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l. Introduction

Let K be a closed subset of the open set !2 in the extended complex
plane and let A : A(g) be the set of functions holomorphic and bounded
by f in p. This paper is concerned with the approximation on K of
functions in ,4. by rational functions. fn particular we are interested in
finding conditions on K, !2 and z4 , which make it possible to obtain
precise estimates for the degree of uniform approximation in its d.ependence
of the number of poles of the rationals in the extended plane.

A suitable starting-point for our discussion is a beautiful result of
H. Widom 1221. Let, ,l?, denote the set of rationals wilh n poles and put

r"(f) - inf sup lf@ s(z)l .

geRn zeK

r"(f) and if C(K , a) is the Green capacity of K relative
very mild restrictions on the sets involved it holds that

lim rtl" - exp (-1 lC(K , Q)).

Widom gives several related results among which a lower bound for the
z-dimensional diameter iI* of A will be of interest for us. It is defined by

d,, : ffi 
?1l,n,Ti 

max lf(z) - s(z)l ,

where .4, runs through all n-dimensional subspaces of 6(K). If J2 is
a finite disjoint union of connected open sets with finitely many boundary
components, Widom 122, Theorcm 7] proves that

d*(1 .2)
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In many problems it is of considerable interest to have a more precise
estimate for rn than the limit of rf;" .To obtain such estimates we certainly
have to put strong restrictions on lK and p . The main purpose of this
paper is to present a method, which makes it possible to get precise estimates
of r" itself - if the functions and configurations are simple enough. Rational
functions of a special type will be of importance and are constructed in
section 3. They are generalizations of the classical X'aber polynomials so

they might be called Faber rationals. The construction has certain points
in common with the deduction of a formula I used in [7] without giving
a full proof. The formula is closely connected with the X'aber expansion
(cf. Andersson [3, p. l0]) and a proof is given in section 2.

In section 4 we use the X'aber rationals to obtain estimates

rn < Co exp (-n I C(K , o))

in the class ,4. if the geometrical configuration is simple enough. The poles
of the rationals can be chosen independently of /, so (f .2) shows that linear
rational systems {(z - su)-'}i are - within a bounded factor - as good as

any other n-dimensional systems for approximation in A .

To test the precision and the applicability of the method we turn to
two famous approximation problems. It is our hope that the flexibility of
the method might elucidate the problem of rational approximation vs
polynomial approximation. Rational approximation is better than poly-
nomial when there is a need. to distribute the poles depending on the sin-
gularities of the approximated function, and that is transparent in our
method. One well-known case is Newman's [5] approximation of lrl on

[ - I , f ] , where there is just one singularity, and good rational approximation
comes by concentratiqn of the poles close to that singularity. Another case

occurs when there is an abundance of analyticity e.g. in the case of ap-
proximation of different constants on a finite number of closed sets. If we
wish to apply the previous results wit'h C(K, !2) we must find the best
choice of o and it is not evident, how that is done. This problem is also
discussed in section 4 and solved in a restricted case.

However, the bound obtained, does not give the precise result if it is
applied to the best'-known special case, i.e. the approximation of sgn c
on two intervals [-f ,å], [å,1], 0 ( b <-1, considered by ZoIot'arcv
close to hundred years ago (cf. Gonäar tgl). I next show how the correct
&nswer can be obtained by our method if K : KrU Kz, where Kt and
K, are disjoint, connected closed sets and the function to approximate is
constant on each of them. fn a forth-coming note f shall show how to
settle the case of more than two components. - In passing I give some

comments on the corresponding polynomial approximation problem, for
which I know the solution from a communication by W. H. J. X'uchs.
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In the last section we return to the problem of r" instead of rf;", now

in the case of piecewise holomorphic functions on intervals. The typical
case is lrl on [-I,I], where the important step recently was taken
by Vjaäesbvov [18] who proved that r,(lr)exp(n{n) is bounded.
That is bounded from below by a positive constant has been known a few
years (seo liol*troo ts]). By a closer study of certain Gre_en potentials we

obtain some results including an independent proof of Vjaöeslavov's result.

