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RATIONAL APPROXIMATION IN THE COMPLEX
PLANE AND ON THE LINE

TORD GANELIUS

1. Introduction

Let K be a closed subset of the open set 2 in the extended complex
plane and let A = A(2) be the set of functions holomorphic and bounded
by 1 in @. This paper is concerned with the approximation on K of
functions in 4 by rational functions. In particular we are interested in
finding conditions on K, 2 and 4, which make it possible to obtain
precise estimates for the degree of uniform approximation in its dependence
of the number of poles of the rationals in the extended plane.

A suitable starting-point for our discussion is a beautiful result of
H. Widom [22]. Let R, denote the set of rationals with » poles and put
(1.1) r(f) = inf sup [f(z) — g()| .

geR, zeK

If 7, = sup;c, 7, (f) andif C(K, Q) is the Green capacity of K relative
to @, then under very mild restrictions on the sets involved it holds that
(see [22, p. 344])

lim 7" = exp (—=1/C0(K , 2)).

Widom gives several related results among which a lower bound for the
n-dimensional diameter d, of A4 will be of interest for us. It is defined by

d, = inf sup inf max |f(z) — ¢(z)|,

n
E, fed geE, zeK

where E, runs through all n-dimensional subspaces of #(K). If @ is
a finite disjoint union of connected open sets with finitely many boundary
components, Widom [22, Theorem 7] proves that

(1.2) d, = aexp(—n|CK, Q).

The work reported in this paper started in July 1973 while the author was sup-
ported by the NSKF-.grant GP 38584 at UCSD, La Jolla, Cal., U.S.A.
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In many problems it is of considerable interest to have a more precise
estimate for 7, than the limit of #Y/* . To obtain such estimates we certainly
have to put strong restrictions on K and . The main purpose of this
paper is to present a method, which makes it possible to get precise estimates
of r, itself — if the functions and configurations are simple enough. Rational
functions of a special type will be of importance and are constructed in
section 3. They are generalizations of the classical Faber polynomials so
they might be called Faber rationals. The construction has certain points
in common with the deduction of a formula I used in [7] without giving
a full proof. The formula is closely connected with the Faber expansion
(cf. Andersson [3, p. 10]) and a proof is given in section 2.
In section 4 we use the Faber rationals to obtain estimates

r, < Cyexp(—n/CK , Q)

in the class 4 if the geometrical configuration is simple enough. The poles
of the rationals can be chosen independently of f, so (1.2) shows that linear
rational systems {(z—s,)"'}{ are — within a bounded factor — as good as
any other n-dimensional systems for approximation in A4 .

To test the precision and the applicability of the method we turn to
two famous approximation problems. It is our hope that the flexibility of
the method might elucidate the problem of rational approximation vs
polynomial approximation. Rational approximation is better than poly-
nomial when there is a need to distribute the poles depending on the sin-
gularities of the approximated function, and that is transparent in our
method. One well-known case is Newman’s [15] approximation of |z| on
[—1, 1], where there is just one singularity, and good rational approximation
comes by concentration of the poles close to that singularity. Another case
occurs when there is an abundance of analyticity e.g. in the case of ap-
proximation of different constants on a finite number of closed sets. If we
wish to apply the previous results with C(K , ) we must find the best
choice of 2 and it is not evident, how that is done. This problem is also
discussed in section 4 and solved in a restricted case.

However, the bound obtained, does not give the precise result if it is
applied to the best-known special case, i.e. the approximation of sgnx
on two intervals [—1,5], [b,1], 0<b <1, considered by Zolotarev
close to hundred years ago (cf. Gondar [9]). I next show how the correct
answer can be obtained by our method if K = K, U K,, where K; and
K, are disjoint, connected closed sets and the function to approximate is
constant on each of them. In a forth-coming note I shall show how to
settle the case of more than two components. — In passing I give some
comments on the corresponding polynomial approximation problem, for
which I know the solution from a communication by W. H. J. Fuchs.
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In the last section we return to the problem of 7, instead of 7", now
in the case of piecewise holomorphic functions on intervals. The typlcal
case is |z| on [—1,1], where the important step recently was taken
by V]aceslavov [18] who proved that r,(|z|)exp (v n) is bounded.
That is bounded from below by a positive constant has been known a few
years (see Bulanov [5]). By a closer study of certain Green potentials we
obtain some results including an independent proof of V]aceslavov s result.

