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FOURIER TRANSFORMS OF NONCOMMUTATIVE
ANALOGUES OF VECTOR MEASURES AND
BIMEASURES WITH APPLICATIONS
TO STOCHASTIC PROCESSES

KARI YLINEN

1. Introduction

I. Kluvanek [14] has studied Fourier-Stieltjes transforms of Banach
space valued regular Borel vector measures on a locally compact Abelian
topological group ['. Let us think of I" as the dual group of its own dual
group G . If E is a (complex) Banach space, the Fourier-Stieltjes trans-
form of a regular E-valued Borel vector measure m on [ is the function
¢: ¢ — E defined by

W) = [nane), see.
~
The principal results in [14] concern the problem of characterizing those
E-valued functions on G which arise as Fourier-Stieltjes transforms of
E-valued regular Borel vector measures on I". Kluvanek proved, generaliz-
ing two classical theorems of W. F. Eberlein [7] on Fourier-Stieltjes trans-
forms of scalar valued measures, that a function ¢ : G — E is the Fourier-
Stieltjes transform of such a vector measure if and only if ¢ is bounded
and weakly continuous and the integrals [; ¢ du form a relatively weakly
compact subset of K, when u ranges over the bounded absolutely con-
tinuous (resp. finitely supported) regular complex Borel measures on @
whose Fourier-Stieltjes transforms are bounded by 1 (see Theorems 2 and
3 in [14]). These conditions even imply that ¢ is strongly continuous [14,
p. 269]. The present article originated in an attempt to extend the results
quoted above to the case of a not necessarily Abelian locally compact
group . A complete generalization is contained in Theorems 3.2 and 3.5.
Instead of entering a detailed discussion in this introductory section we
only mention that one replaces vector measures by weakly compact linear

doi:10.5186/aasfm.1975.0130


Mika
Typewritten text
doi:10.5186/aasfm.1975.0130


356 KART YLINEN

operators from C*(@) to K, where C*((), the so-called group C*-
algebra of G, can be regarded as a generalization of Cy(I") (see Sections 2
and 5). This approach is motivated by the fact that the KE-valued regular
Borel vector measures on I’ are known to be via integration in a bijective
correspondence with the weakly compact operators from Cy(I") to K .

The second main purpose of this paper is to define and characterize the
Fourier transforms of bounded bilinear forms on the Cartesian product of the
group C*-algebras of two locally compact groups ¢; and &, . Thisis done
in Section 4. Our definition depends on the extending of the bilinear form to
O*(G)** x O*(G,)** . That this extension can be effected in a satisfactory
way is guaranteed by a result of C. A. Akemann [1], which says that any
bounded linear operator from a C*-algebra to the predual of a von Neumann
algebra is weakly compact. The Fourier transform of a bounded bilinear
form on C*(G,) x C*(G,) is a bounded continuous function on G; X G, .
The principal result of Section 4 is Theorem 4.7, which singles out, in a
manner analogous to the two theorems of Eberlein referred to above, those
functions on &; X G, which arise as such Fourier transforms. Theorems
4.10 and 4.12 deal with positive-definiteness properties of bounded bilinear
forms.

Our study of the Fourier transforms of bounded bilinear forms on
C*(G,) X C*(G,) is largely motivated by applications to the theory of
stochastic processes indexed by a general locally compact group. This theme
is discussed in Section 6. There our main concern is the generalization of
the classical spectral representation theory. Our approach resembles that
of H. Niemi [17]. For example, we extend to the noncommutative case the
notion of the covariance bimeasure of a stochastic measure considered in
[17]. This provides the essential link between Sections 4 and 6.

We use the same basic techniques of noncommutative harmonic analysis
as e.g. P. Eymard [8]. The general framework will be explained in the next
section. In the commutative case, the notions reviewed there reduce to
standard concepts of harmonic analysis on locally compact Abelian groups.
The implications of this reduction in the situations considered in Sections
3 and 4 will be discussed in Section 5. This is done mainly for the purpose
of illustration; of course the commutative theory could be reached by
a more direct route. At certain points, however, the application of C*-
algebra techniques (for example, the use of Kaplansky’s density theorem
in the proofs of Theorems 3.5 and 4.10) sheds new light even on the com-
mutative case.
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2. Preliminaries

The notation, terminology and results set out in this section will be
used throughout the paper, usually without explicit reference. The scalar
field will always be the complex field C. Let £ be a Banach space. Then
E* denotes its (topological) dual, o(& , E*) is by definition the weak
topology on E , and o(£* , E) is the weak* topology on E* . The value
of fek* at wx €k is denoted interchangeably by <(f,z> or <(x,f).
The basic theory of Banach spaces and topological vector spaces is assumed
to be known. For example, we frequently use the fact that if two vector
spaces F and F are in duality, then any linear subspace F, C F which
suffices to separate the points of E is o(F, F)-dense in F (see e.g. [22,
p. 125]). For the theory of C*-algebras, von Neumann algebras, and group
representations we refer to [4], [5] and [21]. A von Neumann algebra may
be defined as a C*-algebra M which is the dual of a (necessarily unique)
Banach space M, , called the predual of M . In any von Neumann algebra
M, involution is o(M , M,)-continuous and multiplication separately
o(M , M,)-continuous (see e.g. [21, p. 18]). The bidual of any C*-algebra
A is a C*-algebra, which can be identified with the so-called enveloping
von Neumann algebra of 4 [5, p. 236]. We shall always consider A4**
to be equipped with this structure. The canonical embedding of 4 into
A** ig then a x-homomorphism. Kaplansky’s density theorem will be
used in the following form: if 4 isa oM , M,)-dense x-subalgebra of the
von Neumann algebra 3/ , then the unit ball of 4 is o(M , M, )-dense in
the unit ball of M (see [4, pp. 41, 43], [21, p. 22]).

If X is a locally compact Hausdorff space, € (X) denotes the C*-
algebra of all continuous complex functions on X vanishing at infinity,
equipped with the supremum norm. As usual, Oy (X)* is identified with
M (X) , the space of bounded regular complex Borel measures on X . The
subspace of M (X) consisting of all finite linear combinations of the Dirac
measures o,, s € X ,is denoted by M ,,(X). The basic theory of measure
and integration that we use can be found e.g. in [12].

Let G be a locally compact (Hausdorff) topological group with a fixed
left Haar measure ds. We shall regard the Banach space LY(({) consisting
of the (equivalence classes of) complex Borel functions on ¢ integrable
with respect to ds as a closed subspace of M () by identifying ¢ € L}(G)
with the measure p for which du = g ds. Equipped with the convolution
product and a natural involution u > u* (see e.g. [5, p. 252], [12, p. 299]),
M(G) is a Banach =x-algebra having LY(() as a closed sx-ideal.

Each continuous unitary representation z of &' on a Hilbert space
H_ determines a sx-representation (also denoted by =) of M(G) on H,
satisfying
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@ & 1a) = [ () & [n) dute) for we (@), &, yell,
G

(the inner product of a Hilbert space is in this paper always denoted by
(| *) ). The restriction of 7z to LY(() is essential (“non dégénérée” in the
terminology of [5]), and each essential x-representation of L}(() is obtained
in this way from a unique continuous unitary representation of & [5, p.
253]. If uweM(G), we let |ju||" denote the supremum of the operator
norms |[zz(x)|| where 7 ranges over all continuous unitary representations
of G .Then |yl < |« [5, p.7]. The completion of L) with respect to
the norm | - |’ is a C*-algebra, which is denoted by C*(¢) and called
the group O*-algebra of G (see [5, p. 271]). Let w: C*(&) — L(H,) be
the universal representation of C*(@) [5, p. 43]. If 7: LYG) — C*(G) is
the inclusion map, w o 7 is an essential s-representation of LY(G). We
denote o 7 and the corresponding continuous unitary representation of
@ on the Hilbert space H, simply with o . The von Neumann algebra A
generated in L(H,) by w(C*(@)) is just the enveloping von Neumann
algebra of C*(G) mentioned earlier, and it can be identified with the bidual
of C*(@) as described e.g. in [5, p. 236]. In this identification the canonical
embedding »: C*(G) — C*(G)** corresponds to w : C*(G)— L(H,), which
shows that w(u) = »(u) whenever u € L(G) C C*() . Since w(u) €4
for all u e M(G) [8,p.193], o will usually be regarded as a mapping
from M(G) into C*(@)** (although we continue to let o also denote
its restriction to G which is considered canonically embedded in M (G) ) .

For each u e M(G), |u/|~ will denote the supremum of the operator
norms |[z(u)| where =z ranges over the continuous (topologically) ir-
reducible unitary representations of . We have |lul|” = [ju]" =
lw(w)| if weIXG) [5, pp. 40, 254—255]. From Lemma 1.23 in [8, p.
189] it follows therefore that |[lu||” = [ju]" = llo(w)| for all u e M(G).
In particular, the s-algebra homomorphism o : M(G) — C*(G)** is
injective, because ||u||" > 0 for each nonzero u € M(G) [12, p. 342].

The set of linear combinations of all continuous positive-definite
[5, p. 255] complex functions on ¢ will be denoted by B(G). Every
function in B(G) is bounded [5, p. 256]. For future reference we collect
into two lemmas some properties of B(G) from [8].