2. A formula connecterl with the Faber expansion

Let K be a connected compact set in the complex plane, having con-

nected complement K' and. with a rectifiable boundary curve aK . We

do not &ssume, however, that the boundary is a Jordan curve, since we

want to include e.g. sets without interior like the interval. x'or f e 0K we

define the function ac by

zg(s): ary(p@i')-q,

where rp is the oxterior mapping function. We assume t'hat u, is of bounded

variation and that the variations have a bound independent of f.
Let I be continuous on K and' holomorphic in int K . We use the

same letter -F to denote the harmonic extension of I lo K' . By sub-

tractionof a constantwemåyachievethat 'F(oo):0 ' with z: r *'ia
there are two holomorphic functions H and G such that n@,y):
H(z) + G(2) for z e K' and ä(oo) : G(oo) : 0 .

Take a C e K' and let Cn be a rectifiable Jordan curve surrounding
K and separating 6 and K. with the notation just introduced we find

frf
J ,<. , y) (z- E)-r itz : I rtul @- C)-t d'z + J H@) (z- C)-L dz

ce ce ca

f , f -_: -2niH(ö+zniG(()+ J G@)(z-C)-',d"- J c(z)(?-.)-LiE,
ce ce

and

(z n i)-, I oO, y) (z - C)-L d,z :
ce

G6) HG) + : I G@) d, arg (z- c)
ca

Our assumptions on -F imply that if the contour of integration on the left
shrinks to aK and if G is continuous on the closure of K'(as it will
be in our application), we obtain



rf
i J eAd,ars(z-() : H@-G(0.

dK

Wenextmove f across aK so that arg @-Q henceforwardisinterpreted
with f "inside" aK .That means that we have to add 2 G(C) to the right
side to maintain the equality. Hence

(2.r) F@ : H(c) + c(E) : : I G@)darg(z-(), I e aK.
öK

We observe that the same formula is true if 4 e int K , since by the same
method

rf r
; I *tZl d, ary @- Q Q n d)-t J ,<* , y) (z- 0-r d,z --- qq .

ce ce

X'ormula (2.1) rewritten in the form

q2n

r(C) -: I da I (G "i)' (Q 
"-n,) 

e-^ da,(s)

e:l s:0

was applied in [7] to obtain a short proof of the following result (cf. Dzjadyk
[6] and Kövari [r3]).

Theorem l. Let K and, I be as d,escribed, aboue. If Ioq)
sati,sfies a Höld,er cond,ition of ord,er oc, 0 ( a ( l, on the uni,t circl,e, then
E"(f) < C n-" , where E*(f) is the best appror,imati,on by pol,ynomiats of
ilegree n.

Several complements and öxtensions are given in Andersson [3], where
also the connection with the Faber expansion is shown. The important
thing is that the X'aber polynomiql Pu of order fr is given (except for
normalization) by (cf. Pommerenkö [I7, Lemma l] and [ta])

PuG) _ f ,*'d,ur(s) - I *n)u d,arg (z- C) ,

t32 Tono Gexnr,rus

(2.2)

where @ is the inverse function of ,p .

When we now proceed to rational approximation we shall obtain our
X'aber rationals by a generalization of (2.2). In [Z] the proof employed
Schwarz's lemma and we shall see that similarly the Blaschke factors for
the poles play an important role in rational approximation.
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3. Faber rationals

3.1. Definitlon and propertles. As mentioned in the introduction
we shall strongly restrict the configurations we are dealing with. We shall
assume +,hat, K : U Kn is the union of p disjoint sets, each of the type
described in the previous section. The important thing is that the variation
of arg @- 0 is uniformly bounded wheh z desmibes aK . We mey e.g.

assume that every aKu has bounded rotation in the sense of Paatero [6].
Sets with these properties will be said to be of tgre .l[ .

