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A REMARK ON DOMAINS QUASICONFORMALLY
EQUIVALENT TO A BALL

F. W. GEHRING *

1. Introduction. An important problem in the theory of higher
dimensional quasiconformal mappings is to characterize geometrically

those domains D in R*, the one point compactification of euclidean n-
space R*, which can be mapped quasiconformally onto the unit ball B*
in R*. The following rather implicit criterion appears to be the best result
known in this direction at present [6]. B

Theorem 1. Suppose that D is a domain itn R* and suppose that for
some neighborhood U of oD there exists a quasiconformal mapping f of
DN U into B* suchthat |f(x)|—1 as * — oD in DN U. Then D 1is
quasiconformally equivalent to B* .

Theorem 1 can be localized as follows for the case when D is a Jordan
domain, that is, when &D is homeomorphic to 2B”, [6] and [13].

Theorem 2. Supposethat D is a Jordan domain in R® and suppose
that for each x € 8D there exists a neighborhood U of x and a quasicon-
formal mapping f of DN U into B® such that |f(y)|—1 as y-— oD
tn DN U. Then D 1is quasiconformally equivalent to B*.

It seems likely that Theorem 2 is still true with 3 replaced by n
throughout. However the proof given in [6] depends crucially on Ahlfors’
affirmative solution, when n = 2, of the lifting conjecture for quasicon-
formal mappings [1].

Conjecture. Hach quasiconformal mapping f: R*— R* can be
extended to a quasiconformal mapping g: R**'— R,

Carleson has recently established this conjecture for n = 3 [4], and
his proof suggests a method to settle the conjecture for all n = 4.

If we apply Theorem 2 and Theorem 17.12 of [15], we obtain a simple
geometric condition sufficient to guarantee that a domain D in R® is
quasiconformally equivalent to 53.
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Corollary 1. Suppose that D s a bounded Jordan domain in R®,
that D has a tangent plane T at each point of oD , and that T is continuous
m D . Then D s quasiconformally equivalent to B® .

Unfortunately the example given below shows that this sufficient
condition is very far from being necessary. (See also [7].)

Example 1. For each n > 3 there exists a domain D in R* such
that D s quasiconformally equivalent to B* and such that D does not have
a tangent plane at any point of oD .

Proof. Let

H = {x=(ry,...,2,): x, <0},

let ¢H denote the usual imbedding of R*' in R, and choose a sequence
of open (n—1)-balls B, in R"~' so that the B; are pairwise disjoint and
so that U; B, is dense in R*"'. Next set

D = HU <U PI(B]-)>,
]
where P denotes orthogonal projection of R" into R"'. Then the
argument in [8] or on page 462 of [3] shows that D is quasiconformally
equivalent to B, while the fact that D is dense in R* implies that D
does not have a tangent plane at any point of its boundary.

On the other hand the following example shows that the geometric
hypotheses in Corollary 1 cannot be weakened significantly. (See also [11].)

Example 2. For each n = 3 there exists a bounded Jordan domain
D in R* such that D has a tangent plane T at each point of oD , such that
T 1is continuous at all but one point of @D , and such that D is not quasicon-
Sformally equivalent to B» .

Examples 1 and 2 show that there is no satisfactory way to charac-
terize the domains D in R* which are quasiconformally equivalent to
B* in terms of their tangential properties.

The purpose of this note is to establish the existence of the domain
mentioned in Example 2. The proof depends on an inequality, given in
Section 3, between the (n — 1)-modulus of a family of curves in the boundary
and the n-modulus of a corresponding family in the interior of a ball or
half space.

2. Moduli of curve families. TFor ¢ €[0, 0) the normalized g¢-
dvmensional Hausdorff outer measure of a set B in R* is defined by

HB) = lim <inf S a(g) 277 dia (E»ﬂ) ,

t—>0
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where the infimum is taken over all countable coverings of K by sets K,
with dia (K;) <{¢ and where
1\¢
r (5)

(1) a(q) = ;@2—:>

If ¢ is an integer in [1,n] and 7 a ¢-dimensional hyperplane in E”,
then 27 |T coincides with the Lebesgue ¢-dimensional outer measure

m, in T.

For p,q €[1, o) the g-dimensional p-modulus of a curve family I’
in R# is defined as

MY(I) = inff h* d?
Rﬂ

where the infimum is taken over all A in adm ("), the collection of all
Borel functions h: R*—[0, co] such that L,k ds > 1 for all locally
rectifiable curves y in I'. One often writes M ,(I") for My(I") and M(I")
for M(I').

We will need a symmetry principle for the moduli of curve families,
namely the n-dimensional analogue of Lemma 3.3 in [8]. We take the
opportunity to establish here the following more general result by means
of a somewhat different argument.

