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l. Introduction. This paper treats problems of Pick-Nevanlinna tyle
for positive harmonic functions via an extension of Carath6odory's original
approach to the theory of coefficient bodies [3]. We consider a non-compact
Riemann surface -F having finite topological characteristics none of whoso
boundary components is pointlike. We fix a point a e n and' denote by
P the family of positive harmonic functions on -F which take the value
I at a. We denote by A a continuous linear map of the space of real-
valued. harmonic functions on -F (endowed with the topology of uniform
convergence on compact subsets of -F ) into a fixed Banach space over the
realfield. By the Carathöod,orybod,y associated,wi,th P and' zt weunderstand.
A(P) , i.e., the image of P with respect to A .In this paper, we shall be

concerned with the special rrrlap tI given explicitly in $ 2. Here tho fixed
Banach space is a real finite dimensional number space. An important
feature of the so chosen z1 is the fact that the problem of characterizing
tI(P) and determining the preimages of its points with respect t'o A I P
subsumes the Pick-Nevanlinna problem for F . The reason that z|(P) is
accessible to study appears on introducing a Schottky d.ouble B of -F .

For then zl(P) may be shown to be representable as the convex hull of
the image of fr -F with respect to a map defined in terms of meromorphic
functions on B about which functions a fair amount of information is
available. We are referring to the map @ of $ 3 which is the surrogate in
our study of Carathdodory's spherical norm curve [3]. It is a very special
feature of @ that its components are given in terms of abelian differentials
on B which are specified by 21. Thus the apparatus of the theory of
abelian differentials on compact Riemann surfaces is made available.
When -F is the open unit disk, @ may bo given explicitly in terms of
rational functions. Cf. (3.14), (3.15).

The map @ will permit us to obtain a quanti'tatiue treatment for the
Pick-Nevanlinna problem for -F in terms of Minkowski support functions
($ 6) and thereupon - as & byproduct - a solution of the Painlevd problem.
To be sure, the results have a theoretical character.
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A central property of tI(P) for the .rl under consideration is the fact
(Theorem 4.f) that the il,eterm'i,nacy subset of A(P), i.e., the set of points of
A(P) havng exactly one preimage in P with respect to A, is exactly
fu A(P). The result is well-known in the classical situation of the
Carathdodory theory. Cf. [3], $ 12. The proof of Theorem 4.f will be based
on a "mixed method." allowing us to operate with analytic functions on
-F which take values of modulus less than one and to which the lemma of
Julia-Carathdodory-Wolff may be conveniently applied.

Thanks to the information which is available concerning the number
of poles of the components of (D , the upper bound given by Carath6odory
for the number of points of a spherical norm curve lying on a given sup-
porting plane of its convex hull ([3], $ lf ) may be generalized for the case
of @ and a supporting plane of A(P). The extended bound, namely
(3.f 9), is given in terms of indices entering in the definition of. A ,It will
be seen that the preimage of a point of determinacy with respect fo I I P
is the sum of a finite number of minimal positive harmonic functions on
E , the number not exceeding the bound given by (3.19). The bounds given
for the valence of extremals (in the sense of R,. Nevanlinna lf 0]) for a finite
Pick-Nevanlinna interpolation problem on a plane multiply-connected
region of finite connectivity by Garabedian [5], for the Schwarz Lemma
situation on a surface E by Ahlfors [1], and for a finite Pick-Nevanlinna
interpolation problem on -F' by the author [6] are all consequences of this
result. We remark that the problem of determining the extremal functions
for the Schwarz Lemma situation studied by Ahlfors (loc.cit.) may be treated
in terms of the support function of A(P) which, in turn, is given in terms
of <D.

2. The mxp A. We fix a Schottky double, B , of -F . The components
of ,l- : fr -F are regular analytic closed Jordan curves. We let c denote
their number. We let g denote the genus of F . We let oc denote the
anticonformal map of B onto itself keeping each point of l' fixed. It
maps -t' onto ^9-.F .

The period, comgtonents of A. We fix 29 + (c-l) regular analytic
closed Jordan curves in I , say lt, ... , Tze+p_r1 , which have the property
that the homology classes of which they are members form a basis for the
l-dimensional homology group of X . We introduce

(2.L) at(u)Tn) - -i I öu,

Tp

k _1, "'r2g + @-l) ,

where z is harmonic on .F' and dz denotes the abelian differential given
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in terms of a local uniformizer 0 by 2(u"0)"d,2. Of course a\u;yn)
is simply the period of the conjugate of u along yu.

The interpolat'i,on funct'ionals. Let B denote a finite set of points of J|
including a. X'or each b eB - {o} we fix a regular analytic Jordan arc
?cb (cF ) with initial point a and terminal point b. With each b eB
we associate a uniformizer 0b satisfying 0r(0) : Ö and a nonnegative
integer n(b).Eor b eB - {o} we define l(u;b,0) by

(2.2)

and for arbitrary b eB we define l,(u;b,k), L <lc !n(b),by
(2.3) l(u;b,lo):2(u"0u),{n-!1qlH,
that is, as the kth Taylor coefficient at 0 of a function analytic at 0

with real part given locally by u " 0u .

We now define A(u) inthe following way. We introduce

n't,: 29 + (c-t) + Zn(a) + 2
beB-{o}: X, 1+z>ln(b) +11 ,

a:

t(u;b,0): I öu,

%b

(2.4)

7 being the Euler characteristic of n . We suppose that, we a,re concerned

with the nontrivial situation where m ) O. We let o denote a (l , l)-map
of { f , "' ,ffi } onto the set whose elements consist of: (I) the 7u, (II)
the ordered triples (a,l,lc), (a,2,lc), k:1,"',n(a), (III) the
ordered triples (b,l,lt), (b,2,k), I{ : 0, "',n(b), b eB - {a).
X'or convenience we suppose that d maps { I , "' , X+L\ onto

{yr, "',Tx+L}. W" define A(u) as the element of R* whose jth com-

ponent is alu;o(j)l when o(j) is one of lhe yu, is Rel'(u;b, k) when
o(j) : (b,1, tu) and is Im l(u;b, ft) when o(i) : (b,2,k).

llt is to be remarked that other formulations could be made for a map
A . For example, one could consider A as a map whose image lies in the
set of real-valued functions with domain the set of elements specified by
(I), (rI), (III). For our purposes the question is not, an important one.]