2. A formula connected with the Faber expansion

Let K be a connected compact set in the complex plane, having con-
nected complement K’ and with a rectifiable boundary curve oK . We
do not assume, however, that the boundary is a Jordan curve, since we
want to include e.g. sets without interior like the interval. For (e 2K we
define the function v, by

ve(s) = arg (yp(e*) — 0),

where v is the exterior mapping function. We assume that v, is of bounded
variation and that the variations have a bound independent of (.

Let F be continuous on K and holomorphic in int K . We use the
same letter F to denote the harmonic extension of F to K'. By sub-
traction of a constant we may achieve that F(oo0) = 0. With z =2 + 1y
there are two holomorphic functions H and G such that F(z,y) =
H(z) + G(z) for ze K' and H(w) = G(0) = 0.

Take a { € K’ and let C, be a rectifiable Jordan curve surrounding
K and separating ¢ and K . With the notation just introduced we find

fo Y) z—=0)1tdz = [G (z—¢ 1dz+/H (z—¢)1dz

= —2niH(C)+27mG fG (z=0)tdz — fG z—_“ldz
and

_ 1 B

(2me)? fF(x ,Y) z=0)1de = G(C) — H(C) + . fG(z) darg (z—10) .
Co C

Our assumptions on F imply that if the contour of integration on the left

shrinks to @K and if G is continuous on the closure of K’ (as it will
be in our application), we obtain
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1
- fG(E)darg (2—0) = H() — Q).
oK

We next move { across oK sothat arg (z— ) henceforward is interpreted

with ¢ “inside” @K . That means that we have to add 2 G(E) to the right
side to maintain the equality. Hence

— 1
(1) F(@) = HE) +6Q) = — fG(‘z‘)darg (:—0), (eaokK.
oK

We observe that the same formula is true if  eint K , since by the same
method

1
= fG(%)darg (2—C) = (2mi)? /F(x,y) (z—0)ldz — F(C).
CQ C

e

Formula (2.1) rewritten in the form

e} 27
1 _ o
F() = - /d@ f(GOw)’ (0 e7") e duy(s)
e=1 =0

was applied in [7] to obtain a short proof of the following result (cf. Dzjadyk
[6] and Kovari [13]).

Theorem 1. Let K and F be as described above. If F oy
satisfies a Holder condition of order o, 0 <o« < 1, on the unit circle, then
E,(f) =Cn™", where E,(f) is the best approximation by polynomials of
degree n .

Several complements and extensions are given in Andersson [3], where
also the connection with the Faber expansion is shown. The important
thing is that the Faber polynomial P, of order k is given (except for
normalization) by (cf. Pommerenke [17, Lemma 1] and [14])

27

(2.2) P, = /e““ dvg(s) = /@(z)kdarg (z—10),
0K

0

where @ is the inverse function of .

When we now proceed to rational approximation we shall obtain our
Faber rationals by a generalization of (2.2). In [7] the proof employed
Schwarz’s lemma and we shall see that similarly the Blaschke factors for
the poles play an important role in rational approximation.
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3. Faber rationals

3.1. Definition and properties. As mentioned in the introduction
we shall strongly restrict the configurations we are dealing with. We shall
assume that K = U K, is the union of p disjoint sets, each of the type
described in the previous section. The important thing is that the variation
of arg (z—¢) is uniformly bounded when z describes 2K . We may e.g.
assume that every @K, has bounded rotation in the sense of Paatero [16].
Sets with these properties will be said to be of type N .

