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Introduction. The important paper by Constantinescu and Cornea l2l
on compactifications of harmonic spaces contains an interesting study of
harmonic mappi,ngs between two such spaces l? and g' ,that is, morphisms
with respect to the harmonic structures on o and o' , see [2, S3].

The principal result concerning such harmonic mappings is [2, Theorem
3.5], according to which every non-constant harmonic mapping of a
(or of a domain Xcgl )into o' is an ogtenmapping,not necessarily in
the usual 1: initial) topologies on 12 and J2' , but in the fi'ne toytology on
these spaces (i.e., the coarsest topology making all superharmonic functions
continuous).

In view of this result it seems natural to ask whether the theory of
harmonic mappings could be extended so as to allow the above domain
X to be replaced by any fi,ne il,omai,n (i.e., a finely open and finely connected
set) in o. This will represent a true generalizat'ion since the fine topology
on a harmonic space is (in general strictly)stronger than the initial topology.

We are thus led to study the notion of a fi,nely harmonic mappi,ng
g:X-->'d)',where X denotesafi.nedomainin o. Thus g shouldbe
a morphism with respect to the fi,ne harmonic structure on !2 and Q'

This structure was introduced and studied. in [6] under the crucial hypothesis
that the harmonic space in question satisfies the domination axiom D
(as is the c&se, e.g., for Riemann surfaces or Riemannian manifolds).

The first study of finely harmonic mappings was made by Laine l8l,
who however confined himself to the case where X is open in the initial
topology on a (or equivalently: the case X - a ), in other words the
same case as in [2].

Our main result, given in Theorem 7 and Theorem 6 below, asserts that
(if the points of Q' are polar) every non-constant finely harmonic mapping
of a fine domain X c o into J2' has a finely open ra,nge and determines
a finely open mapping. Moreover, the pre-image of any polar subset of
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o' is polar in !2 . fn particular, such a mapping cannot be constant in any
non-void finely open subset of its domain of definition, X .

In the particular case where Q : Q' : C (the complex plane) this
result applies, in particular, to the fi,nelg hol,omorphic functi,ons, and here
it reproduces a result recently obtained by Debiard and Gaveau fa] by a
quite different method involving stochastic differentiation along Brownian
paths, while the present paper solely uses methods of harmonic spaces.
After seeing the present pa,per in manuscript, Debiard and Gaveau have
informed me that their method likewise applies to the study of finely
harmonic mappings, thus allowing for an alternative proof of Theorems
6 and 7 below.

1. Hypotheses and a key lemma. Throughout the present paper
(except for the last section, Sf f ) it is assumed that a and Q' are harmonic
spaces in the sense of Constantinescu and Cornea [3] with a countable
base and satisfying the d,ominat'ion auiom D, see [3, Chapter 9].1

Among the consequences of axiom D recall that the regular domains
in such a space form a base for the given (: initial) topology [3, Corollary
9.2.4f, that polar and semipolar sets are the same [3, Corollary 9.2.3], and
that the fine topology is locally connected [6, Corollary 9.ll], [3, Exercise
e.2.41.

The decisive tool which allows us to carry over the methods of Con-
stantinescu and Cornea in [2, 53] to the present general case of a finely
harmonic mapping defined on a fine domain is the following lemma (a special
case of which is implicit in [7, $a]). This lemma also enters in the work of
Debiard and Gaveau (to whom I had communicated it along with a slightly
different proof).

L e m m a. Let E : X ---> Y be a finely continuous mappöng of a fi,nely
ogten set X c o into a separable, metrizable, togtol,ogi,cal, space Y (e.9.

Y: Q'). Euergpoi,nt roeX hasihenafineneighbourhood, KcX such
that K 'is compact and, E I K is cont'inuous i,n the initial topol,ogy on Q .

