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MODULE INEQUALITIES FOR QUASIREGULAR
MAPPINGS

CABIRIA ANDREIAN CAZACU

The problem of finding the n-dimensional generalization of the theory
of complex analytic functions in the plane gave rise to different important
research fields among which the relatively recent theory of quasiregular
mappings is one of the most successful. This theory has its roots in the theory
of quasiconformal mappings (i.e. quasiconformal homeomorphisms) and in
Stoilow’s topological theory of analytic functions. It was first developed by
Ju. G. ReSetnjak [8]—[10] and by O.Martio, S. Rickman and J. Vaiséla
[2] - [4].

As in quasiconformality, the module of curve or surface families con-
stitutes a useful instrument in the study of quasiregularity. Several authors,
0. Martio, S. Rickman and J. Viisala [2], E. A. Poleckii [6], J. Vaisala [11],
and others, obtained different generalizations of Grétzsch module ine-
qualities from 2- and n-dimensional quasiconformality to quasiregularity.
These results permitted one to characterize quasiregular mappings in terms
of modules and to establish numerous properties for them.

The purpose of our paper is to prove other module inequalities which
improve the above mentioned ones in the following respects:

1. Using the module with weight we need not use global dilatations, and
the deduced bounds are sharper. In this way we obtain also equality cases.
The results are given for the module with order, too.

2. The inequalities and equalities we prove are valid not only for curves
but also for ¢-dimensional surfaces (¢ = 2,...,n—1).

3. They apply to a more general class of mappings than that of the quasi-
regular mappings, especially because they need no finite global dilatations.

Our method is based on results and techniques we gave in [1], and the
equality cases we obtain extend the module transformation formula of [1]
for quasiregular or more general mappings.

Our considerations may be naturally applied to capacity, which is closely
related to module [11].
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18 CABIRIA ANDREIAN CAZACU

1. Preliminaries

We use the same definitions and notations as in [1] and [2].

We work in R» with the Lebesgue measure and integral and use the
following abbreviations: a.e. for almost everywhere; a. for almost; 1. for
local or locally; g- for g-dimensional, ¢ = 1, 2, ..., n, in expressions like
g-measure, g-element, g¢-surface (the case ¢ = 1 in the last expression
corresponding to the curves). If B is a g-measurable set in R7, ¢ =
1,..,n, its g-measure will be designated by u,(H).

G will be a domain in R* and f: G — R* a non-constant, continuous
mapping. The images under f or different notions related to the images
will be designated by a = . We shall write 2* = f(z) for x € @; G* = f(Q);
0* = f(C) for C a g-surface in G; and do,, dof and do,, do} for the
n-dimensional volume element in @ and G* or the ¢-dimensional area
element on € and C*, respectively.

1.1.  Local dilatations in regular points. We begin with the following

Definition 1. A point x €@ is regular with respect to f, if f
is differentiable at 2 and has non-vanishing Jacobian J(x,f) = J, =
do¥|do, .

We suppose f to be sense-preserving, hence J(z,f) = 0.

Let f'(x): R*— R» be the differential of f at z and A(f,x) the
affine transformation associated to f at z,

A(f,2): X eR > f(z) + f'@)(X—x) e Br .

It is well known that A(f,x) transforms a ball B»(z,1) with the
center & and the radius 1 in the ’characteristic ellipsoid” E»(x*, f'(x))
with the center 2* and the semi-axes a; > ... > a,, where

@ = |f'@)] = max |f'@h], a, = [f'@*) = min |f(@)|

[h]=1 |h]=1

(presoiistelip ad ga oan pup bn (ih?)”z) and

e Y2 AoV LY 2 ol a)!
One defines the inner dilatation
J(@,f) Ay Cy_y pal B (@, f'(2))]

Hy(f'(x)) = B fgu)yBed vodfmkaosd vilufBtetgdiqd

n

the outer dilation

el a [ B, IS (@)]1)]

S = T e o B @ @]
and the linear dilatation H = a,/a, of f at x (or of f'(z)).
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Besides these dilatations we considered gq-dimensional dilatations
([1, § 2]) in the transformation formula for the module of g-surface families.
Such a dilatation was introduced by R. Nevanlinna in [5] for m = » and
a family of concentric (n—1)-spheres.