We next prescribe the set S, of poles, writing S, = {s,}i where the
points s, € K’ are not necessarily distinct. The Faber rational F(z; K , S,)
will be a rational function of degree at most n+p—1. The Green function
for K’ singular at s is denoted g(-, s) and a (multiplevalued) holomorphic
function with real part ¢(-,s) is called G(-,s) so that

G(-,s) = g(-,8) +ih(-,s).
Now it is well-known (Grunsky [10, 11], cf. also Ahlfors [1] and Widom

[20]) that we can (in several ways) pick (p—1) points {s,}»T7"" in K’ so

that
ntp—1
D,(z) = exp<— >, G(z,sk)>

is a single-valued holomorphic function in K’ , bounded by 1, with zeros
in 8F = {s,}3"?7! and having absolute value 1 on &K' = oK .

Around every point s, € S¥ we take a negatively oriented circle C,
and choose the radii so small that the corresponding discs U, are disjoint
(except for coinciding s, = s,) and all in K. With (e (U U,)" we
define the Faber rational by

(3.1.1) F, () = F(;K,8,)

n+p—1
= 2mi)™t > f &) (z=0)"tdz + D,(c0)7h.
1 :l
We collect the important properties of F, in
Theorem 2. The function F, defined by (3.1.1) is a rational function

with poles in S¥ . If K 1is of type N , then uniformly
F () = 0(1), C(ek,
F,(2) 2,07+ 001), (ekK'.

Proof. It is evident that F, is holomorphic in (U U,)" and hence in
S¥ . On U, we can write ®,(z)"' = (z—s,) " y(z) with y e H(U,) and
y(s,) # 0. Hence

(3.1.2)
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@ai)7 (C=s)" [ D)7 =) dz
/

= (2me)" 1 (E—8,)" f P(z) (2—8,) " (2—0) 1 dz
Ck

C_‘ k "
= - %nf?)—, (D" () (=) Vs, — (—1)" 9(s)

as {—s;, . We conclude that F, has a pole of the appropriate order at s, .

We next move the contours from the neighbourhoods of the poles and
let them tend to @K . We get one contribution from ¢ if ¢ e K’ and one
from infinity, the latter cancelling the last term in (3.1.1). Hence

F8) = G0 + @ai)t S [o@c-oa
1

if {eK', and

#
F () = 2nmi)™ > f D) (z-0)"tdz
if { € K. The integrations are in the positive direction.

It is now time to use the fact that @, has absolute value 1 on 8K ,
so that

D, ()t = D,(z) if zeoK.

If eK' we get

(2 i)t f D) G- 01 = B,(0) + By(o0)
oK
and thus
[ I 1
(3.1.3) F,(0) = D, + D) + D, (c0) + = f D, (z)tdarg (z—¢) .
If ¢ eK we find

—— 1
(3.1.4) F () = @, (0) + - f D,(2)tdarg (z-C) .
oK

From (3.1.3) and (3.1.4) we can immediately read off the remaining statement
(3.1.2) in the theorem, which hence is proved.
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3.2. Some comments on generalized Faber polynomials. It is
more intricate to construct useful Faber polynomials by the method just
employed. One has to choose points {t,)*1 in K’ so that exp (—n G(-, )+
> G(-, t,) is single-valued. By the methods in the literature quoted, that
can be done e.g. in such a way that > g(a, ;) is minimal at a point a € K’
and the minimal value has bounds independent of the periods, i.e. in-
dependent of n . The polynomials are defined by

Pt) = @mi)?* | )7 (-0 dz,
/

where C is a large circle in the positive direction and
(3.2.1) D, (z) = exp(—nG(z, 0) + > Gz,4)).

