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FINELY HARMONIC MAPPINGS AND FINELY
HOLOMORPHIC FUNCTIONS

BENT FUGLEDE

Introduction. The important paper by Constantinescu and Cornea [2]
on compactifications of harmonic spaces contains an interesting study of
harmonic mappings between two such spaces 2 and ', that is, morphisms
with respect to the harmonic structures on 2 and 2, see [2, §3].

The principal result concerning such harmonic mappings is [2, Theorem
3.5], according to which every non-constant harmonic mapping of @
(or of a domain X € Q) into Q' is an open mapping, not necessarily in
the usual (= initial) topologies on 2 and Q' , but in the fine topology on
these spaces (i.e., the coarsest topology making all superharmonic functions
continuous).

In view of this result it seems natural to ask whether the theory of
harmonic mappings could be extended so as to allow the above domain
X to be replaced by any fine domain (i.e., a finely open and finely connected
set) in Q. This will represent a true generalization since the fine topology
on a harmonic space is (in general strictly) stronger than the initial topology.

We are thus led to study the notion of a finely harmonic mapping
p: X — 2, where X denotes a fine domain in 2. Thus ¢ should be
a morphism with respect to the fine harmonic structure on 2 and °.
This structure was introduced and studied in [6] under the crucial hypothesis
that the harmonic space in question satisfies the domination axiom D
(as is the case, e.g., for Riemann surfaces or Riemannian manifolds).

The first study of finely harmonic mappings was made by Laine [8],
who however confined himself to the case where X is open in the initial
topology on @ (or equivalently: the case X = ), in other words the
same case as in [2].

Our main result, given in Theorem 7 and Theorem 6 below, asserts that
(if the points of Q' are polar) every non-constant finely harmonic mapping
of a fine domain X C @ into £’ has a finely open range and determines
a finely open mapping. Moreover, the pre-image of any polar subset of
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Q" is polar in Q. In particular, such a mapping cannot be constant in any
non-void finely open subset of its domain of definition, X .

In the particular case where @ = Q" = C (the complex plane) this
result applies, in particular, to the finely holomorphic functions, and here
it reproduces a result recently obtained by Debiard and Gaveau [4] by a
quite different method involving stochastic differentiation along Brownian
paths, while the present paper solely uses methods of harmonic spaces.
After seeing the present paper in manuscript, Debiard and Gaveau have
informed me that their method likewise applies to the study of finely
harmonic mappings, thus allowing for an alternative proof of Theorems
6 and 7 below.

1. Hypotheses and a key lemma. Throughout the present paper
(except for the last section, §11) it is assumed that @ and Q' are harmonic
spaces in the sense of Constantinescu and Cornea [3] with a countable
base and satisfying the domination axiom D , see [3, Chapter 9].1

Among the consequences of axiom D recall that the regular domains
in such a space form a base for the given (= initial) topology [3, Corollary
9.2.4], that polar and semipolar sets are the same [3, Corollary 9.2.3], and
that the fine topology is locally connected [6, Corollary 9.11], [3, Exercise
9.2.4].

The decisive tool which allows us to carry over the methods of Con-
stantinescu and Cornea in [2, §3] to the present general case of a finely
harmonic mapping defined on a fine domain is the following lemma (a special
case of which is implicit in [7, §4]). This lemma also enters in the work of
Debiard and Gaveau (to whom I had communicated it along with a slightly
different proof).

Lemma. Let ¢: X — Y bea finely continuous mapping of a finely
open set X C 2 inlo a separable, melrizable, topological space Y (e.g.

= Q" ). Every point x,€ X has then a fine neighbourhood K C X such
that K s compact and ¢ | K s continuous in the initial topology on 2 .