It is routine to verify t'hat A is a continuous linear map of the space of
real harmonic functions on X into Rn in the sense indicated in S l.
Clearly ,rl(P) is convex. That it is compact follows from the compactness
properties of P .

3. The map Q . Our aim is to exhibit a map
each component of which is meromorphic on S and

on f , such that A(P) is the convex hull of Ag)

.^.

A from S into C* ,

takes finite real values
,^

. Here C denotes the
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extended complex plane. To that end, we introduce for each q e I the
minimal positive harmonic function on X vanishing continuously at
each point of -l' save q and normalized to take the value I at o . We
denote it by uo. We shall show that thers exists an admitted @ having
the property that

@(q): A(uo), Qe r.
By the identity theorem there is at most one @ satisfying (3.f). Thanks
to the Riesz-Herglotz representation for positive harmonic functions on
-F in terms of the uo (cf. [7], 93-101) we see fhat A(P) is the convex
hull of 1A(uo): q e I ), that is, A(P) is the conlrex hull of @(J") . We
continue describing the construction of O and studying some of its
important properties.

As a first step we establish meromorphic prolongation to B of the
functions

(3.2)

(3.3)

and

(3.4) q --> I(uo;b,k), b e B, I <lc <n(b).

Once we show that this is the case, we see that the same is true for the real
and imaginary components of the functions (3.3) and (3.4). Indeed, if /
is meromorphic on B and takes finite values on -l-, then (f + f . "l t Z

is meromorphic on S and is equal to Re/ on .l' and the corresponding

observation holds relative to (f - rc lQi) and Im/. The existence
of @ with the stated irroperties is thereupon assured.

We start with the question of the meromorphic prolongation of the
functions (3.2). We introduce 4 , Green's function for -F with pole s
and recall the classical result

%q - lim G,fG,(a) .

is defined for the ron.riJri* G,f G,(a) with s # Ti an'c. we have

a(tco; T) -

(3.5)

Now (2.L)

(3.6) - o lim lG,(a)l- I öG,

vj

-,1'å [G,(s)]^ I öG,,

vj

making use of the symmetry of Green's function. The function
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(3.7)

(3.8)

(3.e)

8 -cf
vj

ÖG,

is harmonic on n'-Ti and vanishes continuously on f . h admits a

harmonicprolongation H, to S - { /1,a(T) } by means of Schwarzian

reflexion &cross i-.It is to be observed t'hat H, admits harmonic pro-
longation across /i (resp. a(7r) ) from each side and that the prolongations
in question differ from one another in some neighborhood. of y, (resp.
q\))by 2n.It' follows from this observation lhat, öH, is not the zero

differential and that öä, admits prolongation to an abelian differential
of the first kind on B . We make the harmless convention of denoting the
prolongation of öH, to S also by öH,. Using (3.6) we conclude that (3.2)

is the restriction to l- of öH jlöG,, with öGo construed as the differential
of the prolongation to B by Schwarzian reflexion of Green's function for
-F with pole a. This convention will prevail throughout. The divisor of
each öH1löGo is at least as large as -06eo. The notation a, (resp. ?y)

is used to denote the divisor of an abelian differential o (resp. a mero-
morphic function ,f ) on B . It is to be observed that the functions öH1löG.

are determined by the homology classes of the Ti $n the sense of .E ).
The remaining functions, (3.3) and (3.4), may be treated similarly.

They will be seen to be restrictions to J" of quotients of abelian differentials
on B, the denominator in every case being öG, . X'or the functions (3.3)

the numerator is an abelian differential of the third kind having poles at
o and b . For the functions (3.4) the numerator is an abelian differential
of the second. kind having a pole of order k+l at b .

The functions (3.3). We proceed taking into account the definition of
l(uo;b,0) and the representation (3.5) of ur. We obserYe that the func-
tion defined on I-x, by

s IöG,
x6

is harmonic and vanishes continuously on J', and consequently, admits
harmonic prolongation to S - { x, , d"(xb) ) by Schwarzian reflexion across

l-. The prolongation in question will be denoted by Ko. On introducing
a local uniformizer 0 , satisfying 0(0) : o, t artd using standard properties
of Green's function and (3.8) we obtain tho local relation

Kul?(z)l : 1(r) + h(z) ,

where .1 is an analytic logarithm of the identity map on a neighborhood
of 0 from which a slit terminating at 0 has been removed and å is
harmonic on a neighborhood of 0 . A corresponding remark holds con-
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cerning the local behavior of K, near b with ,1 this time being the negative
of an analytic logarithm of the identity map on a slit neighborhood of 0 .

By Schwarzian reflexion one obtains similar results for the behavior of
Ku near cr(a) and a(ö) , save that the .2 term appears in the guise of the
conjugate of an analytic function.

We note further that Kb admits harmonic prolongation across

h - {a, ö} from each side and that the prolongations in question differ
from one another by 2 n i in some neighborhood of each point of
h - {a, å} . Corresponding observations hold relative to the prolongation
of Ku &cross q(h - {a ,bl) .

ft now follows thai öKu admits prolongation to an abelian differential
on B which will be denoted also by dKu . The latter is an abelian differential
of the third kind with poles at a and b , the residue of which is 2 at a
and is -2 at ö . This observation is a consequence of the stated properties
of Ko. It is to be noted that the operator ä has the effect of annihilating
the conjugate analytic terms entering in the local representation of Ko
near u(a), resp. a(b) .

The remainder of the argument follows that given in the case of (3.2).
fndeed,

(3.10)

(3.r1)

(3.12)

l(uo ; b, 0) : lim [G"(s)]-t I
x6

öG, , 8 e F

It follows that (3.3) is the restriction to T of öKulöG".
The functions (3.4). We recall that the functional (2.3) is specified in

termsofalocaluniformizer 0b, 0b(0): b,andanindex k,l <k <n(b).
We first consider the Taylor coefficients at 0 of twice the complex dif-
ferential coefficient h, where

h(z) : G,flu@)l

and their dependence on the parame,ter s . An examination of these coef-
ficients shows that

Lu,u: s l(Gr;b,k)

is a complex-valued harmonic function on .F - {b} which vanishes con-
tinuously on .l- and is such that for z small we have

z-h
Lu,ulou@)l _ T +

where the omitted term is harmonic at 0 . The prolongation of Lu,o to
B - { b , a.(b) } by Schwarzian reflexion will be denoted also by Lr,u .