We next prescribe the set S, of poles, writing B, : {su}? where the
points su e K' are not necessarily distinct. The X'aber rational F(z ; K , B*)
will be a rational function of degree at most n+p- I . The Green function
for K' singular at s is denoted g(' , s) and a (multiplevalued) holomorphic
function with real pafi g(. , s) is called G(' , s) so that

G(.,") : S(,s) +rih(.,t).
Now it is well-knoriln (Grunsky p0, l1l, cf. also Ahlfors [f] and Widom

[20]) that we can (in several ways) pick (1a - l) points {to\i"Il-' in K' so

that

is a single-valued holomorphic function in K' , bounded by I , with zeros

in Bf : {su}f+p-r and having absolute value I on 2l{' : 0K .

Around every point su e Bf; we take a negatively oriented circle Cu

and choose the radii so small that the corresponding discs U o are disjoint
(except for coinciding sA : si ) and all in K' With ( e (U Uu)' we
define the X'aber rational by

(3.r.r) I*(e) : E(( ; K,S")

to 
n*l_l f

sni)-I ? J ,"@)-'(z-}-t dz + @,(a)-L .

Cp

We collect the important properties of .F', in
T h e o r e m 2. The function I* ilefi'ned' by (3.1.t)'i's a rat'i'onal functi'on

wi,th poles i,n Sf . If K i,s of type N , then uni'formly

F"(C)- O(r), e e K,
F"(C): Q*(q-t +O(L), CeK'

Proof. It is evident that { is holomorphic in (U U)' and hence in
Sf;'. On [Jo we can write @*(")-' : (z-s)-* tp(z) wilh y e H(Ur) and

v@) + 0. Hence

@*(r) : exp (- ".t-'G(", ,r))

(3.1.2)
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(2 n i)-L (c-s)- I ,,or', @- ö-L itz

Cp

: (2 n i,)-' (C - so)* [ vO (z - s*)-* (z - t)-r d,z

Cp

(t - s")*
- ffi (D--t v@) @- f)-r)':"' -+ ( - \* 't'Fn)

as f -> so . We conclude that, X * has a pole of the appropriate order at so .

We next move the contours from the neighbourhoods of the poles and
let them tend to aK . We get one contribution from f if 6 e K' and one
from infinity, the latter cancelling the last term in (3.1.1). Hence

r,(e) : o,(C)-'* (2nE-* I *-Orr@-()-Ld,z
' u*u

if f eK', and

x,(C) : (z n i)-L ä I @,@)-, (z- t)-L itz
öKp

if f e "l( . The integrations are in the positive direction.
It is now time to use the fact that @, has absolute value I on 0K ,

so that

Q,(z)-r : O"Ol tf z e oK .

If e eK' we get

(2ni)-r f *"A @-E)-rM : o,G)+ @loo),
J

and thus

(s.r.3) F,(C) : @*(c)-, + @,@ + o,1.oy .: I @,@)-rd,ary@-l).
öK

If 4 e K we find

(3.1.4) F,(C) : @l"o) . : I @,@)-, d, arg (z- () .

öK

X'rom (3. I .3 ) and (3. I . a) we c&n immediately read off the remaining statement
(3.1.2) in the thoorem, which hence is proved,
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9.2. some comments on generalized Faber polynomials. It is

more intricate to construct useful X'aber polynomials by the method just

employed. One has to choose points {to}!-' in K' so that exp (-n G(', oo) +

2e(,4)) is single-valued. By the methods in the literature quoted, that
ätt t" dottu 

".g. 
in such a way that ) g(a , th) is minimal at a point a e K'

and the minimal value has bounds independent of the periods, i.e. in-

dependent of n . The polynomials are defined by

P"G) : Qni)-t @*(z)-' (r- 6)-t dz ,

4. The approximation method

4.1. Leb us consider the problem to approximate f e A(o) by rationals

on a set K of type -ltr in J2 . It is now natural to consider compact sets

in the extended plane so we assume without restriction that oo belongs

to K. Hence aO has fiIite maximal distance from the origin. We take

a X'aber rational I, and. consider

f
where C is a large circle in the positive direction and

(3.2.1) @,(z) : exp (-ro G(2, a) + )G(z,tu\.
As before we get

(3.2.2) P*(C) : o,(C)^ * (2nil- I @,@)-'(z-l)-Ld'2,
öK

if €eK'.
This formula is good 

"-g=gh 
for most purposes. The problems come when

we turn to (2ni,)-t[u*Q*(")@-q-Lda, wit}' C eK, since we get con-

tributions from the poles fu . With e, e K we find that

I f p-1'

