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Introiluctlon. The notion of spread was introduced. and investigated [2],
[3] by one of us, who also conjectured the spread relation stated below
as inequality (5).

This relation has now been proved by A.Baernstein II lll whose re-
markable analysis rests on the introduction of a new function T*(z) (z :
r d0 ), closely related to Nevanlinna's characteristic ?(r ,f) : T(r) .

The importance of ?*(z) appears sufficient to warrant further study.
In this note we examine the behavior of T*(z) under certain assumptions
which we characterize by the phrase "extremal spread".

All our results are expressed in terms of the classical definitions and
notations of Nevanlinna's theory of meromorphic functions. They will be
taken for granted.

Throughout tho paper, /(z) denotes a meromorphic function of lower
order p (0 < p{ *oo ) having deficient poles:

(l) d(o ,.f) > 0.

Let
rt|) --- 0 (r->oo),

(it is not assumed thafr, q(r) 2 0 ) and introduce the set of arguments

(2) E(r, a) : E(r) : {0: loglf(retl)l > rt@)r?)}.

The measure of the measurable set E(r) will be denoted by lU(r)1.
We next focus our attention on l.e'(r)l a,s r -> co by values of a suitable

sequence
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(3) r12 12, tsz ..., rffi, ... ( l( rr 1rz l ra < ra < ... ; r*-> a).
We always take {r*)* to be a se{Iuence of Pöl,ya peaks of ord,er p of T(r) .

The exact definition ofthese peaks, given in $ l, is not needed at this stage
and the mbaning of Theorems 1 and 2 is not lost if we simply assume that
(3) is a "suitable" sequence (which always exists).

We say tlmt

(4) tl3'y lU(,)l :"o(a ,l) ,

i,s the spread, of @ , of the sequence of peoks {r*\*.
ft is unnecessary to explicitly mention, in the terminology, the de-

pendence of o(oo,,f) on the function 4(r) .

This simplified terminology does lead to some difficulties. n'or instance,
a,s /--> @,

l{ 0: log lexp(r eiul + z1 > o}l + 2n,
whereas

l{ 0: log lexp (r d0) + 2l } log r)l --> n.

If one wishes to obtain a definition of tho spread which is independent
of. q(r), one must, following Baernstein, write

o(a ,f ; rtOD ,

instead ofthe right-hand side of (4), and then define

o(o ,f) : 
7,\ot* 

,f ;rt(r)) ,

where the infimum is taken over all real functions 4(r) such that r1Q) ---> 0
( r -+ oo ). It is sufficient, in this first part of our investigation, to adopt the
simplified terminology and notation and to assume that the spread o(a , f)
under consideration is derived from some specific, admissible choice of q(r) .

The spreail, relati,on proved by Baernstein asserbs that

d(co ,f)

Put

(6) zp: ir,^-'/ry (o.u =*),
which it is convenient to rewrite as

(7) ö(oo,/) : I cos|tt.

(5)
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If p> ll2, then

(8) 0 < p 1?t,
and (5) reduces to

(9) o(a ,f) > 2 p

If 0 < p < U2, we make the additional assumpöioh

(10) d(oo ,"f).< t - coslt p t

so that (8) still holds and (9) is again a, consequence of (5). We do not need
to assume the validity of the spread. relation. [We show ($ 8) that it is
contained in some of our inequalities.]

The aim of the present pa,per is to determine, in some sense, all the
meromorphic functions characterized by the following

Hypothesos ES. Let f(z) be a meromnrphi,c functi,on, of lower
oril,er p

(ll) 0 < 1t ( *oo,
anil let (3) be a sequence of Pöl,ya pealcs of ord,er p, of T(r) : T(r,f).

Assume that
(i) the pol,es of f are d,efici,ent and,, i,f 0 1 p < U2, a,ssunLe in add,iti,on

that (10) hol,ils;

$) the se{Iuence {r*\*, of Pöl,ya peaks of ord,er pr,'i,s nnhthat (4) anil,
(5) can be replaoeil by

(12) p-:+lU(r*)|, f**f,
where p i,s gi,uen bg (6).

The meaning of r* and of the associated quantity p- remains un-
changed throughout the paper; all our assumptions and assortions refer to
some specific sequence (3).

E x t r e m a I s p r e a d.. If f(") sati,sfdas the hypotheses .EB, we sd,y

tha,t it has ertremal, ipread, of a , o,r simli,y "e*tranil, egtred,iL".

We prove
T h e o r e m 1. Let f(z) be meromorphi,c (or entire), of luner ord,er

p (O<p ( +co) and,let f(z) haaeertremal,spread,of @.
Consid,er the interaals

(13) I*(s) : {r : e-' r*4t 1e'r*} (s } 0, m : 1,2,3, ... )

anil l,et r --> oo by aalues restricteiJ to the set

(r4) A(s): ö I*@),
m:t
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Then, for enerA I > 0, we lwae

(r5) Jg!- .- r (r e I*(s) ),T(r*)lr"f

(to) Yy'!) --> cos B p,
T(r)

(rz) *!+ pcosBp.
T(r)

It is useful to note the following
R, e s t a t e m e n t o f (15). Let T(r) be posi,ti,oe anil nonileareas,tng

anil, Let (15) lnld, for eaerg s ) 0 .

It di then possibl,e å prrn, three posi,ti,oe seEuenne:B {n;} , {n:}, {E*}
su,ch that, a,s rn -> + @ ,

(lS) Ri,-- +-, r)n'* -> +oo, Rlfu*-> +oo, E--+0,
anil su,ch that

R; <t <R: (mlmo)
imply

(te)

A proof of these remarks will be found in [3; p" 323, Lomma 4]; a less
elementary approach (using Egoroff's theorem) shows that the assumption
that T(rl is nondecres,ging may be.omitted 17,p.52).

Baernstein's proof of the spread relation (5) is based. on the properties
of the function, introduced by him,

(20) 
,

where

(2r )

.t
the "s'p" is taken over all measurable sets of meå,suro lVl : 2 0 .

Baernstein showed that 7*(r ei?) is a subharmonic function in
0<r<o,0<0<n.

Our study of T*(r eto) , under the hypotheses ES, yields, in äcidition to
Theorem l, the following

T heorem 2. Let the assumptions and, notati,ons of ThememT beun-
changeil. Then, giuen s > 0 , there cn'i,sts a seryence {rl*}^, q*->O , in-
ilependent of r anit 0 , such tkat

T*V eio) : ,n*(, nu) + I{(r ,f) ,

1n*(, ,'u)
wtJzoTn J 1') 'r' \
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(22) 1?*(reiq) - T(r) cosp(B-O)l I ry*T(r) ,

proaiil,eil

(23) reI*(s), 030<8.
It is possible to prove a good deal more than asserted in Theorems I and 2.

X'or values of z which lie in the annuli

, lzl e I-(s) (m : l, 2, 3, ... ) ,

wo ca,n satisfactorily determino the asymptot'ic behavior of log l/(z)l and

of the argumonts of almost all the zeros and. all the poles in these annuli.
This detailed study would lengthen inorfinately the presont pa,per.

We shall therefore be content to proverthe following Theorem 3 and expect
to return, on some futuro occasion, to the more exhaustive study of
log l/(z)l and of the angular distribution of all the zeros of /(z). [The
behavior of the poles is already described ip the following result.l

Theorem 3; Let the assumpti,itns anil notati'ons of Theorem 7 be

u.nchnngeil.

It is then gossille to fi,nd, real sequenaes tu*)* , and, {a*)* satisfyi'nq all
the followi,ng aoniliti,ons

I. il*-r* (m--+a).

II. f(u*do1 16,' (o<0<2n).
IIII. lf(u*ei'*11 : M(u^) : 

ff:ålf@l 
. 

;

rV. ,.^logM(u*) : rv ,,sin r d.
'!+a T(u-)

V. Let s> O anil q (0 <q < P) begi,uen. Denoteby /*thenttmber
oJ poles of l@) ön the sector

(24) {reil: u*a-" <r <u*e', n <10-a*l Sn}
aful by ** the number of zeros f(z) i,n the sector

(25) {r eio : il^a-' < r < iln e' , l0-r*l < F-rt\ .

Then

(26) /* * ** : o(T(u^)) (m -> a ) .