The operator ö induces from the latter function an abelian differential on
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B of the second kind (denoted öLu,o ) having a pole of order k + | at
ö. It is to be observed that, as above, the operator ö annihilates the
singularity of Lu,u at' a(b) because of its conjugate analytic character.
X'rom

(3.13) t(uo;b,k): tT W, I e F,

we conolude that (3.a) is the restriction to J' of öLb,hlöG".
The case of the unit disk. Here it is a simple matter to determine

öKblöG" and öL,,JöG" with 0u@) : z*b. Because of the simple con-
nectivity of the unit disk the öHjlöG" do not come into consideration.
We have:

1 lal'
dz,

(z - a) (1 - a z')

2 l@ - a)-' (z - ö)-'l dz ,

- 2 (z -b)- (å+1) dz ,

2(b-a)(1-å")
(? -b) (L - lan

2(z-q,)(1-o")
öG"

: 
@ -b)h+L (L - len '

With a : b : 0 , (3.15) yields essentially the factor occurring in
Carathdodory's classical theory.

We continue our study of @ and seek an upper estimate for the number
of poles counted by multiplicity of a linear combination / with constant
coefficients of the component functions erttering in the definition of <D ,

The only points of S at which these functions may have poles are the
points of B U a(B) and the zeros of öG". On examining the functions
öHjlöG", öKblöG", öLb,hlöG, and the functions obtained from the func-
tions öKolöG, and öLb,hlöG, by composition with a and conjugation
we obtain the following lower estimate for 0r:

öGo

öKu

öLu,u

and consequently we

(3.14)

and

(3.15)

(3. r 6)

It follows

conclude

öKu

öG,

öLu,u

I u,(o) , a,la(a))

I ar(b) , a,la(b))

t a,(c) , or[o(c)]

from (3.16) that

beB {a};
cep B.
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(3.r7) ) min { ar(p) ,0 )
pes beB-{a}

I{ence the number of poles of / counted by multiplicity does not excebd

(3.r8) 2{x+Zl"@)+ll}:mt(x+\,

where n1, , we recall, is given by (2.+). We note that the bound (3.18)
does not exceed 2m since m 2 X*l . It will be seen that the bound
(3.18) will play a role in the study of the members of P which are preimages
with respect to A of points of determinacy of A(P) . In the classical case
of the unit disk

We continue our study of @ and show
Theorem 3.1. @(l) d,oes not li,e in a (m-l)-d,i,mensional hgperpl,ane

of R*.
Before turning to the proof we make the following observations. The

theorem is equivalent to the assertion that the differentials of the functions
entering in the definition of @ are linearly independent over -B . The
theorem taken in conjunction with the estimate (3.f 8) shows that a support-
ing hyperplane of @(f) has at most

(3. r e) K,+>ln(b) +11 (<m)

distinct points in common with @(J-) . In the classical case of Carathdodory
where 1 is the unit disk and B : {0} , we have ry1 : 2 n(0) and the
proof of Theorem 3.1 reduces to noting that a rational function, not
identically zero, Lhe sum of the orders of the poles of which does not exceed
2 n(0) has at most 2 n(0) zeros.

Proof of Theorem 3.7. Let O: (0, ... ,0) c R* . We note that O is
the image of the constant I with respect to A . Suppose that @(l-) is
contained n a (m-l)-dimensional hyperplane of R*. Then A(P) , being
the convex hull of @(f) , is contained in the same hyperplane and, con-
sequently, O is a point of the hyperplane. It follows that the component
functions of @ are linearly dependent over .E

Låt E denote a linear combination of the components of @ with real
coefficients which is identically zero.If not all the coefficients of the com-
ponen-ts arising from lhe öLu,ulöG" (by the indicated process of forming
(f +f "a')12 and (f -f "a)l(2i') from such a function /)werezero,
then g would have a pole at some ö . This is not possible. Thereupon we
consider the terms arising from the öKblöG* and conclude that if not all
the coefficients of such terms were zero, g would have a pole at some b .

Again, this is not possible. Thus g reduces to a linear combination of the
öHhlöG, with real coefficients.
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If a is harmonic on a region of S containing I , then

@(a ) Tn) - *fr, öHu.

X,+L such u, say aL, "',ur*Lr suchthat

iTn) - ö6, i,k_1,"'rX,+I'

(3.20)

Further, there exist

@(a j

However, if
åH.(8.2r) 1"rd : o,

then co being real, we have

(3.22) lcua(u,iT) : o, i : 1, "' , y*l ,

and hence c! : "' : cx*r: 0 . We conclude that the components of @

are linearly independent over -E .

Theorem 3.1 now follows from the conclusions of the preceding two
paragraphs. The statement of Theorem 3.1 may be strengthened. to the
assertion that for each component fh of I , A(lo) does not lie in a

(zz- l)-dimensional hyperplane of R* as we see by appeal to the Identity
Theorem.

It is now easy to conclude
Theorem 3.2. O eint A(P) .

Proof . Tf O # :urt' A(P), then a supporting plane of A(P) would' pass

through O .By Theorem 3.1 only a finite number of points of @(J-) would
lie in the supporting plane. It then follows that a preimage of O with
respect to A in P would be a finite sum of minimal positive harmonic
functions on -t' . To see this, let I, be a linear homogeneous function on

C* wjlh real coefficients such that { r e R- : l'(r) : 0 } is the supporting
plane in question with ma,x/(p) l' : 0 . With p denoting the generating

measure in the Riesz-Herglotz representation of a preimage o of O in P
with respect to A, we have

(s.28) I r.rrordp(q) : rll o(q)drt(q)] : ,V@l: 0.

corr."no"nlrr, p is comprised "f", finite number of point masses, the
number being at most y + lt.eln(b) + ll by (3.1s) since each q for
rvhich O(q) is in the supporting plane is a, zero of even multiplicity of
I, " (D . Hence o is the sum of a positive number of minimal positive
harmonic functions on -E and consequently is not bounded above. How-
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ever, the constant I is a preimage of O in P with respect lo A . Con-
tradiction. Theorem 3.2 follows.

We remark that one may also proceed in the inverse direction. That is,
Theorem 3.2 rrr'ay be proved, without appeal to Theorem 3.1, by exhibiting
a subfamily of P whose image with respect to A is a neighborhood of
O . Theorem 3.1 may then be concluded on the basis of the fact that A(P)
is the conYex hull of Ag) .