P"G) : ; J @*@)' it, ary@-q - 2ou(C-tr)-',
öK

where au is the residue of o,121 at 2 : Tu. To get the boundedness on ff
we have to know that the fn :s stay away from aR . T]nat is not, generally

true with the choice above but the doubly connected case is easy to handle.

Grunsky [11] gives further information about the possible choices of. {to\ .

fr(4.r.t) 8.G): Pni)-tf"(e) F *(r)-' (" - f )-L f (z) da
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for l eK and a curve (a system ofcurves) lc Q surrounding K in
the positive direction. rf the zeros of /" inside -l- are called {ao} we
have

8"(C) : f@ l*(f) > F'"(ou) G-en)-L - f(q G_G) ,

Gn is a rational functiorr. Hence

rn*h-lff)
EeK

we take f - aQ we find

Tn*p-L
dQ, C,K

The factor in front of the integral sign only depends on the geometry. we
now apply 3.2. We presume that the poles are chosen so that min l@"(z)l-r
dominates the bounded term on a e, and we get

where

(4.L.2)

and if

I ,o.(4t-'tdzl.
öa

(4.1.2) rn*p-L
öa

We now have to choose the poles. We first note that

äno,,u)) w,t.

the estimate

lirnrl* ( exp (-l I C@' , K'))

is almost immediate in our simple case. It is well-known that C(e,, K') :
C(K , a) (cf. Widom [22, p. 350]).

Formula (4.1.2) enables us to get more precise results. Assuming a suf-
ficient differentiability of a e we can choose the set B so that

(4.1.3) 2g@, se)

where cL depends on the geometrical configuration. when this can be
done we obtain a linear set {(z-so)-t1 with a d.egree of approximation
smaller than a constant times the z-dimensional diameter (formula (1.2)).

r shall not pursue this matter in any generality at this place but turn to
some interesting special cases. rn section 5 we shall also give one example
of how to take the step from continuous to discrete distribution.

4,2. The case of excessive holomorphy. A c&se of practical
importance is the approximation by rationals of functions taking different
constant values on the sets Ko . rf we want to apply widom's results or the
method in 4.1 we have to choose o so that c(K, q becomes as small as
possible. In the general case that leads us to non-trivial problems connected.
with extremal length (where the methods in Jenkins ll2] seem to be usefur).
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Let us study the special case where / equals I on K* : Ui Kr and

- r on K* : U3*t Ko , assuming K : K* U K* to be of type -l[ .

ft can in fact be seen by applying the method in Gonöar [9] in com-
bination with estimates given by Widom l2l, 221 that the best rati-
onal approximation r, satisfies

lim ,ll" : exp (-n d)(4.2.1)

If we introduce the
from aK* to aQ*

and also rn 2aexp (-z il,n), wherc d is the extremal distance of K*
and K* , the inverse of the capacity of the condenser formed by K*
and K*.

I have found it interesting to compute how small C(K, o) can be

made in this case by a good choice of I . ft turns out that we cannot do
better than

C(K,q-t: **0.
The formulas for extremal length we use can be found in Ahlfors 12, Ch. 41.

We are looking for an Q* ) K* and an Q* ) K* and they shall be

as large as possible so that Q' : 0 d)x : 0 Q* . Let u be the Green potential
of the equilibrium distribution on a 9* : 0 Q* and let o be the harmonic
function taking the values 0 on K* and I on K* ,

If ao*: aQ* is taken as the level line v: Il2, we have

u:2C-La h o*, 'tL - 2g-t(l-a) in o*.
With the appropriate orientation of the integration the Green formula gives