An inspection of our analysis immediately suggests the construction of
X'unctions extrem,a, I for the sprea,d relation. Let

p anil ö be gi,aen

01p 1 f oo,
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anil

I0
to

Define auni,Ii,ary quantities

(27) p: lt l, f tr:

(å< p),
(o<p<å)

a)0.'

7U/ (2 cos f ti-uu

fl$
( D(t, p) : (l - t) e'+ z *"'*t ),

I
t cosrrp

P, p> 0,

lö
2 sin-l 

| ,

Cons'i,d,er the canoni,cal proilucts

s(z): fr n( - ft, e)
n:t

and, the rnerornorphic functiatLs

( tt t' intqger) ,

s(z)

wi,th

X: (-l)Pptan f p + (-l)P-'loga.

Then,fo, any giuen rl (0 < rt <-min {Plz,rr-p}), uahaae
f . If p is not &n 'i,nteger,

(2s) lloe ltr(r n'u)ll S -+ 
+

, - sin (qla(l 
+logr)rf (l0l Srv-f-rt),

g(a ei? z) g(u e_tp 
z)

I'r@):"ft
I /{ k) - 

g(a ei\ z) g(a' e
,r@)

-tP z) erro ( tr: integer) ,

(2s) 
lt"* 

ltr(r rou)l-
n rP sin p,(0 + f - n)l

.". ffi tr) I

K+: 
sin (1112)cos (f tt)

("-f+rt<0Sn-rt),
where K : K(p, ö) > o d,epenils only on the parameters p and, ö .

IT. If p : p i,s an i,nteger, (28) anil, (29) are sti,ll aali,il wi,th p replaceil
by (p-l) i,n the ri,glrt-hanil, si,iles. If we also a,ssurne

r ) 2 (1 + 1/a),

the constants K ilegtend, onlg an p anil ö .

The evaluation of T(r , /d) is now straightforward but requires some
attention since we must still let r1--> 0. We find

If p i,s not am i,nteger
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(Bo) T(r,ff)- "r^r+o1#+',p cos lp I,t)

foreaery e)0.
If p is an i,nteger, the A4erm is to replaceil, by

The obvious relation

(r* @ ),

o(ro-å*').

(b < t, f int'eger) ,

(01p'-P:integer) ,

.l[(r , tr) :

(30) and (27') imply

1-ö(oo,I) : cos(BP) : 1-ö.
pntegral values of pr play no excoptional rolo.]

The value of the spread. is doduced. from (28), (29) and their analogues

for integral orders.
Taking, in (2),

q(r) T(r) : f llogr (r ) e) 
'

we find
4 .r löi@,nd(oo,/t): limlU(r)l :2p: -sin-tyjf

Hence:
noranypreassi,gneil,aaluesof p (o 1p1*o) anÅ' ö(oo,"f) , su,ahtlmt

1o<d(oo,/)<I (E<p),
t o < ö(oo,,f) < I - cosnp (o<p 3*),

there eri,sts sotne f : ff for whi,ch equali'tyholilsin the sprea'il' relati'on (5)'
fn the limiting case ö(oo ,/) : I there is nothing to prove. For

ö(oo,,f) : I and p> Il2, it is easily seen that the functions f :9(z):

( E(") : s(zet*) s@ r-*l
)

I E@): s(zet#)s@n-o*)exp(t - ryt ")
hoae entremal qtread, of a .

One final remark concerns the following result, proved. in $ 5.

Continuity Lemma. Il f@ 'i,s merumarphi'a in Vl<n,
"f(0) 

: L, anili,f

'r *O(Logr) (r-+oo),
p
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then fo, any rnea,surable subset ,J of the reals, moilulo 2 n ,

(31) lm(t ,f ; J) rn(t' , f ; J)l

ushere A ös an absolute constant a,nil

m(t,f ;{): * -[ '[r
T

Simi,Iarly

(32)

ex'i,st gtosi,t'i,,ue se{Iuencev

(1"1)

such that, e,s nb *+ ffi

(L.2) ,' f * .-+' eo ,

l.

anil such that fo,

we haue

'lf v edo11 do

I'å) r@,f)'

( 32 ) qemain true

*['"r tf$ e,u) I d,o - * { *r V(t' e,\ dul s A' (t *
J

If the norrno,Iization at the origin is omitted,, (31) anil ,

prouiileil,:
(i) f@ i,s nonconstant;
(ii) ,B ) R, , where Ro : Ro(f) i,s a sui,tabl,e bound, d,epeniling 'only

on f - 
'

The preceding lemma, #t i"n is needed here, is quoted and used by
Baernstein ll; p. a22l to establish some properties of ?* . Since a prgof of
the continurty lemma has never been qubliqhed, it may be of interest to
point out that this gap is now filled.

l. Definltlon of Pölya peaks and notatlonal conventions. In the fol-
lowing definition ?(r) denotes a positive function of the positive variable,
not necessarily the characteristic of some meromorphic function.

Definition of P6lya peaks.,,:Let,the fanoti,on T(r) be

ilefi,ned, for r 2 ro ) 0 , anil let it"be posöti,ae, contilnuous anil, nond,eareasi,ng.

We sa,y that {r*}fl:1 is a seEuence of Pöl,ga pealcs 9f oril,er g of T(r) if there

rm fo*
;T-å QOr -':å OO;
Tr* ' rm

trn -> 0,
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/r\q(r.3) T(r) ( (l+e.)V^) ,lr*) : V(r)

fn our proofs there will be frequent references to the associ,ateil seEuences

(r.1) and to the ltealc i,nqunl,i,tg (1.3). wo also find it convenient to in-
i"odo"" pealc'i,nteraals of two kinds:

(1.4) r* : A'-,*f ,, r-(sl : fe-'r-,e"t*f (o> o)'

and to consider their unions .' : ' '

.OO

(1.5) A : lJ 'I-,' A(sl :- U f.(e) 
!

n:L n:l

Note that the associg,ted sequences are by no means uniquely defined

by {r-} and the conditions (1.2).

We always mnlce the addi,tional ussumpt'i,ons

(1.6) r'* < r* < {* I ri,+t (m': l, i,3,... ).

The nature of our results is such that this is an insignificant loss of
generality and offers the advantage that the function

(1.?) m : m(r)

is uniquely defined by the condition r eI-.
Most of our limiting processes involve

(l.S) r--+co, reA(s) (0<s),
.:

and lead to relations such.as (15) of our Theorem l. It is essential for the

proper understanding of this typical formula to observo that m : m(r) is
lnu ruo"tion (L.z). If r is large erwugh, (r.2) and (r.6) determine without
ambiguity the value of za under consid'eration.. ' l

The decomposition

2' : rei| (r ä0, g real)

is used systematically.
The argument 0 is only defined mod.Zn and sets of arguments,

whenever they appear, are restricted by this convention'-

Many of our asymptotic formulae hold uniformly as certain parameters,

say f and 0 , are restricted by relations such as . .

(1.9) teA (orfer{(s) ), 0, 10102.

In order to state or stress thi,s uni,formi,ty we consider functions 4(l) or

sequences {7.}. such that
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(1.10) n(t)* 0 (r--oo), 4^+O (m-->o).
We add some clarity to these notations by restricting them as follows.

Assumi'g that conditions such as (f.9) are imposed
(i) we only use the symbol r1Q) to denote a function independent of 0 ;
(ii) we only use tho symbols {yl*)* to denote a, sequence independent

of f and 0.
If there &re no restrictions such as (1.9), q(t) and r7* will be usod with

the obvious meaning stated in (1.10). +
We frequently need to consider means of log l"f I or log l/l taken on

certain moasurable subsets of (-n, n] . Tf "I is sush a subset we uso the
notations

(1. t 1)

m(r,f ;J) :

*,(r rf ;J) _

lf? e'u)l do ,

lf7 t'u)l d0 .

*f,ir
T

*.[ '"r
T

Positive absolute constants are denoted by A and positivo constants
depending on one or more parameters by K

Restrictions such as r ) ro , nL ) ffio , ... immediately following some
relation mean that the relation in question only holds for sufficiently large
values of r,m, ... . ftisund.erstoodthatthe quantities -/., K, re,tTLs t ... t
the functions l(r) , and the sequences {r1^)^ arc not necessarily the same
ones each time they occnr. whenever we wish to stress the importance of
certain parameters, say s, r, ö, ... on which K, rs,ffio, ... may depend,
we vrite, for iirstance, K(s, €, ö) , ro : ro(s, e) , ffio-: mo(ö) , ... ,

'Statements and proofs of our results will be simplified by a strict
adherence to the preceding terminology and notations: from this point on
we take them for granted.