Proof. We may assume lhat I is lp-harmonic, see [3, Theorem 2.3.3].
Y can be imbedded as a subspace of l0,l]N, and hence it suffices to con-
sider the case I : l0,l]N . X'or any r e X we may then write

l The fine harmonic structure was studied in 16] in the framework of a strong
harmonic space J2 in tho senso of Ba,uer, satisfying the domination axiom, Since
Doob's convergence axiom is practically not usod., but only the original convergence
axiom of Bauer, the theory carries ovor to any lp-harmonic space in tho sense of
Constantinescu and Cornea [3] with a countable base and satisfying axiom D, tho
only exception being part of [6, S10.12-$10.f 5]. Since any harmonic spaco in tho
sense of [3] can bo covered by S-harmonic spaces, the framo indicated above is
adequate for local aspects of the theory offine harmonicity.
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E@) : (e,(r))*,x,

where each g, is a finely continuous function on X into [0,1] . Let f*
and g* denote the extensions of g, from X bo l? obtained by putting
f*: | , g*: 0 h o\x . Then /* is finely upper and g* finely lower
semicontinuous. According to Brelot [1, Theorem 7] the weight, or capacity,

A r> R!(ro)

has the Choquet property.z Ilence there exists, by [, Theorem 3] or

[5, $4.3], for any m eN, an open set oncQ (in the initial topology
on o ) such that "f, I o\r" is upper and g,l o\4,, is lower semicontinuous
(in the initial topology), and such that moreover

R?"(*o) < t*n

@ : Uatn,
n

Since
R?(*o) 1)2-": l,

ar is thin at rs , and ro t' rrl , and so ,K is a compact, fine neighbourhood
of ro in X. Since fn: gn: E* in X, it follows thateach gnlK, ar'd
hence also g | -K , is continuous in the initial topology.

Remark. The lemma obviously extends to the case of a countable
family of finely continuous mappings V*i X * Yo into spaces Y* as

above, and K may be chosen as to work for all g, simultaneously. (It
suffi.ces to consider the product mapping into the separable metric product
space fl,.n I, .)

2. Definition. Amappi,ng q:X--->Q' (wi'th X finelyopen
i,n a ) i,s call,ed, a finel,g harmonic mapping if the fol'Iowing two cond,'iti,ons

are ful,filled,:
i) g i,s continuous from X with the fine togtol'ogy to Q' w'i'th i,ts ini'ti'al'

togtol,ogy.

ii) 'tL' o g is a finely harmonic function i,n E-t(U') for any harmoni,c

functi,on u' 'i,n a usual, open set U' c 9' (such that E-L(U') + A ).
For an alternative, equivalent definition see Theorem 5 below, where

a finely harmonic mapping is characterized as a morphism with respect
to the fine harmonic structure on both Q and Q'

It is well known that there exists a

no such that V c X Now write

2 This result easily extends to
& countable base (and satisfying
with the method in [I].)

compact, fine neighbourhood V of

K : Z\r.

the present case of a lp -harmonic space A with
axiom D ). (Use [3, Theorem 9.2.L, h)] together
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3. Immediate consequences. a) For variable X , the finely harmonic
mappings of -X into J2' have the sheaf property (with respect to the fine
topology on o ).

This implies that, for any open set et' c Q' , the restriction of a finely
harmonic mapping p: X --> Q' to the finely open set q-L(uo') ( cX )
is a finely harmonic mapping of g-l(oo') into the space rrr' (and likewise
into o').

b) If g': R (with the affine sheaf), then E: X-+ft is afinely
harmonic mapping if and only if I and q are finely harmonic functions
in X (in the sense of [6]).

c) If a' : C (identified with R2 endowed with the classical harmonic
sheaf), then g : X ---> C is a finely harmonic mapping if and only if g" is
a complex, finely harmonic function (i.e., has finely harmonic real and
imaginary parts) for every rL : 0, l, 2, . . . . More generally:

d) If !2' : Q'' (with the classical harmonic sheaf), then g : X -+ R"'
is a finely harmonic mapping if and only if H' " g is a finely harmonic
function in X for every harmonic polynomial H' on R"' . (Use [6, Lemma
e.61.)

e) If X is open in a (e.g., X - I ), then every harmonic mapping

E: X --> o' in the sense of [2] is a finely harmonic mapping (in the above
sense). - The two notions are identical if, e.g., the points of Q' are polar,
as shown by Laine 18, Theorem 2.L.51.

4. Lemma. If g: X-->!)' i,s a finel,y harmonic mapping, then
s' o g is a fi,netry hyperharmonic functian i,n X for any superharmonic

function s' on Q' .