4. The determinacy subset of A(P) . The notion of the detorminacy
subset of A(P) has already been introduced in $ f . We let D denote
this set. We show

Theorem 4. t. D : tu A(P) .

Proof. We first show

(4.1)

from which it follows

(4.2)

int A(P) c A(P) D,

that

D c tuA(P)

Now O is in the convex hull of @(I) and so O admits a barycentric repre-
sentation of the form ZT*tpo@@o), Qee l, pp20,2po:t.
Hence O is the image with respect to A of both the constant I , which
we shall denote by *r,, artd w, : 2 pozao . Since wL + wz, w, beingnot
bounded above, we conclude that O #D .

Given reintA(P), r+O,welet y denotethepointof frA(P)
lying on the ray with initial point O which pa,sses through r, and let f
denote the positive number less than one such lhat r: ty.Let a eP
be a preimage of y rvith respectto A. Then

(l-t)wu + ta, k: L,2,

are distinct preimages of r with rospect to z1 which are in P . Hence
n f D .The inclusion (a.1) is thereby established and hence (4.2).

ft remains to show

(4.3)

(4.4) tuA(P) c D

X'or this part of the proof we shall make essential use of the barycentric
representation method of the preceding paragraph as well as of the Lemma'
of Julia-Carath6odory-Wolff. Our procedure will depend upon a translation
of the situation we are studying into one pertaining to analytic functions
on -F' taking values of modulus less than one.

Lel * e fu l(P) . Then a preimage of r with respect to ,,1 lying in
P is the sum of a finite number of minimal positive harmonic functions on
.F. Cf. the proof of Theorem 3.2. Suppose that Ur,A, eP satisfy
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A(Ur): A(ar): r. We shall show that Ur: az. The inclusion (4.4)
follows and consequently Theorem 4.1 is seen to hold.

We proceed to replace the Uo by the real parts of analytic functions
on n.

Case 7. 7 20. Here we introduce a function å harmonic onaregion
of B containing F such that

(4.5) o(h;yo): -@(UriTn), k:1,"',ti-l ,

namely,

(4.6) h: A-Zr(Urtr)an
where the ao are the functions introduced in $ 3 and A is alarge positive
constant so chosen that h I .F' > 0 . Now the point

(4.7) (-(#r, r,),''',,(ht r x., ) )
tois in the convex hull of the image of f with respect

(4.8) q -> (#rr,...,ry#tal )öGo /

We conclude that there exists a positive harmonic function ä, the sum
of a finite number of minimal positive harmonic functions on -F satisfying

(4.9) ,(H;y): a(h;yn), k:r,"',X*r.
Itfollowsfrom (4.5) that U,+H, j:1,2, istherealpartof ananalytic
function on -F .

Case 2. 1( - - I . Here Ui, j :1,2, is the real part of an analytic
function on .F' which is simply-connected in this case. We understand
H to be the constant zero.

We introduce fi analytic on X satisfying: Ruå : Ut+H ,

Iry fi@) : 0 , i : I,2. We let M denote the Möbius transformation

(4.r0) z --> (z-t) | (z+t) ,

and recall that M maps {Rez>0} onto {lzl< f }. The ancillary
function o is defined by

" f t H.

z . It is clear that
that aeP and
and the fact that

o(
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a is the sum of a finite number of minimal positive harmonic functions on
1, we are in a position to conclude that at: Uz and thereupon that
Theorem 4.2 holds. Ind,eed, on considering an open subarc y of
f on which a+H vanishes continuously, we see from (a.lf) that
(M"fr+M"fz)12 takes boundary values of modulus one on y.
Hence M "fr: M "fz and so Ut: Uz as we wished to show.

a e P . The case u'hare I is trivial and will be put aside. We
note that in the remaining case

(4.12)

(4.15)

as z-> @

(4.16)

o(q) uo ,

where E is a finite nonempty subset of ,f and each o(q) is positive.
The notation uo of $ 3 is to be recalled. Given I e E , we introduce a
univalent conformal map 0 of { Re z } 0 } onto a small simply-connected
Jordan region a n n bounded by an open subarc of l- which contains
g and an arc lying in .F' save for its endpoints which are to be the same
as those of the subarc of l-. We suppose that 0 is normalized by the
condition 0(a) : q , 0 being construed as continuously extended to the
closureof {Re z> 0} inthesenseof i. Soppo.unowthat w isafunction
analytic in o and taking values of mod.ulus less than one. By the lemma of
Julia-Carathdodory-Wolff inv M o (w. 0) admits a unique representation
of the form

(4.rs) Az + B(z),

where A is a nonnegative real number, Re B(z) ) 0 , and

lim z-r B(z) : g 
,

z tending to oo sectorially. Further

(4.t4) zlr -w"0(z)l
possesses a limit a,s z --> oo sectorially, the value being oo when A : 0

and otherwise 2lA . We apply this observation taking

w : (M "f, + M.fr) 12.
The sectorial limit of

H:
qeE

z lL II " fi " 0(z)l

is positive and finite. fndeed,

Re inv ll/f o (Xt " f) " 0 _ (Ui+ fI) " 0

and so by the Lemma of Julia-Carathdodory-Wolff the coefficient :4. of
(a.13) for w : M ".f7 is at least as large as
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(4.r7) 'r(q) : inf 
o[o(C) 

u " 0(z) I Re z] ,

which is positive. Hence

(4.18) z{r - LM "fr" 0(z) + lul "f;" g@)ll2}

possesses a sectorial limit as z ---> @, not exceeding zlr(q). By the observa-

tion made relative to (4.I4), we see that

(4.re) nul-ir'r, M.(M"f..! M"f')l" rfrl 2 r(q)Rez.
L \ 2 /-l

ft follows by the boundary maximum principle for harmonic functions,

(4.19), and the boundary behavior of uo t'hat

(4.20) n" I i,'o a " (M 'f' lrrl " fz)] 
= 

o(q) uc.

A second. application of the boundary maximum principle taken with the

boundary behavior of the %s shows that a 2 0. Thus we are assured

lhat a eP .

A(u) : r . We know at all events that

(4.21) A(u) : zl n" inv M,(' "f' : * "f')l - A@).--L-' \ z /)
Hence the tcth component, of A(u) a,grees with that of r , lt :
1, "', X+| , vacuously when X,: -l'

suppose that we are concerned with a component, of A(u) of the form

Re l(o ;b ,0) or Im I'(u;b ,0) . We have

(4.22) t(a ;b , r, 
:r{;:,, ; 

,;r,1, 
;rtyrr:;,ll ,,

l'(Ut;b,0).