2. A modlficatlon of Nevanlinna's lorm of the Phragmön-Llndetöf
princlple. The following lemma assumes and asserts a little more than
an analogous modification [4; p. 159] of Nevanlinna's classical version
of the Phragmdn - Lindelöf principle.

Lemma 2.1. Let plO and, let u(z) besubharmonici,n

9: l<r<n, 0L

where

0r-Ar: ra <Tva
0 (y>t)
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Sugtpose that for points C , on the boundary ö9 ,f g ,

(2.L) tim sup u(z)

::å

(2.2) limsupu(z) Shzrn (Ceö9,C-reö02)
::å

(2.3) lim sup u(z)

::å

(2.4) lim sup u(z)

::å

'Lahere h, , h, , B are real constants anil B > 0 .

Put

(2.5) H(o| - å, -l" n I9r-91 * hzjgirq(Ar-0) , L sing(0-0t)
sin g (0r- 0r) - sin g (0r- 0t)

Then, the cond,,itions

(2.6)

i,mpIy

reöo e g, l<r<*R,

(2.7) u(z)

Proof. Consider

e@ : 'r^{ r"* ( )

which is the harmonic *"lor" of the bound.ary arc

z- Reio (0,

with respect to the angular region

9a: 0 < r 1R , 0L

It is readily verified that the conditions

0

we ha,ue

(;)'-: 
)

imply
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(2.8) 0< Q@

The function

p(z) : re H(0) + r (B a ,lh'l .! lh'-l .) * t. (n a .lh'l -! ln'-l .) Otrl\ sin g (0r- 01)/ \ sin g (0r- 0r)/ -' '

is harmonic for z e I and, consequently, 
,

is subharmo nic in g . 
w(z) : u(z) - P(z)

The study of
liminfP(z) (leaQ)

,;å

is almost immediate; combined with the assumptions (2.1)-(2.4) it yields

limsuprll(z) < 0 ([ea0),
';å

and hence [8; p. r55, Theorem 201]

(2.e) u(z) 
= 

*{ He) + ('. .*##)[(+)' . (4)'0@)]]

fn view of (2.8) wo deduce (2.7) from (2.9). This completes the proof
of Lemma 2.1.

3. Condttions whlch depress the value of u(z). With additional
information on the boundary values of u(z) the conclusions of Lemma 2.1

can be strengthened. We prove
L e m m a 3.1. Let the assumryt'i,ons ond, nototi,ons of Lemma 2.7 be un'

clmnged,. Buppose further that there eri,st gtosi'ti'ue quantiti'es E , fi , o stnh
thnt

(3.1) limsupz(z) < (hL-E)f (*e-o <t <re").
i0,z+tc L

"rg

Then, if s > 0 satisfies the cond,itions

(3.2) I,<re-z", rez"<4R,

anil, if
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(3.3) z e

Lae haue

(3.4) u(z)

g, e-zs fi

o) + t(u +
or)sin g (0r-

rK'sinn(F+)),
\0, vr. .

lndth 
:

(3.6) Kr : (82)-texp(-ayps+o)){e*p(Zo) - r}.

R, e m a r k. With minor modifications our proof shows that (3.4) and
(3.5) still hold if the assumption (3.r) is replaced by

limsup tl(z) < (hz-qF (re-" St <* eo ) .
i0^t+lc 2

,rg

Proof. Lef gQ) be a continuous function of I such that

(3.6) g(t): g (0<t,t#[re-o,neol),
(3.7) g(t): fte (re-"tz<t<reotz),
(3.8) 0 <s(t) <Ete (0<r).
Consider now

of theation

-dt,

valunee
find

o),

o).

@

u(z): rm {: j o,}

.oo

: Y f g(t)t'-trY*W)
;J

ously hargrorr, in the angula,r region

,il:r

continuous on the sides of the angle. The e

ues is elementary and well known. We find

fls u(z) : s(t) ( i : t eior, t 
= 

0 ),

| '*,{
Itqu|*): o (e =teio',t >o)'
I Z-+9
\ ,r,il

(3.9)

which is obvi

and remains
boundery Ya,l

(3. 1 0)
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In view of (3.8) and (3.9) it is clear that

(s.r) o3a(z)=t+jmd,
0

,_n "it n(0-0"\: sr- stnä;ö (z e.il) .

The subharmonic function

ut(z): u(z)+u(z)

satisfies the boundary cond.itions

(3.12) limsupur(z) <limsupz(z) +g(t) ! hr.tn (€:tsigt,eö9),
z+E z*E
zeg ,.9

this is an obvious consequence of (3.1), (3.f 0), (3.6) and (3.8).

Similarly,

(3.13) limsupllr(z) < limsupu(z) 3 hrtn (€: teagz eö9).
z+E z*E

".9 zeg

X'rom (2.3) and (3.1r)

(3.r4) limsup u{z) 3 (a + ---L-\r ( lfl : t, I eöe).
z+E -\-'tt"aQr-lr)/' \r'r
teg

Similarly (2.a) and (3.11) yield

(3.r5) limsup ur(z) 1 /.4+ . -j -).B. ilfl : R, I eöe).
z+E - \ sinq (&z- 0t)/
ze9

An inspection of (3.f 2), (3.13), (3.14) and (3.15) shows that Lemma 2.1 is
applicable to ut@) (with B replaced B + t / (sine Qr-9r) ). Hence,
in view of (3.2) and (3.3), we deduce from (2.7)

(3.r6)

u(z) 
= 

*{ Hp) + a(.a + T#J#)[(+)'. (;)'-:l - ,0,

In order to complete the proof of Lemma 3.1 it is sufficient to obtain
a lower bound for a(z) und.er the restrictions (3.3).

Since g(l) > 0, it follows from (3.7) and (3.9) that,
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r ,12)

ol2,

n

r exp (o

I
exp (-r

a,nd.

u(z)
E rn sin 7 Q - 0t)

Remembering the definition of y
integration,

{ 1 + (tlr)vy-z

we find.

y tn+Y-t dt.
,e+r{L + (tlr)'}'

2)

oting that, in the range of

-2y(2s + *o)\,

exp l-2 y (2 s + ä o)l

(ry)*')
A <y we obtain (3.4) with KL

fr

(3.17) u(z)

From (3.17), (3.3) and the inequality
given by (3.5).

4. Pölya peaks and the Phragmön-Lindelöf indicator. Combin-

ing Lemma 2.1, Lemma 3.I and the notion of P6lya peaks, we

shall obtain formal analogues of the Phragmdn-Lindelöf indicator. This
is of some independent interest; it also enables us to apply, to new situa-

tions, as important a tool as the subtrigonometric inequality.
we first introduce a real function u(z) of the complex variable

z:rdo.
I. The function u(z) is defined and subharmonic in each sector

l*: r] < lzl I ,',i*, a1 1 0 I a.z, (nz-r\12n).

The definition of :,u(z) is extended to each boundary point ( of /* by

u(il : limsupa(z) (z e /^, I eö/^) .

Tho sequences {r*), {r*\, {ri}, and {e-} satisfy the conditions (I.2)
and (r.6). As a consequence, the sectors .4* are pairwise disjoint so that,
although it is cqnvenient to think of u(z) as a single function, we may
actually be dealing with a sequence of unrelated subharmonic functions.

III. Let T(r) be a strictly positive function, nondecreasing and con-

tinuous on each interval lr*,r-f . lf@l neednotbedefinedfor rf A.l
Assume that

_ V *(r)

, rn: lr2,3,...)

1 ra(0-0t)
g"Ernsin 6r-0,

Kry)'*',

r(r*)(;)' : v*(,*)(;)'

(g>0, rmsr {r'*
(4.1) T(r) S (I+e*)
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III. We now make full use of the notational conventions of $ I and
consider m : m(r) defined by (1.7). This clearly establishes the meaning
of expressions such as

limzup +# (r e A, dtl o <nr).

The following Lemma 4.I is a translation of Lemma 2.1 and Lemma 3.I
into the language of P6lya peaks.