Lemma 21. Let f: G—C be bounded and continuous. Then

mmﬂ/}whueDWLHM'sl}
1
v =mmef@MueMM®,ww£l}.

This quantity s finite if and only if f € B(G) .
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Proof. Let a (resp. b) denote the left (resp. right) side of (1). Then
a < oo if and only if fe B(@) [8, p. 191]. If fe B({@), then b <
and a = b (see (2. 13) in [8, p. 195]). Thus it suffices to show that f e B(G)
if b < oo . The proof of this implication will be reduced to (2.24) in [8, p.
202]. Since |ju, — pll' —0 if p,—p in M(G) = Cy(G)*, we have

b=mmefwMueMﬂamwrgly

where M ,(() is the norm closure of M ,(¢) in M(¢/) . Let G, denote G
equipped with the discrete topology. If |jull, for u e LY(G,) = M(G,) =
M, (G) is the supremum of |[z(u)|| over all unitary representations =
of G,, then clearly ||, = |jul , so that

wp“ff@bueﬂmaAwusl}

smmH/}wMueMﬂ%AWVg1}=b-

Therefore, if b < oo, then fe B((,) [8, p. 191], and so using the con-
tinuity of f on G we get fe B(G) by (2.24) in [8, p. 202].

There is a bijection 7 : B(GF) — C*((¢)* which maps the set of the
positive-definite functions in B(G) onto the set of the positive linear
functionals on C*(¢/) and satisfies

(Tf,py = ffdﬂ for all feB(G), uelXG) C CXG)

[8, p. 192]. Clearly, |7 f|| is the same as either side of (1) in Lemma 2.1.

Lemma 22 If feB(@), then (o), Tf> = [fdu for all
weM{) .

Proof. See [8, p. 193].

This lemma shows, in particular, that <{w(s),Tf) = f(s) for all
feB@G), seG. It follows that if ¢ e C¥)*, then the function
st><w(s),g> on G Dbelongs to B((), and that o: ¢ — C*G)** is
weak* continuous. Furthermore, (M ,(G)) suffices to separate the points
of C*(G)*, so that it is weak* dense in C*(G)** .

Whenever we consider two locally compact groups ¢; and @, , the
notation introduced in this section will be adapted to that situation without
further comments. Thus, for j = 1, 2, the symbols w,;, T'; ete. will have
their obvious meanings.

As mentioned in the introduction, the concepts discussed above have
simple interpretations in case ' is Abelian. By Bochner’s theorem [20, p.
19], B(G) is the set of the Fourier-Stieltjes transforms of the measures in
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M(I'), where I' is the dual group of @ . Since the set of the (equivalence
classes of) continuous irreducible unitary representations of (' can be
identified with I, the number |[u|” ( = [u] = lo(w)|]) is for every
peM(@) equal to ||, , where g is the Fourier-Stieltjes transform of
u . From well-known properties of the Fourier transformation on LY¢) it
follows that C*(G) is isometrically x-isomorphic to C(I'). We shall
return to the Abelian case in Section 5.

3. Fourier transforms of weakly compact operators from C*(¢/) to a
Banach space

Throughout this section, ¢ is an arbitrary locally compact group, and
E is a Banach space. The Fourier transform of a weakly compact operator
@ : 0*%(G) — K defined here generalizes the notion of the Fourier-Stieltjes
transform of an E-valued regular Borel vector measure on the dual group
of a locally compact Abelian group. We postpone the explanation of this
statement to Section 5, and consider only the general situation in this
section.

In the next definition, and elsewhere, we shall regard the second adjoint
@** of a weakly compact operator @ : O*(G) — E as a mapping from
C*(@)** into K, because @**(C*(G)**) C K ( C E**) [6, p. 482].

Definition 3.1. If @: C*@G)— E isa weakly compact operator,
the function @: G — E defined by (1;(8) = @**(w(s)), sel, is called
the Fourier transform of @ .

The following theorem exhibits some basic properties of the Fourier
transform. Observe that since w : G — C*(G)** is weak® continuous and
@** is continuous from o(C*(G)** , C*(G)*) to o(E , E*), it is obvious
that @ is weakly continuous. The proof of its norm continuity, however,
turns out to require a considerably more refined method.

Theorem 3.2 If @,: C¥G)—E and @,: C¥G)—E are
weakly compact operators such that Cal = ng , then @, = ®,. The Fourier
transform of any weakly compact operator @ : C*(G)— E is strongly
continuous, and Hdg(s)\l < ||\@| for all seG .

Proof. If q31 = qA)Z , then @, = @, by virtue of the fact that
(fody,w(s)) = {fod,,m(s)y forall s e, fek*, and w(F) separates
the points of C*(G)*. We have [1@(8)“ < |[[@*|| [lw(s)]| = [|@] if
s € G . Our proof of the norm continuity of @ is based on a characterization
of the relatively weakly compact subsets of the predual of a von Neumann
algebra due to C. A. Akemann [1]. Fix s € ¢ , and let (s;);.; be an arbitrary

net in @ converging to s. We intend to prove that 98(81-) - Qs\(s) in
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norm. Let 1 denote the identity element of C*(G)** . As w(s) and w(s))
for all ¢ €l are unitary, we have

lim (eo(s;) — o(s))*(e0(s;) — ()

= 1 — limo(s)*w(s) — limw(s)*w(s,) +1 = 0
with respect to o(C*(G)**, C*(G)*) by the weak* continuity of v combined
with the fact that involution is weak* continuous and multiplication
separately weak* continuous in CO*(G)** . Similarly,

(@(s;) — @(9)) (@(s;) — w(s)* — 0 for o(CHG)**, CH(G)¥) .

By Gantmacher’s theorem [6, p. 485], {@*f| feE*, |[f] < 1} is
a relatively weakly compact subset of C*(G)*. Let &> 0 be given.
Theorem I1.3 in [1, p. 289] yields a positive functional g € C*(G)* and
0 >0 such that |{u,®@*f)| < ¢2 for all fek* with [f|| <1,
whenever u € O*(G)**, |ju/| <1 and g(u*u + uwu*) < 6. Choosing

u, = 27Yw(s;) — w(s)] for i €I, we have

lim g(uf u;, + w,uf) = 0.
Thus thereis i, € I such that ¢ > i, implies | (@**(w(s,) — w(s)) ,[> | =
|, @ f> | < & for all feB*, |fll <1, ie. | d(s) — D) < e.

Theorem 3.3. A function ¢: G—E is the Fourier transform of
some weakly compact operator @ : C*(G) — E if and only if foq¢ € B(G)
for all feE* and the set {T(feoq)| feE*, |fll <1} 1is relatively
weakly compact in  C*(G)*. If these conditions hold, then |@| =
sup { |[T(feq)ll | fek*, [fll<1}.

Proof. Suppose first that ¢ = o for a weakly compact operator
@: C¥G)—E. If feE*, then &*feC*G)*, and so the function
s (D*fLo(s)) = (f, D)) = flgls) on G belongs to B(G).
By Gantmacher’s theorem [6, p. 485], @*: E* — C*(()* is a weakly
compact operator, and we have (T'(f°@),w(s)> = fl@(s)) = (D*[f, w(s))
for all fekE*, se@@, so that 7T(fcq) = @*f. Thus the set
{(T(feog)|feB*, |fl <1} is relatively weakly compact in C*(G)*.
Furthermore, | = [|0*] = sup { [T(f¢)ll | f€E*, |f| <1}. Sup-
pose, conversely, that fog@eB(G¢) for all fekE*, and that
{T(fop)| feE*, |fl <1} is relatively weakly compact. Then we
have a weakly compact operator fi>T(f¢) from E* to C*G)*. Its
adjoint S : C*(G)** — E** is weakly compact by Gantmacher’s theorem,
and continuous from o(C*(G)** , O*(G)*) to o(E**, B***) [6, p. 484].
If s € G and feB*, then (S(s),/> = <o), T(fog) = (gls).f.
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Thus S(w(M 4, (G) C E. Since My (G) is weak™® dense in C*(G)** | and
E , being a norm closed convex subset of E**  is o(E**, E***)-closed in
E**  we have S(C*(G)**) C E, so that S may be regarded as a weakly
compact operator from C*(@)** to K. Write now @ = Sox, where
% O*(G) — C*(G)** is the canonical embedding. Then @ is a weakly
compact operator. Both @**: C*(@)** — K and § are continuous from
o(C*(G)** , C*(@)*) to o(H ,E*), and since they coincide on the weak*
dense subspace x(C*(@)) of C*()**, @** = §. In particular, (13(8) =
S(w(s)) = ¢(s) for all s € ¢, and the proof is complete.

In [14, p. 266] it is shown that if ¢: ¢ — E is bounded and weakly
u-measurable for some u € M(G) (for example, weakly continuous), then
there is a (clearly unique) element [ ¢ du € B satisfying

</tpd,u,f> = f<¢(8),f>dy(s) for all feB*.

Thus the symbol [ ¢ du , which appears e.g. in the following lemma and
theorem, is well defined. We mention in passing that in the situations which
we encounter quite an elementary approach would suffice to define [ ¢ du .
One could consider a weak integral of ¢ as an element of E**  and then
conclude by weak compactness arguments that actually it belongs to & .