Thi* ."yu that such a componenr cf A(u) aglees with the component of
r having the same index.

There remain to be studied the components deriving from functionals

of the form l(u;b,k), k 21. Essential use will be made of the fact that
,,order of contact" is preserved by composition with univalent analytic
functions. The auxiliary map M and its inverse enter in this connection.

on introducing the local uniformizer 0 used in the definition of l,(u ;b ,lt) ,

we see that
(4.29\
')o",r,rt : 

å{ li^ u " (yt!i!4)]' r)"' tor - I(H ;b,k)
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The Taylor coefficients at
exceedirg lt . It follows by

(4.24) inv M

(4.27)

o0 a

consi

ft*
2

0

co

o

of ft
ntact

(v:

fz" 0

ations

.f,)o

nd
der

M

agree for all indices not
that

0

and /, " B have common Taylor coefficients at 0 for all indiqes not
exceeding /r . It suffices to use the elementary observation that if / and
g are analSrtic at 0 and have common Taylor coefficients for all indices not
exceeding fr (>0) and g isanalyticat/(0):g(0) ,then qlS@)l-
qU@l : o(lzlh+r). Hence

(4.25) t(a ;b,t) : *rrr"a)(å)(o) t(H ;b,k)

: l(Ut+h;b,k) l(H;b,k)

- l(Ur;b,k). 
,

that A(u) _ m . The proof of Theorem 4.I is therebyIt now follows
completed.

The following theorem is a consequence of Theorem 4.1 and the observa-
tion of the sentence following (3.23).

Theorem 4.2. If ueP satisfies A(u)eD, then 1r may be re-
presenteil, as the sum of at most

(4.26) , * åln(b)+tl
minimal, Ttosi,ti,ue harmanic functions on, I .

We shall see in $ 5 that the bound (4.26) cannot be ameliorated for
assigned y and )yn1b1+t1.

Theorem 4.1 permits us to obtain information concerning the points
of @(f) lying in a given supporting plane of A(P) . We have

Theorem 4.3. Let II d,enote a suTtporting plane of A(P) anil let
gr,'..,9n be the ilistinct Ttoi,nts of I (sugtposeil, n ,i,n number) suchthat
<D(qu) e II . Then @(q1) , ... , @(q*) are l,inearlg ind,epend,ent (ouer &. ) .

Each <D(qe) is qn entreme poi,nt of A(P) .

Proof. Lei II begivenby l(U): c (* 0),where I isalinearfunction
on R* .If <D(q),,.., <D(q*) are linearly dependent so that )\ A@) : 0,
where the to are real and not all zero, then

0 : ll>tub(q)l: (>to)c.
Ilence 2to :0. From the fact that the sum of the positive to plus the
sum of the negative tu is zero, we conclude the existence of distinct members
pf P, say [/, and Ur,with A(Ut): A(U) e [LConlradiction,
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The fact that' each @(qo) is an extreme point of A(P) rri.ay be seen ag

follows. If O(q*): (1-t) rr*tnz,0<t<-1, nltnz eA(P), then r,
and. r, belongto Z andhence to D. Wit'h U, e P satisfying A(U,j)
: *,, i:1,2, we have (l-qA"Li tU"z: ucn. Since uoo is minimal,

U*r: U*r: %qh. Hence frL: tz. Consequently, <D(q.u) is &n extreme

point of A(P) .

It is obvious from Theorem 4.3 that u e A(P) O I/ , which admits a

uniquerepresentation of the form ZltoO(qo), to 2 0, >i tn: l, admits
a unique representation of the form Z!.tuo(qo) , tu real.In principle, the
th may be calculated in terms of r and the @(q) with the aid of
determinants, the @(qu) being linearly independent.

5. Some applications. (a) Augmented' rnaps. Given A we introduce
a linear functional lL of the kind z -->l(u;b,k), where ft: 0 when
beT-B and k:n(b)+L when öeB,andwelet z1r denotethe
map of the space of real-valued harmonic functions on .F inlo R*+2 for
which the first zz components of Ar(u) are the s&me as the respective
components of A(u), thecomponentofindex mll of Ar(u) is Relr(z),
and the compdnent of index 7n a 2 is Im lr(u) . We term A, an augmenta-

ti,on of A. Let r be a given point of int A(P) .We associate with r
the set 7(r) given by

(5.1) V(") : {Ir(u); ueP, A(u)- r}
ft is, of course, a nonempty compact, convex subset of C . We show

Theorem 5.1. Giuen ueP such that A(u):r. Then Ar(u) i's

a poi,nt of d,etermi,nacg of Ar(P) i,f anil only if l,r(u) etu V(r).
Corollary 5.2. int V(n) + A .

Proof of Theorem,5.7. We shall establish the theorem con-brapositively.
Suppose that Ar(u) is not a point of determinacy of Ar(P). Then
Ar(u) eint Ar(P). Then for some neighborhood -l[ of lt(u) it is the
case that Ar(P) contains all points of Rn+z whose first m components
arethes&me &s those of r and whosg last two components, Am+Lt Um+Zt
are such that y**r l'iA*+z e N. Hence lr(u)$trV(r).

Suppose now that Lr(u) efr V(u). Then I't(u) eint V(r). We note that
forsome aeP, satisfying A(a):r lhepoint Ar(a) isnotapointof
determinacy of Ar(P) since not every a e P satisfying A(u) : 7 i*
a finite sum of minimal positive harmonic functions on E. Hence there
exist distinct members of P , say ur and az, satisfying A(or) :
A(ar) : r and Ar(at) : At(uz). Further there exist t, 0 < f 4 l, and
weP satisfying A(w): r,suchthat
(5.2) lr(u) : (1 - t) lr(uo) + t lr(w), lt - I, 2
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We conclude that Ar(u) is not a point of determinacy of Ar(P) since
Ar(u) - A[!-t)uu* twl, Ic:1,2, and the functions (I-t)ao+ tw
are distinct. Theorem 5.1 follows.

Proof of Corollary 5.2. If int V(r): A, then forall ueP satisfying
.11.(u) : r, Ar(u) would. be a point of determinacy of lr.(P) . Hence all
such z would be finite sums of minimal positive harmonic functions.
This is not the case. The corollary follows.