L e m m a 4.1. Let u(z) anil T(r) be ilefined, as aboae anil' tret

V(r) : V*(r) be the compar'i,son function i'n (4.1) .

Assume

(4.2) u(z) < B Y(r) (lzl : r e A, x1..-0 1*z),
where B )l dsaconstant.

Consi,iler arguments 0r, 0r, such that

(4.3) a.1 t 0, I 0, ! u2, n 
- 0r- 0, 1n ,

(4.4) rimsup "9:'i') 
= 

o, (r eA, j : r,2),,-*' V (r)

wi,th h, anil, h, finite.
Let s>0 begi,aen.
I. Then, i,f H(0)- is- ilefi,neit as 'i,n Lemma 2.7, we haae

(4.5) u(r ei\) s {1}' TQ) H(0) * r1-T(r*) ,lr*l
uni,formly for

(4.6) reA(s), 0, <-0<-0r.

II. In ad,itition to the Ttreced'i,ng hygtotheses, o,ssu,tne that there erist positi,ae

constants E, 6, and, aposi,tiue sequence {r*)^, suchthat

(4.7) x* e I*(s) ,

and, such that for j : l, or for J : 2,

(4.S) u(r eioil 3 @i- t) V(r) ( ** 
"-o 

{ r { n* ao ) .

Then,

(4.s)

u(r ei.) t (;)' r@-){He) - r K,sinn(::+*,) * ,^\ (r e I*(s)) .
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The ualue of K, 'i,s the same as in (3.5).
ProoJ. The lemma follows immediately from Lemmas 2.1 and 3.1 if

the following points are borne in mind.
A. Take in Lemma 2.1

t : rt*r' n : i;

and notice that, in view of (4.1), (4.4) may be rewritten as

u(rei0i1 3 (hi+rt*\(l+e.)'g'* (r'*Sr <fl, 4*)0, rt^+0).

The implications of (4.2) arcobvious. As to the term

(+)'. (;)'-',
which appears in (2.7), it cannot exceed

,,(Z)' i e'(v-p)(n'-' .

After some straightforward red.uctions, (1.2) and our convention abottt, 11-

enable us to d.educe (a.5) from (2.7).

B. Tha additional assumption (4.8) leads to

u(r edoil S (ht*rt*-t) Q+e*)ry- (r*e-o 3 r 1t*eo ),

and Lemma 3.1 is clearly applicable. The positive parameters s and o

are the same &s in Lemma 3.1, and from the conditions (4.7) we see that

I*(s) c l**"-" ,fi*e2"f .

An inspection of (3.3) and (3.a) now shows that (4.9) is valid for r e I*(s) .

5. The Continuity Lemma. We sketch a proof for f("1 non-

constant and. meromorphic in the whole plane. Since we &ssume no

normalization at the origin we require the additional condition

(5.r) R > no(il.

It is easily verified that
++

(5.2) lloga -logpl ( lloga-logpl (0 S",0 (P,0<e+P)-

If u+ f : 0 , the riglit-hand side of (5.2) is undefined; this is immaterial
since the left-hand side is zero in this case.
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fn order to obtain bounds for

*(t,f ;J) - *(t' ,f ;J),
as well as for

rn(t,f ;J) - rn(t' ,f ;J),
we write d(t , t') for either one of the above differences. Hence, taking
(5.2) into account, we deduce

(5.s) ld(t , t')l S +- j ,'r lf(t "*)l - loe lf1, e40)ll it: .

Write

tede: z, t'eiq: ?', Rlz:g,
s2-t2 : P(r ,t,V).s2+62-2stcos?

By the Poisson-Jensen formula

(5.4) llog l/(z)l - toglf(z')ll
fr

< : f Forlf@"nu)ll lp(s, t, 0-p)- p(s,t', 0-dld0- 2n J

.ål ^rl#ll .;l*lo--ll

.;l^rl=ll .;l*l#ll,
where o runs over the zeros of f in lzl { s , b runs over the poles. It is
easily seen that, under our restrictions on i and t' , thete are absolute
constants Ar, A, such that

(5.5)

(5.6)

lP(s ,t,V) P(s ,t' ,V)l

ls2-z'All I I (z-z'\(tllrosl-=ill : 
it"*i'+ #ii

where d denotes either a or b .

.Now

/a\(5.7) n(s,f)log? <ff(2s,/) <T(R,l) \tS":2),
and by Nevanlinna's First X'undamental Theorem
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(5.8)

/ I\
m(s,f) * *\"j) < zT(R,f) + o(t) < 3T@,f) (a > Ao).

Combining the inequalities (5.3) - (5.8), we verify the existenco of an
absolute constant Ar) 0 such that

n

(5.e) ld(t,t')l S As6 f @,f) + Z* I

+1*l

Ite'e-allroslrwallor

It'e'e-bf
tos 

lta, _u llu, 
.

It - t',l

Clearly

z-d,
z'4

z-z'1+ z'4
and since

lz'-ill : lt' siv -ldl ,"1 > (t'+td,l) 
l-rr ry1,

we obtain

Itei*-dl o
I i -----l \. I -f 

IIt'tnr-dl = r 'l . (p-arl'

lsm z 
I

This inequality holds if t and t' are exchanged; consequently

(5ro) Il ,"*l#-llr, s'lr"s(r+ *6t4)0,
n12 n12
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Using (5.10) and (5.11) in (5.9) we deduce from the two interpretations of
d(t ,t'), both (31) and (32).

6. Equicontinuous character of m*(4 and T*(z). Uurrg the
Continuity Lemma of the present paper and a similar result which we
established in [5; p. 337-339], Baernstein proved [; pp. 422-424f thab
nx*(;), defined by (2f), is a continuous funcbionof z. This does not quite
suffice for our purpose and we prove the more precise

L e m m a 6.r. Let m*(z) be associ,ated, wi,th sorne nonaonstant
meromorph'i,c functi,on f(z) anil let T(rl : T(r,f).

Let tt and, t, sati,sfy al,l the fol,lowing conil,i,tians

(6.r) o{fio.r,=* (j:t,z),

(6.2) (1+d)-1 <L<r+o (0<o).'t2

Then

(6.3) lm*(h eiil) - rn*(tzdoz)l

< a r@) {' (t *t"å*) . , 0,- 0,t (t . tJ- *ä)}
(0 { 0r ln, 0 < 0r(w).

The relation (6.3) remains oalid, wi,th i,ts left-hand, sid,e replaceil by

lT*(tt e'ur) - 74,(t2eio2)l, ,

anrl, A regi,aceil, bg another absolute constant 1o ) 0 .

Proof. Let e ) 0 be given. By the definition (2f) there exists some
measurable set, E, such that

(6.4) l0zl : 202, m*(tzdq') - e 1 *(tr,f;Er).
We now determine .8, so that

lvrl : 2 0t

and

(6.5) EL c Ez if 0L S0z,
or

(6.6) Ez c EL if 0z< 0r.

[The existence of such a set .D, is readily verified.] By the Continuity
Lemma, (6.I) and (6.2),
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(6.7) l*$z,I;Er) - o"(t1,f ;Er)l < Ar@)"(t.tö*)

If (6.5) holds take Es: Ez-Er; otherwise (6'6) holds and we take

Es : Et-Ur.In either case

Lf
l*(tr,f ;Ez) - *(tr,f ;Er1l S * J llog l/ (tLei')lld0

EB

/L\
{ m(t, ,f ; E") + na (lt ,7; Ut) .

We now use Lemma III of l5; p. 3221, and take into account

lr;l :2l/,z-otl , ,(r,;) < zr(t,f) (r>ao).

We thus find

(6.s)

l*(tt,f ; E) - *(t1,f ; Er)l < A l0r- 0rl(t * rJS"!) rro, .

Combining (6.4), (6.7), (6.8) and

)pr,1, nr'1 . **ltrenu')

we see that,

(6.9) **1tre'u') - m*(ttdut) - "

is bounded from above by the right-hand side of (6.3). since we may ex-

change in (6.9) treiq and trd02 and since e (> 0 ) is arbitrary, the

inequality (6.3) follows.
The assertion ooncerning T* ,in Lemma 6.I requires an upper bound for

(6.t0) ltrfl(f, , f) - N(tr,f)l .

It is clearly no longer a restriction to assume tr.) tr> l. Hence

0 < -nrl(t1 ,fl - N(tr,f, : 
In(t-'f)dt 

St+n4t,f) I on(t',f)
t2

= 
:- *t, ,, , r,, S lrg rr(n) .