Lemma 3.4. The Fourier transform @ of any weakly compact operator
@ C*G)— B satisfies

(1) f Gdu = Do)

for all pueM(G).
Proof. For an arbitrary w € M(G) there is a net (u,),., in M ,(G)
such that

lim w(u;) = o(u)

1

with respect to o(C*(G)**, C*(()*) . As (1) holds for all u; in place of u
(in fact, if

v = Dz0, € My(6), then fcz?dv = Sz ds) = PFFoW)),
=1 =1
the following simple passage to the limit proves it for . Since

@** . O*(@)** — K is continuous from o(C*(G)**, C*(G)*) to o(& , B*),
and fo oe B(@) for all fe E* (Theorem 3.3.) we get
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<f<5du,f> = f(foé = o), T(f> )
= hm<w,u1 T(f 11) = hm \/Qadﬂi’f>
= hm (D¥*(w(u,) , [> = (DF*w(u), [, ) holds.

Theorem 3.5. For a weakly continuous bounded function ¢ : G — E
the following four conditions are equivalent:
(i) @ is the Fourter transform of some weakly compact operator
@: O*G)—E ;

(ii) {f pdu |ueM@), |u < 1} 15 relatively weakly compact in K ;
(iii) {/ pdu| peMy(@), |ul < 1} 18 relatively weakly compact in B ;

(iv) {f(pd,u | pelXd), |y < 1} 18 relatively weakly compact in B .

If these equivalent conditions are satisfied, then |\ @|| is equal to the supremum
of the norms of the elements in any one of the sets appearing in (ii), (iii) and
(iv).

Proof. Assume first (i). We may regard @** as a weakly compact
operator from C*(G))** to K (see [6, pp. 482—485]). Combined with
Lemma 3.4 this shows that (ii) holds. Clearly, (ii) implies both (iii) and
(iv). Assume now (iii). We intend to prove (i) by applying Theorem 3.3.
From Lemma 2.1 it follows that fog¢ € B(G) for all f e E*, because by
assumption fo ¢ is continuous, and the set

{f(fw) dp | e My(G), |ull < 1

is bounded. To prove that {T'(feq)| fekE*, |fll <1} is relatively
weakly compact in C*(G)* we proceed as follows. Let v : E* — C*(G)*
be defined by w(f) = T(fcg). Let F denote the norm closure of
(M, (@) in C¥G)** . Each g¢geC*G)* determines a functional
Ogel* by (Og,uy=<u,g>, wel . Sincethe unit ball of the weak*
dense sub-C*-algebra F of C*(@)** is by Kaplansky’s density theorem
weak* dense in the unit ball of C*(@)**, the linear operator
O : C¥*(G)* — F* is an isometry. Thus ©(C*(G)*) is norm closed, hence
o(F*, F**)-closed in F*, and since o(F*, F**) restricted to O(C*(G)*)
corresponds (by the Hahn-Banach theorem) via @ to o(C*(G)*, O*(G)**) ,
any set in C*(G)* is relatively weakly compact if its image under @ is so.
Let now S: o(M,(G)) — E be defined by S(w(u)) = j(pdy u e My (G
(as : M(G)— C*(G)** is injective, this makes sense) By assumption, §
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can be extended to a weakly compact operator from F to K, also denoted
by S. For all feE* we have

S*f = ([, 8w <f f¢>du> /f 9)d

= T(fep)y = <o), p(f)y if peM,G),
so that S*f = O(yp(f)) . Since S* is by Gantmacher’s theorem a weakly
compact operator the set { O(y(f)) | feE*, |fll <1}, and hence the
set  {p(f)| feB*, fll <1} = {T(feq)| fef*, |fl<1}, i

relatively weakly compact. By Theorem 3.3, (i) holds, i.e. ¢ = @ for some
weakly compact operator @ : C*(G) — E Furthermore applying
Theorem 3.3 and the fact that [|S*f]| = WD = [IT(fe@)| for
all feE*, we get

@] = sup {|T(foo)l| fek*, |fl <1}

= I8 = ISl = SUP{H/?’Jdu“i #€My(@) s lul < 1

Assume next (iv). Then the mapping wu+> [@du, peLXG), can be
extended to a weakly compact operator @ : C*(G)— K. We claim that
®=g¢. For all uel)G) (C CXG) we have @(u) = O**(w(u)),
because w(u) = x(u), where x: C*(G)— C*(G)** is the canonical em-
bedding. Thus Lemma 3.4 shows that

f(foqo) du = (D) >

f(fog%)dﬂ for all ueING), feB*.

Il

As fog and fo @ are continuous, the equation (f, ¢@(s)> = (f, cﬁ(s)>
is valid for all s e @, feE*, ie. @ = @, so that (i) holds. Using again
Lemma 3.4 we get

3

1} < o = [@],

2

It

IA

sup{‘\fwdu”l peING), |l

IA

- Sup{H/WlMH] we M@,

which completes the proof.

Corollary 3.6. If ¢: G—E is the Fourier transform of some
weakly compact operator from C*(G) to E , the same is true of the function
soe(s™), sel.
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Proof. Since s+ @(s!) is weakly (even strongly) continuous, it is in
view of the above theorem sufficient to show that

= nznzj o, forall p = zzj 5, € M)
Since fe B(@) for any fe B(@), and HTﬂ] = |Tfl| [8, p-197], we get
Wl = el = oG]
= sup (| 35067 || £ eB@), I1Tf] < 1)
= sup (13501 F<B@). ITf] < 1)
= sup 135 |1 £EBO), ITA = 1) = 135000

4. Bounded bilinear forms on C*(¢;) x C*((,), and their
Fourier transforms

The following lemma is well known (it is mentioned without proof in
[11, p. 5]). We give a proof for the sake of completeness.

Lemma 4.1. Let E and F be Banach spaces and B: E x I'— C
a bounded bilinear form. Let the operators B,: B — F* and B,: F — E*
be defined by (B,x,y> = (x,B,y> = Bx,y) for ek, yek.
The following five conditions are equivalent:

(i) (Bf*fu,vy = (u,BFf*vy for all we ¥, veF**;

(il) (resp. (iii)) B, (resp. B,) is a weakly compact operator;

(iv) (resp. (v)) the bilinear form (w,v) > (Bf*u vy (resp. (u,v)+—

Qu, B¥*0) ) on E¥* X I s separately weak™ continuous.

If these equivalent conditions are satisfied, then B: E** x F** > ( defined
by E(u,v) = (Bf*u,vy = (u,Bf* vy, weBl*, velF**, s the
only separately weak* continuous bilinear form on E** X F** satisfying
B(az ,Y) = Bx,y) for all zel, yelk, and their canonical images
& eB¥*, §eF** . Furthermore, |B| = |B| .

Proof. We shall establish the following chain of implications:
(i)=(ii)=(iv) == (ii)=(i). The implications (i)=-(iii)=-(v)=-(iii)=-(i) can be
proved similarly. Assume first (i). Then <(Bf*u,v> = <{u,B*v) =
(B¥u,v) forall uw e E** ve F** sothat Bf*(E**) = B}HE**) C F*.
This yields (ii) by Theorem 2 in [6, p. 482]. Next, assume (ii). Again we
apply Theorem 2 in [6, p. 482], and conclude that Bj**(E**) C F* . There-
fore the functional v+ (Bf*u,v) on F** is o(F**  F*)-continuous
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for each w e E**. The o(E**, E*)-continuity of wu+> (Bf*u,v) on
B** for each v e F** is immediate. Thus (iv) holds. Assume now (iv).
Since the functional v+ (u, B v) = (Bf*u,v) on I'** i g(F** | F*)-
continuous for every w e E**, Bf: F** ~ E* is continuous from
o(I'** , F*) to o(*, B**) . By Lemma 7 in [6, p. 484], (ii) holds. Assume
(ii) once more. This time we prove (i). Since B, = B| F is a weakly
compact operator [6, pp. 484 —485], (v) is obtained in the same way as
(iv) was deduced from (ii) above. Since (the canonical image of) K (resp.
F) is weak* dense in E** (resp. F'**), we get (i) by applying (iv) and (v)
together with the fact that <(Bf*x,y> = B(x,y) = (x,Bf*y)> for
all x el , yeF . More generally, it is clear that there can be at most one
separately weak* continuous bilinear form on E** x I"* extending B .
Finally, [\B| = |B*| = B] = [IB]l.

Definition 4.2. If the five equivalent conditions in Lemma 4.1
are satisfied, then the bilinear form B: E**x F**  C defined there
is called the canonical extension of B .

Remark 4.3. C. A. Akemann [1, p. 293] has proved that an arbitrary
bounded linear map from a C*-algebra to the predual of a von Neumann
algebra is a weakly compact operator. In particular, if 4, and A4, are
C*-algebras, then any bounded linear operator from A4, to AF is weakly
compact, because AS* is a von Neumann algebra. Therefore the canonical
extension B of any bounded bilinear form B: 4; x 4, — C exists.

Throughout this section, ¢/, and ¢, will be arbitrary locally compact
groups. We are now able to define the Fourier transform of a bounded
bilinear form on C*(G,) x C*((,) . The motivation for our use of this
term will become clear in the next section, where the case of Abelian groups
is discussed.