Remarlc. It is clear that Theorem 5.1 and Corollary 5.2 admit extension
to the situation where / is "augmented" by several I .

(b) Ga,rabed,ian'sbaund, for theaalence of an ertremal soluti,on of a Pick-
Neuanl'inna 'i,nterpol,ation problem. As noted in $ t, P. Garabedian [5] gave
a bound for the valence of the extremal functions associated with a finite
Pick-Nevanlinna interpolation problem for a finitely connected plane
region with nondegenerate boundary components where interpolation
conditions of order zero &re assigned at z distinct points and there is more
than one interpolating function. [The validity of the bound for interpolation
conditions not necessarily of zero order was noted without proof.] He showed
that the extremal interpolating functions corresponding to the frontier
points of the Wertevorrat' at a point different, from the n given points
were maps of the region onto the open unit disk having a constant valence
with value not exceeding n * (X+t): (n+l) + X. [We shall recall the
formal definitions of "Wertevorr&t" and "extremal" below.] Ahlfors [f]
obtained the corresponding bound for the "Schwarz Lemma" situation for
a Riemann surface I of the type considered in the present paper. Here
n: l, there being one interpolation condition of zero order. Ahlfors'
bound is 2+ y . The author [6] has extended the bound of Garabedian to
the case of a finite Pick-Nevanlinna interpolation problem on a Riemann
surface F , the orders of the interpolation conditions being not necessarily
zero. To obtain the extended bound use w&s made of a variational
formula of F. Riesz [3] applied to functions in a Hardy class, the
theorem of Cauchy-Read [2], and a limiting argument. We shall now
see that the extended Garabedian bound is a straightforward consequence
of $.26).

The finite Pick-Nevanlinna interpolation problem for the case of an
allowed Riemann surface F may be formulated as follows. Let there be
givenafinitenonemptysubset z4 of F, maps a-0o, a->u(a),d+pa,
& eA, where 0o is a uniformizer satisfying 0,(01 : s,, u(a)is a non-
negative integer, and po is a polynomial of degree not exceeding a(a) .

ThsPick-Nevanlinna interpolation problem for fi with the assigned data
is to determine necessary and sufficient conditions in terms of the data for
the existence of analytic functions / on .t' taking values of modulus at
most one which satisfy the conditions
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(5.3) f o o"(r) - p"(z) - o(lzY@)+'1 ,

and to obtain information concerning functions
conditions. ff there is exactly one solution, the
determ'inate.

We assert that
question is either a
finite valence of I
does not exceed

(5.4)

a,gA

satisfyitg the imposed
problem is said to be

if the problem is determinate, then the function f in
constant of modulus one or else is a map of constant
onto the open unit disk, and the value of the valence

x, + >lr(a) + 1l

To see this, we proceed as follows. We put aside the trivial case where /
is a constant of modulus one and note that 2*o lr@) + ll > I and

lp"(O)l <-1, a e 1. Wefix aoeA andintroduce aMöbiustransformation
P mapping {lzl <1} onto {Rez>0} andsatisfying fllp,oQ)l:1.
With ao taking over the role of a of lhe earlier sections and A taking
over the role of B , we take A as in $ 2, the v(a) now taking over the
role of the n(b). Then A(Re B 'f) is a point of determinacy of tl(P)
whose first X*I components &re zero. For if ueP satisfies A("):
A(ReB "/) ,then a istherealpartofananalyticfunction g, g(ad:1,
such that inv p . S : f by the determinacy of the stated problem. Hence
tr : Re B"f ,i.e., A(ReB.,f) is a point of determinacy of A(P). Con-
sequently, Ref ""f is a finite sum of minimal positive harmonic functions
on 1, where the number of summands may be taken as no greater than
the bound given by (5.4) as we see with the aid of Theorem 4.2. Tt follows
lhaf p./ is a map of X onto {Rez>0} of constantvalencewhose
value does not exceed the bound of (5.a). The function / is a map of I
onto { lzl < I } of constant valence whose value is the same as that for
B "f, and hence not greater than the bound of (5.a) as asserted.

The extended Garabedian bound pertains to the situation where more
than one admitted interpolating function exists. We suppose that this is
the case, we fix b eI - A, andlet W(b) denotetheset of values /(ö) ,

where / is an admitted interpolating function. The set W(b) is termed
the Werteuorrat at, ö for the given problem. ft is compact and convex.
An admitted interpolating function / is termed ertremal, relati,ae to b

(in the sense of R,. Nevanlinna [10]) provided fhat f(b) efrW(b). It was
shov'n by Garabedian [5] for the plane case described above and by the
author [6] for the case of an allowed Riemann surface F Lhat' inb W(b) + A
and that the augmented Pick-Nevanlinna problem which requires fhat f
satisfy in addition to the conditions of the stated problem the requirement
tJn.at f(b) : c where c is a given point of fr W(b) is d'eterm'i,nafe. We shall
see that these facts may be concluded by the methods of the present pa,per.
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It will then follow that the Garabedian bound is a consequence of the bound
(5.4) whon one notes that augmentation by the condition at ä increases
the sum Zfr@ + ll by I .

We introduce B and A of the second preceding paragraph in the
present context and, in addition, the augmentation A, of z1 obtained by
adjoining Plel(urb,0) and Iml(u;å,0) . The common element r:
A(ReB o/), where / is a solution of the original problem (5.3) is not a
point of determinacy of A(P). By Corollary 5.2, intV(r) * A. Since
W(b) : f-tlV(r) 1 ll , we have int W(b) + A .By Theorem 5.1 the con-
dition f(b) : c implies that Ar(B"e p 

" f) is a point of determinacy of
Ar(P). Ilence we conclude that the augmented Pick-Nevanlinna problem
is determinate. The bound

(5.5) lr(a) + tf 
)

for the value of the valence of an extremal is now a,pparent. This is the
extended Garabedian bound.