As before we get

B22) P = 0,07+ @i [ 067 -0,
oK
if ek’ .
This formula is good enough for most purposes. The problems come when
we turn to (27 i)t [ox D, () (z—C)1dz, with (e K, since we get con-
tributions from the poles ¢, . With ¢ € K we find that

1 p=1 _
P”(C) = / q)n(z)71 d arg (Z—— é') - Z ak(c_tk)-l ’
T 1
0K
where a, is the residue of 65n(5) at z = Ek To get the boundedness on K
we have to know that the t, :s stay away from @K . That is not generally
true with the choice above but the doubly connected case is easy to handle.

Grunsky [11] gives further information about the possible choices of {f,} .

4. The approximation method

4.1. Let us consider the problem to approximate f € A(£2) by rationals
on a set K of type N in 2. It is now natural to consider compact sets
in the extended plane so we assume without restriction that oo belongs
to K. Hence &2 has finite maximal distance from the origin. We take
a Faber rational F, and consider

@I Q) = Cai B [ 7 -0 e b

r
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for [ €K and a curve (a system of curves) I'C 2 surrounding K in
the positive direction. If the zeros of F, inside I' are called {a,} we
have

Q) = f&) = F,(0) 2 Frlwy) (E—a) = f(2) — G,(0),

where @, is a rational function. Hence

(4.1.2) Tuppa(f) = I;lallen(C)!,

and if we take I' = 62 we find

Tapp—1 = (27)70 max [F,(C) (z—0)7 / |F,(2)|7 |dz]| .
2€02, [eK
02
The factor in front of the integral sign only depends on the geometry. We
now apply 3.2. We presume that the poles are chosen so that min |D,(2)| 1
dominates the bounded term on 22, and we get

(41.2) 1, < Of |D,(2)] dz < C’f exp(—ég(z,s,)) ldz| .
o0

We now have to choose the poles. We first note that the estimate
lim 7" < exp (—1/0(2", K'))

is almost immediate in our simple case. It is well-known that C(2’, K " =
C(K , Q) (cf. Widom [22, p. 350]).

Formula (4.1.2) enables us to get more precise results. Assuming a suf-
ficient differentiability of 82 we can choose the set S so that

(4.1.3) 29(,s) =n/C(Q,K) - C,,

where €, depends on the geometrical configuration. When this can be
done we obtain a linear set {(z—s,)"'} with a degree of approximation
smaller than a constant times the n-dimensional diameter (formula (1.2)).

I'shall not pursue this matter in any generality at this place but turn to
some interesting special cases. In section 5 we shall also give one example
of how to take the step from continuous to discrete distribution.

4.2. The case of excessive holomorphy. A case of practical
importance is the approximation by rationals of functions taking different
constant values on the sets K, . If we want to apply Widom’s results or the
method in 4.1 we have to choose 2 so that O(K, 2) becomes as small as
possible. In the general case that leads us to non-trivial problems connected
with extremal length (where the methods in Jenkins [12] seem to be useful).
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Let us study the special case where f equals 1 on K* = U] K, and
-1 on K, = U’ K,, assuming K = K, U K* to be of type N .

It can in fact be seen by applying the method in Goncar [9] in com-
bination with estimates given by Widom [21, 22] that the best rati-
onal approximation r, satisfies

(4.2.1) lim r}* = exp (—nd)

and also 7, > aexp (—andn), where d is the extremal distance of K,
and K*, the inverse of the capacity of the condenser formed by K,
and K*.

I have found it interesting to compute how small C(K, 2) can be
made in this case by a good choice of 2. It turns out that we cannot do
better than