(4.2.2) 2n :, I "!*a, * t I "y*d,s 
: c I N u)z d,rily

dor öQ| o\K

:Ar_LIIroa)zd,rd,y, :

where we have used" the Lct that 1r : 0 on 0K. The Dirichlet integral
on the right is known to be d-1, so we have proved that with this choice
of l} the capacity C(K, a)-L: @d,)12. If we take another boundary
between o* and o* we can proceed as in formula $.2.2) to obtain

2n : (V u)2 d,n dy (V u)2 d,r ily .

oK* to o Q* and d*

+CTT
o*\K*

d* from

CTI
o*\K*

extremal distance
we get

2 n - C-'(d;t + d*-L)
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The harmonic mean is smaller than the arithmetic me€rn so it follows
that

g-t: n.z(d;t + flx-t1-t d**) JT, d
I

:2S T@,r +

by the composition law. Since the level line of a

best a,pproximation by rationals of our function
rS

f

)co exp (- t o*

smooth enough, the
satisfies

rn*r-r(f)

In 4.3 it will be shown how the special type of the function may be used
to obtain the better estimate

r* 3 CoexP (-n iln)

in the case of two disjoint connected. sets. The method does not generalize
naturally to configurations with more sets. One way to get sharper estimates
than (4.2.f) should be to introduce X'aber rationals in the method applied
in [e].

4.3. Rational approximation of functions constant on two disjoint
sets. Gonäar [9] proved that the best rational approximation rn of
a function equal to + I and - I on two continua bounding a doubly
connected domain satisfies limfl" : (RLlRz)uz, if the domain is con-
formally equivalent to an annulus {w: Rr< lwl <Ar}. The special
case when the continua are intervals [-1, -b], [å,1] with 0 < b < I
was already solved by Zolotarev, who found lhab (ErlBr)"|'r* is bounded
above and below independenily of n. I shall now state a theorem that gives
a result of Zolotarev's t5rye for a class of sets which of course is smaller than
the one considered by Gonöar.

Theorem 3. Let K, anil K, bed,i,sjoi,ntsetsof tygte N.If y is
a holomorphi,c mnppi,ng of B : { w : q'Jz < pnl I q-rtz ) on the d,oubl,y

connecteil d,omai,n bm,nd,ed, by K, and, Kr, we further cmsurne that to eaery
o e 0B there is a constant p(at) so that

v'@) I kp@) - v@)) - p(a) l(w-.)
ds integrable along the bounilarg c'i,rcles (or more generall,y that the cond,i,ti,on

followi,ng (4.3.8) i,s satisfdeil). Under these cond,,i,ti,ons

(4.3.1) to+L < C qa' .

We note that if d is the extremal distanco of K, and Kz then
( : exp (2nd').
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X'or the proof we define rn : l(Il2) ral . As set B* we take {rpko)W-t
where eå : exp (-dnkl*). I claim that

@n@) : utn ( -'5' e@, y(e))\
\o/

is single-valued and regular in K' : (KtU Krl' . That can easily be

chocked since lh : Qo o rp is $xplicitly known, tho Green function for
the annulus being characterized by

exp (- G(rp(w), ?(€å)))

: gu+ a-Ltz(a- t) 
å 

(t qr' u) (L Ozs-L a)-L (a q")

where a : wlen. Hence we get a single-valued function X,

(4.3.2) X"(w) : Q* o V(w)

g*lz u)-tn (*'* 1) n

X'rom tho theory of eltiptic functions we need the definition of sn by

(4.3.3) sn(ZKrlnl

- 2q',n lc-Ltz sinr ir 1t - zf cos2x + qn") (t - 2fs-r cos2r + qn')-t ,
s:1

whero fr and K are well-known parameters determined by q (see e.g.

Whittaker-Watson [9, p.479]), and also the X'ourier series (p9, p. 5101)

sn(2Krln)

(u Ozs-t)-t,

by

(4.3.4)

: 2n(Ka-,{{!vt.n:#f .{#f. }

X'rom now on sn denotes the elliptic function defined by q'* : qzlnlz) .

To stress that we wfite lc, and Kn for the conresponding quantities. With
this convention (4.3.2) and (4.3.3) give

(4.3.5) N,n(e'*) : ktl' sn(2 K, rn fr I n) .