A remark onthesharpness of thebound,s of @.26) and, (5.4). We shall now
see that the bound (5.4) cannot be improved for given y and
r,: )P(e) + ll when v 22. Determinacy in the case where y: I
occurs only for constant functions and so this case need. not be considered.
further. The asserted sharpness of (5.a) implies the sharpness of (4.26) for
given )( and ) t"ta) + t1 when 2f"@ + rl > 2. The case where

Zt"fq + ll : r wil be treated separately.
To establish the asserted sharpness of (5.a) we consider a plane region

g of connectivity X+2 , each bounda,ry component of which is a regular
analytic closed Jordan curve. We fix a,, b ( + o) e a and introduce
a point c e o distinct from o and b which will be allowed to tend to
fr o . We consider two extremal problerns for functions analytic on ,f) and
taking values of modulus less than one. f. We impose the condition that
/ have azero at a and seek / maximizing l/(b)l . (Extremal problem of
Ahlfors [t].) Let /, denote the solution normalized to satisfy å(ö) > 0 .

ft is classical ([f], [5]) that /, has constant valence on the open unit disk,
the value being 2 * 1 (as is seen readily from (5.5) and the fact that an
analytic function mapping o onto the open unit disk of constant valence
is such that the value of the valence is at least 2+X). The case y:2 is
thus cared for and we put it aside. II. We impose the condition lhat f
have a zero at a and,azero of at least multiplicity y-2 at c and seek /
maximizing l/(b)l . We let /, denote the extremal normalized to satisfy
fr(b) > o .

Now as c tends to fu sl , the corresponding /, tends to f , , uniformly on
compact subsets of !? . Granting this assertion for the moment, we see

x,+{t +>



Oarathdodory bodies 22r

that f, has 2 t y zeros counted by multiplicity near the zeros of /r (by
Hurwitz's theorem) and at least p - 2 more at c counted by multiplicity
for c e a-K where K is a suitably chosen compact subset of o . Hence
using (5.4) we see that for such c the valence of / has the constant value
on the öpen unit disk 1f z, which is the Garabedian bound. We see that
the bound (5.a) is sharp for assigned t ( 2 2 ) and. y .

To treat the question of the convergence of f, to å -u proceed as

follows. We note that there exists a function g, analyt'ic on ,f), taking
values of modulus less than one, having a zero of multiplicit'y u-2 at c

and no others, and such that E"(b) > 0 and g" tends to I uniformly on
compact subsets of o . We take g, specified by the conditions V"(b) > 0

and
x+L

-log lV,l - @-z)G, + /ttoro + ltol)

wlrere G" is Green's function for o with pole at c , lhe - au are the
harmonic measures of y-f I of the boundary components and the to are
fixed by the requirement that the periods of the conjugate of the right side

of (5.6) are zero along X+l fixed closed curves in o whose homology
classes form a basis for the l-dimensional homology group of ,fJ . The
point c is taken as not lying on these curves. As c tends to fr o, the
lo tend to zero and we conclude that E, tends to I , uniformly on compact
subsetsof O.Now

(5.7) fr(b) v,(b) < fr(b) < fr(b)

(5.6)

I{ence f, converges to f, as asserted.
There remains to be considered

Zl"(u) + 1l - I . The case where x, _
the sharpness of (4.26) when

- I is to be put aside, the question
of determinacy being meaningless. When y 2 0, we refer again to o and
a e J? as introduced. Here it is convenient to take t'he yu as y* I com-
ponents of the level set { G" : i } where I is small and positive. We recall
that the origin of Rx+\ is an inner point of zl(P) tahen relative to the
present situation. We consider the two points on fr A(P) whose first
g components are zero. The preimage with respect Lo A I P of at
least one of these points is the sum of 1* I minimal positive harmonic
functions on o which have their singularities on distinct components of
fr a . It is to be observed that the preimages with respect to A I P of
both of the points of fr A(P) in question have singularities on the com-
ponents of fr 12 close to Tt , ... ,Tx.(Obherwise the frrst y periods would
not all be zero.) If neither preimage had a singularity on the component of
fr o near Tya1, the (f + l)st components of the points of fr A(P) under
consideration would have the same sign. This is not possible sinco the origin
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of Rx+r is an inner point of A(P).We conclude that the bound X-ll
prevailing in this case cannot be improved. The obvious conventions are
to be understood when X: O,

(c) An ertremal, probl,em of S. ni,sher. The following problem has been

treated by S. X'isher [4]:
Lel a and ö be distinct points of an admitted Riemann surfaco -F .

Let B denote the family of functions /, analytic on I , taking values of
modulus less than one, and satisfyingbofh f@) : 0 and f(p) + 0, p + a .

Determine the nature of the f maximizing l/(å)l .

Essentially, the result of Fisher is: An extremal function / for this
problem has the property that

(5.8) -log l/l - n(aif)G"

may be represented as the sum of at most 1* I minimal positive harmonic
functions on J' , n(o ; f) being the multiplicity of f at o . Ilurther the
situation where there is more than one normalized extremal function does

indeed occur [4], p. 1188, normalization being understood in the sense that
the function in question takes a positive value at b .

We shall now see that the set of normali,zed, eutremals is fini'te. The case

where .F' is simply-connected is immediate and will be put aside. We shall
approach the question by introducing a countable family of auxiliary
extremal problems defined on appropriate subfamilies of B , which are such
that each has a unique normalized solution and that a normalized extremal
of the problem of n'isher is also an extremal for one of theso problems. It
will be seen that only a finite number of the normalized extremals for tho
auxiliary problems may compete as candidates to be a normalized. extremal
of the problem of Fisher. The asserted finiteness property follows.

We now turn to the details. For convenience we let b take over the
role of a of $ 2 and, suppose to put aside unessential questions that, the
curr'es Tr, "' tTx+r do not contain a. The functions -log l/l , f eB,
are characterized by the fact that they admit a representation of the form

(5.e) %Go + ,to,

where n is a positive integer, u is a nonnegative harmonic function on
,F, and a\nGo+u;y) l(2n) is an integer, J - 1, "' , )(ll . Given
(n,yr,"',arar) where n is a positiveintegerandthe vj are integers,
we introduce the family H(n,ar, "' ,u*4r.) of non-negative harmonic
functions u on F satisfying

a(nGo*uiT)- 2na1 , i : I r "' , X,+L.

n ab a, and satisfies

(5.10)

It is clear that f e B has multiplicity

(5.1 1) @(-log lfl;T) _ 2nai, j - 1, "', tr+L,
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if and only if -log l/l admits a representation of the form (5.9) with
u eH(n,!!, "' ,yx+r). Given (n,t1, "' ,ux+r), fo maximizes lf\b)l
in the family of f eB which have multiplicity n al a and satisfy (5.11)

if and only if the corresponding uo : -log lfol - n Go minimizes u(b)
in the family H(n,tr,... ,ttrqt).