Proof. For any regular domain V' in Q' write

, ( I
8gr, :- 

t Hy,
J2,\ Z'
V'.

Then s!,, is superharmonic and ( s' in l?' , and harmonic in V'
According to Lemma l, every point a e X has a compact, fine neigh-

bourhood K c X such that g lK is continuous in the initial topologies
on K and o' , and hence E(K) is compact. We shall prove that s' o g is
finely hyperharmonic in the fi.ne interior of K .

Following 12,p.20 f.l, we denote by E' any finite covering of E(K) by
regular domains V' in o' , and write

ln
tn

,.,
t snr : - mrn 8v,

\-, V'eS$t
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Then s'*, is superharmonic and { s' in .f)' . Our main task is to prove

that s'*, " g is finely hyperharmonic in the fine interior of K .

fn view of the open problem raised in [6, $8.5] we must now deviate
from the reasoning in [2]. Since the finely open sets g-1(Z') cover K
when 7' ranges over g' , it suffices to prove that s*, . g is finely hyper-
harilonic in

', U :: q-r(U')

for any prescribed a' e E' .

We begin by proving that, for any other member V' of E , the function

(1) |lu,,v,y o V _ min (t'r' o 9, 8'v' " 9)

is finely hyperharmonic in [/ , using the fact lhat' su, " g is finely hyper-
harmonic (even finely harmonic) in U by Definition 2 because s'u, is
harmonic in (J' Similarly, sir'" g is finely harmonic io p-t(V') , in
particular in U fi E-r(V'), and. the function (l) equals s!o," g in
[l\g-1(7') . Since moreorrer (r) is finely lower semicontinuous in U , it
follows from [6, Lemma f0.f] that (f) is finely hS4perharmonic in U .

Next it follows by the same argument that, for any third member W'
of E' , the function

slv',v',w'\ o E : min (siu',2'1 o E,s;' " V)

is finely hyperharmonic in U . In a finite number of steps we thus proYe
that, s'^, o p is fi"nely hyperharmonic in U , and therefore in the fine interior
of K. s'

The finite coverings E' of g(l() considered above form a directed
set under the pre-order relation defined by

Si < S; + Y vLeBL:Jv'te8.'t: vi) v;.

The net ("'8,) , indexed by this directed set, is known to be pointwise

increasing to the limit

s' - Sup tg,

Hence 6' o g is the pointwise limit of the increasing net of finely hyper-
harmonic functions 

"'8, 
. t in the fine interior of K . Consequently, by

f6, Corollary 2, p. sal, s*, " g is likewise finely hyperharmonic in the fine

interior of K , and so actually in all of X . This completes the proof of
the lemma.
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5. Theorem. Amapping g: X_>Q' (with X fi,nel,y open in
o ) is a finely harmonic mappi,ng if anil onlg if it has the followi,ng two pro-

pert'i,es:

i) q is conti,nuous i,n the fine topologies on both X anil, g' .

ii) s' o g is a fi,nely hyperharmonic functi,on i,n g-t(U') for any fi,nely
hggterharmoni,c function s' in a finely open set U' c Q' (su,ch that
E_L(U') + A ).

Proof. The "if part" is obvious in view of [6, Theorem 8.7]. fn proving
the "only if part", we may assume by virtue of [3, Theorem 2.3.3] that
!?' is a $-harmonic space, cf. the latter part of a), $3. Thus let g denote
a harmonic mapping of X into a $-harmonic space d)' .

Since the fine topology on d)' is the coarsest one making all super-
harmonic functions s' on d)' continuous, Property i) will follow once
we can show that s' o g is finely continous in X for every such s' .

And this is indeed the case by virtue of Lemma 4, according to which
s' o g is finely hyperharmonic in X , and hence finely continuous there
[6, Theorem 9.10].

fn proving ii), we ma,y assume that s' < + a in U' . (The reduction
to this case can be performed by choosing a finite potential q' > 0 on o'
and representing s' as the pointwise limit of the increasing sequence of
finite valued, finely hyperharmonic functions min (s' ,nQ') in U' .)