We are now ready to apply the method of 4.1. Let In be the Faber
rational corresponding to the (Dn we just constructed. fn formula (4'1.1)

we take J- to be the image of. { w : lwl : I } described in one direction
for K, and in the other for Kr. Since the function takes values with
opposite signs we get

lQ"G)l d n-L max En
K f F *(r)-t (, - il-' dz
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We now change variable

(4.3.6) lQ-gl
I

By (3.L.2) we have

by z-

fn
lul:L

V(w) and find

" tp(.a)-' (rp(*) - f) -' ,p'1rr;'1 d,u:l
I

+ C max lx,*(rn)|, .

E,"rp(w) = th(w)-L + O(l) on lnl = I

and (4.3.5) shows that the first term d.ominates, for z larger than some no
since sz is bounded by f . Ilence

' , Ino rp(w)-L _ X,(w) + O(L) lX*(w) 1,.

fntroduction in (4.3.6) gives

(4.3.7) lQ-G)l
Iwl:L

rt follows from our assumptions on the mapping function that the coef-
ficients (o,) in the Laurent series

(4.3.9)
'rD uD'fu\ oo

' \ ' : \orot,t(w) - C -."
satisfy la"l ( C qtsttz. We now recall the X'ourier series (4.8.4) for y, as
given by (4.3.5) and insertion in the integral of (4.3.7) gives

lQ,(ql { CK;If-ttznzmtzlr-Ozm\-z + Ck* S Cq*(t-Ozmy-z S C{tr.

4.4. A comment on the correspondlng polynomial case. The best
polynomial approximation of a function equal to + I and - I on dis-
joint compact sets K, and K, was exactly determined by S. Bernstein
in the caso K, : [-l , -bf , Kr: lb,l], 0 <b < 1.. (An equivalent
result is given on p. 120 in t4l.)

Let us take a K : KtU Kz of type -lf and a function / coinciding
on K, with one entire function and on ff, with another. The Green
function g(. , q) for K' singular at co has one critical point zo , where g
takes a value aro : g(zo, oo) such lhat wo is the smallest maximum of
g(., oo) on any curve connecting K, and Kr. We consider the eight-
shaped level-line g(z , a) : u0 , where the two branches form an angle of
nl2 at ao . Like in section 4.1 we consider

(4.4.r) e,G) - e n i,)-t p-g) 
I @- il-'p,(z)-L f(z) d,z ,
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where now P* is a Faber polynomial discussed tn 3.2 and -l' : Tt * Iz
consists of two curves in {z: g(2, oo) årzo}, both described in the
positivedirection, fi around K, and I, around Kr,andhavingaline
segment in common that bisects the angle of the level lines at zo .

In a similar wa,y as in section 4.1 we find that maxfex lQ-(C)l is an
upper bound for the best polynomial approximation E,(f) . According to
(3.2.1) the dominant contribution to the integral in (4.4.1) comes from the
immefiate neighbourhood of zo. Introducing w : G(z , a) &s new
variable in the integral in ( .a.I) we recall that it follows from the orthogo-
nality mentioned above that locally u-wo: C(z-zo)z so that

@

f
lU"(f)l t Co I @-*r)-u2exp (nw)d,w S Csn-ttzexp(-nwo).

J

W. H. J. X'uchs nu, n"ooud that a corresponding formula gives the correct
estimate for any number of sets (r,oo being the minimal value of g(., oo)

at the critical points).
If we wish to compare polynomial and rational approximation for two

sets, it is relatively easy to express wo by elliptic functions in the symmetric
case. ff the doubly connected domain is conformally equivalent to an
annulus with RrlR, - q , then nuz k-ntz E"$) is bounded, to be compared
with q-"tz r*(f) for rational approximation. Here ft is the modulus con-
nected with q.

There is a considerable difference, since for small fr we have k - 4 quz

and in a,ny case q't' < lc < 4 q'l' . We do still worse by polynomials in the
unsymmqtric case while the rational approximation only depends on q. .