Proof. We may assume that @ is J3-harmonic, see [3, Theorem 2.3.3].
Y can be imbedded as a subspace of [0,1]N, and hence it suffices to con-
sider the case Y = [0,1]N. For any 2 € X we may then write

1 The fine harmonic structure was studied in [6] in the framework of a strong
harmonic space (2 in the sense of Bauer, satisfying the domination axiom. Since
Doob’s convergence axiom is practically not used, but only the original convergence
axiom of Bauer, the theory carries over to any ‘J-harmonic space in the sense of
Constantinescu and Cornea [3] with a countable base and satisfying axiom D, the
only exception being part of [6, §10.12—§10.15]. Since any harmonic space in the
sense of [3] can be covered by %-harmonic spaces, the frame indicated above is
adequate for local aspects of the theory of fine harmonicity.
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(p(x) = ((pn(x))neN7

where each ¢, is a finely continuous function on X into [0,1]. Let f,
and ¢, denote the extensions of ¢, from X to £ obtained by putting
fi=1,9,=0 in AN X. Then f, is finely upper and g, finely lower
semicontinuous. According to Brelot [1, Theorem 7] the weight, or capacity,

A > Ri(x)

has the Choquet property.? Hence there exists, by [1, Theorem 3] or
[5, §4.3], for any = € N, an open set w,C @ (in the initial topology
on @ )suchthat f, | Q\w, isupperand g, | 2\w, islower semicontinuous
(in the initial topology), and such that moreover

Ry < 277

It is well known that there exists a compact, fine neighbourhood V of
x, such that V cX . Now write

o = Uon,, K= No.

Since
Ry(x) < 22" =1,

o is thin at z,, and z,¢ o, and so K is a compact, fine neighbourhood
of #, in X . Since f, =g, = ¢, in X, it follows that each ¢, | K, and
hence also ¢ | K , is continuous in the initial topology.

Remark. The lemma obviously extends to the case of a countable
family of finely continuous mappings ¢,: X — Y,  into spaces Y, as
above, and K may be chosen as to work for all ¢, simultaneously. (It
suffices to consider the product mapping into the separable metric product
space I1, v Y, .)

2. Definition. A mapping ¢: X — Q (with X finely open
n Q) s called a finely harmonic mapping if the following two conditions
are fulfilled:

i) ¢ is continuous from X with the fine topology to Q' with its initial
topology.

i) w o s a finely harmonic function in ¢ Y (U') for any harmonic
function w' in a usual open set U' C Q' (such that ¢~ (U’) # O ).

For an alternative, equivalent definition see Theorem 5 below, where
a finely harmonic mapping is characterized as a morphism with respect
to the fine harmonic structure on both 2 and Q.

2 This result easily extends to the present case of a $B-harmonic space £ with
a countable base (and satisfying axiom D). (Use [3, Theorem 9.2.1, h)] together
with the method in [1].)
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3. Immediate consequences. a) For variable X , the finely harmonic
mappings of X into £’ have the sheaf property (with respect to the fine
topology on Q).

This implies that, for any open set o’ C ', the restriction of a finely
harmonic mapping ¢: X — Q' to the finely open set ¢ Hw') (CX)
is a finely harmonic mapping of ¢(w’) into the space ' (and likewise
into Q).

b) If @ = R (with the affine sheaf), then ¢: X — R is a finely
harmonic mapping if and only if 1 and ¢ are finely harmonic functions
in X (in the sense of [6]).

c) If @ = C (identified with R?* endowed with the classical harmonic
sheaf), then ¢ : X — C is a finely harmonic mapping if and only if ¢ is
a complex, finely harmonic function (i.e., has finely harmonic real and
imaginary parts) for every » = 0, 1, 2,... . More generally:

d) If @ = R* (with the classical harmonic sheaf), then ¢: X — R"
is a finely harmonic mapping if and only if H o¢ is a finely harmonic
function in X for every harmonic polynomial H’ on R* . (Use [6, Lemma
9.6].)

e) If X is open in Q2 (eg., X = Q), then every harmonic mapping
@ : X — Q' in the sense of [2] is a finely harmonic mapping (in the above
sense). — The two notions are identical if, e.g., the points of Q' are polar,
as shown by Laine [8, Theorem 2.1.5].

4. Lemma. If ¢: X — Q' is a finely harmonic mapping, then
s'op s a finely hyperharmonic function in X for any superharmonic
Sfunction s on Q.

