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ASYMPTOTIC BEHAVIOR OF MEROMORPHIC
FUNCTIONS WITH EXTREMAL SPREAD
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i

ALBERT EDREI and WOLFGANG H. J. FUCHS

Introduction. The notion of spread was introduced and investigated [2],
[3] by one of us, who also conjectured the spread relation stated below
as inequality (5).

This relation has now been proved by A. Baernstein II [1] whose re-
markable analysis rests on the introduction of a new function 7™*(z) (z =
r € ), closely related to Nevanlinna’s characteristic 7'(r,f) = T'(r) .

The importance of 7"(z) appears sufficient to warrant further study.
In this note we examine the behavior of 7*(z) under certain assumptions
which we characterize by the phrase extremal spread’”.

All our results are expressed in terms of the classical definitions and
notations of Nevanlinna’s theory of meromorphic functions. They will be
taken for granted.

Throughout the paper, f(z) denotes a meromorphic function of lower
order u (0 << u << + o0 ) having deficient poles:

(1) d(c0,f) > 0.
Let
n(r) -0  (r—>o),
(it is not assumed that #%(r) = 0) and introduce the set of arguments
(2) Er,w) = E@r) = {0: log|f(re®)] = nr)T(r)}.

The measure of the measurable set F(r) will be denoted by |E(r)|.
We next focus our attention on |E(r)| as r— oo by values of a suitable
sequence

The research of the first author was supported by NSF grant GP 33175. The
second author gratefully acknowledges support by NSF grant GP 28251, by a Ful-
bright-Hayes Fellowship, and also the hospitality of Imperial College, London, and
of the Mathematical Institute of the E.T.H., Ziirich.

doi:10.5186/aasfm.1976.0209


koskenoj
Typewritten text
doi:10.5186/aasfm.1976.0209


68 AILBERT EDREI and WOLFGANG H. J. FucHS

(3) T1s Tas Tgy eeey Ty ooe (I<ry<ry<rg<<ry<<..;7,—>00).

m

We always take {r,}, to be a sequence of Pélya peaks of order u of T(r) .
The exact definition of these peaks, given in § 1, is not needed at this stage
and the meaning of Theorems 1 and 2 is not lost if we simply assume that
(3) is a “‘suitable” sequence (which always exists).

We say that
(4) lim inf |E(r,)| = o(w0,f),

18 the spread of oo , at the sequence of peaks {r,},, .
It is unnecessary to explicitly mention, in the terminology, the de-

pendence of o(co,f) on the function #5(r).
This simplified terminology does lead to some difficulties. For instance,

as r-— o0,
[{6: log|lexp (re’) + 2] = 0} — 2=,
whereas

[{ 0: log lexp (re”) + 2| = logr}| — m.

If one wishes to obtain a definition of the spread which is independent
of #(r), one must, following Baernstein, write

a(co, f5 ()
instead of the right-hand side of (4), and then define
o(e,f) = ir?f)‘o'(oo S in(r),
n(r
where the infimum is taken over all real functions #(r) such that #(r) —0
(r— o0 ). It is sufficient, in this first part of our investigation, to adopt the
simplified terminology and notation and to assume that the spread o(co , f)

under consideration is derived from some specific, admissible choice of #(r) .
The spread relation proved by Baernstein asserts that

4 FN
(5) o(co, f) = min { ;‘ sin—! ‘/‘(%’-ﬂ, 2 7z} .
Put
4 [0, f) < n
(6) 2 = ;smll/—jA- 0<p éé_,u)’

which it is convenient to rewrite as

(7) 8w ,f) = 1 —cospp.
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If u> 1/2, then
(8) 0 < f < =,

and (5) reduces to

(9) o(0,f) = 26.
If 0 <p <1/2, we make the additional assumption
(10) 8o ,f) < 1—cosmp,

so that (8) still holds and (9) is again a consequence of (5). We do not need
to assume the validity of the spread relation. [We show (§ 8) that it is
contained in some of our inequalities.]

The aim of the present paper is to determine, in some sense, all the
meromorphic functions characterized by the following

Hypotheses ES. Let f(z) be a meromorphic function of lower
order u

and let (3) be a sequence of Pélya peaks of order w of T(r) = T(r,f).

Assume that

(i) the poles of f are deficient and, if 0 < pu < 1/2, assume in addition
that (10) holds;

(ii) the sequence {r,}
(6) can be replaced by

(12) ﬂm = } IE(Tm)I ? ﬂm m">'ﬁ ’

where f is given by (6).

The meaning of 7, and of the associated quantity pf, remains un-
changed throughout the paper; all our assumptions and assertions refer to
some specific sequence (3).

Extremal spread. If f(z) satisfies the hypotheses ES, we say
that it has extremal spread of oo, or simply “extremal spread’.

We prove

Theorem 1. Let f(z) be meromorphic (or entire), of lower order
(0 <pu << + o) and let f(z) have extremal spread of oo .

Consider the intervals

of Pdlya peaks of order u , is suchthat (4) and

m

(13) I,8) = {r:e’r,<r <er (>0, m=1,2,3,..)
m m m

and let r— oo by values restricted to the set

(14) A(s) = U ).

m=1
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Then, for every s > 0, we have

o)
(15) W 1 (rel,(s)),
(186) N,ﬁ;r’)f) - cosfu,

"o f)
(17) ) pmeosfu.

It is useful to note the following

Restatement of (15). Let T(r) be positive and nondecreasing
and let (15) hold for every s > 0. ‘

It is then possible to find three positive sequences {R,}, {R,}, {Z,}
such that, as m — + o0 ,

(18) R, - +ow, r, /R, - +o, R, —> 4+, E,—>0,

and such that

R, <t =R, (m>m)
imply
(19) E/rny (1+8,)t = TW)T(r,) £ (¢r,) (1+5E,).

A proof of these remarks will be found in [3; p. 323, Lemma 4]; a less
elementary approach (using Egoroff’s theorem) shows that the assumption
that 7'(r) is nondecreasing may be omitted [7, p. 52].

Baernstein’s proof of the spread relation (5) is based on the properties
of the function, introduced by him,

(20) THre®) = m*r e + N, f),

where

(21) m*(re’) = sup b log |f(r €%)| dy;
1E|=20 2 v P

the sup” is taken over all measurable sets of measure |E| = 2 6.

Baernstein showed that 7T*(re”) is a subharmonic function in
0<r<ow, 0<0<m.

Our study of 7*(r ¢”) , under the hypotheses ES, yields, in addition to
Theorem 1, the following

Theorem 2. Let the assumplions and notations of Theorem 1 be un-
changed. Then, given s> 0, there exists a sequence {n,}, , 7, —>0, in-
dependent of r and 0, such that
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(22) |T*(r ¢) — T(r) cos u(p—0)| << 1, T(r),
provided
(23) rel(s), 0=0<§.

It is possible to prove a good deal more than asserted in Theorems 1 and 2.
For values of z which lie in the annuli

z] e I(s) (m=123,..),

we can satisfactorily determine the asymptotic behavior of log |f(z)| and
of the arguments of almost all the zeros and all the poles in these annuli.

This detailed study would lengthen inordinately the present paper.
We shall therefore be content to prove the following Theorem 3 and expect
to return, on some future occasion, to the more exhaustive study of
log |f(z)] and of the angular distribution of all the zeros of f(z).[The
behavior of the poles is already described in the following result.]

Theorem 3. Let the assumptions and notations of Theorem 1 be
unchanged.

1t is then yossible to find real sequences {u,},, , and {w,}, satisfying all
the following conditions

L w,~mr, (m-—ow)
II. fu,e’) # o (0=0<2a).
L |f(u, )| = M(u,) = max [f()] .

lsl=tty,

v, lim 28 M) o in g

>0 um)

V. Let s> 0 and n (0 <n<f) begiven. Denoteby s,, the number
of poles of f(z) in the sector

(24) {(reé®: u, e <r <u,e,n<l|0-o, <}

m =

and by =, the number of zeros f(z) in the seclor

(25) {(re?: u,e<r <wu,e, |[0-o,] <p-—n}.
Then
(26) //”m + 2 m o O(fly(um)) ( m —> 00 ) .