Definition 44. Let B:0%({,) x O*,)— C be a bounded
bilinear form. If B : C*(G))** X O*(Gy)** — C is its canonical extension,
the function B: Gy x G,—>C defined by B(st) = Blw(s), w(t))
sel,, tel,, is called the Fourier transform of B . _

It is obvious in view of the continuity properties of w, and B that B
is separately contihuous. The next theorem, which is a counterpart of
Theorem 3.2, says that B is even jointly continuous.

Theorem 4.5. Let B: C*(G,) X C*G,) — C be a bounded bilinear
Jorm. Then B is continuous on G, X Gy (equipped with the product topology),
and |B(s,t) < Bl for all seGy, teGy. If B :C¥G,) x
C*(Gy) — C s any bounded bilinear form whose Fourier transform equals
B , then B' = B.

Proof. Let B,: C*(G,)— C*G,)* be defined by <(Byx,y) =
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B(x,y), x € O*G,), y € C*G,) . Since B, is a weakly compact operator
by Remark 4.3, it has a Fourier transform ﬁ,: G, — C*(Gy)* . By defini-

A

tion, Bs,t) = (Bf*wy(s),myt)> = (Bys),wq(t)> = T3 (Bys))(t) for

all sel@,, te@,. Using Theorem 3.2 and the fact that |7, < 1
(which follows from the inequality ||ul|" < |jul|, u €L} (Gy), we see
that é(s,-) € B((,) for all se (@, and that the map swﬁ(s, |) s
continuous with respect to the supremum norm topology of B((,) . Since
each function in B((/,) is continuous, it follows easily that B is continuous.
We have |B(s, 1) < [B]|os)| oo = |B, seG, teG. The
uniqueness statement is a consequence of the fact that o (M, (G)) is

weak* dense in C*(G)**, j =1, 2, and B is separately weak* continuous.
We shall follow I. Glicksberg [9] in giving a sense to the expression

[ [ &0 dusr v

where K is a bounded separately continuous complex function on ; x @, ,
and u e M(G,), veM(G,) . In fact, the functions

tt—>fK(s,t)d,u(s), t ell,, and 3}—>fK(s,t)dv(t), sel,,

are bounded and continuous, and

f(f K(s 1) du(8)> dv(t) = f(f K(s,t) dv(t)) d(s)

(see [9, pp- 205 —208]). The common value of the two sides of this equation

will be denoted by
/f K(s,t)du(s) dv(t) .

The integration of bounded separately continuous functions is not really
needed until Theorem 4.7, but we introduced it here to stress the fact that

the next lemma is independent of the joint continuity of B

_ Lemma 4.6. The Fourier transform B and canonical extension
B of any bounded bilinear form B : C*((y) x C*(Gy) — C  salisfy

ffé(s,t) du(s) dv(t) = Bloy(u), wy(v)) forall ue M(Gy), ve M(G).

Proof. The operators B, : C*((,) — O*((,)* and B, : C*((,) — O*(G,)*
introduced in Lemma 4.1 are weakly compact (Remark 4.3). Thus
B (wy(t)) € O*(G)* for all te@, [6, p. 482], and similarly

B (my()) € C*(Gy)* .
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Since
B(s,t) = {oys), B¥*wyt)>, seGy, t €ly,

we obtain

(B wy(u) , wy(t)) = <oqy(u) , Bf*wy(t)) = fﬁ(s ) dy(s)

by Lemmas 4.1 and 2.2, and so
Blon(u) s mg)) = (BFFan(u) , op)> = f ( f Bis. 1) du(8)> () .

We are now ready to characterize the Fourier transforms of bounded
bilinear forms on C*((G,) x C*((,) .

Theorem 4.7. Let K: Gy X Gy— C be a bounded separalely con-
ttnuous function, and consider the inequality

v ’f [ K6 0dus a) < oyl

where w e M(Gy), v e M(Gy), and O is a positive constant. The following
six conditions are equivalent:
(i) K 1isthe Fourier transform of some bounded bilinear form B : C*(G) X
C*(Gy) — C with ||B|| < C

(i) for all pe M(Gy) and v € M(Gy), (1) holds;
(i) for all ue Myy(Gy) and v e My(G,), (1) holds;
(iv) for all p e My (G,) and v € LXNG,), (1) holds;
(v) for all peLNG,) and v € My (Gy), (1) holds;
(vi) for all p e L)G,) and v € LXG,), (1) holds.

Proof. Tt follows at once from Lemma 4.6 that (i) implies (ii). Clearly,
(i) implies all the statements from (iii) to (vi). Assume now (iii). For all
se@,, K(s, ) is a continuocus function on ¢, and satisfies

[E6.0m0| < iy = clbr

if veMy,G,), and so K(s, ) € B(G;) (Lemma 2.1). Define ¢ :G;,—
O*(G)* by g(s) = Ty(K(s, ). Then

S

bl < 1} < Ol = Cllog(w)

Il

sup”st t) dus )dv()}: v e M, (@),

if weMyG,) (see Lemma 2.1). As o, : M(G,) — C*(G)** is injective
there is a bounded linear map F from the norm closure of w,(M ,(G,))
to O*(Gy)* such that F(w,(u) = [@(s)du(s), wue MyuG,) . Since the
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domain of F isa C*-algebra, it follows from the result of Akemann referred
to in Remark 4.3 that F is a weakly compact operator, so that F(w,(G;))
is contained in some o(C*(Gy)*, O*((,)**)-compact subset of C*((,)*.
On that set the topologies o(C*(Gy)*, C*(Gy)**) and  o(C%(Gy)*
wy(M 4(Gy))) agree, because the latter is also Hausdorff, and coarser than
the former. Thus ¢ is weakly continuous, because it is by assumption
(and Lemma 2.2) continuous with respect to o(C*(Gy)* , wyo(M 4,(Gy))) -
Since F is a weakly compact operator and ||| < C, Theorem 3.5 yields
a weakly compact operator @ : O*(@,)— C*((y)* such that ||@|| < C
and ¢ is the Fourier transform of & . We now define a bounded bilinear
form B: C*@,) x C*G,) —C by B(x,y) = {(@x,y>. Then |B|| =
ol < ¢, and for all se@,, tel,, we have

Bis,t) = Bloy(s) , wy(0))
= (DFH(wy(s)) s walt)> = <gls) s wylt))
= <T2(K(8’ ),w2(t)> = K(87t):

i.e. (i) holds. A simple modification of the preceding argument yields a proof
that (iv) implies (i). The only changes that need to be made concern the
construction of F . Now we have

’ fK(s , ) dv(t) i < CloJ || forall » € LY{,) ,

so that K(s, ) € B(Gy), and ¢: G — C*((,)* can be defined by ¢(s) =
Ty(K(s, *)) as before. The proof that || [edu| < Clul', ueMyG,)
involves this time a supremum over the measures v e Ll((/,) with
] < 1. When the roles of ¢; and ¢, are exchanged, the same proof
shows that (v) implies (i). Finally, assume (vi). Then we get at once a
bounded bilinear form B : C*((;) x C*((,) — € such that |[B|| < C
and

B(oy(u) , 0,v)) = Blu,») ffA s) dv(t) for
p e LNG,) C C¥(Gy), v e LNGy) C C*(Gy)

(recall that e.g. w,(u) is simply the canonical image of u in C*(G)**).
By Lemma 4.6,

/f (8, t)du(s) dv(t ffK dy(t) for all

w e LNGy), v el ).

Since the functions
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t%%f/ﬁ(s,t) du(s) and tk%f/K(S,t)dﬂ(S)

are continuous on @, (see the discussion preceding Lemma 4.6), this
shows that

fﬁ(s J) du(s) = fK(s ) du(s) forall pelXGy), ted,.

In view of the continuity of the functions ]§(~ , ) and K(-,t) we have

therefore é(s ,t) = K(s,t) for all se@, tely. Thus (i) holds, and
the theorem is proved.

Corollary 4.8. If K: (G X Gy— C s the Fourier transform of
some bounded bilinear form on C*(Gy) X C*(G,), the same is true of each
one of the functions (s,t)—K(s1,t), (s,t)r>K(s,t7) and (s,t)+>
K(s™,t71) on G X Gy.

Proof. Since K is bounded and continuous (only separate continuity
is needed), the corollary follows from the above theorem and the fact
that e.g.

1> 2 ;I = | > 2 0, for all >z Oy, € M y(Gy)
j=1 j=1 j=1

(see the proof of Corollary 3.6).

In the rest of this section we discuss positive-definite bilinear forms
(defined below). Such bilinear forms arise naturally in the study of stochastic
processes (Section 6).

Definition 4.9. Let 4 be a C(*-algebra and B: 4 x4 —C
a bilinear form. If B(x,a*) > 0 for all x €4, then B is said to be
positive-definite.

Theorem 4.10. Let M be a von Neumann algebra with predual
M, , and let D bea oM, M,)-dense *-subalgebra of M . For a separately
o(M , M)-continuous bilinear form B: M x M — C the following three
conditions are equivalent:

(i) Bxa*) = 0 forall xeD;

(ii) there is a Hilbert space H and a bounded linear map @ : D — H such
that B(x ,y) = (®x | dy*) for all x, yel

(iii) B s positive-definite.