Proof. For any regular domain V' in Q" write

PP R AN
VSV HY in 7.

Then s, is superharmonic and < s in £, and harmonic in V’.
According to Lemma 1, every point € X has a compact, fine neigh-
bourhood K < X such that ¢ |K is continuous in the initial topologies
on K and ', and hence ¢(K) is compact. We shall prove that s" o ¢ is
finely hyperharmonic in the fine interior of K .
Following [2, p. 20 f.], we denote by B’ any finite covering of ¢(K) by
regular domains V' in Q' , and write

S, = min sy .

B’ VieR!
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Then s'%, is superharmonic and < s in 2. Our main task is to prove
that 8'28, o @ 1is finely hyperharmonic in the fine interior of K .

In view of the open problem raised in [6, §8.5] we must now deviate
from the reasoning in [2]. Since the finely open sets ¢=(V’) cover K
when V' ranges over %', it suffices to prove that 8,?8’ o ¢ is finely hyper-
harmonic in

U= (U

for any prescribed U’ € 8B’ .
We begin by proving that, for any other member V' of %', the function

(1) Sy © @ = Mmin (sp 0@, sy o @)

is finely hyperharmonic in U , using the fact that sy © ¢ is finely hyper-
harmonic (even finely harmonic) in U by Definition 2 because sy, is
harmonic in U’. Similarly, s,. ¢ is finely harmonic in ¢=}(V’), in
particular in U N ¢~}(V’), and the function (1) equals sy °g¢ in
UNg (V') . Since moreover (1) is finely lower semicontinuous in U, it
follows from [6, Lemma 10.1] that (1) is finely hyperharmonic in U .

Next it follows by the same argument that, for any third member W’
of B’, the function

’ . ’ ’
Squ,prwy © @ = Mmin (Sqrpy o @ Sy © ®)

is finely hyperharmonic in U . In a finite number of steps we thus prove
that s'%, o @ is finely hyperharmonic in U , and therefore in the fine interior
of K.

The finite coverings B’ of ¢(K) considered above form a directed
set under the pre-order relation defined by

B < By, < VVoeB,AV,eB: VDV,
The net (s'%,), indexed by this directed set, is known to be pointwise

increasing to the limit

’ ’

s" = sup s%,.

Hence s’ o ¢ is the pointwise limit of the increasing net of finely hyper-
harmonic functions s’,, ¢ in the fine interior of K . Consequently, by

B
[6, Corollary 2, p. 84], s, ° ¢ is likewise finely hyperharmonic in the fine

interior of K , and so actually in all of X . This completes the proof of
the lemma.
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5. Theorem. A4 mapping ¢: X — Q (with X finely open in
Q) 1s a finely harmonic mapping if and only if it has the following two pro-
perties:

1) @ s continuous in the fine topologies on both X and €.

i) s"oq s a finely hyperharmonic function in @ U') for any finely
hyperharmonic  function s’ in a finely open set U' < Q' (such that
e W(U') # O ).

Proof. The “if part” is obvious in view of [6, Theorem 8.7]. In proving
the “only if part”, we may assume by virtue of [3, Theorem 2.3.3] that
Q' is a P-harmonic space, cf. the latter part of a), §3. Thus let ¢ denote
a harmonic mapping of X into a R-harmonic space Q.

Since the fine topology on ' is the coarsest one making all super-
harmonic functions s’ on 2’ continuous, Property i) will follow once
we can show that s o¢ is finely continous in X for every such s.
And this is indeed the case by virtue of Lemma 4, according to which
s"o@ 1is finely hyperharmonic in X , and hence finely continuous there
[6, Theorem 9.10].

In proving ii), we may assume that s’ << + oo in U’. (The reduction
to this case can be performed by choosing a finite potential ¢’ > 0 on @’
and representing s’ as the pointwise limit of the increasing sequence of
finite valued, finely hyperharmonic functions min (s',n¢’) in U’.)