An inspection of our analysis immediately suggests the construction of
Functions extremal for the spread relation. Lel
w oand & be given
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and
{0<6<1 (3<u),
0 <6 <1l—cosmpu (0<usl).

Define auxiliary quantities p, >0, o> 0:

ERE
27) p» = [pl, Bu= 2Sin‘1l/—2— <5, w = (2 cos B )~ 1,

Consider the canonical products

© 2 t+-ﬁ+m+i
90 = T B\~ 5.p) (BE,p)=(1-né" "),
and the meromorphic functions
if —if
H(z) = gleez) glae " 2) ( @ +# integer) ,
9(2)
i —iB »
H() = g e” 2) ({7()oce 2) & (4 = integer)
g(z

with
¥ = (~1?Btanfp + (~1)~'loga.

Then, for any given n (0 <y <min{B/2,n—B}), we have
I If p is mot an integer,

(28) flog |4 ()| = X _(14lognr  (16] Sa—p-n),

~ sin (y/2)

_awrtsinp(0+p—n)
cos (B 1) sin (1/2)
(m=p+n <0 <m-9),

(29)  |log | (r ") (1 +1gg r)r?

I

where K = K(u, 6) > 0 depends only on the parameters u and ¢ .
IL. If = p is an integer, (28) and (29) are still valid with p replaced
by (p—1) in the right-hand sides. If we also assume

ro> 2(1 + 1/a),

the constants K depend only on u and .

The evaluation of 7'(r, ) is now straightforward but requires some
attention since we must still let 5 -— 0. We find

If u is not an integer
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y P+/L+5

(30) T, ) = ———+o(r2 ) (r—ow),
p cos (B u)
for every ¢ > 0.
If w 1is an integer, the O-term is to replaced by O(
The obvious relation

p—d+te
r 2

) -

w3
Ne,#) =" + Ollogr) (r—>w),
1

(30) and (27) imply
1—-6(o0,f) = cos(fu) = 1-90.

[Integral values of u play no exceptional role.]

The value of the spread is deduced from (28), (29) and their analogues
for integral orders.

Taking, in (2),

nr) T(r) = 1*[logr  (r>c¢),

we find

4 8(c0, )
o0, H) = lim [BE(r) = 28 = —‘l—;sm'1 > .

—>

Hence:
For any preassigned values of p (0 < u << 400 ) and 6(c0,f) , such that

0 < d(co,f) < 1 (3<<p)
0 < 6(c0,f) < 1 —cosmu (0<<p £4),

-

IA

I

there exists some f = A" for which equality holds in the spread relation ().
In the limiting case d(co,f) = 0 there is nothing to prove. For
d(oo,f) =1 and p > 1/2, it is easily seen that the functions f = %(z):

T . T

9(z) = glze w)g(ze o) (} < p # integer),
G(z) = glze'm)g(z chi"Z)_t)exl) <(— 1)* FE z") (0 < pu = p = integer) ,
M

have extremal spread of o .
One final remark concerns the following result, proved in § 5.
Continuity Lemma. If f(z) is meromorphic in |t| =R,
f0) =1, and if
0 <t <31R, 0<1t £}R,
140yt < ¢t < (14+0) (0 20),
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then for any measurable subset J of the reals, modulo 2 x ,

+ 1
(31) (e, f 1) — m(t', £3J)] < Aa<1+log )T(R,f),

v

where A 1s an absolute constant and

1 + .

mt,f;J) = — flog If(r e®)] d6 .
27 .
J

Simalarly
(32)
1 i0 1 1,0 tl
— [ log |f(te®)| d0 — — [ log [f(t'e”)|d0| < Ao (1+log—)T(R,f).
2n F 27 ) o

If the mormalization at the origin is omaitted, (31) and (32) remain true
provided:

(i) f(z) s monconstant;

(ii)) R > Ry, where Ry = Ry(f) is a suitable bound depending only
on f.

The preceding lemma, which is needed here, is quoted and used by
Baernstein [1; p. 422] to establish some properties of 7™ . Since a proof of
the continuity lemma has never been published, it may be of interest to
point out that this gap is now filled.

1. Definition of Pélya peaks and notational conventions. In the fol-
lowing definition 7'(r) denotes a positive function of the positive variable,
not necessarily the characteristic of some meromorphic function.

Definition of Pé6lya peaks. Let the function T(r) be
defined for r =ry > 0, and let it be positive, continuous and nondecreasing.
We say that {r,}; _, is a sequence of Pélya peaks of order o of T(r) if there
exist positive sequences

! 4
(1.1) rads ruds {0 s

such that, as m —> oo

(12) T:n > 0, g LT 00 Ep 0,
m 71”
and such that for
p ’ 2 é 7'"

we have
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. r \?
(1.3) T() < (1+e,) <¢) T(r,) = V().

In our proofs there will be frequent references to the associated sequences
(1.1) and to the peak inequality (1.3). We also find it convenient to in-
troduce peak intervals of two kinds:

(1.4) L, = [rpsral,  Iu(8) = [e7r,,¢n,]  (s>0),

and to consider their unions

(1.5) A = Ullm, A(s) = U11m®)~

Note that the associated sequences are by no means uniquely defined
by {r,} and the conditions (1.2).

We always make the additional assumptions

(1.6) o< T, < e < Ty (m=1,2,3,..).
The nature of our results is such that this is an insignificant loss of
generality and offers the advantage that the function

(1.7) m = m(r)

is uniquely defined by the condition r €1, .
Most of our limiting processes involve

(1.8) r-—> o, r € A) (0<s),

and lead to relations such as (15) of our Theorem 1. It is essential for the
proper understanding of this typical formula to observe that m = m(r) is
the function (1.7). If r is large enough, (1.2) and (1.6) determine without
ambiguity the value of m under consideration.

The decomposition

z = re’ (r =0, 0 real)

is used systematically.

The argument 6 is only defined mod 2z and sets of arguments,
whenever they appear, are restricted by this convention.

Many of our asymptotic formulae hold uniformly as certain parameters,
say t and 0, are restricted by relations such as

(1.9) teAd (orteds)), 0 <0 < 0,.

In order to state or stress this uniformity we consider functions #(f) or
sequences {7,}, such that
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(1.10) nt) -0 (t—->ow), 1, >0 (m-—>00).

We add some clarity to these notations by restricting them as follows.

Assuming that conditions such as (1.9) are imposed

(i) we only use the symbol 7(t) to denote a function independent of 6 ;

(ii) we only use the symbols {7,}, to denote a sequence independent
of t and 6.

If there are no restrictions such as (1.9), %(f) and 7,, will be used with
the obvious meaning stated in (1.10). +

We frequently need to consider means of log |f| or log|f| taken on
certain measurable subsets of (—m,n]. If J is such a subset we use the
notations

mir 1) = E%flgg[f(rew)]dG,

(1.11) : !
. . . o 10
,wmn~ﬁ[mwmm-

Positive absolute constants are denoted by 4 and positive constants
depending on one or more parameters by K .

Restrictions such as r>r,, m > m,,... immediately following some
relation mean that the relation in question only holds for sufficiently large
values of »,m , .... Ttis understood that the quantities 4 , K , Yo, Mgy s -ee s
the functions #(t), and the sequences {7,}, are not necessarily the same
ones each time they occur. Whenever we wish to stress the importance of
certain parameters, say s, e, d,.. on which K,r,,m,, .. may depend,
we write, for instance, K(s,e,0), 7, = ry(s,¢), my = my(8) , ... .

Statements and proofs of our results will be simplified by a strict
adherence to the preceding terminology and notations: from this point on
we take them for granted.

2. A modification of Nevanlinna’s form of the Phragmén—Lindelof
principle. The following lemma assumes and asserts a little more than
an analogous modification [4; p. 159] of Nevanlinna’s classical version
of the Phragmén — Lindelof principle.

Lemma 21. Let o > 0 and let u(z) be subharmonic in

where
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Suppose that for points T, on the boundary 09 of 2, we have

(2.1) limsupu(z) < hy® (L €02, { =reh),
o

(2.2) limsupu(z) < hyr® (L €0D, = re),
%

(2.3) limsupu(z) =< BI* (Ceod, |E]=1),
-

(2.4) limsupu(z) < BR® ((€09, |{|=R),

where hy, hy, B are real constants and B > 0.