Let C be a g¢-surface through x with a tangent g-plane IT at x.
The restriction f|IT is g¢-differentiable at « (in an evident sense) and has
A(f,x)[IT as the associated affine mapping with the Jacobian J, =
do}|do, . We define the g-dimensional dilatation of f at with respect to
C or IT and with respect to m > 0 (a number equal to the Fuglede order
of the module in the transformation formula and equal to 7 in the usual
case)

(1) d = dycal®) = 7.

We drop the indices f, C or m which are evident, in particular
m if m=mn.

The geometric interpretation of d is elementary: A(f,z) transforms
the ¢-ball Bi(x,1) = B*(x,1) N IT ina g-ellipsoid Ej(x*, f'(x)) with
the semi-axes v; > ... = v, [1, p. 97]. Then

m

(vl...vq)?
& ot a,...a,
and if one puts
m—g e
NEPHERe W (a...a) *
—(m—q)( £/ = 2 A ol e
B = e a L wet
it follows
(2) Hpffifai<nd = HGFh

More precisely, H;, and H,, should be written with an index m,
too. If ¢ =1 and m = n, then H}3'=H,, Hy = H,.

Usually in this paper f will be regular n-a.e. in G and through n-a.
every point x € G will pass one and only one g-surface C of the considered
family C = {C} such that we shall have a function d defined n-a.e. in
G , which expresses the dilatation of f with respect to C better than the
global constants generally used.

1.2. Quasiregular mappings. We recall the following characterization

([2] - [4D)-
Definition 2. A mapping f: G — R* is quasiregular if
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1) f is ACL" (absolutely continuous on lines with 1. L*-integrable
partial derivatives) in G, and
2) there exists a constant K, 1 < K < oo, such that

If @l < KJ(@=,f)
holds for a. every z €@ .

According to Ju. G. ReSetnjak [9], [10] a quasiregular mapping is
either constant or sense-preserving, discrete and open; it is differentiable
n-a.e. in G and has the property (N).

The branch set B, of f has a dimension <n-—2.

One defines the global dilatations

Ko(f) = ess i Hy(f'(x)) and Ki(f) = ess b H(f'(x))
for which

IF@I" < Ko(NJ@.0),  J@,f) < EAf)Uf' (@)

n-a.e. in G and the maximal dilatation K(f) = max [K,(f), K,(f)] .

Similarly one defines K, ,(f), K; ,(f) starting from H,, and H, ,
respectively.

Definition 3. A quasiregular mapping is K-quasiregular for
each constant K > K(f).

Definition 4. A homeomorphism f: G —G* is called a (K-)
quasiconformal mapping if it is (K-)quasiregular.

If m =n and f is K-quasiregular, we have Bodlry R 7 s
min (K?* | KY0—a)

1.3. Module inequalities for quasiregular mappings. We shall work
with the following definition of the module (Ahlfors and Beurling, Fuglede,
Ohtsuka):

Definition 5. Let ¢ be an integer, 1 <g<n, C = {C} a
family of g-surfaces in the domain G, m a positive number, and z a
function which is defined n-a.e. in G, finite, positive and measurable.
We denote by A(C) the family of all functions o with the following
properties: o is defined in G, non-negative and measurable; for every
surface C on which the measure and the integral are defined, we have

/quoq =

c
Further we write

Aq;n,m(G) o /ngm dO’n.