1
OK, o) = sad.

The formulas for extremal length we use can be found in Ahlfors [2, Ch. 4].
We are looking for an 2, D K, and an Q% D K* and they shall be
as large as possible so that Q' = 292, = 22%. Let u be the Green potential
of the equilibrium distribution on 22, = 002%* and let » be the harmonic
function taking the values 0 on K, and 1 on K*.
If 29, = 00* is taken as the level line » = 1/2, we have

w =201y in Q,, wu = 20%Y1-v) in Q%

With the appropriate orientation of the integration the Green formula gives

4 f ou /‘ ou f oo
(4.2.2) 2x = C u%ds + C’a ub;ds = C (V )2 dx dy
Q*

09, ONK

= 40—1ff(v v)?2dx dy ,
o}

where we have used the fact that w = 0 on ¢K . The Dirichlet integral
on the right is known to be d—', so we have proved that with this choice
of © the capacity O(K , )" = (zd)/2. If we take another boundary
between 2, and 2% we can proceed as in formula (4.2.2) to obtain

27 = C’ff(Vu)zdxdy+0ff(Vu)2dxdy.

QN Ky RN

If we introduce the extremal distance d, from 2K, to ¢2, and d¥*
from oK* to 2Q* we get

20 = C7Yd,' + d*77).
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The harmonic mean is smaller than the arithmetic mean so it follows
that

4 1
cl = 7 2(0l;1 +d*¥hHt < *é'(d* + d**) < E”d

by the composition law. Since the level line of » is smooth enough, the
best approximation by rationals of our function f satisfies

7
Tuip—1(f) = Cyexp <" P) dn> .

In 4.3 it will be shown how the special type of the function may be used
to obtain the better estimate

7, = Ujexp (—mdn)

in the case of two disjoint connected sets. The method does not generalize
naturally to configurations with more sets. One way to get sharper estimates
than (4.2.1) should be to introduce Faber rationals in the method applied
in [9].

4.3. Rational approximation of functions constant on two disjoint
sets. Goncar [9] proved that the best rational approximation 7, of
a function equal to +1 and —1 ontwo continua bounding a doubly
connected domain satisfies lim r}/* = (R,/R,)"*, if the domain is con-
formally equivalent to an annulus {w: R, < |w| < R,}. The special
case when the continua are intervals [—1, —b], [b,1] with 0 <b <1
was already solved by Zolotarev, who found that (R,/R,)"*r, is bounded
above and below independently of » . I shall now state a theorem that gives
a result of Zolotarev’s type for a class of sets which of course is smaller than
the one considered by Gondar.

Theorem 3. Let K, and K, be disjoint sets of type N . If v is
a holomorphic mapping of B = {w: ¢"* < |w| <q '} on the doubly
connected domain bounded by K, and K, , we further assume that to every
w € 0B there is a constant p(w) so that

p'(w) [ (pw) — p(o)) — plo) [ (w—o)

18 integrable along the boundary circles (or more generally that the condition
following (4.3.8) is satisfied). Under these conditions

(4.3.1) o1 < Cq".

We note that if d is the extremal distance of K, and K, then
g =exp(—2nd).
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For the proof we define m = [(1/2) n] . Asset S* we take {y(g,) }o"™*
where ¢, = exp (—¢x k/m) . I claim that

2m—1

() = exp(— ;mz,w(sk»)

is single-valued and regular in K’ = (K; U K,)’. That can easily be
checked since yx, = @,cy is explicitly known, the Green function for
the annulus being characterized by

exp (— G(y(w) , p(e))

= ¢t Pe-) T (1 - ¢"v) (1 - ¢* )7 (v = ¢¥) (v — ¢* )77,

s=1
where v = w/e, . Hence we get a single-valued function y, by
(4.3.2) gu(w) = D,°p(w)
(1 _ q4sm w2m) (,w2m _ q4sm)
(1 = q2(2s—1)m me) (w2m _ q2(2$—1)M) :

©
— qm/2 w—m(w2m _ 1) 11
s=1

From the theory of elliptic functions we need the definition of sn by
(4.3.3) sn(2 K x| mxm)

o)
= 2¢"k Rsina I (1 — 2¢¥cos2z + ¢*) (1 — 2¢* tcos 2z + ¢*¥)',
s=1

where k& and K are well-known parameters determined by ¢ (see e.g.
Whittaker — Watson [19, p. 479]), and also the Fourier series ([19, p. 510])

(4.3.4) sn(2 K x | n)

¢sine  ¢#Psin3x ¥

K _1{ 2sin5a }

From now on sn denotes the elliptic function defined by ¢** = ¢*"/? .