Put
(2.5) H(o) = b, S0 (%=0) L, sin g (6—0,)

Ysing (0,—0,) " sing (0,—0y)

Then, the conditions

(2.6) reé’ e 9, l<r<iR,

imply

@7)  ul) = re{ H(O) + 3 (B + %) [(é)g + (%)M]}-

Proof. Consider

Q) = —%Im{log(

R —2"exp (—iy 01)>}
R'+2" exp(—ty 04) ’

which is the harmonic measure of the boundary arc
z = Re" (6, <0< 0,),
with respect to the angular region
Dy: 0<r <R, 0, < 6 < 0,.

It is readily verified that the conditions
'R 1
0<r<_2_, O, < 6 < b,, y > %,

imply
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(2.8) 0 < Qk) < m:%:‘”—) (%)y < ;(%)y

The function

Ply) — g0 e [hy| + [Py 0 [ha| + By
P) = rH(0) +1 (B + sin g (02——91)> + R (B + sin o (62—1—95> Q(z)

is harmonic for z € 2 and, consequently,
w(z) = uz) — Pz)
is subharmonic in 2 .
The study of
lim inf P(z) (Ceeg)

2=

€9)
is almost immediate; combined with the assumptions (2.1)—(2.4) it yields

limsupw() = 0 (l€d2),
7L

€y
and hence [8; p. 155, Theorem 201]

< ol (i B0+ (5 0]}

In view of (2.8) we deduce (2.7) from (2.9). This completes the proof
of Lemma 2.1.

3. Conditions which depress the value of w(z). With additional
information on the boundary values of u(z) the conclusions of Lemma 2.1
can be strengthened. We prove

Lemma 3.1. Let the assumptions and notations of Lemma 2.1 be un-
changed. Suppose further that there exist positive quantities &, x, o such
that

(3.1) limsupu(z) = (h,—&)1° (ze™ <t =xe’).

z~—>le101

€y
Then, if s > 0 satisfies the conditions

(3.2) I < xe®, ae¥ < |

[
=

and if
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(3.3) z €D, e Fx L |z £ &,

we have

o <o o (1Y ) )

- EKlsinn(o—()l)}
92—‘01 ’

(3.5) K, = 8a)texp(—4y2s+o0)){exp(yo) —1}.

with

Remark. With minor modifications our proof shows that (3.4) and
(3.5) still hold if the assumption (3.1) is replaced by

limsup u(z) < (hy—&)t° (xe ™ <t <xe”).
z-»>£ei02

©€G)

Proof. Let g(t) be a continuous function of ¢ such that

(3.6) gé) = 0 (0 =t,t¢ [ve?,xe’]),
(3.7 gty = &0 (we ™ <t Zael?),
(3.8) 0 < g(t) =&t (0=t).

Consider now

Y - g(t)ty_l
(3.9) v(z) = Im{“ftv_zv exp(—iyel)dt}

- ) 11" siny (0—0
y/ g(t) 7 ( 1) it

7 2 — 2 ¢ cosy (60— 0,)+r*
0

which is obviously harmonic in the angular region
g:r >0, 0, <06 <O,

and remains continuous on the sides of the angle. The evaluation of the
boundary values is elementary and well known. We find

>0

e
(3.10) l lim v(2)

7>

e

[limv(z) — gy (C=teém, 120),

I
o

(C=1te2, ¢t >0).
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In view of (3.8) and (8.9) it is clear that

y =147 gin y (6 — 6,)
(3.11) 0 < o) < 55{/#?
0

...... — 211" cos y (60— 0,)+1r*

sinp (0—0,)
e____ -
rsing(ﬁz—f)l) (zed).

The subharmonic function
uq(z) = u(z) + v(z)
satisfies the boundary conditions

(3.12)  limsupu,(2) = limsupu(z) + g(¢) < hyt® (¢ = tewl.e 09 ),
2L z2—C

€0) 2€0)

this is an obvious consequence of (3.1), (3.10), (3.6) and (3.8).
Similarly,

(3.13) limsupu,(z) < limsupu(z) < hyt® (L =1e2€09).
2L 2L

€ €G)
From (2.3) and (3.11)

(3.14) limsupu,@) < <B +__§__«) (1t =1, teod).
PAN sin o (0,— 0,)

2€0)
Similarly (2.4) and (3.11) yield

(3.15) limsupu,(z) < (B + “—i__> R (|t|=R, tedd).
PaN sinp (6,— 0,)
€0)

An inspection of (3.12), (3.13), (3.14) and (3.15) shows that Lemma 2.1 is
applicable to w,(z) (with B replaced B + &/ (sinp (6,—0,)). Hence,
in view of (3.2) and (3.3), we deduce from (2.7)

(3.16)
w0 o 2 BB+ () )

In order to complete the proof of Lemma 3.1 it is sufficient to obtain
a lower bound for v(z) under the restrictions (3.3).
Since ¢(t) =0, it follows from (3.7) and (3.9) that,
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. x exp (0/2)
oo = Ersiny (06 f ytetr1
B 7 reL + ()Y
x exp (—o/2)

Remembering the definition of y and noting that, in the range of
integration,

{1+ (tfry}™® > fexp{ -2y (2s+}0)},
we find

m(0—0,)
— Q Q1 —
87157 s 0,— 0,

(o) - ey

From (3.17), (3.3) and the inequality ¢ <y we obtain (3.4) with K,
given by (3.5).

(3.17) v(2) exp[—2y (28 + 1 0)]

I

X

4. Pélya peaks and the Phragmén—Lindelof indicator. Combin-
ing Lemma 2.1, Lemma 3.1 and the notion of Pélya peaks, we
shall obtain formal analogues of the Phragmén — Lindelof indicator. This
is of some independent interest; it also enables us to apply, to new situa-
tions, as important a tool as the subtrigonometric inequality.

We first introduce a real function wu(z) of the complex variable
z=re’.

I. The function u(z) is defined and subharmonic in each sector

’

Aty < 2] < 1y g < 0 <y, (og—ay <27).
The definition of wu(z) is extended to each boundary point ( of 4, by

u(¢) = limsupu(z) (z€d,, teod,).
=L

The sequences {r,}, {r,}, {rn}, and {e,} satisfy the conditions (1.2)
and (1.6). As a consequence, the sectors 4,, are pairwise disjoint so that,
although it is convenient to think of w(z) as a single function, we may
actually be dealing with a sequence of unrelated subharmonic functions.

II. Let T(r) be a strictly positive function, nondecreasing and con-
tinuous on each interval [r, ,r.]. [ T(r) need not be defined for r¢ A .]

Assume that

(4.1) T(r) < (1+e,) T(r,) <1>9 = V,(r,) <L>e = V,(r)

Tom Tom

(e>0,7, <r<r,,m=1,2,3,..).
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III. We now make full use of the notational conventions of §1 and
consider m = m(r) defined by (1.7). This clearly establishes the meaning
of expressions such as

i0
limsuqut(r».eh} (red, o <0 <<ay).
r—>0 r

The following Lemma 4.1 is a translation of Lemma 2.1 and Lemma 3.1
into the language of Pélya peaks.

Lemma 4.1. Let wu(z) and T(r) be defined as above and let
V(r) = V,(r) be the comparison function in (4.1).

Assume

(4.2) u(z) = B V(r) (lzl =red, o< 0 <oay),

where B =1 1is a constant.
Consider arguments 0, , 0y, such that

(4.3) ap = 0 < 0y £ oy, T = 02—61<'7E,
) Y 0
i0;
(4.4) timsap™7 0 < (rea, j=1,2),

with hy and hy finite.
Let s > 0 be gven.
I. Then, if H(0) s defined as in Lemma 2.1, we have

(4.5) u(r e) < {.T }Q T(r,) H(0) + 7, T(r,) ,

rﬂl

uniformly for
(4.6) roe A@s), 0 < 0 < 0,.