In this situation where s << oo, we may apply the local extension
property of finely hyperharmonic functions [6, Theorem 9.9]. Let
z €~ (U’) be given. There exists a finely open set V' with?

px) e V'C =R L
such that

s =9p —q¢ in V',

where p" and ¢’ are locally bounded potentials on ', and ¢’ is finely
harmonic in V’. According to [7, Theorem 4] there exists a compact,
fine neighbourhood K’ of ¢(x) with K’ c V', and a sequence of harmonic
functions ', (each defined in some open set w, C @' with v, D K'),
such that

u, | K' — ¢ | K’  uniformly.
It follows that
(Upo@) |V — (¢ o) |V uniformly,

where V' denotes the fine interior of ¢~(K'), which is a fine neighbourhood
of x in view of Property i) established above. By hypothesis, each

3 Here and elsewhere the ﬂne closure of a set A4 in Q or Q' isdenoted by E 5
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(u,oq@) |V is finely harmonic (in V'), and hence so is (¢'°¢) |V by
virtue of [6, Lemma 9.6].

On the other hand p’ o ¢ is finely hyperharmonic in V by Lemma 4,
and we conclude that the function

sop = pog—qop (in V)

is finely hyperharmonic in ¥, and consequently s"o¢ is finely hyper-
harmonic in ¢=3(U’) .

Corollary. Let X and X' be finely open subsets of 2 and ',
respectively. If ¢: X — Q' and y: X' — Q" are finely harmonic map-
pings, then sois wop: X — Q' .

6. Theorem. Suppose that the finely open set X C Q 1is finely
connected, and that ¢ 1is a non-constant, finely harmonic mapping of X
into Q' . Then ¢YA') is polar *in Q for any polar set A" in Q.

Proof. In view of Lemma 4, the proof given in [2] for [2, Theorem 3.2]
carries over to the present situation, using consistently the fine topology
on X, but the initial topology on «'. One uses twice the fact that a
finely hyperharmonic function in a fine domain® is either identically
oo or else finite off a polar set [6, Theorem 12.9].6 At the end it is proved
that every point z € X has a finely open, fine neighbourhood U,c X
such that U, N ¢~1(4’) is polar. To conclude that ¢=1(4’) is itself polar,
it remains only to apply Doob’s quasi Lindel6f principle which shows that
countably many U, cover X up to a polar set.

As in [6], let us call a function finely superharmonic if it is finely hyper-
harmonic and moreover finite off some polar set. Then we have the follow-
ing immediate corollary of Theorem 6 together with Property ii) in Theo-
rem b5:

Corollary. Under the hypotheses of Theorem 6, s cq@ is finely
superharmonic in @WU’) for any finely superharmonic function s in a
finely open set U' < Q' (such that ¢=X(U') # O ).

7. Theorem. Let ¢ be a non-constant, finely harmonic mapping
of a fine domain X C Q into Q', and suppose that the points of @(X) are

4The notion of a polar set A C Q (and similarly in Q") is taken in the local
sense as in [3, §6.2]. If Q (with a countable base) is {-harmonic, then A is polar
if and only if there exists a superharmonic function (even a potential) which equals
+0oo in A, see [3, Proposition 6.2.1 and Exercise 6.2.1] for the present general axiom-
atic frame.

5By a fine domain is understocd a finely connected, finely open set.

6 A simpler proof of [6, Theorem 12.9] could easily be given, parallel to that of
[3, Proposition 6.2.1].




120 BENT FUGLEDE

polar (in Q). Then @(X) is finely open (in 2'), and ¢ is an open
mapping with respect to the fine topologies on X and 2’ .

Remark. In view of e) and a) in §3, this result contains [2, Theorem 3.5]
in our case where @ and ' satisfy the domination axiom. Our proof
is adapted from that of [2, Theorem 3.5], the main difference being that
it is no longer possible toreduce to the case where the constants are harmonic
(in both spaces @ and «"). We shall therefore bring the complete proof.

Proof. Let zeX be given, and consider any fine neighbourhood
E of x in X. We shall prove that ¢(#) is a fine neighbourhood of

’

2 = gla)
in Q". There exists a B-set o’ C ' such that 2’ €’ . We may suppose,
in addition, that there exists a harmonic function %’ on «’ such that

(2) 1 <K < 2.

