Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 2, 1976, 29-34

NIELSEN EXTENSIONS OF RIEMANN SURFACES*

LIPMAN BERS

Let S be a Riemann surface of finite type (p, n, m), that is, a sphere with p handles, n punctures and m holes. We assume that m > 0 and

$$6 p - 6 + 2 n + 3 m > 0$$

(so that S is not a simply or doubly connected plane domain). Nielsen assigned to S a subdomain $S_0 \subset S$ which is a deformation retract of S and again a Riemann surface of type (p, n, m); we call S_0 the Nielsen kernel of S. It turns out that every S is the Nielsen kernel of a Riemann surface S_1 , called the Nielsen extension of S. The purpose of this note is to record some simple but useful properties of the Nielsen extension.

We represent S as U/G where U denotes the upper half-plane and G a torsion-free Fuchsian group of the second kind. (The fact that G is determined only up to a conjugation in the real Möbius group will cause no difficulties.) There is an infinite set β of open intervals I on the extended real axis $\mathbf{R} \cup \{\infty\}$ such that G acts properly discontinuously on $\Omega = U \cup L \cup J$, where L denotes the lower half-plane and J the union of all $I \in \beta$, and on no larger open subset of $C \cup \{\infty\}$. The quotient $S^d = \Omega/G$ is the (Schottky) double of S, and the conjugation $z \mapsto \overline{z}$ induces a canonical anti-conformal involution j of S^d . Note that there is a canonical embedding $S \to S^d$.

For each $I \in \beta$, the stabilizer G(I) of I in G is generated by a hyperbolic element whose axis A(I) is the non-Euclidean line joining the endpoints of I. The quotient I/G(I) is homeomorphic to a circle and is identified with an (ideal) boundary curve of S. Each of the m ideal boundary curves of S can be so obtained.

We denote by D(I) the non-Euclidean half-plane bounded by I and A(I) and by N the complement in U of the union of the closures of all D(I), $I \in \beta$. N is called the *Nielsen region* of G. It is convex in the non-

^{*} Work partially supported by the National Science Foundation.

Euclidean sense (being the intersection of non-Euclidean half-planes) and open (because, for I_1 , $I_2 \in \beta$ and $I_1 \neq I_2$, $D(I_1) \cap D(I_2) = \emptyset$). Hence N is a simply connected domain, invariant under G. The Riemann surface $S_0 = N/G$ is the *Nielsen kernel* of S; it comes equipped with a canonical embedding into S.

Noting that for every $I \in \beta$ and every $g \in G$, g(D(I)) = D(I') for some $I' \in \beta$, we conclude that the image of every D(I) under the natural mapping $U \to U/G = S$ is D(I)/G(I). This is a Riemann surface of type (0, 0, 2), that is, homeomorphic to an annulus. Its two (ideal) boundary curves are: the boundary curve C = I/G(I) and C' = A(I)/G(I). C' is the geodesic, in the Poincaré metric of S, which is freely homotopic to C. We call D(I)/G(I) the *funnel* adjacent to C'. The complement of the closure of S_0 in S is a disjoint union of such funnels. This remark characterizes the Nielsen kernel S_0 of S.

Lemma 1. Let C be a boundary curve of S, C' the geodesic freely homotopic to C, L the length of C', and M the module of the funnel adjacent to C'. Then

 $L M = \pi^2$.

Proof. We may assume, without loss of generality, that C = I/G(I)where $I \in \beta$ is the positive real axis. Then G(I) is generated by a Möbius transformation g(z) = a z, for some a > 1, A(I) is the positive imaginary axis, D(I) is the first quadrant Q, and the length L of C' = A(I)/G(I)is the non-Euclidean distance between i and a i, so that

$$(1) L = \log a$$

The function

(2)
$$\zeta(z) = e^{-2\pi i \log z / \log z}$$

(where $\log z$ denotes the principal branch) is holomorphic in Q and satisfies $\zeta'(z) \neq 0$, $\zeta \circ g(z) = \zeta(a z) = \zeta(z)$. Also, $\zeta(Q)$ is the annulus $1 < |\zeta| < \varrho$ where

$$(3) \qquad \qquad \rho = e^{\pi^2/\log a} \,.$$

Hence the funnel, Q/G(I), is conformal to this annulus, and the module is

$$M = \log \rho = \pi^2 / \log a = \pi^2 / L$$
.

If S is a Riemann surface of finite type, we call the restriction to S of the Poincaré metric on S^d , the *intrinsic metric* on S. Note that the boundary curves of S are geodesics of finite length in the intrinsic metric. Indeed, such a curve C, considered as a Jordan curve on S^d , is freely homotopic to a unique geodesic C_0 . If C_0 were distinct from C, $j(C_0)$ would be another geodesic freely homotopic to C.

L e m m a 2. The restriction of the Poincaré metric on S to the Nielsen kernel S_0 coincides with the intrinsic metric on S_0 .