I1. In addition to the preceding hypotheses, assume that there exist positive
constants &, o, and a positive sequence {x,}, , such that

(4.7) x, € 1,(s),

and such that for j = 1, or for j =2,
(4.8) ur %) < (—§) V) (2,6 <r <a,e).
Then,

(4.9)

u(re?) < <—>0 T(r,) {H(O) — ¢K sinz <T9;—Fl> + nm} (rel,s)).
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The value of K, 1is the same as in (3.5).

Proof. The lemma follows immediately from Lemmas 2.1 and 3.1 if
the following points are borne in mind.

A. Take in Lemma 2.1

’ 4
! =r,, R =mr,

and notice that, in view of (4.1), (4.4) may be rewritten as

~

T(r,

e
/rm

U(T eiﬂj) g (hj+nm) (1+8m) TQ (/rm é r S: ,r;:z’ nm> O’ nm'_>0)

The implications of (4.2) are obvious. As to the term

GG

which appears in (2.7), it cannot exceed

\e r—e
r 7
P <_’f> + er—0 <+f‘> .
T r

m m

After some straightforward reductions, (1.2) and our convention about 7,
enable us to deduce (4.5) from (2.7).
B. The additional assumption (4.8) leads to

N 1(r,)
u(r &%) = (hi+n,—§ (A+e,) g 1 (@, =r =),

m

and Lemma 3.1 is clearly applicable. The positive parameters s and o
are the same as in Lemma 3.1, and from the conditions (4.7) we see that

Im(s) C [xﬁl 6*28 @ x}'lt e2s] *

An inspection of (3.3) and (3.4) now shows that (4.9) is valid for r € I,,(s) .

5. The Continuity Lemma., We sketch a proof for f(z) mnon-
constant and meromorphic in the whole plane. Since we assume no
normalization at the origin we require the additional condition

(5.1) R > Ry(f).
It is easily verified that
+ +
(5.2)  |loga — logp| < |log e — log B (0o, 0SB, 0<a+p).

If «+p = 0, the right-hand side of (5.2) is undefined; this is immaterial
since the left-hand side is zero in this case.
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In order to obtain bounds for

Wz(t ,f, J) ad «iﬂ(t' ,f,J) 5
as well as for
m(t,f;Jd) —mt' ,f;J),

we write 0(f, ) for either one of the above differences. Hence, taking
(5.2) into account, we deduce

’ 1 J [ r 1
(5.3) o, 1) < ﬁfIIOg it )| — log |t €%)]] d6 .
Write
te” =z, teé? =2, R2 =35,
2__ 2
81 — P(s,t,y).

s2+12—2stcosy

By the Poisson —Jensen formula

(5.4)  [log |f(z)] — log |f()I|

< L / llog |f(s €°)|| |P(s,t, 0—@) — P(s,t', 0—g)| do
n——n

2
$2—z" a $2—z2b
S pffE] - T2
z2—a z—0b
+Z log I +2 log b’

where a runs over the zeros of f in [z| < s, b runs over the poles. It is
easily seen that, under our restrictions on ¢ and ¢, there are absolute
constants 4, , 4, such that

(5.5) |P(s,t,y) — P@s,t', )] = 4,0,
2—2'd (Z—z')g
(5.6) |log s ” = |log|1 + ] H < 4,0 (|d] £5s),

where d denotes either a or b .
Now

(5.7) n(s,f)log2 < N2s,f) < T(R,f) <1 §s=§>,

and by Nevanlinna’s First Fundamental Theorem
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(5.8)
1
m(s , f) +m<s,—f—) < 2TR,f)+0(1) < 3T(R,f) (R>R,).

Combining the inequalities (5.3)—(5.8), we verify the existence of an
absolute constant A4, > 0 such that

, £ e — '
(5.9) o, ") < A;0T(R,f) +§ flog T de
Ve ip __
f log t e’ — ”d
Clearly
z_d‘ l i 1 -l d = |d| e
7_dl = Yt = t e (d =|d[e”),
and since
. . L p—w
[2'—=d| = [t'e?—|d]| e = (t'+|d]|)|sin 5 |
we obtain
te“”—d‘ o
rer—ql =17 L p—w
sin =

This inequality holds if ¢ and ¢’ are exchanged; consequently
ip
Le detp < Zflog<1 + —,w—g—>d1p
t' e sin (p/2)
0

(5.10) /[
7|2 72
=4 /1 1+f—q~~d < 4| lo 1+-3L0~d
- Og sin P » g 2 @ @
0 0

_ 2n{log(1 +0) + fflog(" +<17>}

+ 1
< 2n<(l+log 2)o + olog;).
As in (5.7),

(5.11) {n(s,f)+n<s,%>:log2 < 3T(R,f) (R>R,)).
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Using (5.10) and (5.11) in (5.9) we deduce from the two interpretations of
o(t,t'), both (31) and (32).

6. Equicontinuous character of m*(z) and 7%*(z). Using the
Continuity Lemma of the present paper and a similar result which we
established in [5; p. 337 — 339], Baernstein proved [1; pp. 422 —424] that
m*(z) , defined by (21), is a continuous function of z. This does not quite
suffice for our purpose and we prove the more precise

Lemma 6.1. Let m*z) be associated with some mnonconstant
meromorphic function f(z) and let T(r) = T(r,f).

Let t, and t, satisfy all the following conditions

R .
(6.1) 0<R0<tj_§_4, (7=1,2),
(6.2) (1+0)~2 gi_l <140 (0<0)
2
Then
(6.3)  [m¥(ty ) — m¥(ty €™)]

+ 1 + 1
< 4 T(R){a(l +10g;> + |0,— 04] (1 + logIE_ 91|)}
(0<0, <z, 0<6,<m).
The relation (6.3) remains valid with its left-hand side replaced by
T(ty ™) — T¥(ty €™,

and A replaced by another absolute constant A, > 0 .
Proof. Let ¢ > 0 be given. By the definition (21) there exists some
measurable set , such that

(6.4) Byl = 20,, mHt,¢™) — e = ity f3 By

We now determine #; so that

B, = 20,
and
(6.5) E, c B, if 6, <0,,
or
(6.6) B, ¢ E, if 0,<0,.

[The existence of such a set kA, is readily verified.] By the Continuity
Lemma, (6.1) and (6.2),
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+ 1
(6.7) {}Il(tz ,f; E2) = ;/z(tl ,f; Ez)l E A T(R) o <1 +10g ”(;> .

If (6.5) holds take E, = E,—E,; otherwise (6.6) holds and we take
E, = E,—HE, . In either case

1 .
loelty s [ 3 Bo) — ety f5 By | = 27 f | log |f (¢, ¢”)]] B
Iy

< mlts, 5 By) +m<t1,%;E3).

We now use Lemma III of [5; p. 322], and take into account

Byl = 210,- 0y, T(u-}) < 2T, ) (1> Ry).
We thus find
(6.8)
,+.
ety o f 3 By) — me(ty, [3 By = A 0= 04] <1 + IOg—"*l“~“> T(R).
[0z —0,]

Combining (6.4), (6.7), (6.8) and

welty f3 By = m*(ty ™)
we see that
(6.9) m*(ty €%2) — m*(t, €M) — ¢
is bounded from above by the right-hand side of (6.3). Since we may ex-
change in (6.9) t, ¢ and f,¢™ and since e (> 0) is arbitrary, the
inequality (6.3) follows.

The assertion concerning 7% , in Lemma 6.1 requires an upper bound for

(6.10) Ny, f) = Nt f)] -

It is clearly no longer a restriction to assume ¢, > {, > 1. Hence

3|

0 < Ny f) = Ntaof) = f ?@—"’[’»f)fu < B = ontnf)

< 2 _N@t,f) £ —T(R).

log 2 log 2

aQ

This is the required bound for (6.10) and the last assertion of Lemma 6.1
is now obvious,
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Our next lemma is obtained by combining Lemma 6.1 and the peak
inequality (1.3). It does not depend on any assumption concerning the
extremal character of the spread.

Lemma 6.2. Let T*(z) be the Baernstein characteristic of some non-
constant meromorphic function f(z). Put T(r,f) = T(r) and let {r,},
be a sequence of peaks of order o > 0 of T(r).