Proof. Assume first (i) and define h(x,y) = B(x,y*) for v,y eD.
Then 4 is linear in the first argument and conjugate-linear in the second,
and satisfies the polarization identity 4h(x,y) = hlx + y,v + y) —
hx —y,x —y) +thlx+iy,x+1y) —ihlx —ty,x —iy), so that

by our assumption A(x,y) = h(y,x) for all «, yeD. Thus h is
a positive Hermitian form. A standard construction now yields the Hilbert
space H required for (ii). In fact, if N = {@xeD| h(x,2x) = 0}, the
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Cauchy-Schwarz inequality shows that N is a linear subspace of D,
and H is then defined as the completion of the pre-Hilbert space D/ N
equipped with the (in view of the Cauchy-Schwarz inequality well-defined)
scalar product (px|py) = h(x,y), ©, yeD, where p: D—>D|N
is the quotient map. It is immediately seen that (ii) holds with @ = p (the
boundedness of @ is a consequence of the well-known fact that B is by
virtue of the uniform boundedness principle a bounded bilinear form on
M x M). Assume next (ii). We may suppose that @(D) is dense in H ,
and thus identify @(D) with a dense subspace K of H* by defining
(@uw,&) = (§|dx), veD, teH. Then @ is by the separate
o(M , M,)-continuity of B continuous from oD, M,) to o(H ,E). We
shall consider H embedded canonically into the algebraic dual F of K .
Since F is known to be o(F , E)-complete, @ can be extended to a linear
map o M — F, which is continuous from o(M , M,) to o ,E).
As every bounded set in a Hilbert space is relatively weakly compact, @
maps the unit ball D; of D into a o(H , H*)-compact subset K of H .
Since K is also compact with respect to the coarser Hausdorff topology
o(f ,K), and D, is by Kaplansky’s density theorem o(M , M,)-dense in
the unit ball M, of M , <5(M 1) is by continuity contained in (the canon-
ical image of) K, and so & can be regarded as a bounded operator from
M into H . We now show that

(<Z~>xf<1~>y*) = B(x,y) forall x, ye M.

Clearly we may assume that || < 1, |[y|| < 1. Since @ is continuous
from o(M,M,) to oH,6E), and o(H ,6E) agrees with o(H , H*) on
bounded subsets of H (recall that B is norm dense in H#*), the restriction
@ | M, is continuous from the relative o(M , M,)-topology to o(H , H*) .
Since the involution in M is o(M , M,)-continuous, the map
(w,v) (qgu | (1;1)*) is therefore separately o(M , M,)-continuous when
restricted to M, x M, . That map agrees with B on D, x D,. Using
again the fact that D, is o(M , M,)-dense in M, , we obtain the formula
(qu | d;y*) = B(x,y) forall  and y in M, (and in M ). In particular,
B(x,a*) = 0 if xeM, and so (iii) holds. As (iii) trivially implies (i),
the theorem is proved.

Let us recall the following well-known definition.

Definition 4.11. For any set X, a function K: X x X — C is
called a positive-definite kernel if

S a(s)a(t) K(s, ) = 0

seX teX

for every finitely supported function a: X — C.
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Theorem 4.12. Let A be a C*-algebra. For a bounded bilinear form

B: Ax A— C the following three conditions are equivalent:

(i) B s positive-definite ;

(ii) there is a Hilbert space H and a bounded linear map @ : A — H such
that Bz ,y) = (@x|@y*) forall x, yed;

(iii) the canonical extension B of B is positive-definile.

In case A = O*(G) for a locally compact group G , these equivalent con-
ditions are satisfied if and only if for the Fourier transform B of B the
function (s, 1) — E(s 1) on G X G is a positive-definite kernel.

Proof. The equivalence of (i), (ii) and (iii) follows from Theorem 4.10,
when A is considered canonically embedded in 4** . (Not nearly the full
force of Theorem 4.10 is needed; since @ : A — H now has the obvious
extension @*¥* : A** —~ H  the use of Kaplansky’s density theorem can
be avoided.) Since

> als)a(t) B(s , 1Y) = Blo( > a(s) 8,) , o( 2 alt) 6)*)
seG teG seG teG
for every finitely supported function a: ¢ — C, and (M 4,(G)) is a weak*
dense *-subalgebra of C*(G)** , the second assertion is also a consequence
of Theorem 4.10.

5. Fourier transforms of regular Borel vector measures
and bounded bimeasures

The results in Sections 3 and 4 involving a locally compact group G,
or two such groups @; and G,, take on a more palpable appearance if
these groups happen to be commutative. The present section is devoted to
a study of the commutative case. Throughout the rest of this section, B is
a Banach space, (¢, G, and G, are locally compact Abelian groups, and
their dual groups are denoted by ', I'y and I, respectively. We con-
tinue to use the multiplicative notation for the group operations. The value
of a character y € I' at s € ¢ is denoted by (s,y).

We begin with a lemma dealing with two natural ways of identifying
C*(@) with Cy(I'). For each u e M(G), the functions z: I'— C and
/\i : I'— C are defined by

Ay) = f (5 7) du(s) and ji(y) = f (5, 7) duls) -

G G

Similarly, we write
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D) = f (5,7) doly) and

r

y(s) = /(s,y)dv(y) for ve M(I'), se@ .

I

’

Lemma 5.1. There is a unique isometric s-isomorphism o : C*(G)
Co(I') (resp. B: OX(G)— Cy(I')) such that a(u) = i (resp. Pu) = /v;)
forall peING)C C¥G). Wehave «*(») = T(?) and p*») = T(») for
all v e M(I') . If o: Co(I") — O\(I') is the isomorphism satisfying o(f)(y) =
S for feCyIl'), yel, then f=ocoo.

Proof. The existence and uniqueness of « and p follow from the
definition of CO*(@) and the equalities ||| = |u]|" = 21, = H/:How
u € LG), combined with the fact that both ur>g and ,uw/\j are
#-homomorphisms from L,(() onto a dense x-subalgebra of Cy(I).
Clearly, f = oo« . The equations a*(») = T(») and p*(v) = T(;) follow
from Fubini’s theorem. For example, if » € M(I") and u € L}{G) C O*(@),
we get

[ 100 duts) = o6y w0 =

G | ( [ du(s))dv(y) = [P duts,

G G

so that T-la*(») = 7.

When C(I") takes the role of C*(¢/) in accordance with the above
lemma, the two types of Fourier transforms discussed in Sections 3 and 4
can be introduced by means of integration. Let us first consider the case
of a weakly compact operator from C*(G) to E .

Let # be the Borel o-algebra of I' (i.e. the o-algebra generated by
the open subsets of I"). We call any countably additive mapping
m : B —H a Borel vector measure on I'. The set of all E-valued regular
(for the definition, see e.g. [14, p. 262]) Borel vector measures on [’ will
be denoted by M(I', E). The set of all weakly compact operators from
Co(I') to K is known to be via integration in a bijective correspondence
with M(I", B) (see e.g. Lemma 2 in [14, p. 264]). One may consult [6]
and [14] as to details and references on the theory of integration with
respect to vector measures. For example, if ¢ is a bounded continuous
complex function on I", and m e M(I', E), there is a unique element
| gdm € E which satisfies

</gdm,f> = fgd(fom) for all fe B*.
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Let o and B be as in Lemma 5.1. For each m e M(I", B), we let
m, (vesp. mg) stand for the weakly compact operator from CO*(G) to B
defined by myx) = [a(@)dm (resp. myx) = [p(x)dm) for all
x € O%(@) . The Fourier transforms s, and i, of m, and m; (in the
sense of Section 3) have the following interpretations:

Lemma 52. If me M, E), then

m(s) = /(s,y) dm(y) and my(s) = f(s,y) dm(y) forall s €@ .

Proof. By Lemma 5.1,
<f(8,y) dm(?),f>

An elementary calculation shows that Ca¥(fom),w(s)y = (mi*ws), [,
and so

f 5,7 d(fom) (y) = T-a*(fom)s)
= (a¥(fom),w(s)y forall sel, fek*.

Mo(s) = f (52 7) dm(y) .

The proof of the second formula is similar.

If @: C*(G)— E is a weakly compact operator, there is obviously
exactly one m e M(I',E) (resp. neM(I', E)) such that @ = m,
(resp. @ = m,). This fact along with Lemma 5.2 enables us to deduce
from Theorems 3.2 and 3.5, and Corollary 3.6 the following result, which is
due to I. Kluvének (see [14], Theorem 2, its Corollary 3, Theorem 3, and
the last paragraph in its proof.)

Theorem 5.3. For a function ¢: G—E the following four con-
ditions are equivalent:

(i) (resp. (ii)) there is m € M(I', E) such that

p(s) = f(s,y) dm(y) <resp. p(s) = /(s,y) dm(y)) forall s el ;

(iii) (resp. (iv)) @ is bounded and weakly continuous, and one (resp. every
one) of the sets { [@du | peM@), |al, < 1}, {Jodu| peMyG),
lal, < 1} and {Jedu| pelXG), \all, < 1} s relatively weakly
compact in K .

If these equivalent conditions hold, then ¢ 18 strongly continuous.

