: Topological vector spaces. - Macmillan, New York, 1966.

t23] THoMAs, E.: L'intdgration par rapport ä une mesure de Radon vectorielle. '
Ann. Inst. Fourior (Grenoble) 2022, 1970,55-191.

University of Helsinki
Department of Mathematics
SX'-00100 Helsinki l0
X'inland

Received 22 July 1975


	IMG_0011
	IMG_0012
	IMG_0013
	IMG_0014
	IMG_0015
	IMG_0016
	IMG_0017
	IMG_0018
	IMG_0019
	IMG_0020
	IMG_0021
	IMG_0022
	IMG_0023
	IMG_0024
	IMG_0025
	IMG_0026
	IMG_0027
	IMG_0028
	IMG_0029
	IMG_0030
	IMG_0031
	IMG_0032
	IMG_0033
	IMG_0034
	IMG_0035
	IMG_0036
	IMG_0037
	IMG_0038
	IMG_0039
	IMG_0040
	IMG_0041