Let

(6.11) T*(t, ¢om) < A, <—'">QT(rm) ,

where

(6.12) b, € I,(s) (s>0), 0 < ow, <x, m > my,
and

(6.13) Ay —> A =20, w, >0 (m—>ow).

Then, given & > 0, it is possible to determine

(6.14) o= ol,&,0,8) > 0,
depending on no parameters other than those explicitly listed, and such that
) e
(6.15) T*(te?) < (A+§) <i> T(r,),
Tm
provided
(6.16) e”? £ ;— =€,
and
(6.17) -0 <o, 0<0 <a, m>m,.

Proof. Take ¢ to be the largest number satisfying simultaneously
the three inequalities

(6.18) 0 =0 =1,
(6.19) (/1 +§> e +ft- < A+E,
3 3
+1 1 £
(6.20) 2e4° " Ajexp (20 (s + 1)) o(1+log—) < &
o

In (6.20), 4, is the absolute constant of Lemma 6.1; it is clear that o
depends only on the parameters explicitly listed.
By (6.11), (6.13) and (6.16)
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6.21)  THE, dom) < <z + %) e”e<i>e T(r,) (m>my).

Tom

By (6.12), (6.16) and (6.18),
t € I,(s+0) c I,(s+1), t,el,(s+1).

Hence, if we take

R = 4etty,
the peak inequality (1.3) implies

(6.22) o
T(R) < 4% oxp (o (s+1) ) = 4% exp 2o 4 1) ) (1)
rm

By (6.13), (6.16), (6.17) and (6.18),

t
(1+eo0)™! gi < (1+eo0), 0-w, <o+ |lo-o, < eo

m

Lemma 6.1, (6.20) and (6.22) immediately yield
(6.23) T*(t ) — T*(t,, em)

e
< A, 4% lexp (20 (s+1)) T(r,) <ri> 2e0 <1 + log %)

i(:) T(r,)  (m>m,).

m

We now combine (6.21) and (6.23) and take (6.19) into account. This
leads to (6.15) and the lemma is proved.

7. An upper bound for 7T*(re”). We apply Lemma 4.1, with
o =u to uiz) =T*%z).
By the definition of 7%,

(7.1) sup T*(re’)y = T(r) = T(r,f),

0=S60=<a
and

T*(r) = N(r,f).
Therefore, if d(c0,f) = 1 — cos B u, we find, in view of (4.1),

* if * i
2 et < limsupT(rez <1 (r—ow, red),

T(r)

lim sup
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T*(r)

]imsup_m < limsu‘pN(r’Q <
r

0 < cosfu  (r—ow,red).

We now apply assertion I of Lemma 4.1 with
6, =0, hy =cosfu; 0 <0,=p*=mn@,a), h =1,

and find:
If s > 0 s given and if

reds), 0 <06 < min(f,n),

then
(1.2) T*@re”) < (: ># D(r,)cosu(B—0) +u,T,) (f<n)
(1.3)  T*(re®) <
(-»T->M T(r,) { cos u (m—0) — s # n —oospp sin y (7 —0) } + n,, 1T(r,)
Vo sin p 7

(m<B).

The relation (7.2) is essentially the same as the one used by Baernstein
in his proof of the spread relation. The relation (7.3) is stated for sake of
completeness. Its appearance is precluded by our hypotheses ES.

The following consequence of (7.2) will be needed later.

Remark. It is possible to find three positive sequences (R},
(R}, 1e,}, satisfying the conditions (18) and such that, for 0 fived
(0<b<p<m),

% (5 il
limsupT*(Te ) < cosu(f—0) (red)
T V(r)

with

/1.’ =i U [_Rl:L H ‘Rf::-] ‘

me=1

The proof of the remark is immediate, we give to s, successively, the
values s = 1,2, 3, ... and complete the construction of [R’ , R"] bv an
p L n m. o
obvious “diagonalization”.

8. The spread relation. We first prove that, if f <z, then

(8.1) limZ-— "~ 7 = 1,

with
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B = 1 1B,
and
B(r,) = B = {0: log|f(, ") = nr,) T(r,)}.
Introduce, beside H(r,), the sets
(8.2) Byr,) = By, = {0: log |f(r, ") = 0},
(8.3) Et = E,—E  (n(,) =0),
(8.4) E- = E-E, (n(r,) <0).
From (8.2), (8.3), (8.4) and (21) we deduce
mlry ) = W) 7)< o [ log 1, )] do
E

-

< m*(r,, €m) .
Hence, taking into account (20) and (7.1), we find

T(r,) (1=|nr,))) = T*@r, ™) < T(r,),
and (8.1) follows.

Up to this point we have not used the spread relation (5) or the hypothe-

ses ES. It is therefore possible that

(8.5) liminff, < <0 <p=" .8 <7z>,

M—>0 -y

[the quantity g is defined in (6)]. On the other hand, by (7.2) and (8.5),

for suitable large values of m , we have

T*(Tm eiﬂm) é T(Tm) (]' +77m) COS U (ﬂ“ﬁm) J

Since this contradicts (8.1), we must reject (8.5). This shows that our in-
equalities do in fact lead to a proof of the spread relation. The proof thus
obtained does not differ essentially from Baernstein’s original proof in [1].

9. Lower bound for 7*(r ¢ . We now use (for the first time) the
hypotheses ES. As remarked in the introduction these hypotheses imply

(9.1) 0 < B <.

In view of (12), (8.1) and Lemma 6.1 (with o = 0), they also yield

T*(r, ) 1

9.2 im
( ) M—>00 T(Tm)
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We now prove
Lemma 9.1. Let f(z) satisfy the hypotheses ES. Then, given s > 0,
there exists a positive sequence {n,,},, , independent of r and 0 , and such that

(1) Ny —> 0 (m—o0),

and

(i) THr 6% = (1) T(r,) (cos u (B—0) — 1)
r”’l

provided

(9.3) rels), 0<6<§.

Proof. Assume the lemma to be false. It is then possible to find s > 0,
§ > 0, infinitely many values of m and associated points z,, ¢» such that

(9.4) T¥(z,, éon) < (f—'") T(r,) (cos i (B—w,) — 38),
and
z, € l,(s), 0 =L o, <8.

Using, if necessary, the selection principle we may renumber the quantities
z, , o, and assume that

A

(9.5) w, o (m—w), 0 w = f, cosu(f—w)—3& = 0.

Lemma 6.2 is immediately applicable and shows the existence of

(9.6) O<O’=O'(,u,ﬂ,(l),§,8) él

such that the relations

(9.7) e‘"gige", - =0, 0260 <, m>m,,
xﬂl
imply
U
(9.8) THE ) < (‘_) T(r,,) (cos (o) — 2¢).
r

w’

In order to avoid the values w = 0 and ® = f#, which complicate our
arguments we take advantage of the fact that 6 may vary in the interval
[w—o0,w+0] and deduce from (9.8) the existence of some « such that

(9.9) 0 < w < f,

and
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(9.10)
TH(E o) < (i) T(r,) (cos s (—w) — & < V(1) (cos u (B—0) — &),

™"

for

e, m>m,.
We now apply Lemma 4.1, IT with
(9.11)
3p
0y = o, hy = cosu(f-o); 0 =p; B <0 <—-2~'~, hy = 1;

as to the parameters &, s and o weremark that: & and s are determined
by (9.4), and ¢ (0 < ¢ < 1), whose value is determined by Lemma 6.2,
only depends on the parameters explicitly listed in (9.6).

Write

,n, —] ’(‘() = 92—01 == 02—0)

14
and notice that, by (9.9) and (9.11)

2n 7

Ty < :
3p p—o
By (7.1) the choice h, = 1 is certainly possible, regardless of the final
selection of 0, . The possibility of selecting %, , as in (9.11) is derived from

a preliminary application of (7.2) with 0 = w . In order to completely
justify this step, we observe that, as stated, (7.2) only yields

(9.12)

0
(9.13) lim sup T*(Ti_) < cospu (f—0) (reAs)),

7->00 V(r)
where s> 0 is fixed. On the other hand, condition (4.4), which is needed
to permit the use of Lemma 4.1, requires that /(s) be replaced by A in
(9.13). The remark, at the end of § 7, shows that the validity of Lemma 4.1
is not affected if A is replaced by A’ . Hence, in view of (9.10) and (9.11),
we deduce from (4.9)

(9.14)  T*(r, &) < T(rm){H(ﬂ) — K, sinz (’.3;“3> + nm},

where

©9.15)  H(p) = PspB-o)sinplyto—p) +sinp o)
sin u
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and K, is given by (3.5). In order to replace K, by a constant independent
of y (and therefore independent of o ), we notice that (3.5) and (9.12)

imply
(9.16) &K, = E(sn)mlexp<~4_7i(2s+a)) {exp(%“ﬂ‘f) - 1} = K,.

f—w

This suggests the introduction of the function of w :

(9.17) L(y) = HP) — K, sinzz(/_g;“’) (B fixed).