The latter part of this section deals with the interpretation of the
Tourier transform of a bounded bilinear form on C*(G,) X O*(G,) in the
commutative case. One is led to consider the problem of extending
a bounded bilinear form originally defined on Cy(I';) X Cy(1) to other
pairs of functions (in particular, continuous characters) on I and I7.
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Definition 54. Let X and Y be locally compact Hausdorff
spaces and B: Cy(X)x Oy(Y)— C a bounded bilinear form. Then B
is called a bounded bimeasure on X x ¥ . Let f: X—C and g: ¥ —C

be bounded Borel functions, and define f e M(X)* by

(fouy = ffdu for u e M(X),
and similarly ¢ € M(Y)*. We use the notation
1) B(f.g) = B, 9,

where B : Co(X)** x C(Y)** — C is the canonical extension of B,
and call B(f,g) the integral of the pair (f,g) with respect to the
bimeasure B . _

Remark 5.5. The existence of B was noted in Remark 4.3 (in the
present situation it suffices to use a special case of the result of Akemann
referred to in Remark 4.3, namely, the fact due to A. Grothendieck [10]
that any bounded linear operator from Cy(X) to M(Y) is weakly compact).
Obviously (1) agrees with the original meaning of B(f,g) if fe CyX),
g € Cy(Y) . Let us observe that (1) is for any bounded Borel functions f
and ¢ consistent with the notation of E. Thomas [23] (transferred to the
case of complex scalars). First of all, it is clear that B(f, ) and B(-,g)
in the sense of [23, p. 145] exist, and that ¢ is B(f, -)-integrable and f
B(-, g)-integrable. Here e.g. B(-,g) € M(X) is the bounded linear func-
tional

k»»‘/‘gdB(k, °)

on CyX) (where B(h,-) is of course the measure ki B(h,k),
keCy(Y)). If B,: Cy(X)— M(Y) is the operator h+>DB(h, ), then

BF g = B = [ 1B,
because B g = B(-,g) by virtue of the fact that
h,Bfg> = (Bh,gy = fgdB(h, -) for all b e Cy(X).
By a similar argument,
GoBrgy = [aas. ),

where B,: Cy(Y)— M(X) is defined by <h,B, k) = B(h,k),
heCyX), keCyY). Thus the equality B(f,§) = <B}*f,q> =
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{f, BF* g>, which is guaranteed by Lemma 4.1 and the weak compactness
of e.g. B,, shows that the pair (f,¢) is B-integrable in the sense of
[23, p. 145], and (1) gives the same value to B(f,¢) as the definition in
[23, p. 145]. The (complex analogue of the) proposition in [23, p. 145]
could also be used to prove the B-integrability of the pair (f, ¢) .

The following lemma relates the integral of a pair of continuous char-
acters on [} and I, with respect to a bounded bimeasure on Iy x I,
to the Fourier transforms of certain bounded bilinear forms on
C*(G) X O*((,) . For any locally compact Abelian group G and s e @,
(s,+) denotes the continuous character o> (s,y) on the dual group
of ¢.

Lemma 5.6. Let B be a bounded bimeasure on I'yx I'y. Let us
define four bounded bilinear forms on C*(G;) x C*(G,) by

Boc,oc(x > y) = B(“‘l(“’) H 062(?/)) ’ Ba,ﬁ(x > y) = B(a’l(x) ’ /32(?/)) ’
By .2, y) = B(Bi(x), ax(y) » Bypl@,y) = B(By(x), a(y))

where o, ;1 C*G,) —Cy(I7}), j = 1,2, correspond to the isomorphisms
« and B in Lemma 5.1. Then the Fourier transforms of these bilinear forms
satisfy

B((s,),(t,) = By,(s7, ) = B, (s, 1)
= Eﬂ,m(s , ) = ﬁﬂ,ﬂ(s JU) forall se@Gy, t el,.
Proof. We prove, for example, the equation
Bl(s, ), (6, 7)) = Byy(s™,0).
For s e@,, let seM(I'))* be defined by

G = [Enoe), veur.
Then s = of*(w,(s)), because by Lemma 5.1,
<0(ik*(w1(8*1)) V) = <w1(8_1) ’ a;k(v)> = <(,()1(8_1) s Tl ;"\>

= (s = f(s,y) dv(y) for all v e M(I7) .

Similarly, B3*(wy(t)) = t,if te G, . It is easily seen that Bva‘ﬁ(u , V) =
B(af*u , px*v) for all w e C*(G)**, v e C*(G,y)**, so that

B((s, ), (t,) = B(G,T) = B, yloy(s7),05(t) = B, y(s,1).

The next result is the commutative version of Theorem 4.7 in con-
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junction with Theorem 4.5 and Corollary 4.8. Its proof is an obvious
application of the preceding lemma.

Theorem 5.7. For a function K: Gy X Gy—C and constant
C > 0, the following four conditions are equivalent:
(i) (resp. (ii)) one (resp. every one) of the formulas

K(s,t) = Bl((s s )5 (8, 0), K(s,t) = Bz((s’ F (tﬁl’ ) s
K(s,t) = By((s™, ), (t,"), K(s,t) = By((st, ), ", ),

se@,, tely, iswvalid for some bounded bimeasure
B;: Oy(I') X Cy(I'y) — C with |Bj| < C, j =1,..,4;

(iii) (resp. (iv)) K s bounded and separately continuous, and one (resp.
every one) of the conditions (ii) through (vi) in Theorem 4.7 is satisfied when

Il = VAl Il = 17l -
If these equivalent conditions hold, then K is continuous with respect to the
product topology of Gy X G, .

The last theorem in this section characterizes positive-definite bounded
bimeasures. Before stating it, let us recall the well-known fact that if X
is any locally compact Hausdorff space, and 4 denotes the C*-algebra
of bounded Borel functions on X (with pointwise algebra operations, the
supremum norm, and complex conjugation f Hf as the involution),
then the injection f }—>f (where f has the same meaning as in Definition
5.4) from A to the enveloping von Neumann algebra M(X)* of C(X)
preserves the sx-algebra structure. One way of seeing this is to note that
the involution is weak* continuous and multiplication separately weak®
continuous in M (X)* , then to show that the corresponding statements are
true of the operations of A and the topology o(4 , M (X)), and finally to
use the fact that Cy(X) is o(A4, M(X))-dense in 4 and the restriction
of f%f to Cy(X) is a x-homomorphism. The separate o(4 , M(X))-
continuity of the pointwise multiplication in 4 is clear, because

[rodu = [tigw for f.gea, pem),

where g p is the measure h> [ (hg)du, h € Cy(X). The o(4d, M(X))-
continuity of fi>f follows from the identity

ffdﬁszdﬁ’ fed, peMX),
where u e M(X) is the measure &> {u by, he Cy(X) . This identity
can be proved e.g. by interpreting u as a set function and writing
U = pq + 1 uy forreal measures py, uy € M(X),sothat u = u; — ip,.
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Theorem 58. Let I' be a locally compact Hausdorff space and B
a bounded bimeasure on 1I'x I'. Let D be any x-subalgebra of the C*-
algebra of bounded Borel functions on I such that, for w e M(I'),

/fcl,u = 0 forall feD

only if u = 0. Then the following two conditions are equivalent:
(i) B(h,h) = 0 for all heCyl);
(i) B(f,f) = 0 forall feD.

If I' is a locally compact Abelian group with dual group G, then e.g.
(i) holds if and only if the function (s, t)r=B((s, ), *,*) on GXG
s a positive-definite kernel.

Proof. In view of the preceding discussion, and the fact that the image
of D (and of Cy(I")) under the map f»—>f is weak* dense in M (I")*,
the first assertion is an immediate consequence of Theorem 4.10 and the
definition of B(f ,}—) . The second assertion follows from the first, when D
is taken to be the set of all trigonometric polynomials on 1.

6. Applications to stochastic processes

In the present section, as in the previous one, we apply to a special case
the theory presented in Sections 3 and 4. This time we are in the non-
commutative situation again, but our operators and their Fourier trans-
forms have their values in a Hilbert space. Throughout, ¢ is an arbitrary
locally compact group, and H (unless otherwise specified) is any Hilbert
space.

Definition 6.1. Every function ¢: ¢ — H is called a stochastic
process, and the function (s,t)r>R(s,t) = (p(s) | gl) on G X G is
called its covariance function.

This terminology is of course modelled on the case where H is the
(complex) space

L9, ,P) = {felQ,,P)] ffdP = 0}

for some probability space (2, o/, P). Nearly all of the ensuing discussion
is independent of this kind of interpretation, but we continue to use the
suggestive language of probability theory. Another name for ¢: G — H
would be random field.

The next definition recalls a notion introduced (with R in place of G)
by S. Bochner [2]. We limit our attention to weakly continuous processes.
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Definition 6.2. A bounded weakly continuous stochastic process
@: G— H is said to be V-bounded if the set

{fsodul peLXG), llpl” < 1}

is bounded in H .

Remark 6.3. Since every bounded set in I is relatively weakly compact,
Theorem 3.5 shows that a bounded and weakly continuous stochastic
process ¢ : G — H is V-bounded if and only if ¢ is the Fourier transform
of some bounded (hence weakly compact) linear operator @ : O*(() — H .
By Theorem 3.2, & is then unique, and ¢ is strongly continuous. By
Theorem 3.5 again, in the above definition L(G) could be replaced by
M(@) or M, (G). This statement concerning M, (G) has in the case of
H = L}, ,P) the following reformulation:

Theorem 6.4. Let (2, ,P) be a probability space and
p: G— L2, ,P) a weakly continuous stochastic process. Then ¢ is
V-bounded if and only if there is a constant C > 0 such that for every finile
set  {81,....,8,} C G and every wvector z = (zq,...,2,) € C" for which
I Z}’lej 651, I" < 1 we have E |z-ul? < C where z-u s the scalar
product of z with the random vector (properly speaking, equivalence class)
u o= (p(sq), ... 9(8,)), and E denotes expectation.