Lemma 1. Suppose that D is an open half space in R* , that E and

F are disjoint compact sels in D, and that E* and F* are the symmetric
tmages of E and F in oD . If I'; and I'y arethe families of curves joining
E to F in D and E U E* to F U F* in R", respeclively, then
(2) My(Iy) = 2 My(I) .

The proof depends upon the following result.

Lemma 2. Suppose that D, E, F, I') are as in Lemma 1 and that

I is the family of curves joining E to F in D . Then
(3) MyI') = MyIY) .
Proof. Since I'y c I', it is sufficient to prove that
(4) M) = MyTY) .
Let e denote the inner unit normal for D, choose t € (0, 1), and set
flx) = z +tdist (@, EUF)e

for « € R* and f(o0) = . Then f is a homeomorphism of R* onto
itself and
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(5) (1=t lz—yl = [f@) —fW)| = (1+1) [x—yl

for all x,y e R*.
Choose g € adm (I';) and set h = (1+¢t)geof in R*. Then each locally
rectifiable curve p in I' contains a subcurve p’ which f maps into

I', and
/hds > f(1+t)g°fds > fgds >1
v 1)
by (5). Thus k € adm (I) and
+t)Pf
n 4 P
My fh dm, < (1—ty g? dm,, .
R"

Taking the infimum over all such g gives

(1+t)*
M;(F) g (l_t)n p( 1)’

and we obtain (4) by letting ¢— 0.
Proof for Lemma 1. Let r: R» — R» denote reflection in 8D . Then
I'y and r(I')) are separate subfamilies of I, and

(6) MyI,) = MyIy) + Myr(Iy) = 2 MyI,).

Next let I" be as in Lemma 2, choose g € adm ('), and set h =gof

in R?, where
{x if xeD ,
x) = _
J@) r(x) if x er(D).

If 9 is a locally rectifiable curve in I',, then f(y) € I' and

fkdsgfgdsgl.

1ty)

Hence & €adm (I3),
[k"dm = fgpdm”+ f(gor)”dmn < 2/gf’dm",
D 7(D) R"
and taking the infimum over all such g yields
(7) MyI,) = 2My(T).

The desired conclusion then follows from (3), (6) and (7).



A remark on domains quasiconformally equivalent to a ball 151

3. An inequality. We establish next an inequality between the
moduli of two families of curves joining the same pair of disjoint continua.
Lemma 3. Suppose that 2 <m <n < o, that R™ is the usual
imbedding of euclidean m-space in R*, and that I and F are nondegenerate

disjoint continua in Rr. If T, and T, are the families of curves which

join E to F in Rm and R*, respectively, then

g{z(['l)>l/(1—m) ]L[Lpz) 1/(1—n)
(8) —2n < < Bm) —( Bn) > < 2m,

where B(q) = q a(q) and o(q) is asin (1).
Proof. By performing a preliminary Mobius transformation, we may
assume that 0 € B and that oo € F . Arguing as in Lemma 3.5 of [8], we

can find continua ¢, and C; in R™ such that 0, ¢ E c C,, aC; C
F c €, and such that R = R" ~ (Cy, U (,) is an m-dimensional ring
domain. Then § = R*~ (E U F) is an n-dimensional ring domain,

cap,(B) = Mu(I'y), cap,(S) = Myl ,
and (8) is equivalent to the inequality
(9) —2n < mod,(R) — mod,(S) < 2m.
To establish (9) set a =sup{ |¢|: x€B}, b=inf{|x|: vel}.

Then by a well known estimate for the moduli of rings,

b

mod,,(R) < log 4, <g + 1>,
where 1, is a constant which depends only on m . (See [3], [5], [12] and
[14].) If @ < b, then E and F are separated in R* by the spherical ring

T = {xzeRr:a<|x]<b}.
In this case,

b

logz = mod, (7T) < mod,(S),
and we obtain
(10) mod,,(R) — mod,(S) < log2 4, .

If @ = b, then (10) follows trivially since mod,(S) > 0. From estimates in
[2] it follows that log 2 A% < 2m, and we obtain the second half of (9)
from (10). The first half follows from interchanging the roles of m and n
in the abave argument.
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Remark. The hypothesis that E and F be connected is essential
i Lemma 3.

Proof. Let h: (0,1)— (0, c0) denote the Hausdorff measure func-
tion A(t) = (log (1/£))*"*. Then

1 m—1
lim A(¢) (log —) = 0.
t—>0 ¢
By Theorem 4.4 in [16], there exists a compact linear set £ in the unit
ball B»c R» such that K is of positive conformal capacity as a subset
of R” and such that F is of Hausdorff A-measure zero. By Theorem 4.3
in [16], this last fact implies that & is of zero conformal capacity as a
subset of R*.