Proof. We consider S_0 as embedded in $S_0^d = (S_0)^d$. Let ds denote the restriction to S_0 of the Poincaré metric on S. The canonical involution j transplants ds to $j(S_0)$; the metric ds is now a conformal metric, with constant Gaussian curvature equal to (-1), defined on S_0^d except on the boundary curves C' of S_0 , that is on the geodesics on S freely homotopic to the boundary curves C of S. Consider a point P on one of such curves C', and a sufficiently small neighborhood Δ of P which is divided by an arc $\alpha = \Delta \cap C'$ into two disjoint sudbomains Δ_1 and $\Delta_2 = j(\Delta_1)$. Since C' is a geodesic on S and since j leaves C' pointwise fixed, there is a homeomorphism ψ of Δ onto a neighborhood $\psi(\Delta)$ of $i \in U$ such that $\psi \mid \Delta - \alpha$ takes the metric ds into the Poincaré metric |dz| / y on U. Now ψ is conformal on $\Delta - \alpha$, and hence also on Δ . We conclude that on S_0^d there is a conformal metric $d\hat{s}$, of Gaussian curvature (-1), with $d\hat{s} \mid S_0 \cup j(S_0) = ds$.

To show that $d\hat{s}$ is the Poincaré metric on S_0^d we must verify that it is complete. This so since S_0^d is of type (2 p + m - 1, 2 n, 0), hence compact except for 2 n punctures, and near each puncture $d\hat{s}$ coincides with ds, that is, with a complete metric.

Theorem 1. S is the Nielsen kernel of a uniquely determined Riemann surface S_1 (called the Nielsen extension of S).

Proof. In view of Lemmas 1 and 2 and the relations (1), (2), (3) in the proof of Lemma 2, the Nielsen extension S_1 of S, if such an extension exists, *must* be constructed as follows. For each of the *m* boundary curves C of S, let L_C denote its length in the intrinsic metric of S. Set

$$\varrho_C = e^{\pi^2/L_C}$$

and let F_c denote the annulus $1 < |\zeta| < \varrho_c$. Define a Riemannian metric ds_c on F_c by transplanting to F_c the Poincaré metric |dz| / y in U by means of the mapping

$$\zeta(z) = e^{-2\pi i \log z/L_C}$$

of the first quadrant Q onto F_c , and note that the circle $|\zeta| = \varrho_c$ is a geodesic in this metric, of length L_c . Now attach F_c to S, by means of an isometry between C, endowed with the intrinsic metric of S, and the circle $|\zeta| = \varrho_c$, endowed with the metric ds_c .

In order to show that the Riemann surface S_1 so constructed is indeed the Nielsen extension of S, it sufficies to show that the restriction of the Poincaré metric on S_1 to S is the intrinsic metric on S and the restriction to an F_c is the metric ds_c . The required argument is so similar to the proof of Lemma 2 that it may be omitted.

Lemma 3. Represent the double S^d of S as U/Γ where Γ is a torsion-free Fuchsian group. Let Δ be a component of the preimage of $S \subset S^d$ under the natural mapping $U \to U/\Gamma = S^d$, and let Γ_1 be the stabilizer of Δ in Γ . Then $U/\Gamma_1 = S_1$ is the Nielsen extension of S.

Proof. Let f be the restriction of the natural mapping $U \to U/\Gamma = S^d$ to Δ . Then f is holomorphic and locally one-to-one and $f(\Delta) = S$. Also $f(z_1) = f(z_2)$ if and only if there is a $\gamma \in \Gamma$ with $z_2 = \gamma(z_1)$; such a γ must belong to Γ_1 , since every element of γ permutes the components of the inverse image of S. We conclude that $f: \Delta \to S$ is a universal covering with covering group Γ_1 . Furthermore, f transplants the metric |dz|/y on U into the intrinsic metric of S.

Now represent the Nielsen extension S_1 of S as U/G, G a torsionfree Fuchsian group, and let N be the Nielsen region of G. One sees as before that the restriction h of the natural mapping $U \rightarrow U/G$ to N is a universal covering $N \rightarrow S$, with covering group G, which transplants the metric |dz|/y into the restriction of the Poincaré metric of S_1 to S, that is, by Lemma 2, into the intrinsic metric on S.

It follows that there exists a homeomorphism φ of \varDelta onto N such that $f = h \circ \varphi$ and $\varphi \Gamma_1 \varphi^{-1} = G$. This φ is an isometry in the metric |dz| / y, hence the restriction to \varDelta of a real Möbius transformation. Since G is determined but for a conjugation in the real Möbius group, we may assume that $\varphi = \text{id}$. Then $\varDelta = N$, $\Gamma_1 = G$, and the assertions of the lemma follow.

Theorem 2. A quasiconformal homeomorphism of S onto another Riemann surface can be extended, canonically, and without increasing the dilatation, to a quasiconformal homeomorphism of the Nielsen extension of Sonto that of $\varphi(S)$.