G
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The module of order m and with weight & of the family C is by definition

Mn, M(C) = inf AQ;J‘I, m(G) 3
ee A

We drop the index m if m =%, and @ if w = 1.
One knows that the K-quasiconformal mappings satisfy the Grétzsch
inequalities
K7 M(C) < M(C*) < KM(C)

for each curve family C in G' and can be characterized by this property
(or by weaker properties, if one uses only certain curve families and only
a part of the double inequality above). More precisely,

M(C) M(C*)
KO(f) 55 sgpm’ Kl(f) = Slclp M(C)

for every curve family C in @ . Thus,
(3) Ko(f) M(C) < M(C*) < K,(f) M(C).

The problem of extending such inequalities to non-constant quasi-
regular mappings has been studied by several authors. If we renounce the
injectivity of the mapping it becomes natural to introduce in these ine-
qualities a factor which expresses the multiplicity.

One uses for instance the multiplicity functions

(@, foed). = card fat(atim A
where A c @ and a2* € R* and
N(f’A) = SHPN(x*!f’A)‘
x*e R"

Let us recall some of the results obtained for a non-constant quasiregular

mapping f:
Theorem of Martio— Rickman — Vaisala ([2, 3.2]).

(4) M(C) < N(f, A4) Ko(f) M(C¥)

for each Borel set A c G with N(f,A) < co and each family of paths
G an Az
Poleckii’s Theorem ([6, Theorem 2]).

K

(5) M(C*) < WM

(&)

for f K-quasiregular, A a normal domain of f in G (i.e. @ bounded domain
A such that c1A C G and f(84) = 8f(A)), C* a family of injective paths
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in f(4) and C the set of all paths in A with foCc C*. (As in [11],
foOc O* means that foC = C*|I, I a subinterval of the definition
interval of O*). According to Vaisild one can put K,(f) instead of K

in (5).
Vaisala’s Theorems ([11, §3]).
(6) M) < Ef%M(F),

where either

I. T isa path family in G, I' a path family in R* and m a positive
integer with the following properties: There is a set Ky, C G of measure zero
such that for every path B: I— R* in I there are paths o« , ..., xy in
I such that foa,Cc B, 1 =1,..,m, and such that for each x € G\ E,
and tel, card{¢| o) =2} < 1;
or

II. T is a path family in G, I' = I'* = f(I'), m s a positive
integer and f winds every path in I' m times around itself ([11, p. 9]).

2. Some new module inequalities

2.1. In this paragraph we shall try to improve the results mentioned
above by means of the module with weight. This device permitted us to
obtain in [1], under certain conditions concerning the considered family
C of g-surfaces and the applied homeomorphism f: G — G* , the module
transformation formula

(7) Mn‘,m(C*) = Mmi"‘,m(c) ’ n* == of—l )

i.e., an equality instead of Grétzsch inequalities.

Let us recall these conditions given in [1]:

«) f is differentiable »-a.e. in G .

B) f and f! satisfy the condition (N) (or equivalently f is 1. bi-
measurable in G ).

y.l) The family C covers G with the possible exception of a set of
measure zero such that the function d = d, ., is well defined n-a.e. in
G, positive, finite and measurable.

7.2) With the possible exception of a subfamily Cyc C lying in
a subset of G with n-measure zero, measure and integral are well defined
on C and C* = f(C); f|C and f-!|C* satisfy the condition (N); f is
differentiable g-a.e.on C'; J, existsq-a.e.on C' and is l.integrable on C ;
and for each function A*, which is defined g-a.e. on C* , non-negative,
finite and measurable, the transformation formula



Module inequalities for quasiregular mappings 23

(8) W do* = [ (W*of) J,do,
i)

holds. Evidently, if the constants K, , and K, , are finite, in particular
if f is quasiconformal, (7) implies

KO_,(;t-q)(f) Mn,m(c) S Mn*,m(c) S K‘(Ir,nq—q)(f) Mn, m(C) .

(More general conditions about the family C and the exceptional family
C, are given in [1].)