From (9.14), (9.16) and (9.17) we deduce
(9.18) T*(r, €) = T(r,) {L W) + 1,} .
Jonsidered as a real analytic function of v, #(p) is regular for

(9.19) w—prol = P20,

and hence there exists a bound K, , independent of y and such that
2" = 2 Ky,

for o restricted by (9.19). Since

(p—=p+ov) + Ki(p—p+w)?.

It is now clear that, if w—pf+w is chosen positive and small enough,
we have
Ly) < 1
and by (9.18)
Tk (, 1B
lim sup ] (’m_?,__l < 1.

M0 ’l'm)

Since this contradicts (9.2) we must reject (9.4) and Lemma 9.1 is proved.

10. Proof of Theorems 1 and 2. Using Lemma 9.1 with 0 = g,
and the peak inequality, we obtain
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r\*

= () 10 < 10 < 10

T

< are) (M) 10 (e aw).

This implies (15).
To prove (16) use Lemma 9.1 with 0 = 0. Then

(cos  B—y) (i)”fr(rm) < N, f) (rel ),

m

and, in view of (15), we find

cos u i = liminf A%Jf) < lim sup %V%Lf.) = cosuf.
r—> r r—>0 r
red(s) ) )

This yields (16).
As to (17), it readily follows from (15), (16), the elementary inequalities
c~1 n(taf) < ‘N(Ut7f) - N(t7f) < (O‘——l)n(?‘t,f)

o Tw T(t) T(t)

and two successive passages to the limit: first {— oo (¢ € /(s)), then
og—>1+.

The proof of Theorem 1 is now complete. To obtain Theorem 2 it suf-
fices to combine (15), (7.2) and Lemma 9.1.

11. A fundamental identity and some of its consequences.
Let f(z) be a meromorphic function with zeros {a;}; and poles {b}; .
As usual, multiplicities are taken into account by a suitable repetition of
elements in these sequences. We first state as Lemma A an identity which
has been proved by one of us [6; p. 18]. An essentially equivalent result
was used by V.P. Petrenko [9].

Lemma A. Let f(z) be meromorphic in

7
D:0 < |z| £ R, larg z| w<*y (yp>1).

Let 0 << u < R and put

(11.1) R aly

9 y =1 P2y __ 42y 2y __ 27 .
[ (B? — ) (B — u )flogif(te”’)ldﬂ,

g, = S(R,y) =
Dy (B, y) 9 (t"—{—u”)z B + o t")z
0 —aly

R’ w(RY —w”) (1 + cosy0)di
R’ +u") (R¥ + u¥ — 2 R"w cosy0)

(11.2) aly
S = Sy(R,y) =~ f log |(Re")

—aly
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]zly_*_uy_l R¥ 4+ |z]” w¥
|2¥ —u? | le" — 2w :

(11.3) W(z) = log

Then, if f(u) # 0, f(u) # oo, we have
(11.4) log [f(w)] = 8y + 8y + 2, W) — >, W(a),

where 3, is summation over all poles b of f(z) in D, >, is summation
over all zeros a of f(z) in D .

The quantities W(a) and W(b) are nonnegative.

The formula still holds for y = 1 and does not require that f(e" r) and
fle=™r) be equal.

From Lemma A we deduce

Lemma 11.1. Let f(z) be a nonrational meromorphic function,
normalized by the condition f(0) = 1.

Assume y =1 and let

(11.5) J = {tpr ] éf},
Y
7 u”
(11.6) X(t,u) = Frap
(11.7) He, o) = log ZLHIET
7= 0]

where { may be complex.
Then, if f(u) = 0, f(u) = oo, we have

R
(11.8)  log [f@)]| + yzfm(t,%; J> Xe,u) o+ Ha, , u)

o RI<aj|

R
- 72fm(t,1”;J)X(t,u)f?“F > Hbw) + S,
R’

b]'ED
RI<|bj|
where
R’ Y w\?
(11.9) 18] < 28y{<7v> TR + <_) 72 R)},
U R
provided
(11.10) 0 < 2R < u gg.

Proof. Since f(0) = 1, Jensen’s formula is
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(11.11)
m(r, f) + N, f) = m<r,~]1;>+N<r,—JI;> -0 (r>0),

and hence, from (11.2) and (11.10) we deduce

4y R v 1 u\”
(11.12) IS, < Wﬁ{m(R’f) + m<R’7)} < 16y<E> T(R) .
Put
2;
(11.13) Y, us R = 20w

(R¥ + ¢ w)?’
and rewrite S; in the form
R
1 dt
S, = y2f{m(t,f;J)—m<t,7;J>}[X(t,u)— Y(t,u;R)]T,

0
R

1 dt
(11.14) S, = »? mt,f;J) —m(t, ;;J X(t,u)—t—+S”l‘.
fltso0 -39
By (11.11) and (11.13)

(11.15) 1811 = 27<%>VT(R)-
Similarly
arie)
yzf{m(t,f;J) —m<t,~Jl?;J>}X(t,u)?’ < 2;/(%)%(12').

0
From (11.14), (11.15) and (11.16) we deduce

R

S; — yzf{m(t,f;J) —m<t,%;J>}X(t,u)Cg

R’

oo (5 o 5 ren)

By (11.3) and (11.7)

(11.18) 0 < Z W(a) = Z H(a, , u) + z H(a;, u) ,
ujeD ajeD a;eD
laj| =R/ R'<|aj]|

(11.17)
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and obviously

Y Y v .
(11.19) 0 < Hiz,u) = log AL +% - 817 <|z| <R gﬁ>
2 — Y| 3w 2
Similarly
2y Yy 4
0 < ]ogE_*_*-_Izl v o< E(:u_) <u §§, 2] < R),

R

R — 27w’| = 3

and hence, returning to (11.3), we find, in view of (11.18) and (11.19)

(1L.20)  — 8<ﬁ>yn<R,l> <D W) - 2 Ha,u)

3\R

f ajeI) a;eD
R'<I“jl

s 1
gﬁlﬁ n<R’,M>.

3 . u I

The familiar consequence of (11.11):

(11.21)

o £
71(7”,50..>10g2 < ff?(t_;fgdt < N(M}) <T@ (r>0),

7

is used to eliminate from (11.20) the terms involving the function n(r, 1/f) ;
we thus obtain

(11.22)
;) W(a) — ]}b H(a;, u)| < 5{(%)%(2 R) + @7')7 T(2 R’)}.

R’<[a][

There is a similar relation with the zeros @ replaced by the poles b .
The estimate (11.9) follows from (11.4), (11.12), (11.17) and (11.22).
This completes the proof of Lemma 11.1.
Lemma 11.2. Let f(z) be meromorphic and nonrational.
Let {R)}, {R]} be sequences such that

R, —~ o (m->w), 4R, < R

m

and let {w,}, be some given sequence of arguments.
Introduce the sectors

(1128) @, = (o2 By <] SR, 0, -2
4 Y

and the notation
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O taly
b f log |f(re®)| d6 = m(r I [wm—— Z o+ ﬁ:l) ,
27 Y Y
O =y
where
y =21
If
2R, <u = }R,,
then

(1.24)  log [fwen) | + 2 H(a e~ )
aje@m

)
= 7 [t fionmTo0ut =] x0T
J Y ¥ ¢

1\’
+ Z Hb, e m, u)+ Sy (m>mg),
bjE‘@m

with

£ 'Rr:z v ’ u 4 ”
(11.25) ISk < 56y (-2) T(2R,) + 7 T2R,) !+ Klogu.
u

m

The constant K > 0 only depends on the behavior of f(z) at the origin.
Proof. Since the normalization f(0) = 1 has been omitted, we first
define an auxiliary function F(z) by the conditions

(11.26) f) = c2* F(z),

where £ is an integer and

Put
Tyr) = T, F), T() = T(r,f).
Apply Lemma 11.1 to the auxiliary function
(11.27) F) = Feom),
with
R - R, R=R].