In this situation where s' < + co , we may apply the local extension
property of finely h5ryerharmonic functions [6, Theorem g.g]. Let
r e E-t(U') be given. There exists a finely open set V' withs

E@) e V'cf'c(J'
such that

s':It'-g'inV',
where p' and q' are locally bounded potentials on g' , and q' is finely
harmonic in V' According to 17, Theorem 4] there exists a compact,
fine neighbourhood K' of g(r) witln K' C V' , and a sequence of harmopic
functions u', (each defined in some open set a|c o' with ari = K, ),
such that

It follows that

%'n I K', -> q', I K', uniformly.

(u| " V) I T/ -> (q' " V) | V unifor*ly,

where Z denotes the fine interior of g-r(K'), which is a fine neighbourhood
of r in view of Property i) established above. By hypothesis, each

sJlerg andeJsewtlere thefinecloaure of aset A in I or fJ' isdenoted.by.4
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(u'* " V) | Y is finely harmonic (it Y
virtue of [6, Lemma 9.6].

On the other hand p' " V is finely
and we conclude that the function

), and hence so is (q' " V) | V by

hyperharmonic in Y by Lemma 4,

s'og: p'"8-q'oE (in 7)

is finely hyperharmonic in V , and' consequently s' o g is finely hyper-
harmonic tn q-t(U') .

Corollary. Let X and, X'befi,nelyopensubsetsof a anil' d)',

respect'i,uel,y. If V , X ---> Q' and, y : X' --> Q" are finely harmon'i,c map-
pings, then so is rp o g t X '-'> Q" .

6. T h e o r e m. Suppose thq,t the fi'nely open set X c gt i's fi'nely
connected,, and, that V 'i,s a non-constant, finely harmonic mapping of X
'i,nto 9' . Then E-t(A') is polar a in Q for any polar set A' 'i,n Q'

Proof. In view of Lemma 4,llne proof given in l2l for [2, Theorem 3.2]

canies over to the present situation, using consistently the fine topology
on X, but the initial topology on Q' . One uses twice the fact that a

finely hyperharmonic function in a fi.ne domain 5 is either identically

f oo or else finite off a polar set [6, Theorem f 2.O1.e At the end it is proved
that every point reX has a finely open, fine neighbourhood U,cX
such that U n l1 E-L(A' ) is polar. To conclude that E-L(A') is itself polar,
it remains only to apply Doob's quasi Lindelöf principle which shows that
countably many U * cover X op to a polar set.

As in [6], let us call a function/inely superharmon'i,c if it is finely hyper-
harmonic and moreover finite off some polar set' Then we have the follow-
ing immediate corollary of Theorem 6 together with Property ii) in Theo-

rem 5:

Corollary. (Jnd,er the hypotheses of Theorem 6, s'oE i's fi,nely
suyterharmonic in q-'(U') for any finelg superharmonic functi,on s' 'i'n a

finely open set (J' c Q' (such that q-t(U') + g ).

7. Theorem. Let g be a non-constant, fi'nely harmonic mapping
of a fi,ne d,omain X c Q 'i,nto Q' , and, suptgtose that the poi,nts of E(X) are

4The notion of a' polar set, AC O (and similarly in ,f)') is taken in the local
senso as in [3, $6.2]. If (2 (with a countable base) is lp-harmonic, t/nsn A is polar
if and only if thero oxists a superharnonic function (even a potential) which equals

*oo in z4 , see [3, Proposition 6.2.1and Exercise 6.2.1] forthepresentgoneralaxiom-
atic frame.

6 By a fine domain is understood a finely connected, finely open set.
.6A simpler proof of [6, Thoorem 12.9] could easily be givonn parallel to that of

[3, Proposition 6.2.f].
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polar (in a' ). Then g(X) i,s fi,nely open (i,n e' ), anil g ,i,s an open
mappi,ng wi,th respect to the fine toltologies on X anil e'

Remarlc. fn view of e) and a) in $3, this result contains [2, Theorem 8.5]
in our case where Q and !2' satisfy the domination axiom. Our proof
is adapted from that of [2, Theorem 3.5], the main difference being that
it is no longer possible toreduce to the case where the constants are harmonic
(in both spaces o and g'). we shall therefore bring the complete proof.

Proof. Let r e X be given, and consider any fine neighbourhood
D of r in X. We shall prove that, g(E) is a fine neighbourhood of

r, :: q(r)
in Q' . There exists a S-set (a' c d)' such tha.t fr' e e)' . We may suppose,
in addition, that there exists a harmonic function h' on a,l' such that
(2) | <h'<2.