In order to obtain module inequalities for non-constant quasiregular
mappings we shall consider not only the dilatations d corresponding to the
family € but local multiplicity functions, too:

N;l:(x*) o N(x*,f,G), Nn o Nn(x) = N:;k(f(x))’
N, = N(x) = N(f(x),f,0) forzelC,

and

BV

&N

(9) 'R= 1’;‘,c,m(a”) = ”Z_\qf“'

We shall use the transformation formula for integrals ([7, p. 364,
Theorem 3])

10 [ HHe) N g G o = [ (HEf)e) T, @) do,,

G* G
true if f is a continuous, bounded, n-a.e. differentiable mapping, which
satisfies the condition (N) and has a l. integrable Jacobian, and if H* is
a non-negative, finite and measurable function n-a.e. in G*.

Theorem 1. Let C be a q-surface family in G, m> 0, and
f: @—@G* a mapping such that

«,) f is differentiable n-a.e. in G and J, is l. integrable in G .

B1) [ satisfies the condition (N) in G and N,(x) < o n-a.e. in G.

y:.1) as ».1) above.

71.2)  With the possible exception of a subfamily C, CcC lying in a
subset of G with m-measure zero, measure and integral are well defined on
C and CO* = f(C); f is q-a.e. differentiable on C, J, is l. integrable
on O, fIC satisfies (N) and N,(x) < o g-a.e. on C; and for C and
each function h* as in y.2) above
(11) f h*(x*) N (a* ,f, C) dof = (h* o f)(x) J (%) da, .

G* C
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8,) The functions n* , 7w = a*of and v are well-defined n-a.e. in
G* or G, respectively, they are positive, finite and measurable.
Then

(12) Mml“v,m(c) = Mn',m(c*) o
Proof. Let o* be a function in A(C*) and C € C \C,. Since

Y < fg*qda;" = /(9 Of)q—ldo‘
Cc?*

1
JN\?
0 = (g*of)(ﬁ) , B hed Noe
g
+ o otherwise,

the function

belongs to A(C) .
On the other hand

Apernn, n(@*) = fn* o™ do¥== farg”’vd'l G = A S0
G* G
As p* is an arbitrary function in A(C*) one deduces immediately (12).

Consequence 1. Suppose that (for m, and C) we have
K, (fy< o and N(f,@) = sup,.cN,(r) < . Therefore the ine-
qualities d™' > K;®9 and » > 1/ N(f, &) hold n-ae.in G. Hence
(12) implies

M, w(C) < N(f,G) M. ,(C*)
and
M, .(C) < N(f, @) KG7(f) M, (C¥) .
In particular, for
g=1, m=n, s =a* =1, one obtains (4).
(We can deduce similar inequalities by using » > ess inf, _; N ()| N(f, &)
instead of » > 1 /N(f, @) .)

Remark 1. The inequality (12) holds even if one renounces the
hypothesis that one and only one C passes through =-a. every z €@,
and if (9) is replaced by

inf N (z)?
9’ 2) = S
(9) ) = “Fa
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where inf is taken over all C' which pass through . Consequence 1 can
then be reformulated.

2.2. Generally there is no equality in (12). However, on certain con-
ditions concerning f and the family C one has the transformation formula

(13) Moyiy w(C) = M, ,(C¥).

We shall give some results in this sense:

Theorem 2. Assume, in addition to the hypotheses of Theorem 1,
that there exists an extremal metric o € A(C) for M 4, ,(C), such that
there is a function o*: G* — R for which

q
n-a.e. in G . Then (13) holds.
Proof. The function o* belongs to €(C*). Indeed, for each C* such
that there exists a non-exceptional g-surface C with f(C) = C*, we have

g f@qczaq - fg*qdo';“.
C

C*

Therefore
Mn*,m(C*) = Ag';n‘,m(G*) = AQ sdty, m(G) = Mnd“‘v,m(c) 8
2.3. We shall now deduce a module transformation formula (13) (by

means of the module representation formula [1]) for a family of g-surfaces
C = {C,},c ¢ depending on a parameter 7 such that C covers G' when

n describes an (n—gq) -dimensional domain R in R"7?. Suppose that
m > q and 7 is as in Definition 5. Under the regularity conditions given
in [1, p. 89, Theorem 1], we proved the module representation formula