Let ¥ = R» ~ B, let I'y and I'y be as in Lemma 3, and let I

denote the family of curves joining B to F’ = R* ~B* in R*. Then
each y in I, contains a subcurve 3’ in Iy, and

M) > 0,  MYI) < MyIy) = 0

by known results relating extremal length and conformal capacity. (See,
for example, [10].) Hence inequality (8) cannot hold in this case.
Corollary 2. Suppose that n >3, that D is an open ball or half
space in R*, and that for j = 1,2, ..., E; and F; are pairs of nonde-
generate disjoint continua in oD . If Iy, and Iy, ; are the families of

curves joining E; to F; in oD and in D, respectively, and if either

(11) lim M3=5(1y ) = 0 or  Lm MY, ) = 0,
j—o Jj—>©
then
MY, Y DIe=2)
12 lim —= = = ¢,
G4 T,

where ¢ 1is a positive constant which depends only on n .
Proof. By performing a preliminary Mébius transformation, we may
assume that

D ={x=(y,..,2,): v,> 0}
and that @D is the usual imbedding of R*' in R*. If I'; ; denotes the
family of curves joining E; to F; in R, then
MZ(F?,,]‘) = 2 Mz(Fz,j)
by Lemma 1. Hence
‘ <M::%<rl,,~>>1/<2—"> € M:(Q,ﬂ)”‘“"’

p(n—1) B(n) < 2n
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by Lemma 3, and (11) implies (12) with
¢ = 2fn—1)""V02 gm)L,
4. Proof for Example 2. For j =1,2,.., set a; = 47 and define
f:[0,0)—(=1,0] by
af(cos (ma;®t) — 1) if t €(a;,2a) for some j,

10 = |

Then f is continuously differentiable in (0, o), |[f(!)] <2 in [0, c0),
and

0 otherwise.

Zaj
(13) 12 [iroia s a

for all 5. Let
(14) D = {z=(,...,x): 5,>f0)}, r=@+ +a.,)",

and let g: R* —> R* be any Mobius transformation for which ¢~(o0) ¢ D.
Then g¢(D) is a bounded Jordan domain, ¢(D) has a tangent plane 7T
at each point of its boundary, and 7' is continuous except at the single
point ¢(0) .

To complete the proof it suffices to show that D, and hence g(D),
is not quasiconformally equivalent to B” . For each j let

S; = {xedD:re(a;,2a)}, K = {zxedD:rel2a;,4a]},
where r is asin (14). Nextlet I'; ; and I, ; denote the families of curves
which join K; to K, , in @D and in D, respectively.

To obtain an upper bound for M,”(I ;) set h equal to the char-
acteristic function of §;. If y is a locally rectifiable curve in I ;, then
y contains a subcurve ' which lies, except for its endpoints, in S;.
Hence with (13) we have

2a
J
fkds = fds > flf’(t)ldt >,
v v “]'

h € adm (I ), and

a5 wun,) < [ aee
Sj 2a

AN

J
Bn—1) f PO + 1) dr < oyal?,

a.
J

where ¢, is a finite constant which depends only on = .
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To obtain a lower bound for Mj(I, ;) let
H = {xe(®,..,z,): 2, >0}.

Then E;c ¢H and Hc D. Let I ; denote the family of curves which
join E; to E; , in H. Then I, ; D Iy ;, and since the Mdbius trans-
formation k(x) = 4/~'2 maps I ; onto I ,, we obtain

(16) J”:(Fz,j) = MyIs);) = M:(P3,1) = Cg,

where ¢, is a positive constant which depends only on = .

Now suppose there exists a K-quasiconformal mapping - which maps
D onto a ball D'. Then % has a homeomorphic extension A* which
maps 8D onto oD’. Let I, ; denote the family of curves which join X,
to E,,, in S;, and let I7 ; denote the image of I ; under h*. Since
h is K-quasiconformal in D,

(17) My(ILy,) = KMy ).

Next since D has a continuous tangent plane at each point of S;, §;
is an admissible boundary surface for D and

(18) M::%(F;,;‘) = KM::}(FL;‘)

by Theorem 2.23 in [9]. (See also [3] where (18) is derived with the factor

K replaced by K"*.) Since I, ;C I} ; and since each curve in I

contains a subcurve in I, ;, (18) implies that

(19) MiI(IY ) £ K ML) -

But (15), (16), (17) and (19) imply that

Mpyry Yoo
M:(FZI,])

lim M2=NTI; ) = 0,

j—>© j—>©

=0’

contradicting the conclusion of Corollary 2. Thus D is not quasiconformally
equivalent to a ball, and the proof is complete.
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