Choose a $-set uCQ so that ne@. Since the fine topology is
locally connected, it suffices to consider the case where E is a finedomain
contained in a fl E-L(at'). According to Theorem G, g-r@') is polar.
since .o is non-polar and contains * , it follows that the restriction of
g to E is non-constant.

Replacing aby a, Q'by @', Xby E,and g by EIE (cf.a),S3),
we may therefore assume from the beginning that o and d)' are $-
harmonic sp&ces, and that o' admits a harmonic function å' satisfying (2).
And it is then our task to prove fhab E(X) is a fine neighbourhood of r' .

According to Lemma I there exists a finely open set U of compact
closure O in p such that

frEUCUCX,
and such that g I D is continuous in the initial topologies or D and l2' .

Replacing, if necessary, U by the larger, finely open set C b(C U), which
has the same closure as U, we ma,y further assume that C U ( : o\U )
is a base, that is, stable under the base operation å .?

Being polar, g-L(r') has measure 0 with respect to the generaliåed
harmonic measure "ru (the swept-out of the Dirac measure e* onto
CU) for any re(J.8 Since elu is carried. by dr[],there existsaccord-
ingly a compact set ff c (4, U)\9-1(r') so large that

t F.r=-y set A CQ (and similarly in Q' ), ö(24) is dofined as the set of all points
of Q at which a is not thin. rt is a well-knovrn consequence of axiom D that tho
base operation ö is idempotont, and honco b(A) is a base (for any set ,4. ).

8 Wo donote by d, U the fi,ne boundary of U (in A ). h is a well-known con-
sequenceofaxiom D lt,at tf;u is carriod by \u for any refJ. - rncidentally,
since g-L(n') is polar and henco finely discrete wo might choose (/ abovo so that
g-t@') n a : {u}, in particular p-L@') n 4U : Q,

(3)
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(4) HY@) < b,
where / denotes the indicator function for t?\K, and where, by definition,
forany AeQ,
(5) H/(y) :: I f u"r' .t\u, J "

Since K does not meet q-L(n'), t' is not n EGl. Since Kc(I ,

and 9 1 7 is continuous, 9(K) is compact, in !?' (with the initial topo-
logy) . Hence there exists a usual regular domain U' in !?' such that

(6) n'efJ'cU'cCq(K).
Essentially following [2], we write

(7) V:: Ufig-L(U'),

(8) G' :: U'\q(7) .

Then Z is a finely opon subset of X containing r, being the intersection

of two such sets. And G' is open in g' because U' is open, and g(7)
is compact (since 7 is a compact subset of U, and g 1 U is continuous).
I{ote also that

(e) c A-t(C G')

X in view of (3), (7). Conseeuently, weby (8), and further that Y c
obtain from (8)

U'\G'cvV) cq(X),

and it is therefore sufficient to prove thab G' is thin at, r' .

Let K' denoto an arbitrary compact subset of G' , and write, as in [2],

V

(10) 8, !: t ky" in (J'

t 0 in o'\ fJ"

whore the swept-out h,f,' is understooil relatively to the harmonic subspace

U' of l?' . Since U' is regular, it is well known that s' is continuous
at every point of !?'\K' . Moreover, s' is finely continuous in U' (being

hyperharmonic there), and so s' is finely continuous in all of !?' . Hencg
s'o g is finely continuous in X by Property i) in Theorem 5.

The function

(rl) u:: Hl-ht'"v
is well defined ( < + oo ) and finely lower semicontinuous in X . In fact,
Hl is finite and finely lower semicontinuous in !2 according to [6, Lemma
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9.121 applied to the base t\U in !?, noting that / is (finely) lower
semicontinuous.e The same lemma shows that Ey is finely harmonic
in [/, and hence in V . And s' o g is likewise finely harmonic in 7
because s' is harmonic in U'V(' by (10), and, V c A-!(U'\K') accord-
ing to (7) and (9) and the fact that K' c G' .