Choose a P-set wC 2 so that z ew. Since the fine topology is
locally connected, it suffices to consider the case where E is a fine domain
contained in ® N ¢~Y(w’) . According to Theorem 6, @~(x') is polar.
Since £ is non-polar and contains z, it follows that the restriction of
@ to K is non-constant.

Replacing 2 by o, @ by o', X by E,and ¢ by ¢ | E (cf. a), §3),
we may therefore assume from the beginning that @ and €' are -
harmonic spaces, and that 2’ admits a harmonic function ' satisfying (2).
And it is then our task to prove that ¢(X) is a fine neighbourhood of ' .

According to Lemma 1 there exists a finely open set U of compact

closure U in @ such that
(3) xrelUcUcX,

and such that ¢ | U is continuous in the initial topologies on U and 2.
Replacing, if necessary, U by the larger, finely open set C b(C U), which
has the same closure as U, we may further assume that CU (= &\ U)
is a base, that is, stable under the base operation b .7

Being polar, ¢~'(z') has measure 0 with respect to the generalized
harmonic measure ¢SV (the swept-out of the Dirac measure &, onto

CU)for any x e U.® Since SV is carried by 0, U, there exists accord-
ingly a compact set K C (0; UNg~(x") so large that

" For any set 4 C 2 (and similarly in "), b(4) is defined as the set of all points
of ©Q at which A4 is not thin. It is a well-known consequence of axiom D that the
base operation b is idempotent, and hence b(A4) is a base (for any set 4 ).

8 We denote by 0, U the fine boundary of U (in Q). It is a well-known con-
sequence of axiom D that gSU is carried by 0/ U for any x € U . — Incidentally,
since @~l(a’) is polar and hence finely discrete we might choose U above so that

gl@)N U = {z} , in particular ¢l (2') N0, U = 0.
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(4) H@x) < %,

where f denotes the indicator function for @\ K , and where, by definition,
for any y e 2,

(5) Hl(y) := ffdef”.

Since K does not meet ¢~l(z’'), ' is not in ¢(K). Since K C U,
and ¢ | U is continuous, ¢(K) is compact in Q' (with the initial topo-
logy) . Hence there exists a usual regular domain U’ in 2° such that

(6) v e UcU cCglkK).
Essentially following [2], we write

(7) V= UneXU,
(8) ¢ = UNa(V).

Then V is a finely open subset of X containing « , being the intersection
of two such sets. And G’ is open in 2’ because U’ is open, and (V)

is compact (since Visa compact subset of U, and o | U is continuous).
Note also that

(9) Voo (CE)

by (8), and further that V c X in view of (3), (7). Consequently, we
obtain from (8)

UNG c (V) € pX),

and it is therefore sufficient to prove that G’ is thin at .
Let K’ denote an arbitrary compact subset of G’ , and write, as in [2],

'\K, . ’
(10) s = {Rh' in U"
0 in o\ U
where the swept-out f%,’f is understood relatively to the harmonic subspace
U of Q. Since U’ is regular, it is well known that s’ is continuous
at every point of 2\ K’. Moreover, s’ is finely continuous in U’ (being
hyperharmonic there), and so s’ is finely continuous in all of 2'. Hence
8" o @ is finely continuous in X by Property i) in Theorem 5.
The function

(11) w:i= H/ —4}sog

is well defined (<< 400 ) and finely lower semicontinuous in X . In fact,
H{ is finite and finely lower semicontinuous in 2 according to [6, Lemma
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9.12] applied to the base 2\U in £, noting that f is (finely) lower
semicontinuous.® The same lemma shows that H/ is finely harmonic
in U, and hence in V. And s o¢ is likewise finely harmonic in V
because s’ is harmonic in UK’ by (10), and V < ¢=(U\K') accord-
ing to (7) and (9) and the fact that K' € G'.