Proof. It suffices to observe that

E|zu? = f

The following result generalizes Theorem 3.2.6 in [17, p. 38].

Theorem 6.5. A weakly continuous stochastic process ¢ : G — H
is  V-bounded if and only if there is a bounded bilinear form B : C*(G) X
C*(@) — € whose Fourier transform B is related to the covariance Sfunction
R of ¢ by R(s,t) = B(s,t), s, teG. If this is the case, then B
1s uniquely determined and positive-definite. In fact, B(x ,y) = (@ x| @ y*)
for all x, yeC*QG), where ®: C*G)— H s the bounded linear map
having @ as its Fourier transform.

Proof. Suppose that ¢ is V-bounded, and let the bounded operator
@ C*@G)— H satisfy @ = @ . Define B(x,y) = (@] dy*) for all
@, y € C*(G) . The bilinear form (u , v) = (@**u | @**v*) on C*(G)** X
C*(G)** is separately weak* continuous and extends B, so that it
coincides with B . In particular, ﬁ(s LY = (DFF(s) | @FF(w(t71)*) =
(p(s) | (t)) = R(s,t), s, t €@ . By Theorem 4.5 B is unique. Assume,
conversely, that B: C*(G) x O*(G) — € is a bounded bilinear form such

that B(s,t) = R(s,t), s, t €G. Then

2 |12

dP =

é 2 ¢(s)) é 2 ¢(s)) ,

|
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and so @ is V-bounded (Remark 6.3).

Adapting a definition from [17, p. 29], we introduce the following notion:

Definition 6.6. Let ¢: (—H be weakly continuous and
V-bounded, and let @ and B be as in Theorem 6.5. Then B is called the
covariance bilinear form of @ (or of ¢ ).

Remark 6.7. Combining Theorem 6.5 with Theorem 4.7 and Corollary
4.8 one obtains several characterizations of the V-boundedness of a bounded
weakly continuous stochastic process ¢ : ¢ — H in terms of its covariance
function R, analogous to Corolloary 3.2.5 in [17, p. 37]. For example, ¢
is V-bounded if and only if the set

< 1}
is bounded.

In the rest of this section we shall discuss the notion of stationarity
and the closely related subject of orthogonally scattered operators and
bilinear forms.

Definition 6.8. A stochastic process ¢: G —H is said to
be (wide-sense) left (resp. right) stationary, if its covariance function R
satisfies R(s,t) = R(us,ut) (resp. R(s,!) = Rsu,tu) for all
u, s, te@@ or, equivalently, if there is a function p: ¢/ — C such that
R(s,t) = o(t's) (resp. R(s,t) = o(st7t)) for all s, te@.

A synonym for “stationary’ in this definition would be homogeneous.
Both in the case of left and right stationarity the function o is obviously
positive-definite. It is a well-known elementary fact that ¢ is strongly
continuous if and only if p is continuous, and the weak continuity of ¢
suffices for this to be the case. In the standard Abelian situation, o is
utilized in the construction of the spectral representation of a stationary
(weakly) continuous ¢ (see e.g. [3, p. 129]). In view of Remark 6.3 and
Theorem 6.5, the next theorem transfers that classical representation
theorem to the noncommutative case. The first sentence in our theorem
generalizes an observation made by S. Bochner [2, p. 21] with R in place
of G.

’ n

2> w0,

k=1

A

Im
1
|

2% (Ssji

17=1

.

{]_21 lzj Wy, R(Sj ) tk)
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Theorem 69. If ¢: G—H is weakly continuous and left or right
stationary, then it is V-bounded. A weakly continuous V-bounded stochastic
process @ : G—H s left (resp. right) stationary if and only if there is
f € C*(GY* such that the covariance bilinear form B of ¢ satisfies B(x ,y) =
(foyay (resp. Blx,y) = {f,xy)y) forall x, yeC*G). Such a func-
tional f is unique and necessarily positive; in fact, f =T o, where o 1is as
wm Definition 6.8.

Proof. We treat the case of left stationarity; the other case requires
only obvious formal changes. Let ¢ be weakly continuous and left
stationary, and let g : G — C be the continuous positive-definite function
satisfying (p(s) | @(t)) = o(t's), s, t €@ . Define the bounded bilinear
form B: C¥(G)x C*G)—C by Bx,y) = {f,yx), where f is the
positive functional 7' ¢ € C*(G)* . Since (u,v)+>{f,vu)y is separately
weak* continuous on C*(G)** x C*(GF)** and extends B, it is the same

as the canonical extension B of B, and so we get

f o1 s)
), s, te@.

Thus ¢ is V-bounded by Theorem 6.5. Since B is by definition the
covariance bilinear form of ¢, the “only if”” part of the second sentence
is also proved. Suppose now that ¢ is weakly continuous and V-bounded,
and fe C*@)* satisfies B(x,y) = {f,yxy, v, yeC¥(), where B
is the covariance bilinear form of ¢ . Define ¢ = T-'f. As above, we find
that B(s,t) = o(t1s), ie. ot's) = (p(s)]@t) for all s, te@.
Thus ¢ is left stationary, and the expression for f has been established.

If @: C*@)— H is a bounded linear map, it follows from the above
theorem that the left or right stationarity of the Fourier transform of @
implies that @ 1is ‘“‘orthogonally scattered” in a sense to be presently
specified. Orthogonally scattered operators @ : C*(G)— H are below
given a characterization which shows, in particular, that in the Abelian
case this statement can be reversed. In the Abelian case these results are
well known in various disguises (see e.g. [3], [13], [15], [16], [19]). Let us
begin our study of this theme with a lemma.

Lemma 6.10. Let F be a topological vector space, which s also an
algebra with a separately continuous multiplication (u ,v)+—>uv and identity
element 1. Let & C F be a set of pairwise commuting tdempotents such that
efeé& and 1 —eeé& whenever e, feé&. If By: FxF—C is a
separately continuous bilinear form such that By(e ,f) = 0 for all e and
f in & with the property ef = 0, then Byu,v) = Byuwv,1) forall u
and v wn the closed linear span of & .

Proof. If e, fe &, then

B(s,t1) = Blos) , o)

= o(tts) = (p(s) | @
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By(e,f) = Byle(1 —[),f) + Bolef,f(1 —e)) + Bylef.fe)
= Bo(ef?ef) = Bo(efvef) + Bo(efa I - ef)
= Byef.,1).

Our assumptions now imply the assertion at once.

In order to motivate Definition 6.13, we present a theorem on bimeasures.
The equivalence of (i), (ii), (iii) and (v) in the theorem has been obtained
by different methods (and in the case of a not necessarily bounded bi-
measure which obviously requires a modification of (iii); as to this point
see, however, Remark 6.12 below) by H. Niemi [18]. We give a proof,
because this can be done fairly quickly by using the canonical extension
B of a bounded bimeasure B . The characteristic function of a set S is
denoted by & . For the proof of the theorem, recall the discussion preceding
Theorem 5.8.

Theorem 6.11. Let X be a locally compact Hausdorff space, and B
a bounded bimeasure on X X X . The following five conditions are equivalent:
(i) B(f,q9) = 0,4 f, g: X — C are continuous functions with disjoint
compact supports;

(ii) B(ég,,&k) = 0, of K, and K, are disjoint compact sets in X ;
(iii) B, ,&) = 0, if S, and S, are disjoint Borel sets in X ;

(iv) ]§(e L) = 0, 4f e, feCyX)* are projections such that ef = 0;
(V) there is a (necessarily unique) measure u € M(X) such that B(f,g) =
s fgy forall f, geCyX).

Proof. Assume first (i). Let K; and K, be disjoint compact subsets of
X . Recall from Definition 5.4 the notation f for the element of M (X)*
determined by a bounded Borel function f: X — C. Let U, and V, be
disjoint open neighborhoods of K; and K, , respectively. When the set
% of the open sets U satisfying K; C U C U, is directed by the natural
order opposite to inclusion, and there is assigned to each U e % a con-
tinuous function f, : X — [0, 1] with compact support such that f(s) =1
for all s € K; and supp (fy) C U, it follows from the regularity of the
measures in  M(X) that the mnet ( fU)UE% converges to §~K1 in
o(M(X)*, M(X)). Similarly, we find a net (g,), .y of continuous functions
whose supports are contained in V, such that the net (¢,), .y converges
to EKz in o(M(X)*, M(X)). Since always E(]N”U ,Jy) = 0, the separate
weak™® continuity of B now shows that Bk ,&k) = JE:’(EKl , EKQ) = 0.
Assume next (ii), and let §; and S, be disjoint Borel sets in X . This
time we consider the set % of the compact subsets of §; directed by
inclusion, and note that by the regularity of the measures in M (X) the

net (EK)KE%/ converges to & in o(M(X)*, M(X)) . Choosing analogously
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a net convering to 252 and using the separate weak* continuity of B
we see that B(& , &) = 0. Assumenow (iii). When we take F' = M(X)*
with the weak* topology, I, B, = B,and & = { §~5 | S C X is a Borel
set } satisfy the hypotheses of Lemma 6.10. Since & separates the points

of M(X), its linear span is weak* dense in M(X)*, and so B(u,v) =

Buwv,1) for all uw, veMX)*. We define ueM(X) by <{u,f) =
B(F,1), feCyX). Then <u.fg> = B(f§.1) = B(F.§) = B(f.9)
for all f, g eCyX), ie. (v) holds, the uniqueness of u being obvious.
Since (iii) implies (v), of course (iv) does so, too. Finally, it is clear that if
(v) holds, then B(u ,v) = (uwv,puy for all w, veM(X)*, because
(u,v) = uv,u> is separately weak* continuous. Thus (v) implies all the
statements (i) through (iv).