We have thus found that u is ffnely harmonic in V , and finely lower
se{nicontinuous in X. Moreover u2-l in X because Hy>0 and

(12) I'og < h'"q < 2

by virtue of (2). According to the fine boundary minimum principle [6,
Theorem 9.1], the conclusion

( l3) ,IL inV
can be drawn if we can show that u(y)> 0 for every y edrV. (Note

that the fine closure f of V is contained in X according to (7) and (3).)
From (7) it follows that

(r4) df v c (dru) u (\e-r(J')) .

Note also that

(r5) ö,V cCK
on account of (6) because

örV cir cq-r1ö') ca-l(CE6)) cCK.
If y eörU, then a e(4u)\-l( by (15), and hence f(y): l. Since

C U is a base, we have tlu : €/ , &nd consequently

Hf(il : I ,o,ru : f(y) : r.

When combined with (11) and (12), this yields u(y)> 0 (in the case
yedrU).

In the remaining case y e\E-L(a'), cf. (14), we have g(y)edrU'
(since g-l(U') is finely open), and hence

(d"9)@) : s'(V@D : 0

by (10) (since U' is finely open). It follows again that u(y) > 0 .

Having thus established (13), we complete the proof by showing that
G' is indeed thin ab r' . Since g(r) : t' e U' by (6), v'e have from (10)

(s'o v)@) : hf,'@')

e In [6], Hy is denoted instead by lcu . Since p is

a locally bounded potential p > 0 on f) . We rnay assume
$ -harmonic, there exists

bltai p
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Since u(r)) 0, we obtain from (ll)

hy:p'1 < zHf(r),

and hence, by varying K' , using e.g. [3, Corollary 4.2.2],

h";@') < zHf(r) 1r < h'(r')

on account of (4) and (2). This shows lhat G' is thin at fr' , and the proof
is complete.

Remark. fnstead of supposing that the points of p(X) are polar, it
would clearly suffice to assume lhat E-t({r'}) is a polar subset of !? for
every non-polar point r' e E(X) (and hence actually for any r' e Q' by
Theorem 6). As in the case of harmonic mappings, some restriction of this
kind is, however, needed, as it appears from an example due to A . Cornea
(personal communication). To illustrate the role of non-polar points in
l?' note also that (corresponding to the case !2' : R , cf. b) of $3) it seems

to be an open problem whether, say in the case ,o : R" , fr2 2, a non-
constant finely harmonic functi,on u in a fine d"omain X c Q is non-
constant in every non-void finely open subset of X . (This would of course

follow from Theorem 7 above if the hypothesis concerning non-polarity
of points could be dropped.)

8. Th e o r e m. Let g : X --> Q' be an'i,niecti,ae, finel'y harmon'ic

mapgi,ng of a finely upen set X c a i,nto Q' . Suppose that the points
of one of the sets X or X' :: q(X) are polar. Then so are the poi,nts of
the other set ( X' or X ). Moreouer, X' 'i,s fi'nely open, anil g-t : X' -> {)
is a finelg harmonic mappi,ng.

Proof. As in the beginning of the proof of the preceding theorem we

may easily red.uco to the case where !? and g' are S-harmonic spaces

and where X and (hence) X' are finely connected. According to Theorem
7, g is a finely open mapping, herce altogether a fine homeomorphism
of X onto X' . fn particular, X' is finely open in g' , and in fact a fine
domain in the present case.

Let u be finely harmonic in a finely open set U c X. In order to
proye t'inat u o E-r is finely harmonic in the finely open set E(A) c X' ,

we proceed as in the proof of [2, Theorem 3.4]. According to Lemma I
(applied to E-t ) there exists for any r'eq(U) a finely open set V' of
compact closure V' in Q' such that

r' e Y'cV'cg(U),
and such that q-t I Z-' is continuous in the initial topologies oo V' and !?.

As in connection with (3) in the proof of Theorem 7, we may further arra,nge
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that o'\7' is a base (in o' ). X'inally we may assume tl:at u o g-1 is
bounded on V' . (Note that u o g-L is finely continuous and finite in
g(U) .) Since l?' is S-harmonic, there exists a locally bounded potential
p' > O ott Q' . We may assume lhat lu " E-Ll < p' in V' .

Using again the notation introduced in (5) above, but now in the space
o', we put

a' :: Hu*g_,.