All the necessary conditions are clearly satisfied and hence, in view of
(11.26) and (11.27), we deduce from (11.8)
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(11.28) log[fueml-—loglcl—kbg““*‘ Z —iwm’u)
ajcD,y,
kg
= yzf”‘<t:f;[wm _z’wm +n:|>X(t’u)it
14 Y ¢
Riy
Ry
—yf(log]c|+klogt) (¢, u) *—l- z eom u) 4+ S,
Rr:v be@
with

(1L20) 18, = 28y <§"> T1(2R,;>+<~;‘~,,)VT1<2R,:)}-
u

m

To justify (11.29) it is necessary to observe that

Tyr) = T(r,Fiz) = T, FeE*z)
for any choice of o (real). We also note that, since f(z) is not rational,
(11.30) Tyr) < 2T(r) (r>r1y).

The assumption y > 1 implies the convergence of the integrals in the
following elementary relation

(1131)

I/X logt ‘ < logu

1 oo
5 r+fllogr](1
0

Now use (11.30), (11.31) and R, — +oo in (11.28) and (11.29). This
leads to (11.24) and (11.25) and completes the proof of Lemma 11.2.

0

12, Estimates for H(z, (). We study

(12.1) H(,0) = .E£+J“y,

with

(12.2) y =21, =wue (uz=0), 2z = re’,
and first state the obvious relations

(12.3) 0 < H(z,0) = H(l,?2) < H(|z], [¢]).

Lemma 12.1. Let vy =0, s >0,
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(12.4) ecu £ £ e,

and

(12.5) 0 <722 (o<o<a).
Y

Then

(12.6) Hz,u) = e?(1+e%)2 sinzg,

If, instead of (12.5), we assume

(12.7) 0<% <o <2729,
4 Ve
then
(12.8) H(z| ,u) — H(z,u) = €7(1+e%)2 sinzg.

Proof. From (12.1) and (12.5) we deduce

477 u¥ cos2(y0/2)> o’ sin*(6/2)
2" —u?[? T (7 Hw)

H(z,u) = }log (1 +

and, using (12.4), we obtain (12.6).
Similarly, using (12.7), we find

Y ¥ sin2 Y Y sin?
H(zl ,u) — Hiz,u) = %—]og(l n 4 7w sin (y0/2)> L 17w sin (0/2)

(" —u?)? (" +u?)?

and (12.8) follows.

In our next estimate we require Cartan’s lemma on the minimum
modulus of a polynomial.

Lemma 12.2. Let ¢ (0 <o <1) begivenandlet t; (j=1,2,..,4)
be real numbers, not necessarily distinct, such that

(12.9) 0 <t <re (0<jsAH).
Then, for some w in the interval

(12.10) ro=ou o= e’r,

we have

N il £+ 1
(1211) X, = ZH(tj,u) - Zlog(iﬁ]{_u,,l) < ./V<K4()/) + log;)
j=1 j=1

with

[
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K,(y) = log (—-S—CZVH) .
yo

Proof. Put
x = o
By (12.10)
(12.12) o< x <.
From (12.9) and (12.10)
(12.13) 2, £ ¥log (27 exp (207y)) + log . ,
[P ()]
with
N
P(x) = II (x—t}).
i=1

By Cartan’s lemma, it is possible to exclude, from the interval of x defined
by (12.12), an exceptional set & such that

(12.14) & < yor’,
and such that, for z ¢ &,
1 . 4e
(12.15) log— < Alog (%) + A log <_—> .
[P ()] vo

Combining (12.13) and (12.15), we obtain (12.11) for certain values of
in the interval (12.10). The set of suitable values of % has positive measure
since, by (12.14),

€] < (e — 1).

13. Further consequences of the hypotheses ES. If f(z) satis-
fies the hypotheses ES, Theorem 1 is valid. Hence (17), restated in the
same form as (19), enables us to determine sequences {R.}, {R,} such
that :

¢\
(13.1) n(t,f) = <7> (B + n(t) T(r,,) (B =pcospu),
with
’ r .R”
(13.2) R, — oo, ]T"‘,—+ 0, 22— oo (m—>own)
m rm

and
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n(t) — 0
as t-> o0 by values
ted = UIR,,R) (rn<R,, By<ry).

m=1

From this point on, the parameter y which appears in the definition of
H(z, ¢) is always taken to be

(13.3) y = .

In view of the hypotheses ES, it is obvious that
(13.4) y > 1, y =Z2p > 0.

Lemma 13.1. Let f(z) be a meromorphic function satisfying the
hypotheses ES, at the sequence of peaks {r,},, ,of order u,of T(r) = T(r,f).

Assume that the quantities R, , R, have been selected as above.

Let s>0 and o (0 <o <1) be given; let ® and w be any two
points such that

(13.5) v el (), x =u = w,
and let
(13.6) 2oun) = }_‘ H(lb,], w),

(13.7) 2o(u) = z H(lb| , u).

1e27 b1 SRy,
Then, as u —> O

(13.8)

500+ 2w = (2) 10 (2B (TE) £ 0,) - Oas0,m = mw)).

7 2)/

Proof. From (13.1) we deduce

(13.9)  n(t) — B :T(fI;Q " = n(t).?é’.;:?,) 0= &) (n(t) =n(t,f)),
T’” m
with
) — 0, (t-—>ow,ted’).

The function &(t) is expressed, in (13.9), as the difference of two non-
decreasing functions; hence the symbol dé has a welldefined meaning. Put
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e = sup n(E)],
(13.10) R SISRy,
T = xe*, R’ = R,.

Using Stieltjes integrals and (13.9), we obtain
(13.11)

R” R R

T(rm) -1
L = [Ht,wdnt) = p B [(Ht,wyetde+ [ Ht,u)dé.
/ <] /

An integration by parts and (13.10) yield

R"

(13.12) ) H( , u) dsr
/

< 0, T(,) {(%) H(R ,u) + (}) H(r,u) + 7@)

In the latter integral

oH 2y ptw P
o B e

i dt;.
ot

and hence, in view of (13.4),

(13.13)
T i\e|oH -
f <__>M = dt < 2yr,(1 — e 271y f e vdE < K(u, p, 8, 0)
rm

where K only depends on the parameters explicitly listed.
Use (13.13) in (13.12) and take into account the obvious estimates

Y ”
0 < H(R",u) g4<u> <u §§_>,
R" 2

Y
0 < H({t,u) < log.l +log<.2e..> (uw =tle 7).
o Y

Our convention concerning the symbol 7, , leads us to

R"

}fH(t,u)dE‘ = 0, T(r,);
7+

returning to (13.11), we find,
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(18.14) 2 (w) = pB—,

() [ - r
7 HE,w)yt"tdt +n,, T(r,) .
The proof of
T, [
(13.15) Zy(u) < uB T f H(t,w)t*=tdt + n, T(r,)
” 0

is entirely analogous and will be left to the reader.
To complete the proof of (13.8), we add (13.14) and (13.15) and observe
that

(13.16)

/LfH(t,u)t"fldt = %u"flog
0 0

The explicit evaluation of the second integral in (13.16) is straight-
forward. It may be obtained by residues. We may also expand
log [(14¢£) /(1 —t)| in positive powers of ¢, for 0 <t < 1, and in negative
powers, for ¢ > 1. Term by term integrations followed by the use of the
series of partial fractions which represents the cotangent immediately
leads to the closed form in (13.16).

1+
1—

7
. =l dt = mout tan (_u) .