We have thus found that « is finely harmonic in V', and finely lower
semicontinuous in X . Moreover # > —1 in X because H,U >0 and

(12) sog S Wop < 2

by virtue of (2). According to the fine boundary minimum principle [6,
Theorem 9.1], the conclusion

(13) w>0 inV

can be drawn if we can show that w(y) =0 for every y €od; V. (Note

that the fine closure ¥ of V is contained in X according to (7) and (3).)
From (7) it follows that

(14) o,V C (o U) U (0,97 4(U")) .
Note also that
(15) 0,V cCK

on account of (6) because
oV cVcel(U)celCqK) cCK.
If yeo, U, then y e (o, UNK by (15), and hence f(y) = 1. Since

C U is abase, we have &5V = ¢, , and consequently

mw = [ raet = fu) = 1.

When combined with (11) and (12), this yields w(y) =0 (in the case
yeoU).

In the remaining case y €0, (U’), cf. (14), we have ¢(y) €9, U’
(since @~1(U’) is finely open), and hence

")y = s'(ey) = 0

by (10) (since U’ is finely open). It follows again that wu(y) = 0.

Having thus established (13), we complete the proof by showing that
(" is indeed thin at a’. Since ¢(x) = 2’ € U’ by (6), we have from (10)

DK (1
(8" o @)(x) = Ry().

91In [6], H;] is denoted instead by fCU. Since  is ‘J3-harmonic, there exists

a locally bounded potential p > 0 on 2 . We may assume that p 2 1 (2 f) in U.
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Since wu(x) = 0, we obtain from (11)
RE@) < 2 HY (@),
and hence, by varying K’, using e.g. [3, Corollary 4.2.2],
RS@) < 2HY(x) < 1 < W'()

on account of (4) and (2). This shows that G’ is thin at 2", and the proof
is complete.

Remark. Instead of supposing that the points of ¢(X) are polar, it
would clearly suffice to assume that ¢~'({z'}) is a polar subset of 2 for
every non-polar point 2’ € ¢(X) (and hence actually for any 2’ € Q" by
Theorem 6). As in the case of harmonic mappings, some restriction of this
kind is, however, needed, as it appears from an example due to A . Cornea
(personal communication). To illustrate the role of non-polar points in
2" note also that (corresponding to the case 2 = R, cf. b) of §3) it seems
to be an open problem whether, say in the case 2 = R*, n=2, a non-
constant finely harmonic function w in a fine domain X C 2 is non-
constant in every non-void finely open subset of X . (This would of course
follow from Theorem 7 above if the hypothesis concerning non-polarity
of points could be dropped.)

8. Theorem. Let ¢: X— Q' be an injective, finely harmonic
mapping of a finely open set X C 2 into L' . Suppose that the points
of one of the sets X or X':= @(X) are polar. Then so are the points of
the other set ( X' or X ). Moreover, X' is finely open, and ¢ : X' — Q
18 a finely harmonic mapping.

Proof. As in the beginning of the proof of the preceding theorem we
may easily reduce to the case where 2 and ' are ¥-harmonic spaces
and where X and (hence) X' are finely connected. According to Theorem
7, @ is a finely open mapping, hence altogether a fine homeomorphism
of X onto X’. In particular, X’ is finely open in £', and in fact a fine
domain in the present case.

Let u be finely harmonic in a finely open set U c X . In order to
prove that w o @' is finely harmonic in the finely open set ¢(U)C X',
we proceed as in the proof of [2, Theorem 3.4]. According to Lemma 1
(applied to ¢~1) there exists for any a’ € p(U) a finely open set V' of

compact closure V' in @' such that
a e VeV col),

and such that @1 | P’ is continuous in the initial topologies on V' and €.
As in connection with (3) in the proof of Theorem 7, we may further arrange
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that Q"\ V' is a base (in 2'). Finally we may assume that wog1 is
bounded on V’. (Note that u o1 is finely continuous and finite in
@(U).) Since 2" is PB-harmonic, there exists a locally bounded potential
p’' >0 on . We may assume that |ucg| <p’ in V.
Using again the notation introduced in (5) above, but now in the space
Q' , we put
v = HY ..