Remark 6.12. Tt is not difficult to extend (the appropriate form of) the
above theorem to cover the case of not necessarily bounded bimeasures.
Let #(X) = {f: X —C| f is continuous and supp (f) is compact }
be regarded in the usual way as the locally convex inductive limit of the
Banach spaces # (X ; K) = {fex(X)| supp (f) C K} where K ranges
over the compact subsets of X . For example, if B: #(X)x #(X)—C
is a bimeasure (i.e. a continuous bilinear form) which satisfies B(f;,f,) = 0
when f,, f, € #(X) have disjoint supports, there is a Radon measure
w: A (X)—C (ie. a continuous linear functional) such that B(f,,f,) =
w(fyfo) forall f,, f, e (X). To see this, choose for each fe #'(X) some
g € #(X) which has the value 1 on an open set containing supp(f) and
define u(f) = B(f,g). From the assumption it follows that this definition
does not depend on the choice of ¢. Clearly, u is linear and continuous,
and Theorem 6.11 can be used to prove that wu(f,f,) = B(f,,f,) for all
fi, foex(X).

In view of Theorem 6.11, the following definition is consistent with
Definition 21 of [18].

Definition 6.13. Let 4 be a C*-algebra and B: A x4 —C

a bounded bilinear form. If its canonical extension B satisfies é(e ) =0
for all projections e, fe A** such that ef = 0, then B is said to be
orthogonally scattered. A bounded linear map @ : A4 — H 1is said to be
orthogonally scattered, if the bilinear form (x,y)— (Px|@y*) is
orthogonally scattered (or, equivalently, if (@**e | @**f) = 0 whenever
e, feA** are projections such that ef = 0).

Theorem 6.14, Let @: O%(G)— H be a bounded linear map and
B its covariance bilinear form, i.e. Bx,y) = (x| @y*), v, y € O%G).
Then @ is orthogonally scattered if and only if there is fe C*(G)* such that

B(u,v) = {uv,f> whenever w and v are commuting normal elements of
C*(GY** . If this is the case, then f is a uniquely determined positive func-
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tional, and the continuous positive-definite function T1f = o on @
satisfies

(@(s) | D) = ols i)

whenever s and ¢ are commuting elements of G .

Proof. Suppose that @ is orthogonally scattered and define f e C*(G)*
by <f,x) = E(;E, 1) where x € C*(G)** is the canonical image of
x e C*(G) and 1 is the identity element of C*(G)**. Then <(w,f)>
E?(w, 1) for all w e O*(G)**, because (the canonical image of) C*(() is
weak* dense in C*(G)**, and B is separately weak® continuous. Let u
and v be commuting normal elements of C*(G)**, and denote by &
the set of projections in the (commutative) weak* closed s-subalgebra
M of C*(G)** generated by u, v and 1. Itisa well-known consequence
of spectral theory that the linear span of & is o(C*(G)** , O*(()*) -dense
(even norm dense, but we do not need this fact) in M (see e.g. [4, p. 3],
[20, p. 26]). Thus we can apply Lemma 6.10 to /' = CO*)** and

By =B, and conclude that <wv,f) = Buv,1) = Bu,v). It is,
conversely, clear that the existence of f with the stated property implies
that @ is orthogonally scattered. Furthermore, only one linear functional

feU¥@E)* can satisfy E(u,v) = (uw,f> for all commuting normal
elements of C*(G)**, because we have w = w + iv with self-
adjoint w, wveC*G)** for any w eC*G)**, so that <(w,f) =
{uw+rv)l,f> = ]§(u, 1) + ifi(v, 1) = l}(w,l). Since every u > 0
in O*(@)** has the form u = ¢*> with v e C¥(@)**, v > 0, u,f> =

Bw,v) = (&% | d**) > 0, ie. f is positive. Thus o = T-1f is
a continuous positive-definite function on ¢'. If s, (e commute,
then w(s) and (') are commuting unitary, hence normal, elements

of C*(@)**, and so

e(st7) = (f,o(s) o)) = Blaw(s), o))
= (D% w(s) | 2**o(t)) = (D(s) | D)) -

References

[1] AKEMANN, C. A.: The dual space of an operator algebra. - Trans. Amer. Math.
Soc. 126, 1967, 286—302.

[2] BOCHNER, S.: Stationarity, boundedness, almost periodicity of random-valued
functions. - Proceedings of the Third Berkeley symposium on mathe-
matical statistics and probability. II, University of California Press,

. Berkeley —Los Angeles, 1956, 7—27.

[3] CRAMER, H., and M. R. LEADBETTER: Stationary and related stochastic proc-

esses. - John Wiley & Sons, Inc., New York—London—Sydney, 1967.



Fourier transforms of noncommutative analogues of vector measures 385

[4]

[5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

DIXMIER, J.: Les algébres d’opérateurs dans l’espace hilbertien (Algebres de
von Neumann). 2iéme éd. - Cahiers scientifiques, Fas. XXV, Gauthier —
Villars, Paris, 1969.

DIXMIER, J.: Les C*-algébres et leurs représentations. 2iéme éd. - Cahiers
scientifiques, Fas. XXIX, Gauthier— Villars, Paris, 1969.

DUNFORD, N. and J. T. SCHWARTZ: Linear operators. Vol. I: General theory. -
Pure and Appl. Math., vol. 7, Interscience, New York, 1958.

EBERLEIN, W. F.: Characterizations of Fourier-Stieltjes transforms. - Duke
Math. J. 22, 1955, 465—468.

EvMARD, P.: L’algébre de Fourier d’un groupe localement compact. - Bull.
Soc. Math. France 92, 1964, 181 —236.

CLICKSBERG, I.: Weak compactness and separate continuity. - Pacific J.
Math. 11, 1961, 205—214.

GROTHENDIECK, A.: Sur les applications linéaires faiblement compactes
d’espaces du type C(K). - Canad. J. Math. 5, 1953, 129—173.
GROTHENDIECK, A.: Résumé de la théorie métrique des produits tensoriels
topologiques. - Bol. Soc. Mat. Sio Paulo 8 (1953), 1956, 1—79.
Hewrrr, E., and K. A. Ross: Abstract harmonic analysis. Vol. 1. - Springer-

Verlag, Berlin—Gottingen— Heidelberg, 1963.

KARHUNEN, K.: Uber lineare Methoden in der Wahrscheinlichkeitsrechnung. -
Ann. Acad. Sci. Fenn. Ser. A T 37, 1947, 1—179.

K1uvANEK, I.: Characterization of Fourier-Stieltjes transforms of vector and
operator valued measures. - Czechoslovak Math. J. 17 (92), 1967,
261—271.

LOI::VE7 M.: Probability theory. 3rd ed. - D. Van Nostrand Company, Inc.,
Princeton, N. J.—Toronto— London—Melbourne, 1963.

MasANT, P.: Orthogonally scattered measures. - Advances in Math. 2, 1968,
61—117.

NiemI, H.: Stochastic processes as Fourier transforms of stochastic measures. -
Ann. Acad. Sci. Fenn. Ser. A I 591, 1975, 1—47.

NiemI, H.: On the support of a bimeasure and orthogonally scattered vector
measures. - Ann. Acad. Sci. Fenn. Ser. A T 1, 1975, 249—275.

Niegmi, H.: On stationary dilations and the linear prediction of certain
stochastic processes. (In preparation.)

RuUDIN, W.: Fourier analysis on groups. - Interscience Publishers, New York—
London, 1962.

SAKAT, S.: C*-algebras and W*-algebras. - Springer-Verlag, Berlin —Heidel-
berg—New York, 1971.

SCHAEFER, H. H.: Topological vector spaces. - Macmillan, New York, 1966.

THOMAS, E.: L’intégration par rapport a une mesure de Radon vectorielle. -
Ann. Inst. Fourier (Grenoble) 20:2, 1970, 55—191.

University of Helsinki
Department of Mathematics
SF-00100 Helsinki 10
Finland

Received 22 July 1975



	IMG_0011
	IMG_0012
	IMG_0013
	IMG_0014
	IMG_0015
	IMG_0016
	IMG_0017
	IMG_0018
	IMG_0019
	IMG_0020
	IMG_0021
	IMG_0022
	IMG_0023
	IMG_0024
	IMG_0025
	IMG_0026
	IMG_0027
	IMG_0028
	IMG_0029
	IMG_0030
	IMG_0031
	IMG_0032
	IMG_0033
	IMG_0034
	IMG_0035
	IMG_0036
	IMG_0037
	IMG_0038
	IMG_0039
	IMG_0040
	IMG_0041