(14) o e - f LZ,(C,) dn

Here dn represents the (n—gq)-element in H and

[ o]

j being a positive, finite and measurable function n-a.e.in @, such that
do, = jdo,dn .
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Theorem 3. Let f: G—G*C R be a mapping such that G* is
a domain and let C = {C,}, .¢ and its image C* = {CF} e be families

as above; here R and R* are domains in R"1. Assume that Ck = f(C,)

where n* = T(n) , T being a continuous sense-preserving surjection R — R* .
Further assume that f and T fulfil the regularity conditions a,), B,) ;)
necessary in the subsequent calculations (see transformation formula [1,p. 92]),
that N,,_,(n) = N(n*,T ,R) < 0 for (n—q)-a. every n in R, N, (z) =
N@*,f,C) < o for gq—a. every x in C, and (n—gq)-a. every 7
n R, and N,(x) = N(®)N,_,(n), z€C,, forn-a. every z in G,
all these functions N as well as v = Ny/|N, = N2 [N, being
measurable,that m > q, and that n* and 7 = 7*of verify the usual pro-
perties of the weight. Then one has again

Mn*,m(C*) & Mnd"v,m(c) ¥

Proof. It suffices to make a direct calculation based on (14). One has
M) = [ I, (0F) d*
m‘
with

m—q
o e
— q
L0t = [ g a]*
Cpo

Since j*~lof = j71(J,[J,) S, where J,_.(n) = dn*/dy, one
obtains

Ln*—l,m(o;k‘) - Sn-—q(n) Lﬂ_,qu—(m—q)/q‘m(O,]) 4

Therefore

M€ = [ Lkpyotaie (O) NZ) 1 = Mo, (©).
R
If, under the conditions of Theorem 3, N g Bl

Mn",m(C*) = Mnd“‘,m (C) 3

, are constants, then

Examples. 1.1. We set

G={z=0+iy|l<z|]<e}; R={4ER|0<n<2a};

C, is the radial segment in G: z = |2| ¢ ; f is the function zr>2Y.
Then ¢=1, n=2, d=1, »=1/N, and we have M(C*) =
M(C) [N . (Theorem I of Viisali gives here M(C*) < M(C) /N .)
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1.9¢hm@issandot faoiggigboveri st & Mg e Ry & g gsll, 5=
{2| |2l =7n}. Then » =N and M(C*) = N M(C). (Theorem II of
Vaisala gives now M(C*) < N M(C).)

2. G is a torus in R3

X =(ry+ rcosy)cosé, Y = (ry + rcosy)siné and Z =rsinyg,

0o<r<r, neR=1[0,2a], £€[0,2a]; C is the family of
parallel circles C, corresponding to n = const. and f carries each C, in
Cpq» n* = T(n) , winding each C, m times around itself and each meridian
circle N times around itself. Formula (13) applies again, though # = 2,

=1, N, =m, N, = N hece y=m"1/N.

2.4. Remark 2. The results given in Theorems 1—3 have a natural
application to non-constant quasiregular mappings. Indeed many of the
assumptions of these theorems are in this case satisfied, with the result that
these theorems simplify in an obvious manner.

2.5. The method applied in this paragraph permits one to precise also
the inequalities (5) and (6). For instance, one obtains by a slight adaptation
of the original authors’ proofs [11], [6]:

Theorem 4. Under the hypotheses of Viisili’s theorems I and I1
in 1.3 (in particular of Poleckii’s theorem in 1.3) we have

1
(6") £ Sbae g - aMa—x(F)
(or

1
(5') M(C*) < de—l(C),

respectively).

2.6. Remark 3. One establishes equality cases combining Theorems 1
and 4. For instance, if the hypothesis of Poleckii’s Theorem and of Theorem
1 are simultaneously fulfilled, then M(C*) = M,.(C).
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