5. A remark on the best rational approxlmation of l*l

5.1. The discussion in the previous section indicates that the good
information about the poles we get by our method must be paid for by
rather intricate computations. The alternative we mentioned is based on
the fact that for very general sets K, and, K, we have good estimates
(Gonäar [8], Widom l2t, 221) for

Qn - sup max lhl / min lhl ,
he Rn Kz KL

(5.1.1)

in particular Qy" --- exp (- 2nil,) . (Cf. section 4.2.)
As far as I know the only way known to prove that we have positive

upper and lower bounds for r*(l*D exp (n 16) is by similar methods
(Vjaäeshvov [r8]). Since we are dealing with the intervals [-1,0] and
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[0, l] , which are not disjoint, we have to consider a, more complicated
quantity. My only aim is to show the connection with the problems discussed
in 4.1. After the publication of [f 8] there is nothing really new in this remark,
and what I should like to know is a way to carry through the computations
by the methods of 4.3.

5.2. A Green potential approximating log r . Our reformulation of
the crucial inequality reads as follows.

T h e o r e m 4. Let g(., a) be the Green function for the ri,ght half-plane
singular at a . There ,i,s a positiae rneasure pr of total, rnoss ca on lO ,lf ,

such that

(5.2.1) I nO ,y) dp(y)

for r on l0 ,ll anil with a numerical, C . If a) - n we ca,n talce p, as a
il,,i,screte rne(rsure wi,th i,nteger rnasses.

ft is rather easy to see that

dr(y) : (log y + xr { @) y-, dy on [e*p (-n{rl ,1]

is a good candidate. ff we put g(u) : exp (z { u) andtake yu : p@)lE(nl ,

we evidently have v(yn , An+t) : I and an approximating discrete potential
is thus given by

- - a(r)

The inequality (5.2.1) is trivial if 0 < # < exp (-n { n), so we suppose
lhat yo 1r { yp*, for some /c . X'ixing r in this way we see that g(r , V())
has two convex parts; on each of them the trapezoid method gives an
upper approximati{n. Ilence with y : V@) : €xp @ { u1 end € :
r exp (nt[n) > t ,

t s@,un): å,o*l*å:0 å:0 I .'v v h

r - le-v@)l -(5.2.2) u(r)-c s J loslffilu"

the only tricky pa,rt Oå* to show that

2 
q&*L)

(52 8) # ,f rosl#lLos ,? * *rw,v&))

E(nl

: 3{,osl#l ros vY,

I
+ 7s@ ,v(tc+ 1)) > -C

We observe that substitution of 6-1 log E@) for y't log y tn fi}ae integral
only gives a bounded difference. In the resulting integral we put U : E t
and with l+ö: g(k+I) lt, l-e: q(k)l|, it remains to prove that
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1+6r lt-rl r ö I e
(d+e)-l 

.,;f 
b*lr.,l d, -;loez+o - z r+,

Since the r"*O.rtJ," be explicitly calculated that is completely elementary
and (5.2.3) follows.

We now turn to the right member of (5.2.2). The substitution y : I u
gives 

*-L

u(r) - c 
= 3 I (togu *ro96)ro9ly..,jl#

6-1

t 2 i. lr-uld,u 2, . r i i-'. l!l!1d"1s t + ptost J rorlr.."l; + ptogi I J + J loglr_"1; )
o,-to

so that by aid of the value -n'12 of the first integral we get

a(r) +logf -, = 3log6[a r + 4€-L) < C + rn{i .

Since

lr +ul{n tosl----, *1 2 2rtln ,

we find that

u(r) : å..*l#l+ zblit -l-l
)logt-C-logr+nt[n-C.

Putting @:n+z@l andobservingthat \/n>\/r- I we

have proved the estimatq (5.2.I) in the theorem.
That means that we have a rational function g of degree z such that

sls@)l < Cexp 1-nt/*n)

for 0 { r {1, and g(-r) S@): I . As in the original work [r5] we im-
mediately see that

| - g(r)
h(r): ftr+g(n)

approximates lrl better than Cexp (-nt/i).
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