This is the required bound for (6.10) and the last, assertion of Lemma 6,1

is now obvious.
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Our next lemma is obtained by combining Lemma 6.1 and the peak
inequality (1.3). It does not depend on any assumption concerning the
extremal character of the spread.

L e m m a 6.2. Let T*(z) be the Baernste,i,n characteri,stöc of sorne non-
constant meromorph,i,c functi,on f(z). Put T(r,f): T(r) and, let {r*)-
be a sequence of pealcs of oriler p ) 0 of T(r) .

Let

(o.tt) T*(t*ei'*1 S 4(t\ T(r-) ,\r*/
where

(6.12) t*eI*(s) (s>0), 0 3a* 3n, m)nt6t
anil

(6.13) 1*+1>0, @*å@ (m-->a).
Then, g'i,aen 6 > 0 , i,t i,s gtossi,ble to iletermi,ne

(6.14) ct: o(X,å,Q,s) ) 0,

ilegtend,ing on no pararneters other thon those eqi,i,oi,tlg l,i,steil,, anil, such that

(6.15) 7*(teio) < (,i+å) (!)' ,r*r,
\f*/

proaiileil

(6.16) e-o {L <e",
t*

anil

(6.17) l0-rl{o, 0<0{n, m}mo.
Proof. Take o to be the largest number satisfying simultaneously

the three inequalities

(6.18) 0 ( o ( l,

(6.1e) (,1 * t) e"n + L s 
^+E 

,\ 3/ 3 -

(6.20) 2 2 {o+Lz4oexp (2e (s + t))o(t*r"s1) s å.
In (6.20), z4o is the absolute constant of Lemma 6.1; it is clear bhat o
depends only on the parameters explicitly listed.

By (6.11), (6.13) and (6.16)
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(6.2r) r*(tnei@n) s (^ *i)u. (L\' ,t S (m> mo),\ 3/ \r-/
By (6.12), (6.16) and (6.18),

t e l^(s+o) c /.(s+ l) , t* e I-(s*Il .

Hence, if we take

R: 4et*tr*

the peak inequality (f .3) implies

(6.22)-
r@) < 4o+l exp (e (s+ t)) T(r-) < 4e+Lexp (2 q (s+ l)) T(d(L\' .

\r*/
By (6.13), (6.16), (6.17) and (6.18),

(I+eo)-L S !- S Q+eo), lT-w*l 1 o * l^-r*l 3 eo
tn

(m 2mo).

Lemma 6.1, (6.20) and (6.22) immediately yiold

(6.23) 7*(t eao) - T*(t*d'*)

S Ao 4n+texp (2 q (s + l)) T(d (!\' z e o (r+ los 1)
\r-/ \ d/

= !( L\ rr,; (m ) mo) .

3 \r*/

We now combine (6.21) and (6.23) and take (6.19) into account. This
leads to (6.f5) and tho lemma is proved.

7. An upper bound for 7'rg d0). We apply Lemma 4.1, with
Q : p to u(z) : T*(z) .

By the definition of T* ,

(7.1) sup 7*(r eio) : T(r) : T(r ,l) ,
o3o3n

and

T*(r) : N(r,f).
Therefore, if ö(oo ,f) : t - cosB F t \yo find, in viow of (4.1),

limsup'.-!,!) < Hm *rpT\-T (u) < 1 ( r -+ oo, r e A),' v(r) - T(r)



(7.2) T*(rr'u) <'(:\rrtr-,)cos tr$--0) + ,t*T(r,,) (p 1n)
\r*/ 

* \'m'z
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limsupTy! s hmsup'9,'!) t cosB1.r, (r-+oo , reA)." V(r) " T(r)

We now tpply assertion I of Lemma 4.1 with

% : 0, h, : cosppi 0 I 0, : f* : min(p,n), hz : l,
and find:

If u > 0 is giuen anil i,f

r eA(s), 0 (0 <mur(F,n),,
then

(7.3) 7*(r eio)

(n)' rr-r{ "or, 
(n-0) - cos r't' !:--2s F F sin p (n-ul } * q*r(r*)

("<F).
The relation (7.2) is essentially the same as the one used by Baernstein

in his proof of the spread relation. The relation (7.3) is stated for sake of
completeness. Its appea,ra,nce is precluded by our hypotheses ES.

The following consequence of (7.2) will be needed. later.
R, e m a r k . It i,s poasibtö to fi,nd, three positiae sequences {R;) ,

{n;l , {;*}, sati,sfyi,ng the conili,tions (15) and, such that, for 0 fi,red,
(0<01f <n),

n^ronffi ( cos p (F-o) (r e A')

with

A, - 3 rn;,n;1 .
m:L

The proof of the remark is immediate, we give to s , successively, the
values s : l, 2,3, ... and cornplete the construction of lR* , R[7 by an
obvious "diagonalization".

8. The spread relation. We first prove that, if p <n, then

(8.r) n^!3vd!9 : r,

with 
n+@ T(r*)
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?rrd 
F* : tl,(r^)l

E(r*) : E : {0 : Iog lf@*"'ui I 2 q(r*) I(r*) } .

Introduce, beside E(r*) ,the sets

(8.2) EoQ*) - Do : { 0: log lf@*du)l } 0 },
(s.S) E+ : Eo-E (rt@-) > 0 ),
(8.4) E- - E-Eo (q(r*l <0).
X'rom (8.2), (S.3), (S.4) and (21) we deduco

m(r*,f) - lq|)l r(r*) = * I rrt lf(r-ei6)l it|,e

3 m*(r*dF*) '

Honce, taking into accounb (20) and (7.1), we find

T(r*) (l-lrt@*)l) < ll*(r*edqn) t T(r^),

and (8.f ) follows.
Up to this point we have not used the spread relation (5) or the hypothe-

ses ES. It is therefore possible that

(8.5) timtrr, 8,, < B (0. U =+, P.n) ,

[the quantity p is defined in (6)]. On the other hand,by (7.2) and (8.5),

for suitable largo values of m , we have

T*(r* e6*) t T(r*) (l +rt*) cos p (B - p*) .

Since this contradicts (8.1), we must reject (8.5). This shows that our in-
equalities do in fact lead to a proof of the spread relation. The proof thus
obtained does not differ essentially from Baernstein's original proof in [l].

9. Lower bound tor 7x(r eio). We now use (for the first time) the
hypotheses ES. As remarked in the introduction these hypotheses imply

(e.1) o < p ?n.
fn view of (12), (8.I) and Lemma 6.1 (with o : 0 ), they also yield

(s.z) ti^T*J:-?.'P) - r.
n+@ T(r*)
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We now prove
Lemma 9.1. Let f(z) satisfu the hypotheses ES. Then, giuen I ) 0,

there er,i,sts a positiue sequence {rl-}* , ,i,nilepenil,ent of r anil 0 , anil such, that

(i) 4*+0 (m-->a),
and,

(ii) 7*1r eio) 
= (;)' 

re) @os tr (p - 0) - q*) ,

proui,ilnd,

(9.3) rel*(sl, 0<05p.
Proof. Assume the lemma to be false. ft is then possible to find s ) 0 ,

6 > 0 , infinitely ma,ny values of m andassociatedpoirtts r*eb* suclntlnat,

(e.4) T*(r^e**1 
= (A' T@*) (cos p (fr-au) - s 6) ,

and

r^eI*(s), 0{a*<p.
Using, if necessary, the selection principle we ma,y renumber the quantities
fi*, @* and assume that

(9.5) a)m-->or (m-->a), O {a !8, cosp(B-at)-86 >0.
Lemma 6.2 is immediately applicable and shows the existence of

(9.6) 0 ( o : o(p,F,@,f,s) < f
such that the relations

(9.7) e-o3!="', l|-.:,l 1o, 0<0 <p, rn)nlst
fin

imply

(e.s) v*(t edo) 
= (:)' re) @os p (f -o') - z t) .

