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A NOTE ON FUNCTIONS WITH
DEFICIENCY SUM TWO

DAVID DRASIN *

1. Introduction. We shall apply the Ahlfors theory of covering surfaces
(ef. [1], [2] and [10], Ch. XIIT) to analyse functions of order A < oo
having

q

(1.1) ;a(ai,f) = 2,

The problem of characterizing such functions was formally proposed by
T. Nevanlinna in 1929 ([9], cf. also [6]). Nevanlinna conjectured in particular
that 21 — 1 must be a positive integer and each d(e;) an integral
multiple of A~1. This would imply

(1.2) q <24

and Weitsman’s remarkable proof of (1.2) ([13]) still remains an isolated
step toward resolving this hypothesis (if f is entire very complete in-
formation is known [3], [4], [5], [11]).

A proof of the full F. Nevanlinna conjecture seems beyond the scope
of the Ahlfors theory since this theory applies to very general exhaustions
of the plane, in particular ones for which the conjecture is false.

That f has finite order implies that to each K > 2 may be associated
M < oo and an unbounded R-set 2 where

(1.3) # = {R; T4KR) < MTR))

(compare (1.3) with definition (3.3) of [7]; in [7] appear estimates on the
size of 2).

In order to state our results, we recall a standard convention: if 4 is
an open set of the plane, then

n(r,a,A)
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is the cardinality of {fa)}NAN{|z|<r}, and if O,0r) =
(0; re?edy,

1
mr,a,d) = P flog
c]

4()

Theorem. Let f satisfy (1.1) and be of finite order A . Then in
each disc {|z]| <K R} (R e2) exist unions of simply-connected components
A, = A(R) (1 < =<q) such that all components of A, meet {|z| = R},

1

Jore®) —a ¥

(1.4) no components of A, are compact subsets of { |z| < K R}

(1.5) If@) —a] = e (Leod;,, [|<KR, Re?)
and, as R -+ o0 in 2,

(1.6) m(B,a,,A) ~ o@)TR) (i=1,..,q)
(1.7) n(KR,a;,A)+nKR,n,4) = o(1) T(R).

Conclusions (1.4) with (1.6) are implicit in [13], but (1.7), which implies
that the A, may be viewed asymptotically as coverings of the punctured
disc {0 < |w — a,] < ¢}, is new. It is easy to see that error terms of the
magnitude (1.7) can in fact occur, even in the presence of (1.1).

I thank Allen Weitsman for detecting a gap in the original version of § 3.

2. Preliminary lemmas. As was noted already, we use arguments
from Ahlfors’s theory. Let # be the covering which the meromorphic
function f induces on the Riemann sphere and % (r) the covering obtained
when f is restricted to {|z| < r}. The natural comparison function here
is S(r) , the mean sheet number of #(r) (cf. [10], p. 327), and we have the
Ahlfors—Shimizu formula

(2.1) T(r) ~ /S(t) t1dt .

For 1 =¢ <q and (small) &> 0, let y, be the curve on the (base
surface) Riemann sphere which corresponds to { |w — ;] = ¢}, and D,
the interior of y,. For a fixed r, the mean sheet number S(y,) of all
ares on # (= Z(r))? which are over each y, ([10], p. 327) satisfies

(2.2) S — Syl £ L

where h here and below represents a constant which depends on the
{a;} and &, but not on r or the particular covering under consideration.

2 To limit notation, references to r are often suppressed.
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We will need to quote the following facts later; they all require that f
be of finite order.

First, if L(r) is the length of the relative boundary of #(r), J. Miles
has proved [8]

(2.3) Lty t=rdt = o(T(r)) .
J

In addition, we shall use the elementary fact (cf. [6], p. 3) that under
hypothesis (1.1)

. N, a)
(2.4) lim —

¥—>0

LA { 1 > a’¢ {ai} ’
Ty — \1-06(), ac{a};

i.e., lim sup may be replaced by limit in the definition of deficiency. Also,
(1.1) implies

(2-5) N(T s ]'/fl) = O(]) T(T ’fl) s
(2.6) T(r,f") ~ 2~ 60, f)T(r,[)

(cf. [13], Lemma A) .