According to [6, Lemma 9.3] o' is well-defined, bounded, and finely con-
tinuous in i/' , and,finely harmonic in Y' . C\early c,' agrees with u " V-r
on drV' (ca(U)\Z').

Hence it follows from Theorem 5 that u' o V is bounded and finely
continuous in the fine closure g-t(V') of g-t(V'y, and finely harmonic
in g-t(V') itself. Moreover, 1)' o g : ,u, on \V-L(V') : qa(\V') .

Since 9-r(7') is contained in the compact subset q-r(V') of e, it follows
by application of the fine boundary minimum principle [6, $9.1] that
Q)' o q : u, in V-t(V'), that is, ,u, : 11, o g-r in V, , anrd consequenily
u o g-L is indeed finely harmonic in V' The assertion concerning
polarity of points follows from Theorem 6 applied to g-r ot E .

9. T h e or e m. Let g : X --> 9' be a fi,nelg harmoni,c mapp'i,ng,
and, l,et X' il,enote a non uoid,, fi,ne d,omai,n i,n Q' such that E(X) c X'
If there eri,sts a fi,ni,te, fine potential p' ) 0 on X' such that p' o E is a
fine potential, on X , then X'\g(X) is ,i,nner polar.

Proof. Let K' denote s, sompact subset of X'\g(X) , and write

s' :: ho{', relative t'o X' ,

see [6, $11.4]. Then s' (>0) is finely harmonic and {p' in g(X)
( c X'\K') according to [6, Corollary f l.fS]. Ifence, by Theorem 5,
s' " g is finely harmonic, and of course { p' o E in X. By hypothesis,
p' " g is a fine potential on X [6, Definition I0.5], and consequently
s'ov:0 in X,thatis s':0 on g(X) . Since X'isfinelyconnected,
it follows from [6, Theorem f 2.6] that s' : 0 in all of X' , and so K' is
indeed polar according to [6, Theorem 11.8] (applied to f :: gt' . t*,
on X').

Remnrk. Instead of assuming that X' is a fine domain it would suffice
to suppose that every fine component of the finely open set X' (containing
g(X) ) in J?' meets E6) . And instead of assuming that p' > 0 be a
finite, fine potential on X' it is of conrse enough to suppose lhat, g' > 0
is finely hyperharmonic and finite in X'. The finiteness of p' can be
dropped if !?' is $-harmonic.



Finely harmonic mappings and finely holomorphic functions 125

10. Approximation by harmonic mappings. Let' d' denote a fixed
metric on f,)', compatible with the initial topology on d)' .

L e m m a. If a net (V)1q of finely hormonic rnappings 9i: X ---> Q'

conaerge* poi,ntwise to a mapp'i,ng g: X 4 Q' , and, i,f eaerg po'i,nt of X has

a fi,ne nei,ghbourhooil on which the conaergence'ds uniform wi'th respect to d,' ,
then the li,mi,t mapgting E is a finel,y hormonöc mappi,ng of X into d)' .

Proof. Clearly g satisfies the continuity condition i) in Definition 2.

Now let us check condition ii). X'or given r e X let u' be harmonic in
some open neighbourhood (J' of E@) in d)' Let B' and å' denote

compact d'-balls with centre E{4 such that b' c B' c U' (and such

that the radius of b' is smaller than that of B' ). By hypothesis there is
a fine neighbourhood 7 of r in X such rhat E(V) cÖ' and %lV --
E I V d,'aniformly. It follows that q,(V) c B' fot all j from a certain
step. Since u' is uniformly continuous on B' , we conclude that

(u'"q)lV * (u'.q)lV uniformly,

and so 11'"E is finely harmonic in V by [6, Lemma 9.6].

Definition. Eor any comgtact set Kco let H(K,a') d'enote

the d,'-uniform closure of the set of all, restri,ctions to K of harmonic mappings
of open neighbaurhoods of K (in I ) i'nto a' .