In order to avoid the values ar : 0 and ar : B, which complicate our
arguments we take advantage of the fact that 0 may vary in the interval
lr-c,a*of and deduce from (9.8) the existence of some ar such that

(9.9) 0 < ar < p,

and
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(9. r0)

r*$ en,)

for
fr* a-o

We now epply Lemma 4.L, rI with

(9. r 1)

0t: a), ht: cosp(p-a.Jo); 0- f ;

s (*)' T (r*) (cos p (p u) f )

ffi> ffio

p

as to the parameters f , s and o we remark that: å and s are d.etermined
by (9.a), and o (0<o < I), whosevalue is determinedbylemma6.2,
only depends on the parameters explicitly listed in (9.6).

Write

!:rtr:02-0t:02-at
v

and notice that, by (9.9) and (9.1f)

(e.r2) ?:<y1n3P B-w
By (7.1) the choice hz: 1 is certainly possible, regardless of the final
selection of 0, . The possibility of selecting h, , as in (9.II) is derived from
a preliminary application of (7.2) with 0 : a. In order to completely
justify this step, we observe that, as stated, (7.2) only yields

(e.rs) limrup ry# ( cos r, @ -0) (r e A(s) ) ,

where s > 0 is fixed. On the other hand, condition (4.4), which is needed
to permit the use of Lemma 4.1, requires that ,,1(s) be replaced by z1 in
(9.13). The remark, at the end of $ 7, shows that the valid.ity of Lemma 4.1

is not affected if zl is replaced by A' . Hence, in view of (9.f0) and (9.11),
we deduce from (4.9)

(e.r4) r*(r*eip) t r(r*){rr, - E Kt-"" (?) * ,*1,

where

(e.15) H(p): cos p(P-@) sinpa (rt,+*-P) + sinpr (f -*)
sin p 1t)
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and K, is given by (3.5). fn order to replace Kt by a constant independent
of y (and therefore independent of T), we notice that (3.5) and (9.12)
imply

(e.r6) EK, 26(82)-1"*n( ^&1zs+o)){"*(,r) - r) : u,.

This suggests the introduction of the function of tp :

(e.Iz) s(,p) : H(P) -K,sin "ff) (p fixed).

X'rom (9.14), (9.16) and (9.17) wo deduce

(9.18) T*(r*eip) S T(r*) {9('p) * qÅ .

Considered as a real analytic function of ,p , 9(p) is regular for

(e.re) lrp-f +*l = 
B-a

2'

and hence there exists a bound K, , independent of rp and such that

19"(lp)l ! 2 K",

for g restricted by (9.19). Since

g$ -*) I , 9'(f -^) : - Kr;n -.'.,
P-w

the restrictions (9.19) also imply

g(rp) < I - K, =n (rp- f +a) + Kg(1p- F t^), .p-a

It is now clear that, if y-B+a is chosen positive and small enough,
we have

s(rp) < |
and by (9.18)

lim sup 
T*(r* dP) < I .

*-*" T(r*)

Since this contradicts (9.2) we must reject (9.a) and Lemma g.l is proved.

10. Proof of Theorems I and 2. Using Lemma 9.1 with 0 : fl ,

and the peak inequality, we obtain
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(r- q*)()' rV*\ s r*@ e;01 s r0

This implies (I5).
To prove (f6) use Lemma 9.1 with 0 : 0. Then

(cosp F-rt*)('\rr(r*) { N(r,f) (re I-(s)),
\r^/

and, in view of (15), we find

cosl.tp Slimi,"ril9,',fl < fim*optr9',/l : costrF.
ij?,t T(r) T(r)

This yields (16).

As to (17), it readily follows from (I5), (16), the elementary inequalities

o-t n(t,f) . N(ot,f) - N(t,f) t @-tyn(o=t:f) (o > I ),o r(t) r(D r(il
and two succesgive passa,ges to the limit: first t'--> a (t eA(s) ), then
o->r+

The proof of Theorem I is now complete. To obtain Theorem 2 it suf-
fices to combine (15), (7.2) and Lemma 9.1.

11. A fundamental irlentity antl some of its consequences.

Let f(z) be a meromorphic function with zeros {a}, and' poles {b7} .

As usual, multiplicities are taken into account by a suitable repetition of
elements in these sequences. We first state as Lemma A an identity which
has been proved by one of us [6; p. l8]. An essentially equivalent result
was used by V.P. Petrenko [9].

L e m m a A. Let f(z) be meromorgthi,c dn .i

D: 0 < lzl < n, @rgzl S; (y>1).
Let 0<u<R andput

(Ir'r) tfa,ffi"frorlf(teto)ld,o,Br: Br(A,r): hlr* ffi J,,:'
(11.2) ^. 

nt!

b, :'u,(u ,il: 4 I ^r'lf(R"nu), ,
n 

-nl,
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(n.a) w(z) : bgY!iq.-bgn!:-+ l"Y"' 
.-t --o 

P'-u/l 
--o 

lnzt - zY ttll'
Then, i,f f(u) + o, f(ul + @, we haae

(II.4) log l/(z)l : Br * B, + ), W(b) - 2,W(o),
where lt 'i,s summot'i,on ouer all pol,es b of f(z) in D , )o ,i,s summnti,on
ouer all zeros a of f(z) i,n D .

The quantiti,es W(a) anil W(b) are nonnegati,ae.

The formul,a still, holils f* y : I and ilnes not requ,i,re that f(eb r) anil
l@-h r) be equal,.

X'rom Lemma A we deduce
Lemma ll.l. Let f(z) be a nonratöonal, rneromorphi,c functi,on,

normali,zeil bg the conili,ti,on /(0) : I .

Assume y 2l anil l,et

(u.s) r - {v, Wt =;1,
(11.6) X(t,u):;h

(n.z) H(", c) - ros W&t,
where { may be cornpler.

Then, i,f f(u) + 0, f(u) * @, we haae

R

(n.8) tog tf(u)l + y2 

{. 
*(,,;, 4 xQ,u)+. 

} 
n@,, u)

R, R,"<lajl
R: y' IrnL,f ;r)x(t,4I* Z uru,,u)+s,

Jt\;,R' n,'<ltil

where

('.e) tBt s 28 y {(Y)' rp R') . (#)' rp n\ ,

proai,ileil

(ll.l0) o<2n'.ua!-.
2

Proof. Since /(0) : I , Jensen's formula is



Asymptotic behavior of meromorphic functions with extremal spread I 97

(r I .13)

(r1.1r)

m(r,f)+ff(r,t): *(,,;)*"0 ,i): ro, (r)o),

and hence, from (I1.2) and (If .I0) we deduce

(rr.r2) rB,l 
= u,, __1!4,,1*ru ,f) + m(r,+)) s tu ,(#)' r@) .

Put

Y(t ,11 ; R) : $tY uY

@2' + t' ItlY'

and rewrite B, in the form

a

sr : rz I t*u,f ;r) - *(,,i,t) ) r"r,, 
u) - y(t,u; n)tT,

0

R

(r.r4) sr : rz I{*r,r;r) - *(,,;til*u,*tI * x.
0

By (Il.1l) and (rr.r3)

rstr < Zy(X)'rn).

rR'\

By (11.3) and (1r.7)

(11.18) 0
aieDaieD 

,J1?-* Rt{tait

(t t .15)

Similarly

(r1.16)
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and obviously

(11.19) 0 'n 
lr' - u'l

Similarly

0

and hence, returning to (11.3), we find, in view of (11.18) and

(,r zq å(9'"(u,;) s A w@) 
F,n@i,xL

Rt dlail

3 *l' (rr s

A) ,

(t I .19)

)

3 #f n(u',;)

The familiar consequence of (1f .lf ):
(n.21) ,, n(t . r\

"(,,;)rog2 < I :7a, s N(r,,;) < rer) (r> o),

is used to eliminate from (11.20) the terms involving the function n(r , tlf) ;

we thus obtain

r(2"') 
).

( 1 r.22)

l>
I aieD

w(a) 
ä 

H@i,u)

R ' <lnjl

There is a similar relation with the zeros a replaced by the poles å .

The estimate (11.9) follows from (rr.4), (Il.l2), (11.17) and (rt.22).
This completes the proof of Lemma ll.I.