Finally, there is the following result of Collingwood-Selberg-Weitsman
type (compare [12], pp. 200 —201 and Lemma D of [14]).

Lemma A. Let f(z) be meromorphic with more than one deficient value,
let F be the covering of the sphere induced by f, and let the {y;}, {D; be
as above. For a fived 1 > 0, let A; be a compact portion of F which lies
above D, , and has the property that each point of D, is covered at most
p times in each component of A,. Identify A; with its vmage in the z
plane by f. Then

(2.7) m(r,a,,A4) < Op) (R=r<2KR, Re?)

where the constant implicit in (2.7) depends on K , M (cf. (1.3)) and the
size of two of the positive deficiencies.

3. A refinement of Ahlfors’s estimates. Let D’ ( = Di(r)) be the
components of # (= #(r)) that lie over D, and introduce three
subclasses C;, C*, C** (which depend on r) as follows. The C; are
those D¢ which are not compactly contained in & ; then those D’ which
are not contained (in the topology of {[z] <r}) in some ¢;eC,
(1 £7 <q) are divided into C* (if D' is not simply-connected) and
C** otherwise.

Let ¢, be a component of C;, let b, be the union of ¢; with the com-
pact components of the complement of ¢, relative to Z(r) and B; = B(r)
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the union of all the b;,. We identify the C* and B, with their inverse
images by f in the plane.

Lemma 1. Let f(z) be meromorphic in the plane and a,, ..., «a
Jimite complex numbers. Then

q

q

(31) 2n,a)z (@-2)80) +nr,0,UB)+ 20, q,B)
1
+ >, e, OF) — b L(r).
Proof. Define a bordered surface F by

B = Fr) = <lj Bi>, N {|z| <r},
1
so that

(3.2) o, a) =
2o, a;, By) + 2 >l a;, By) + 2 n(r, e, F).

1 ]#

Rouché’s theorem implies that
(3.3) Zan,a,,B = (¢ — )n(r,on,UB)
RN R
o (3.1) will follow at once from (3.2), (3.3) and
(34) 2n(r,a,F) =
(q—2)S—(q—2)’n(r,oo,UB,)+z 7‘>az’c’)_'h'L'

To prove (3.4), let #, = #,(r) be the subsurface of &% which cor-
responds to /. Each component of & ,(r) is simply-connected and
F(r) CF (') (r<<r'); thus the &,(r) exhaust a covering of the sphere
in the sense of [10], p. 341. If all C;*, C** are now deleted from #,,

we obtain F* = #*() = U F* which now is a covering of F,, the
Riemann sphere with the D, deleted. It follows as in [10], pp. 342 — 3, that

(3.5) =20 = = > o) = 2ot (F*
T C;rUC*s F*

where ¢ is Euler’s characteristic and o+ = max (o, 0). The right side of
(3.5) is estimated by the Main Theorem ([10], p. 332):
(3.6) 2, 0T (F*) = o(F,) 8*(r) — I* L*(r)
= (¢ — 2) S*(r) — h* L*(r);
here S* is the mean sheet number of F*, h* is a positive constant

depending only on I, and L* is the length of the relative boundary of
F*(r) . Clearly
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(3.7) L* < L
where L is as in §2, so (3.5)—(3.7) yield a positive constant A as in
§ 2 with
(3.8) = 2, 0D) = (¢ — 2)8%(r) — h L(r).
F1

Let f; join y; to y;,,; on the sphere (indexing mod ¢ ) and be disjoint
from U D;. Then if S*(8;,) is the mean covering number of £, in F*
we have (cf. (2.2), (3.7))
(3.9) 1> 8%(8;) — ¢ 8*| < hL,
(3.10) 1> 8B) — ¢8| < hL.

It is straightforward from Rouché’s theorem to see that if S;*(;) is
the mean covering number of f; from curves interior to B; then

Z Si*(ﬁj) = gqn(r, o, B)

and so

z {8B;) — S*B) } = z Si*(ﬁj) = gqn(r,o,UB).