To stress that we write k, and K, for the corresponding quantities. With
this convention (4.3.2) and (4.3.3) give

(4.3.5) aa(e®) = kP sn(2 K, ma|n).

We are now ready to apply the method of 4.1. Let F, be the Faber
rational corresponding to the @, we just constructed. In formula (4.1.1)
we take I' to be the image of {w: |w| = 1} described in one direction
for K, and in the other for K,. Since the function takes values with
opposite signs we get

@0 = 2 maxﬁ‘n-} f Foe)t (e—0) " dz | .
K -
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We now change variable by z = y(w) and find

(4.3.6) 1Q,(¢ C’I fF o p(w) ™ (p(w) — &)~ ’(w)dwi.

lw|=

By (3.1.2) we have
F,opw) = y,w)™ +0@1) on |w =

and (4.3.5) shows that the first term dominates, for % larger than some /o
since sn is bounded by 1. Hence

F,opw)™ = g,w) + OQ1) [yg,(w)]*.

Introduction in (4.3.6) gives

dw
(43.7) Q. = C ‘fxn + O max |y,(w)[?.

w

It follows from our assumptions on the mapping function that the coef-
ficients (a,) in the Laurent series

wy (
4.3.8 a, w’
(4.3.8) (@) Z
satisfy |a] < C¢"/®. We now recall the Fourier series (4.3.4) for 4, as
given by (4.3.5) and insertion in the integral of (4.3.7) gives

Q.0 = OK g1 -2 + Ok, = Og"(1—¢")2 < Cq.

4.4. A comment on the corresponding polynomial case. The best
polynomial approximation of a function equal to +1 and —1 on dis-
joint compact sets K, and K, was exactly determined by S. Bernstein
in the case K; =[—-1, 0], K, =1[b,1], 0<b < 1. (An equivalent
result is given on p. 120 in [4].)

Let us take a K = K, U K, of type N and a function f coinciding
on K, with one entire function and on K, with another. The Green
function g(-, c0) for K’ singular at oo has one critical point z,, where ¢
takes a value w, = g(z,, o0) such that w, is the smallest maximum of
g(+, ) on any curve connecting K; and K,. We consider the eight-
shaped level-line g(z, co) = w, , where the two branches form an angle of
7/2 at z,. Like in section 4.1 we consider

@A) Q) = xR0 [ G-07 Pe T e b

I
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where now P, is a Faber polynomial discussed in 3.2 and I'= I'; + [}
consists of two curves in {z: g(z, ©) = w,}, both described in the
positive direction, [, around K, and [, around K, , and having a line
segment in common that bisects the angle of the level lines at z, .

In a similar way as in section 4.1 we find that max,_x |@,({)] is an
upper bound for the best polynomial approximation E,(f). According to
(3.2.1) the dominant contribution to the integral in (4.4.1) comes from the
immediate neighbourhood of z,. Introducing w = G(z, ©) as new
variable in the integral in (4.4.1) we recall that it follows from the orthogo-
nality mentioned above that locally w—w, = C(z—z7,)* so that

B S Co [ ) Eexp (~nw)dn < Cyn " exp (<n ).

Wy

W. H. J. Fuchs has proved that a corresponding formula gives the correct
estimate for any number of sets (w, being the minimal value of ¢(-, o)
at the critical points).

If we wish to compare polynomial and rational approximation for two
sets, it is relatively easy to express w, by elliptic functions in the symmetric
case. If the doubly connected domain is conformally equivalent to an
annulus with R,/R, = ¢, then »'? k"2 E,(f) is bounded, to be compared
with ¢ "7, (f) for rational approximation. Here & is the modulus con-
nected with ¢ .