L e m m a 11.2. Let f(z) be meromorgthöc and, nonrational.
Let {Ri} , {Rl} be sequences su,ch that

Ri-+a (m-->o), 4R;<R;,
and, let {a*)^ be some gi,aen sequence of arguments,

Introd,uce the sectors

t(rr.23) e* : lz: R* < l"l < Rii, @*\ y y) ''
anil, the notat,i,on
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a**nlt

* I tos lflei\ld,o : "*(r,f ;l**-;,@**;7),
@m-nlY

where

rf
v

2R; s u

then

(rr. 24) log lf@ ei'*)l + 
å_H@i 

e-i** , u)

nfi

: v' I -"(,,f ;1,*-;,@**;Ix$,q+
nfi

+
uie9 *

wi,th

('.25) rsår I 56y{(+)' rp n) . (h)' rp nfi} * " 
togu.

Ihe constant K > 0 only d,epenils on the behaai,or of f(") at the ori'gin.

Proof. Since the normalization /(0) : t has been omitted, we first
define an auxiliary function F(z) by the conditions

(11.26) f(z) : czh X(z)

where /c is an integer and

c + 0, .E'(0) : l.
Put

I{r) = T(r,Il , T(r) : T(r ,f)'
Apply Lemma ll.l to the auxiliary fiurction

(tI.27) n*@) - I(z d'*1 ,

with
R' : Rt^, R : Rir.

All the necessary conditions are clearly satisfied and hence, in view of
(11.26) and (11.27), we deduce from (1f .8)
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(l 1.28)

for any

(11.30)

The a,ssumption y
followirg elementary

(1t.31)

(12.1)

with

(L2.2)

,.slwy1,

u) + S*

+ 
{rloe,,#dr.

in (11.28) and (11. 2g). This
proof of Lemma LL.z.

log lf@ ei'*)l - log lcl klogu +
' ojeg *

.

nii,

^,2 f "(r,f ;l** -+,@*.;]) r, ,,q+:-'r 
Jv2
Rk

ni[

, .[ 
(log lcl + ktogt) x(t ,%) Y +'tz

n; bir0 *

with

(r.2s) t,s-t < 28y{(+)'r,(rr;) + (h)'
To justify (l I . 29) it is necessary to observe that

Tr(, Rhl

Tr(,) : T(, , I(z)) - T(, , F(e'' z))

choice of @ (real). We also note that, since f(z) is not rational,

Tr(r) 
= 

2T(r) (r>ro).

relation

nt* o

Now use (11.30), (11.31) and R** * co

leads to (IL .2&) and (1 I . 25) and completes the

12. Estimates for H(z , C). We study

H(, , C) :

v

and first state the obvious relations

( 1 2.3)

Lemma, Lz.I. Let y)_0, s>0,

), z: faio,

H(l"l , lf l) .
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(L2.4)

q,nd

(L2.5)

Then

( I 2.6)

. e-s 'l,c

l0l
v

H(" , u) ,2

If , insteail of (12.5), we assume

(L2.7)
ö ' ru-ö

0
yrry

then

(12.S) H(lzl ,u) - H(z,u) ) e'l(l +e"r)-'rio'1.
2

Proof . X'rom (12.1) and (f 2.5) we deduce , , 
' ,

H(z , u) : å log (t a lrv 
?r/.rcos2(v=0lz)) t 

r'z'sint(ö/z) 
.''". \- ' -.-w/_,uylr-/ : --1rr|rnV'

iand, using (12.4), we obtain (12.6).
Similarly, using. (f2.7), we find

Huzt,u)-H(z,u): +t*(t .!!ffi!!) =ffi
and (r2.8) follows.

fn our next estimate we require Cartan's lemma on the minimum
modulus of a polynomial.

Lemma 12.2. Let o (0<o<l) begöaenanil,l,et t, (i:1,2,...,"f )
be real, numbers, not necessari,ly ilisti,nct, su,ch that

(I2.9) O { tt { , ero (0 <r s.,r) . 
.,

Then, for sorne u in the interual " 
,

(12.10) r 1u,{,..eor,
we haae

r1/ 4 rtl,+t;/\ / l\(r2.rr) z,: fHQ,,u): år'slffi) ="rlx-(il+:'g:)
with
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Koh) : ros (å ezY+') .

Proof. Put

&:7Lf.

By (12.10)

(tz.tz) f Sn Sf eo'

trbom (r2.9) and (12.10)

(12.13) Z, 3 uflog(2flexp(2oy)) * logOto,,

with
lf

P(n) : yrtu-ö.

By Cartan's lemma, it is possible to excludo, from tåe interval of r defined
by (12.12), an oxceptional set d such that

(r2.r4) l|l 3yoril,
and such that, for fi e E ,

(12.16) l"s 
,"ä, I .4r tog (r-v) + .,{ togffi)

Combining (12.13) and (f2.15), we obtain (l2.ll) for certain values of z
in the interval (12.10). The set of suitable values of zr has positive measure
since, by (12.14),

l8l</v(d"-r).
13. Further consequences of the hypotheses ES. It f(z) satis-

fies the hypotheses ES, Theorem t is valid. Hence (17), restatpd in the
dame form as (19), onablos us to determine sequences {-Ei}, {-Bj} such
that

(r3.1) n(t,f) : (|" @ + nUDT(r*) (B : pcosB p),
\r^/

with

(13.2) Ri --> a, \ -.> a, RI --- * (m--> o.')'n;rft

and
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q(t) * 0

as f --> oo by values

t e A' : i-t yn*, n; (r* I R;, R; < r';) .

n:L

x'rom this point on, the parameter 7 which appears in the definition of
H(z , €) is always taken to be

7V(13.3) Y : T
fn view of the hypotheses ES, it is obvious that

(13.4) y>I, yZ2p70.

L e m m a 13.1. Let f@ be a, meromorphi,o function satisfgi'ng the

hyptotheses ES, at the sequence of ytealcs {r*)*, of ord,er p, of T(r) : I(r,f) .

Assume that the quanti,ti,es R;, R: haae been seleoteil as aboae-

Let s > 0 anil, o (0 <o <l) be gi,aen; I,et r and' u be any two

gtoi,nts such that

(13.5) rel*(sl , * 1u 3eon,
anil let

(13.6) Eo@) :
n)<loil{r"-o

(r3.7) , Er(u) :
xezoqlb1lSR{n

Then, as 'aL--> @

(13.8)

Eo@) * E,(u) 3 (?)'rr-r(nBan(ry) -r") (q*-0,m:m(u)).

Proof. From (13.1) we deduce

(rs.e) n(t) - nIfft, : ne)'#'n : å(,) (n(t): n(t,f)),

with
r1(t) -> O, (f-+oo, teA').

The function f(f) is expressed, in (13.9), as the difference of two non-
decreasing functions; hence the symbol df has a welldefined meaning; Put



r04 Ar,nEnr EpnEr and Wor.,rcaNc I{. J. Fucns

(13.I0)
q* _ sup lrl0l ,

nfistsnii

Rx
(13.11)

Ril

t* r

An integration by purts and (13.10) yield

( 13 .t2)

t*

returnirg to (13.1 I ), wo find,

T : fre20, R" : R;.

Ilsing Stieltjes integrals and (13.9), we obtain

E,(u) : I rr,u)d,n(t) : ruff I "U,u)lu-ta, 
* [ HQ,u)d,f .

Rn

r*

I ,rt ,u) oul

r+
8il

In the latter integral

öH_ _ _zyf-Lr/ (u sta_o),E - -F-m
and. hence, in view of (f 3.4),

(r3.13)

I r:)'l #
where K only depends on the parameters explicitly listed.

Use (13.13) in (13.f 2) and take into account the obvious estimates

o < H(R',,u) 
= ^(#)' (" =+),

o 1H(t,u) =.**.^r(+) (utt"-o).

Our convention concerning the symbol 4-, leads us to

I "rt 
,u) oul

d,t S 2 y r;,f (L e-zov)-L Lcv 

] 
,r-v-t dt S K(tr, T, s, o) ,
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(rs.r4) zr(u) 
= 

pnTP [ ,tr,u)5u-r d,t + q*T(r*).r#!
The proof of 

s

(13.15) Eo@) I pBry 
[ 'U,u)tu-'d,t 

+ r1.T(r*)

is entirely analogous and will be left to the reader.

To complete the proof of (I3.8), we add (13.14) and (r3.15) and observe

that

(r3.r6)

20
r I uu,u)6u-r o, : 

+ 
u- f rcslfll 6utt-r s, : rvTt^"G+)

The explicit evaluation of the second integral in (13.16) is straight-
forward.. It may be obtained by resid.ues. We mey also expand

log l(1+r)/(l-r)l inpositivepowers of ;,for 0 <,< l,andinnegative
powers, for f > I . Term by term integrations followed. by the use of the
series of partial fractions which represents the cotangent immediately
leads to the closed form in (13.16).

t4. Selection of the polnts of maxlmum modulus.