%7

It follows from this, (3.9) and (3.10) that
S* z qt > 8*p;) — h L

= q1>8B) — a2 {8B) — S*PB)} — kL
>8—n(r,o,UB)—-hL.

Also o(D') = 0 wunless D' is in C;/** . Thus (3.8) now becomes

(3.11) >oar,a) = — > oD
I

kR
C’b

v

(@28 —(¢—2)n(r, o, UB) - I,
and (3.4) is proved.

4. Proof of the Theorem. Choose a;,..,a, (¢ =2) toexhaust the
deficient values of f; it is no loss of generality to suppose oo ¢ {a;} .

Let R e 2, and for each i consider the components D¢ over D, in
F(2 K R). In order to define 4,, it is first necessary to delete three sub-
classes of the D' .

First, let D" be all compact components of D¢ in #(2 K R) which
are simply-connected and also are 1 — 1 coverings of D;; as usual, we
identify the D;* with their inverse image in the plane by f. It then follows
from (2.7) that
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(4.1) m(r,a,,Df) = 01) (R<r<2KR, Re?).

Next, let D,* be the remaining compact simply-connected components
of D' in #(2 K R).Let D, be a component of D,’. Since D, is compact,
each w € D; is covered by the same number, p,, of times by f for z € D,
(with due account of multiplicity). But D, is (connected and) simply-
connected, so f’ must have (p, — 1) zeros in D, and since D¢ D,

it follows that p, > 1. However (1.3), (2.5) and (2.6) readily give
n(2KR,0,1/f) < (log2) N4 KR,O0,1/f)
= o) T4KR,f o) T4 K R,f)

= ol)T(R) (R— o, Re2),
from which we deduce that the total number of times each point w € D,

is covered from all D,’ in {|z|] <2K R} is o(l) T(R) and, from (2.7),
that

(4.2) m(r,a;,Dy)) = o1)T(R) (R=r< KR, R—w, Re?).

The third subclass of D? to be eliminated is D,’; the D which are
compactly contained in #(2 K R). Thus, D, consists of the compact
components of #(2 K R) over I which are not in D,* or D, .

Lemma 2. We have

(4.3) m(r,a;,Dy) = o(1)T(R) (R<r<KR,R—>w, Re?).

y Wi

Proof. Consider (3.1) for 2K R <r <4 K R. Then the Dy are a
subset of the C*(r) in Z(r). When (3.1) is integrated from 2 K R to
4K R, (1.1), (2.1), (2.3), (2.4) yield

(44)  {(¢—2) +0o(1)}{T4KR) — TQ@KR)}
> {(¢—2) + o)} {T4KR) - T2 K R))
+log2> n(2 K R,a, Dy)
—o(1)T(4 K R) (R—~w, Re?).
Thus
(4.5) >n@2KR,a,Dy) = o) T(R) (R—+w, Re?)

and since the D, are compact, (4.3) follows from (2.7) and (4.5).

The set A; demanded by the theorem consists of those components
Dy of Di which are not in U?_ D, and which meet {Jz| = R},
together with any compact components of their complements relative
to { |2/ < K R}. Thus, the 4, are simply-connected and since no D,
is compact in #(K R), (1.4) and (1.5) are obvious. Now, any contribution
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to m(R , ;) must come from D¢ which meet {|z| = R}, but the contribu-
tion from those D¢ which meet {|z| = R} but are not in the D/ satisfies
(4.1) — (4.3). Thus

4
,UD;}) ~ 6(a)T(R) (R—>, Re2).

1
In A, - UiDi, |f—a)>e¢e, so the assumption that &(co,f) =0
with (2.4) gives that |m(R,a,,4; — Ui D)) | = o(1) T(R) which with
(4.6) yields (1.6).

Finally, (1.7) is obtained from (3.1) as in the proof of (4.5) since now

A;,c B, = Byr) forall KR<r<2KR.

(4.6) m(R,a,, D)) ~ m(R,q

1
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