There is a considerable difference, since for small k£ we have k ~4¢q
and in any case ¢'* <k < 4 ¢"*. We do still worse by polynomials in the
unsymmetric case while the rational approximation only depends on ¢ .

1/2

5. A remark on the best rational approximation of |x|

5.1. The discussion in the previous section indicates that the good
information about the poles we get by our method must be paid for by
rather intricate computations. The alternative we mentioned is based on
the fact that for very general sets K, and K, we have good estimates
(Goncar [8], Widom [21, 22]) for

(5.1.1) 0, = supmax ||/ min |A|,
heR, K, K,

in particular o, —exp (—2nd). (Cf. section 4.2.)
As far as I know the only way known to prove that we have positive
upper and lower bounds for 7,(|z|)exp (x+v/ n) is by similar methods

(Vjaéeslavov [18]). Since we are dealing with the intervals [—1, 0] and
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[0, 1], which are not disjoint, we have to consider a more complicated
quantity. My only aim is to show the connection with the problems discussed
in 4.1. After the publication of [18] there is nothing really new in this remark,
and what I should like to know is a way to carry through the computations
by the methods of 4.3.

5.2. A Green potential approximating logx. Our reformulation of
the crucial inequality reads as follows.

Theorem 4. Let g(-,a) be the Green function for the right half-plane
singular at a . There is a positive measure u of total mass w on [0,1],
such that

(5.2.1) /g(x,y) duly) = logz + nv 0 — C,

for x on [0,1] and with a numerical C . If o = n we can take u as a
discrete measure with integer masses.
It is rather easy to see that

dv(y) = (logy + avw)ydy on [exp(—a+v w),]1]

is a good candidate. If we put ¢(u) = exp (w4 ) and take y, = ¢(k)/p(n)
we evidently have »(y, , ¥,,.,) = 1 and an approximating discrete potential
is thus given by

The inequahty (5.2.1) is trivial if 0 < < exp (—z+/7n), s0 we suppose
that y, < <y, ., forsome k. Fixing x in this way we see that g(x, ¢(*))
has two convex parts; on each of them the trapezoid method gives an
upper approximation. Hence with y = @(u) = exp (v w) and & =
rexp (Vv n) =

5.2.2 fl i f 1 logy Y,
(5.2.2)  w(x) §+¢pu 0g§+y0g9
the only tricky part being to show that
#(k+1)
dy 1 1
(5.2.3) log logy-y~+ 5 9@, ok)) + 5 9@, gpk+1) =z -C.

We observe that substitution of &-1log ¢(k) for y'logy in the integral
only gives a bounded difference. In the resulting integral we put y = &¢
and with 1+06 = @(k+1) /&, 1—¢ = ¢(k)/é, it remains to prove that
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fl 1—t ) 1 ¢ > &
(0+e)” og —“—dt 0g2+6 514+s = ~C-

Since the integral can be explicitly calculated that is completely elementary

and (5.2.3) follows.
We now turn to the right member of (5.2.2). The substitution y = &u

du

—~1

2
o) — C < - f(logu—i—log &) log |——
< —2~+—10g5f10g —+—log§l:/ flog

so that by aid of the value —=z?/2 of the first integral we get

2
—logé[da +4&1 < C+anvn.

1—u
14+ul u

gives

14w

du:]

1T+u

—_ <
v(x) + logé — C < 2

Since
1+acI .
> 22V,

v log |5

we find that

Y — x+1
y + 2V n]log a1
logz+ v/ n — C.

" x+

u(x) = Zlog]x_
k=0

= logé —

Putting o = n + 2[v/ n] and observing that v'n =2V o — 1 we

have proved the estimate (5.2.1) in the theorem
That means that we have a rational function g of degree n such that

< Cexp(—znv n)
for 0 <a <1, and g(— 1. As in the original work [15] we im-

mediately see that
o g(x)
=TT )

approximates |x| better than Cexp (—zv n
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