L e m m a 14.1. Let the assumptions of Lemma 13.1 be unchangeil.

It i,s then possibtre to select a positi,ae seEuence {u^}* such that

(14.1) lrraxlf(u*eil)l : M(u^l .--t@, min lf(u*"nu)l >0,
Q30{2n o30<2n

(14.2) %----t (m->a),
rn

anil

Proof, Let e;(0(e(r) begiven. Choose o (0(o<L)small
enough to imply

(14.3)

.rÅ=,rH|bit ,u*) : Q* s (,r'ntan(fi) - n*)rp; (q*-o)'

(14.4) 6 p, B ez. 
" (xr + los *)
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where Ka> 0 is the constant in (Lz.Il).

(14.5) rf _ n(e%o r*) -. n(e*o r*) : B

npsinprp

Proof. Given e)0
set E such that

Hence, by

T (r*) (e%oa

Wo now use Lemma 12.2 to determine in the interval V*, ao r.] a point
QLn such that there are no zeros or poles of f(z) on the circumferonce
lzl : u^, and such that

(14.6) Et (u*) :
r*c-oq1bi13r*czo \ o /

we then combine (14.5) and (14.6). This leads to

(r4.7) Er(u-) {fieT(r*) (m>moG)).
X'rom (13.8), (14.6), (f a.7) and the definition of Q*, we deduce

(I4.s) A* < epo T(r*) n B tan(Y) . e T(r*) (m > moG) ) .

At this stage, wo give to e a suceesgion of positive values -+ 0 ; this,
in view oI (14.4), enables us to solect a positive sequence {o.} such that
o*--> O

Then, by the "diagonalization process" precedingly used, we obtain
(14.2) and deduce (14.3) from (14.8). This completes the proof of
Lemma 14.1.

15. The maxlmum modulus of a lunctlon satlsfylng the hypotheses ES.
L e m m a 15.1. Let f(z) sati,sfu the hypotheses ES, anil let {r*\^ be the

sequence of pealcs, of oriler p, of T(r) : T(r,l) for whi,ch (12) holils.
Put

a,n d let I
Then

(I5.1)

M(r)- n[(r,f)- m&xlf7nnu)l ,

srin:nrw (rezt(s) )

and @ (01reo1n) determine ame&surable

*f'"rlUl:2w, ntx(red') -t { lf7 edo) | da
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Hence

(16.2) 7'x1r ei') T*(rl : m*(r d-) < t tog M(r) .
lv

[Tho above inequality is trivial it M(r) : + oo.]

By (15.2) and Theorom 2,

?(r) (cos p(f -r) - cos pP) - ltl|)lr@ < 'tog M(r),
,JT

whero @ is fixed (0<o<p) and 4(r)+0 as r-'>@ (reA(s)).
This leads to

t 
1"o, p(f -u) - cosp,p) < liminflosM(r) (r eA(s)). 

:

@ /+@ T(r)

Letting ar->0*, we obtain (I5.1).

16. Constructlon of the sectors g* and prool of Theorem 3.

we propose to apply Lemma I1.2 taking into account the results of $ 14

and. $ 15. This requires a preliminary definition of the sectors 9* which
appear in (11.23).

To construct the sectors 0*:
(i) take u*, Rlo, Ri as inLemma l4'l;
(ii) for a4 tako any one of the arguments for which

(16.1) lf(u*eil'^1| : M(u*);

(iii) define y by (13.3). since tho hypotheses ES are satisfied, the

relations (13.a) hold.
(iv) the sectors 9* aro obtained by giving to the parameters R; , Rl,

@^, T, of (11.23), the values which we have introduced above'

We next introduce some auliliary quantities. Put

afl dt
(16.2) LI: r'f rn(t,f ;l@^-f ,cD*+Pl)X(t,u^)|

ni

nii,

f f m1t 
' 
f) x(t 'u)* - Z*

lt.

where
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( I 6.3)

We also need

(16.4)

(16.5)

(16.6)

( 1 6.8)

TJJm -

L;- yz

nii,

f I rn(t

ni,

, f ; l**+ f , 2 n*@*- pl) X(t, u*)+

l**- P
dt

X(t,%*)7,, @*+ ff)

\-g*- Z H(aie-i'*,%*),
uir0 *

a\rum Z H(bre:i'*,u*).
uieO*

All the quantities L , g , I ata clearly nonnegative. Let

cr/: lal"nr, b - lble*,
denote, respectively, a zeto and a pole of /(z) .

Given s>0 and 11 (0<rl <P), considerallthosepolesforwhich

(16.7) 
"-'u* < lål { es u_;

let, there be exactly u* : u*(s) of them. We subdivide these poles into
three collections 6$)@,ri (j : 1,2,3 ) containing, respectively ufi(s,r1)
elements and characterized as follows:

(i) the elements of GQ are those for which IV-r*l < rt ;
(ii) theelements of 6@ arethoseforwhich q Slg-a-l <f ;
(iii) the elements of Wfi) are those for which F < lV-a*l 4n .

With the notations of Theorem 3, we have

y'l* - ':f) + 'ff) ,

Notice that Lemma 12.1 and (f 6.7) yield

(16.e)

ui.G*)

the constant Ku) 0, only depends on the parameters explicitly listed.
X'or all poles satisfying (f 6.7) we have, by (12.G) (with d : n , !) : 0 ),

Hence,

H(lbjl , %*)
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G6.10)
ui.69\

Similarly consider the zeros of f(z) characterized by

u*a-" < l"l { e".u,-, lr!,-^-l < f -n : n-Tf 
;

v

with the notations of Theorem 3 there &ra x* : **(s , q) of them.
By (r6.5), (12.5) and (12.6)

(16.11) 9* Z o^K.(s ,l ,T) .

In order to apply Lemma 11.2 we still need to estimate

R#

(16.12) Ll, + L* : r, f VO - tr(' ,f))x(t,u;+.
{t.

By (r5), (16) and (1a.2)

(16.13) T(t) - N(t,f) < (l+?(t)) (l-cos f ilrQ)

t (r*q*)(r - cos F dr(u*)(il' (R; <t <R:1.

Ifence, combining (16.12), (16.13) and the change of variable (tlu-)r : s ,

we obtain 
@

(16.14) Ll, + i* I (r*n)(l - cos f p)r(u*), 
[ ,{r*.f*'0

: (t*rt-) (t - cos F p)T(u*)^h

The application of Lemma Il.2 is now immediate. Using (f 6.1), (16.2),
(16.4), (16.5) and (16.6) in (Lt.24) we first deduce

(16.15) logM(u-) * 9- + L; : Ll + 9* * q-T(u*),

and remark that

g-S
0,,{Gl})v6fr')

+
n[q\o13e-sun as**{lbil<Rll,
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Hence (L2.3), (16.9) and (16.10) yield

s* + ,l? Ku + ,li\ Ku {
nioatn16ns

and in view of (1a.3) and (16.8)

(16.r6)

9- * y'*K, 
= ("rcospptunt! + q-)rg; (Ka:min(/(r ,Kul).

Now use in (16.15), the relations (l6.ll), (16.14) and (f 6.16). This leads to

(t6.17) logM(u*) * n*K7 + 7*Kt + L; + i*

{ npr@,)(#y+ cos F ptur.fl\ * q*r(u^)

: (zpsinf p+q*)T(u*),
and. consoquently

(16.18) limsuploe-!r(1!^) .=npsn1p.
*-*- T(u*)

Comparing (16.18) and (15.1) we obtain assertion IV of Theorem 3.

Returning to (16.17) we establish (26) as well as the following
Lemma 16.1. Let f(z) sati,sfg the hgpotheses ES. Then, as rh-'> @,

L; : o(T(u^)), i* : o(T(u*)).

The proof of Theorem 3 is now complete.
The additional information contained in Lemma 16.l is of some im-

portance. In a continuation of this pa,per we propose to show that Lemma
t6.I leads to a complete description of the asymptotic behavior of f(z)
throughout annuli such as

a-'rtr* < lzl { e''ttr. (s>0,'ttl:I,2,g,.',).
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