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ASYMPTOTIC PATHS FOR SUBHARMONIC
FUNCTIONS IN R~

LENNART CARLESON

1. The purpose of this note is to prove the following theorem.
Theorem. Let u(x) be subharmonic in R* and assume supu(x) =
+ oo . Then there is polygonal path y to oo so that
limu(x) = oo.
Y
The theorem is a generalization of Iversen’s theorem. It was inspired by
a recent manuscript of B. Fuglede where, among other results, the theorem
was proved for a continuous path. Fuglede used finely harmonic functions
and probability and the above result was obtained in an effort to find
a classical proof. See also the work of M.N.M. Talpur (W.K. Hayman:
Einige Verallgemeinerungen des Iversenschen Satzes auf subharmonische
Funktionen. — Jber. Deutsch. Math.-Verein. 71, 1969, 115—122).

2. We first assume wu(x) continuous. Let O, be the open set where
u(x) > n . There are two cases.

a) O, has only one component for every n» . We then choose x, with
u(x,) = n and connect x, to z,,, inside O, ; with a polygon. This
gives the desired path.

b) Some O, has two components (or more). Let 4 and B be two
components. By the maximum principle both are unbounded. We say that
A has the Phragmén-Lindelof property if every harmonic function in 4
which is bounded and <0 on 24 is < 0. The following criterion is
easy to prove.

Lemma. A has the Phragmén—Lindelof property iff the complement
of A7 = {ax|x|x|2€d} isthinat x=0.

Corollary. At least one of A and B has the Phragmén—Lindelof
property.

This follows e.g. from the Wiener criterion since

(R"\A1) U (R"\B1) = R*\{0}.
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To complete the proof choose 4 = A, as above. Then u(z) has to be
unbounded in 4 . Choose x,,, €4, and let A4, +1 be the corresponding
component of O, ;. A,,, also has the Phragmén-Lindelsf property and
we can choose w,,,€4,,, etc. — The proof in this case is complete.

3. In the general case we have to find a method of constructing o
inside the set where the potential representing u(x) converges uniformly.
We do this by approximating u(x) by smooth subharmonic functions which
are negative on the set where w(x) misbehaves. The construction is quite
explicit and depends on a dyadic subdivision which we are next going to
describe.

We may assume that u(x) = 0. Let K, be the symmetric cube of side
2’1 and centre at 2 = 0 and set R, = K, NK,. We write (n >3)

d
(3.1) u@) = H,x) - f ,x_”—;yl)_z zeK,,,,
Kyi11
where H,(z) is harmonic in K, . Set
(32) Mv = Max Hv(x) + N(Kv+l) .
K

v

C will denote constants only depending on the dimension 7 .

We are now going to describe a subdivision of R* into a grid @ of dyadic
cubes of sizes tending to zero at oo . The construction depends on a given
sequence of numbers 6, 0 and the sides s(Q) of a cube Qc K, wil
be < 4,.

We may assume that 8, = 2=% | N, integers. For Q c K 1 choose ¢
so that s(Q) = 27" . Assume that G is constructed in K, . We choose

K,c K'c KPc ..c KM+=N)c K, |

so that the cube K[) has side 2! (1 + 1/2 + 1/4 + ... + 1/2). In
KJPHUNK®  we construct @ € @ with sides 2=~ where we set
KNoe1=% 4 — K., . This defines @ completely. It is important that
8(Q) changes slowly in the following sense. If Q €@, @ C R,, then
8(@') <2s(Q) for all Q' €@ with distance < 2" s(Q) from Q.

In the formula (3.1) we now replace the measure u by the following
continuous measure u' :

©(@)

W= @)

de, zeQed.

More precisely, we define
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du(y) — du'(y)
[w—y[**

w(x) = u(x) +

/(%) is continuous and subharmonic if the integral converges in a suitable
sense. We have for = € K,

, d /() d !
o)~ gy [ MO [ Ao
Kyt1 R*N\ K,

The last term can be estimated (in K, ) by

f du — dy’
|z —y[*~*

RPN K, 4

(3.3)

<oSM

We can also show that u(x) — «'(x) is small in general. Let x € K, and
let @Q* be the union of all @’s in @ with distance < M,d, from x.
We find

(3.4)  lu(x) — u'(x)]

duly) + du’ o,
f” £ o) +C f ]x—:ﬁdﬂ(y)+20(Mjéj)

le—y|"~®
Ky 11\ 0
du + dy'  C du(y)
oy 0, ) ey T 200059
o* Kyi1

duly) + dp'(y)
< — o(1
= Ix ?/l" 2 ()

if we assume > M;d; < co and observe the definition of M, and
u(x) = 0.

If now wu(x,) - oo it follows that if we choose &, small enough u'(x)
is a subharmonic continuous function so that «'(x) is unbounded. Hence
y exists for «'(x) and if we could make the estimate (3.4) uniformly by
controling [, we would have solved our problem. This however is not
possible, so an additional construction is needed to make y avoid these
bad cubes.

4. We fix some grid G and consider the set of cubes @ €@ in R,.
We increase each such @ in the scale M, and denote the resulting cubes
Q* . They cover R, M’ times (6, < M,'). Denote by 4% the set of
such cubes such that
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43 w@¥) = s@",

and set
E, = U @Q*.

Q*ed®,
By Egorov’s theorem

d

f #(y3-2 < Mo
|2~y
l[x—yl<M, &,

except for z € E, in R, such that u(#,) < M;" provided §, is small
enough. Clearly K, C E,.

We can now finally fix our grid G so that all conditions above are
satisfied. We replace u'(z) considered above by

U@ = v - St [y
1 5 lz—y|

Since p’'(x) is the potential of a bounded measure (> 1/M, is supposed
finite) and «'(x) is an unbounded subharmonic function, it follows easily
that U(x) is also unbounded. Hence there is a continuous path y so that
U(x) — oo along y. The important improvement is that if u(Q*) > s(Q)">
then y N Q = O . This is clear since w'(x) < M, and for z €Q p'(x) >
M, so Ux) 0.

5. It is clear that «'(x) — oo along y . However w(x) may not but
we do have the estimate (3.4).

Let @, € G be the “first” cube intersected by yp and let x, be the
last point on y in @, . Then z, € @, also. Let x; be the last point in
Q, etc. z, belongs to the face F; of @, and F, of Q,. z,€F, in Q,
and F; in @, etc. Observe that F; = F,NF;,, = F, or F; , and
that each face includes at least 100 - 27" 9 of the other.

We now join F; to F;, , by aline-segment /; in @, . Since u(Q*%) <
8(Q,)"% it is a well-known property of Newtonian potentials that except
for a small fraction of endpoints in F; and F; , (with respect to nor-
malized (n—1)-dimensional measure)

d
) g
le—y|"™"

OO

along /.

We now modify z; in the following way. Consider faces F; with even
index. 4. By Fubini, for every & eF; except a set of small relative
(n—1)-dimensional measure there is an [/, going forward to every &,
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except a small exceptional set and one /;_; going backward to a correspond-
ing set of &_;’s. We choose these &, ’s in this manner. Then clearly
they can be joined via &,,; to each other. This now gives the desired

polygon.
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