2y

14. Selection of the points of maximum modulus.
Lemma 14.1. Let the assumptions of Lemma 13.1 be unchanged.
It is then possible to select a positive sequence {u,,}, such that

(141)  max [fu, )| = M(u,) < +oo, min [flu,e’)]>0,
0=0<2n 0=0<2n
(14.2) Ym0l (m>ow),
rm
and
(14.3)

Hb| 1) = @u = (7 Btan () + ) Tta) (o -0).
4

R <|bjISRp

Proof. Let ¢ (0 <e<1) be given. Choose ¢ (0 < ¢ < 1) small
enough to imply

(14.4) 6 u B e 0<K4 + logl> < ¢ (o=o0e)),
o



106 ALBERT EDREI and WOLFGANG H. J. FucHs

where K, > 0 is the constant in (12.11). Hence, by (13.1)
(14.5) & = (@ r,) — n(en,) = BI(r,) (" — ™) + 4, T(r,)

&€

2<K4 + log !

[

+ 1,1 L(r,) .
)

We now use Lemma 12.2 to determine in the interval [r,,, e’ r,] a point
%, such that there are no zeros or poles of f(z) on the circumference
|z| = u,, , and such that

(14.6) X, (u,) = 2. H(bl w) < <K4 * m%)””

e T OIS 70?0

we then combine (14.5) and (14.6). This leads to
(14.7) I ) £ 3eTl,)  (m>mye)).
From (13.8), (14.6), (14.7) and the definition of (), , we deduce

(14.8)  Q, < ¢ T(r,)n B tan <§ﬁ) +eT(r,) (m>mye)).
Y

At this stage, we give to ¢ a succession of positive values — 0 ; this,
in view of (14.4), enables us to select a positive sequence {o,} such that
0, —0.

Then, by the “diagonalization process” precedingly used, we obtain
(14.2) and deduce (14.3) from (14.8). This completes the proof of
Lemma 14.1.

15. The maximum modulus of a function satisfying the hypotheses LS.

Lemma 15.1. Let f(z) satisfy the hypotheses ES, and let {r,}, be the
sequence of peaks, of order w , of T(r) = T(r,f) for which (12) holds.

Put

M(r) = M(r,f) = max|f(re”)],
0

and let s > 0 be given,

Then
(15.1) apsing o= liminf }g%ﬂ_[(r)
#—>00 T(’I’)

(reAs)).

Proof. Given ¢>0 and o (0 <w <m) determine a measurable
set B such that

B = 20, m*rée?) —e < é}ﬁflog |f(re®)| do .
n
E
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Hence
TH(r ) — T*(r) = m*(re?) < “ log M(r).
T

(15.2)
= +00©.]

<~
—n

[The above inequality is trivial if M (r)
By (15.2) and Theorem 2,

T'(r) (cos p(f—w) — cos uf) — [n(r)| T'(r)

Zlog M(r) ,
7
and 75(r)—0 as r—o (reA(s)).

where o is fixed (0 <ow <f)

This leads to
T toos p(f—0) — cosp ) < liminf CEME) (e a@)).
a0 T(r)
Letting @ -+ 0+ , we obtain (15.1)
2, and proof of Theorem 3.

16. Construction of the sectors
We propose to apply Lemma 11.2 taking into account the results of § 14
and § 15. This requires a preliminary definition of the sectors 2, which

appear in (11.23).
To construct the sectors 9,,:
(i) take wu, , R, , R, asin Lemma 14.1;
(ii) for o, take any one of the arguments for which

|,y €m) | = M(w,);

(16.1)
(iii) define yp by (13.3). Since the hypotheses ES are satisfied, the

relations (13.4) hold.

(iv) the sectors 9,, are obtained by giving to the parameters R, , R, ,
w,, , v, of (11.23), the values which we have introduced above.

We next introduce some auxiliary quantities. Put
Ry
2 f it f 5 o —F  0n+B1) X, 1),

(16.2) Lt =
R/

"

B di

= 7 [ mieHXC )T = L

’
R m

where
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RII
~ ~ dt
(16.3) L, - yzfm(t,f;[wmw,2n+wm—m>xu,um>—;.
Ry,

We also need

4

Ry,
(16.4) L, = y2fm<t,}c;[wm—ﬂ,wm+ﬁ1)X(t,um)%f,
Ron
(16.5) %, = Z H(a;em, u,),
weD,,
(16.6) Py = > Hb e n,u,).
0D,

All the quantities L, % , 2 are clearly nonnegative. Let
a = lale¥, b = |b]e7,

denote, respectively, a zero and a pole of f(z) .
Given s> 0 and % (0 <% < f), consider all those poles for which

(16.7) e’ u, < bl £ €u,;
let, there be exactly », = »,(s) of them. We subdivide these poles into
three collections %\/)(s, ) (j = 1,2, 3) containing, respectively »/)(s )
elements and characterized as follows:
(i) the elements of %!’ are those for which |p—w, | < 7 ;

(ii) the elements of % are those for which # < [p—w,| < f§;

(iii) the elements of %[ are those for which f < [p—w,| <z .

With the notations of Theorem 3, we have

(16.8) Som = W+

Notice that Lemma 12.1 and (16.7) yield

(16.9) > (H(b], w,) — Hlbye ™ u,) 5 = Ky (s,y, )02
h-e%@)
hi€6 m

the constant K; > 0, only depends on the parameters explicitly listed.
For all poles satisfying (16.7) we have, by (12.6) (with 6 =z, y = 0),

H(lb| ,u,) = e (1+e7)% = Kys,9).

Hence,



Asymptotic behavior of meromorphic functions with extremal spread I

109

(16.10) > H(blu,) =K.
%E%Sz)
Similarly consider the zeros of f(z) characterized by

-7

ume—s < Ial = esum’ lw—wmI < /3“77 = —
Y
with the notations of Theorem 3 there are +,, = +,(s,n) of them.
By (16.5), (12.5) and (12.6)
(16.11) Z, = o Ki(s,y,m).
In order to apply Lemma 11.2 we still need to estimate
R, P
(16.12) Lyt B = 7 [ 10 = N DX )T
RI

By (15), (16) and (14.2)
(16.13)  T(t) — N(t,f) < (1+n(t)) (1—cos g u) T(t)

13

< ) (0= cosp) T (1) (B <0< R

Uy

Hence, combining (16.12), (16.13) and the change of variable ({/u,)" = =,

we obtain
~ “ Y
(16.14) Ly + T, < (1+7,) (1 — cosfipu) T(um)yf e
(1+a)
0
= (1+7,) (1 — cos B ) T(w,) .
sin f u

The application of Lemma 11.2 is now immediate. Using (16.1), (16.2),

(16.4), (16.5) and (16.6) in (11.24) we first deduce
(16.15) log M(u,) + %, + L, = L, + 2, +n,T(,),

and remark that

m =

bje{(gg)U(g%)}
D HGbLw) v > H(bl ).

Ry < bj|Se™Suy, uy<|bjISRy,

2, < > Hbje"n u,)
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Hence (12.3), (16.9) and (16.10) yield

'ﬂ/m + ’Vg) K5 + ’V:;?) I(G ‘(\- Z H(II)JI s Q(’m) )

Ry < IbjISRy,
and in view of (14.3) and (16.8)
(16.16)
P + s Ky = <n,ucos,8,utan%u + 17,,,) T(u,) (Kg=min(Kj, Kg)).
Now use in (16.15), the relations (16.11), (16.14) and (16.16). This leads to

(16.17)  log M(u,) + v Ky + /i Ko + Ly + L

17N

7w T(u,,) (L_—EOS—M + cos f p tan ﬂl) + 1 T(uy,)
sin 8 u 2
= (wpsinfu+mn,)T,),
and consequently
(16.18) IimsuplogM(_u_"L) < apusinfu.
m—>0 T(um)

Comparing (16.18) and (15.1) we obtain assertion IV of Theorem 3.
Returning to (16.17) we establish (26) as well as the following
TLemma 16.1. Let f(z) satisfy the hypotheses ES. Then, as m — 0 ,

L, = oT(u,), Lm = o(T(w,).

m

The proof of Theorem 3 is now complete.

The additional information contained in Lemma 16.1 is of some im-
portance. In a continuation of this paper we propose to show that Lemma
16.1 leads to a complete description of the asymptotic behavior of f(z)
throughout annuli such as

e, = |z £ €u (s>0, m=1,2,3,..).
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