Proof. Since φ is quasiconformal, it admits a homeomorphic extension to the boundary curves of S and hence can be canonically extended to a homeomorphism of S^d onto $\varphi(S)^d$ which respects the canonical involutions. We denote the extended homeomorphism again by φ . Its dilatation is the same as before the extension.

Represent S^d and $\varphi(S)^d$ as U/Γ and U/Γ' , respectively, Γ and Γ' being torsion-free Fuchsian groups. Then $\varphi: S^d \to \varphi(S)^d$ can be lifted, using the natural mappings $U \to U/\Gamma$ and $U \to U/\Gamma'$, to a homeomorphism w of U onto U, which has the same dilatation as φ and satisfies $w \ \Gamma w^{-1} = \Gamma'$. Choose a component Δ of the preimage of S under $U \to U/\Gamma$, and let Γ_1 be the stabilizer of Δ in Γ . Then $w(\Delta)$ is a component of the preimage of $\varphi(S)$ under the mapping $U \to U/\Gamma'$ and $\Gamma_1' = w \ \Gamma_1 w^{-1}$ is the stabilizer of $w(\Delta)$ in Γ_1 . Clearly, w induces

the mapping φ of $S = \Delta/\Gamma_1$ onto $\varphi(S) = w(\Delta)/\Gamma'_1$. But w also induces a homeomorphism, with the same dilatation, of U/Γ_1 onto U/Γ'_1 . In view of Lemma 3 this is a homeomorphism ψ , extending φ , of the Nielsen extension of S onto that of $\varphi(S)$.

It is easy to verify that ψ does not depend on the choices (of Γ , Γ' , w and Δ) made during the above construction.

Lemma 4. Let C be a boundary curve of S, C_1 the boundary curve of the Nielsen extension S_1 of S freely homotopic to C. Let L be the length of C in the Poincaré metric of S_1 , L_1 the length of C_1 in the Poincaré metric of the Nielsen extension S_2 of S_1 . Then

$$L_1 < L$$
.

Proof. Let ds_1 denote the Poincaré metric on S_1 , ds_2 the Poincaré metric on S_2 . Since $S_1 \subset S_2$, and $S_1 \neq S_2$, we have $ds_2 < ds_1$. On the other hand, C_1 is the unique geodesic, in its homotopy class, with respect to the metric ds_2 . Hence

$$L_1 = \int_{C_1} ds_2 < \int_C ds_2 < \int_C ds_1 = L.$$

Let S_1 be the Nielsen extension of S and let S_{k+1} be the Nielsen extension of S_k , k = 1, 2, ... In view of the canonical embeddings $S_k \rightarrow S_{k+1}$ we can define the Riemann surface $S_{\infty} = S_1 \cup S_2 \cup ...$ which we call the *infinite Nielsen extension* of S. It is, of course, homeomorphic to S, but, as the next theorem shows, if S is of type (p, n, m), then S_{∞} is of type (p, n + m, 0). Thus the construction of S_{∞} gives us a canonical way of "filling in the holes" in S.

Theorem 3. The infinite Nielsen extension S_{∞} of S has no ideal boundary curves.

Proof. Let C_0 be a boundary curve of S. Then C_0 divides S_{∞} into two components, one of which, call it X, is conformally equivalent to a doubly connected domain. We must show that the module M_{∞} of X is infinite.

Let C_1 be the boundary curve of S_1 (the Nielsen extension of S) freely homotopic to C_0 , and let C_{k+1} be the boundary curve of S_{k+1} (the Nielsen extension of S_k) freely homotopic to C_k , k = 1, 2, ... Also let F_k be the funnel bounded by C_k and C_{k+1} and M_k the module of F_k . Finally let L_k be the length of C_k in the Poincaré metric of S_{k+1} . Then $X = F_0 \cup F_1 \cup ...$, F_k and F_{k+1} have no inner points in common, and each F_k separates the boundary continua of X. By Grötzsch's inequality,

$$M_{\infty} \geq M_0 + M_1 + \dots$$

that is, in view of Lemma 1,

$$M_{\infty} \geq \pi^2 \left(L_0^{-1} + L_1^{-1} + \ldots \right) .$$

Since, by Lemma 4, $L_0 > L_1 > \dots$, we have that $M = +\infty$, as asserted.

Remark. Let S_0 be the Nielsen kernel of S, S_{k-1} that of S_k , for $k = 0, -1, -2, \ldots$. It would be interesting to investigate the set $S_0 \cap S_{-1} \cap S_{-2} \cap \ldots$.

We conclude with an immediate corollary of Theorem 2.

Theorem 4. A quasiconformal homeomorphism of S onto another Riemann surface can be extended, canonically and without increasing the dilatation, to a quasiconformal homeomorphism of the infinite Nielsen extension of S onto that of $\varphi(S)$.

Applications of Theorems 2, 3, 4 will be found in a forthcoming paper on a theorem by Thurston.

Columbia University Department of Mathematics New York, New York 10027 USA

Received 9 August 1976