According to [6, Lemma 9.3] ¢’ is well-defined, bounded, and finely con-
tinuous in V', and finely harmonic in V' . Clearly »" agrees with o ¢!
on o V' (Co(UNV").

Hence it follows from Theorem 5 that ' c¢ is bounded and finely
continuous in the fine closure ¢~ 17') of ¢ V'), and finely harmonic
in @ (V') itself. Moreover, v c@p =u on 0,97 (V') = 970, V') .
Since ¢~1(V’) is contained in the compact subset <p—1(17’) of @, it follows
by application of the fine boundary minimum principle [6, §9.1] that
vep =wu in ¢V'), that is, " =wuog™ in V', and consequently
wo g is indeed finely harmonic in V’. — The assertion concerning
polarity of points follows from Theorem 6 applied to ¢! or ¢ .

9. Theorem. Let ¢: X— Q' be a finely harmonic mapping,
and let X' denote a non wvoid, fine domain in Q' such that ¢(X) cC X' .
If there exists a finite, fine potential p' >0 on X' such that p’ °¢ is a
fine potential on X , then X'\ @(X) is inner polar.

Proof. Let K’ denote a compact subset of X"\ ¢(X), and write

A, .
s' := Rf, relative to X',

see [6, §11.4]. Then s’ ( =0) is finely harmonic and <p’ in ¢(X)
(€ X"\K") according to [6, Corollary 11.13]. Hence, by Theorem 5,
§" o @ is finely harmonic, and of course < p’°¢ in X . By hypothesis,
p'eg is a fine potential on X [6, Definition 10.5], and consequently
§'op =0 in X, thatis s’ =0 on ¢(X). Since X’ is finely connected,
it follows from [6, Theorem 12.6] that s' = 0 in all of X', and so K’ is
indeed polar according to [6, Theorem 11.8] (applied to f:= p' -1,
on X').

Remark. Instead of assuming that X' is a fine domain it would suffice
to suppose that every fine component of the finely open set X’ (containing
p(X)) in Q" meets @(X). And instead of assuming that p’ > 0 be a
finite, fine potential on X’ it is of course enough to suppose that p’ > 0
is finely hyperharmonic and finite in X’. The finiteness of p’ can be
dropped if @' is f¥-harmonic.
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10. Approximation by harmonic mappings. Let d’ denote a fixed
metric on 2, compatible with the initial topology on «’.

Lemma. If a net (¢);; of finely harmonic mappings ¢;: X — &'
converges pointwise to a mapping ¢ : X — 2", and if every point of X has
a fine neighbourhood on which the convergence is uniform with respect to d’,
then the limit mapping ¢ 1is a finely harmonic mapping of X into 2.

Proof. Clearly ¢ satisfies the continuity condition i) in Definition 2.
Now let us check condition ii). For given « € X let ' be harmonic in
some open neighbourhood U’ of ¢(x) in . Let B’ and b denote
compact d’-balls with centre g@(x) such that &' c B’c U’ (and such
that the radius of &' is smaller than that of B’). By hypothesis there is
a fine neighbourhood V of z in X such that ¢(V)C b and ¢ |V —
@ | V d-uniformly. It follows that ¢(V)C B’ for all j from a certain
step. Since ' is uniformly continuous on B’ , we conclude that

W o)V — (W o)V uniformly,

and so u' e ¢ is finely harmonic in V by [6, Lemma 9.6].

Definition. For any compact set K c Q let H(K, Q') denote
the d'-uniform closure of the set of all restrictions to K of harmonic mappings
of open nmeighbourhoods of K (in Q) into Q.

Corollary. A sufficient condition for a mapping ¢: X — Q" to be
finely harmonic is that every point x € X has a compact, fine neighbourhood
Kc X suchthat ¢ | K e HK , Q).

This follows from the above lemma applied to the fine interior V of
K since the restriction to V of any harmonic mapping of an open neigh-
bourhood of K into £’ is a finely harmonic mapping of V into £’
according to e) and a), §3.