C or ollary. A suffici,ent cond,it'i,on for a mapgting V: X-+ Q' to be

Ji,nely harmoni,c is that eaery poi,nt r e X has a cornpact, fine neighbm'rhood,

K c X such that V lK eH(K, a').
This follows from the above lemma applied to the fine interior V of

K since the restriction to T of any harmonic mapping of an open neigh-
bourhood of K into Q' is a finely harmonic mapping of V into Q'

according to e) and a), 53.
Probl'em. Is the condition in the above corollary also necessary in order

that E be a finely harmonic mapping?
According to [7, Theorem 4] the answer to this question is affirmati've

in the very particular case .f)' : R , cf. b), $3.
The problem seems to be a difficult one even for Q : d/.: R2 (with

the classical harmonic sheaf).

11. Finely holomorphic functions.
specialize to the case

In this final section we shall

a : d2' : c,

the complex plane endowed with the classical harmonic sheaf on C : R'z .

D efinitio n. Let X d,enote a fi'nely olten subset of C. A functi'on
V I X-+ C is cal,leil, fi,nely ltol,omorphi,c if euery poi'nt z e X hus a compact,

fine neighbourhooil K c X such that V I K e R(K) .
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Here -B(K) denotes the uniform closure of the algebra of all restrictions
to K of rational functions on C with poles off. K, or equivalently of all
restrictions to K of holomorphic functions in open neighbourhoods of
K in C. See, e.g., Zalcman [9].

Clearly the finely holomorphic functions in X form a subalgebra of the
algebra of all finely continuous, complex valued functions in X. More-
over they have, in their dependence on X, the sheaf property analogous
to a), $3.

T heor e m. Let g : X ---> C be fi,nel,g hol,omorphi,c (or the conjugate of
a fi,nely holomorphi,c function). Then g i,s a finel,y harmonic mapping of
X into C . If X i,s finelg connecteil, and, if g is non-constant, then g i,s

a fi,nely open mapping, anil the zeros of 9 form a polar (: fi,nely d,isuete)
set.

Proof. Clearly every holomorphic (or antiholomorphic) function in an
open set a C C is a harmonic mapping of ar into C . In view of e) and a),

$3, it therefore follows from Lemma 10 (taking for d,' the usual metric
on g' : C) that g is a finely harmonic mapping. (Alternatively, use
c), S3.) The remaining assertions are therefore contained in Theorems T

and 6, respectively.
Remarks. a) It is easily shown that if g and V ere finelyholomorphic

in the finely open sets X and X' , respectively, then V " V is finely holo-
morphic rn V-r(X'). (Consider first the case where X' is open and rp is
holomorphic.)

b) If g and 9 are both finely holomorphic in a fine domain X, then
q is constant. (In fact, Re g and I^ V must be finely holomorphic,
too, and hence constant since their ranges have no finely interior points
in C.)

c) A function g defi"ned in a usual open set ar c C is finely holomorphic
there if and only if it is holomorphic. (As to the non-trivial "only if" part,
say in the case where @ is connected, and hence finely connected by
[6, Corollary 9.8], note lhab E is a harmonic mapping by the above theorem
together with e), $3. In particular, g and Vz are complex, harmonic
functions in ar , and this implies thab g is conformal, that is, either g or
p is holomorphic fas a function of the complex variable z e C]. The latter
alternative cannot occur according to the preceding remark b), except in
the trivial case of a constant function.)

In [4], Debiard and Gaveau have introduced an interesting, possibly
larger sheaf of algebras of generalized holomorphic functions with respect
to the fine topology on C . X'or any finely open set X c C they denote
by O(X) the class of all complex, finely harmonic functions E: X --> C

such that, roughly speaking, dglöZ :0 in X in the sense of stochastic
differentiation along the Brownian paths.
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Using Lemma I above, it follows from the results in [a] that O(X) is

an algebra, closed in the sense colTesponding to Lemma l0 above, and hence

containing all finely holomorphic functions as defined at the outset of the
present s'ection. Moreover, [a] brings the first proof that every non-constant

function of class O(X) is a finely open mapping (if X is a fine domain).

According to c), $3, every function I e O(X) is a finely harmonic

mapping of X into C (and so is f ). Thus the above theorem extends

to the class o(x), and likewise Remarks b) and c) above (with similar
proofs).

Problem. Let g be a finely harmonic mapping of a fine domain X c C

into c . Does it follow that either g or Q is of class o(x) (or even finely
holomorphic)?

In its latter, stronger form, this problem is equivalent to the problem

stated at the end of $10 (in the present case o : Q' : C).
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