Problem. Is the condition in the above corollary also necessary in order
that ¢ be a finely harmonic mapping?

According to [7, Theorem 4] the answer to this question is affirmative
in the very particular case 2" = R, cf. b), §3.

The problem seems to be a difficult one even for 2 = ' = R* (with
the classical harmonic sheaf).

11. Finely holomorphic functions. In this final section we shall
specialize to the case
0 =9 = C,

the complex plane endowed with the classical harmonic sheaf on € = R®.

Definition. Let X denote a finely open subset of C. A function
¢ : X — C is called finely holomorphic if every point z € X has a compact,
fine neighbourhood K < X such that ¢ | K € R(K) .
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Here R(K) denotes the uniform closure of the algebra of all restrictions
to K of rational functions on C with poles off K , or equivalently of all
restrictions to K of holomorphic functions in open neighbourhoods of
K in C. See, e.g., Zalecman [9].

Clearly the finely holomorphic functions in X form a subalgebra of the
algebra of all finely continuous, complex valued functions in X . More-
over they have, in their dependence on X , the sheaf property analogous
to a), §3.

Theorem. Let ¢: X — C be finely holomorphic (or the conjugate of
a finely holomorphic function). Then ¢ is a finely harmonic mapping of
X anto C. If X is finely connected and if ¢ 1is mon-constant, then ¢ is
a finely open mapping, and the zeros of ¢ form a polar (= finely discrete)
set.

Proof. Clearly every holomorphic (or antiholomorphic) function in an
open set w C € is a harmonic mapping of w into €. In view of e) and a),
§3, it therefore follows from Lemma 10 (taking for d’ the usual metric
on 2 = C) that ¢ is a finely harmonic mapping. (Alternatively, use
c), §3.) The remaining assertions are therefore contained in Theorems 7
and 6, respectively.

Remarks. a) It is easily shown that if ¢ and y are finely holomorphic
in the finely open sets X and X', respectively, then y o ¢ is finely holo-
morphic in ¢~}(X’) . (Consider first the case where X’ is open and o is
holomorphic.)

b) If ¢ and ¢ are both finely holomorphic in a fine domain X , then
@ 1s constant. (In fact, Re¢ and Im ¢ must be finely holomorphic,
too, and hence constant since their ranges have no finely interior points
in C.)

c) A function ¢ defined in a usual open set w C C is finely holomorphic
there if and only if it is holomorphic. (As to the non-trivial “only if” part,
say in the case where o is connected, and hence finely connected by
[6, Corollary 9.8], note that ¢ isa harmonic mapping by the above theorem
together with e), §3. In particular, ¢ and ¢? are complex, harmonic
functions in ® , and this implies that ¢ is conformal, that is, either ¢ or
¢ is holomorphic [as a function of the complex variable z € C]. The latter
alternative cannot occur according to the preceding remark b), except in
the trivial case of a constant function.)

In [4], Debiard and Gaveau have introduced an interesting, possibly
larger sheaf of algebras of generalized holomorphic functions with respect
to the fine topology on C. For any finely open set X c C they denote
by O(X) the class of all complex, finely harmonic functions ¢ : X — C
such that, roughly speaking, dg/oz = 0 in X in the sense of stochastic
differentiation along the Brownian paths.
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Using Lemma 1 above, it follows from the results in [4] that O(X) is
an algebra, closed in the sense corresponding to Lemma 10 above, and hence
containing all finely holomorphic functions as defined at the outset of the
present section. Moreover, [4] brings the first proof that every non-constant
function of class O(X) is a finely open mapping (if X is a fine domain).

According to c), §3, every function ¢ € O(X) is a finely harmonic
mapping of X into C (and so is ¢ ). Thus the above theorem extends
to the class O(X), and likewise Remarks b) and c) above (with similar
proofs).

Problem. Let ¢ be a finely harmonic mapping of a fine domain X c C
into C. Does it follow that either ¢ or ¢ is of class O(X) (or even finely
holomorphic)?

In its latter, stronger form, this problem is equivalent to the problem
stated at the end of §10 (in the present case @ = Q" = C).
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