There are two cases to consider: (l) a(n G,; T) : 2 n ui , j :
I , "' , Xl-l ; (2) the assumption of (1) is not fulfilled.

In case (1), trivially, the minimizing u is the constant 0 . This case is
indeed. realizable as one sees on considering a two-sheeted covering of the
open unit disk with simple ramification points over 0 and some other
point of the open unit disk and no others, the point o being the ramification
point over zero and the point b being the other.

We turn to case (2). Here a minimizing u is positive. We introduce
A formed from the period system rtt( ;T), i - l, "' , Xt I , as in
$2 and showthat u eH(n,rt, "',vx+r) minimizesthevalue at ö if and
only if A[ulu(b)l e fu A(P). fndeed, let w be the unique member of P
such that A(w) e fr A(P) and Afulu(ö)l is a positive multiple q (neces-

sarily < | ) of A(w). Then u minimizes the value at b if and only if
g : I . To see this we proceed contrapositively. If g ( l, lhen A(u) :
Alg u(b) wl and so u(b) is not the least value at' b of the members of
H(n,ar,... ,ttr*r). If u eH(n,lr, "',vx+r) does not minimize the
value at b,let u eH(n,eL, "' ,vx+t) satisfy a(b) < z(b) . From

(5.12)

(5.13)

(5. r 4)

^lftl: WAo,t,
rve conclude that u(b) p lu(b) < I and hence that g { l-

It now follows that in case (2) there is a unique minimizing u and that'
it admits a representation as the sum of at most 1* I minimal positive
harmonic functions on -ä' . To the auxiliary extremal problem associated
with an assigned multiplicity al a and the period conditions (5.f1) there
therefore corresponds a unique normalized extremal.

Since

- ros lf (b)l

it is clear that the extremals of the auxiliary problems enter into con-
sideration only for a finite set of n. X'or given % only a finite set of
(r, , ... , ux+t) need be considered, for the minimum value at ö of members
of H(n,rr.,',',px+t) is at, least as large as

12n(>u?)uz AllB,
where -4 does not depend on (r, , , .. , rx+r) and B is the maximum of the
euclidean lengths of the vectors r e fr A(P) .
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We conclude that there are only a finite number of normalized extremals
in B for the original problem.

In the cited paper of S. X'isher analogous problems are considered in
which several zeros or poles are allowed. On considering the decomposition
of the logarithm of the modulus with the aid of Green's functions, we find
that the above developments are applicable.

6. Support functions. We recall that the support function M of
a nonempty compact convex set 1( C A- is defined as the function with
domain -R- given by

(6.1) M(y) : \?f 1r,u) ,

( , ) denoting the inner product for R* . The function M is sub-
additive and homogeneous of order one relative to nonnegative scalar
factors. It is a classical consequence of this fact that M is continuous [2].

When K : A(P) , M is determined by @ since the points of A(P)
are given barycentrically in terms of @ . In fact,

IVI(A) : max <(D(q) , Y> .

qer

R* is an inner point of A(P) , M (A) > 0 for y + 0

concerning convex sets l2l we have

A(P) : n {r, 1r,?t} <M(y)}
:Rffi

(6.2)

Since the origin O of
From standard results

On noting that a supporting plane of zl(P) passes through each point of
fr A(P\ we see trhat r (e R* ) belongs bo A(P) if and only if

(6.3)

(6.4)

(6.5)

p(r) : min lM(u) 1r , a>l > o ,
(y,y >:L

and that u is a point of determinacy of Å(P) if and only if p(x) : 0 .

We now suppose that, m> )(+ I and let n: m - (X+l) and let z
denote the projection map of R* onto R* defined by

n(r1 , 'o',fr*): (*r*r,"',fr*)

Let Po denote the set of ueP satisfying a(u;yo):0, k:
1,... , y*1. The set nlA(Po)l is compact and convex. We seek tö
determine its support function in terms of M and hence ultimately in
terms of @ . The significance of nlA(Pr)l lies in the fact that the points
of nlA(Po)l correspond to the data of Pick-Nevanlinna interpolation
problems with the harmless modification that one considers analytic
functions with positive real part subject to the normalization that they
take the value I at, a rather than analytic functions taking values of
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modulus less than one (the trivial case involving constants of modulus one
being set aside). By the extension of Theorem 5.1 indicated in the remark
following Corollary 5.2 we see that r e A(Pr) is a point of determinacy
of A(Po) it and only if n(r) efrnlA(Po)l . [The obvious meaning of
determinacy that there is exactly one element of u e Po such thab A(u) : r
is understood.]

To obtain.the support function of nlA(P)l in terms of M we proceed
as follows. Given y e R , we leb I,(y) denote the unique preimage of gr

with respect to n whose first 7* I coordinates are zero and introduce

(6.6) M o(a) - MU(y) + wl ,

where w e R* and its last n coordinates are zero. It is readily verified
that the minimum in question is attained and that Mo is subadditive and
homogeneous (of order f ) with respect to nonnegative scalar factors. We
shall show

Theorem 6.1. Mo is the sugtgtort function of nlA(Pr)1.
Proof. We put aside the obvious case where I . We observe

that r e nlA(Po)l if and only if
1r , uln

for all allowed y and w , I , )n signifying the standard inner product
of R*. It follows that u en[A(Po)l if and only if

mrn
u

(6.7)

(6.8)

tr'urther

(6.e)

lr , uln
n e fr rrlA(Po)l if and only if

min lM o(y) <r , U) nl - 0
(y,! )n:L

To establish this assertion we proceed as follows. It is to be noted that M
vanishes only at the origin O of R*. tBhen r efrnlA(Po)1, equalityin
(6.7) holdsfor some y and w wil}n l(A) +.w +0, as follows from the
indicated extension of Theorem 5.1. If l(y) : 0 , then M(w) :
lr,Aln:O and so w:0 and conseqriently I(y)+w:0. This is
not possible. We conclude (6.9). If (6.9) holds, then at loast r e nlA(Po)l
and equality holds in (6.7) for some g/ not the origin of R and some
allowed u . Hence I,(r) e fu A(P) . A second application of the indicated
extension of Theorem 5.1 shows lhat r efunfA(Po)1.

We now verify lhat Mo is the support function of. nlA(Po)1. Because
of the noted subadditivity and homogeneity of Mo, by u classical result
of the theory of convex sets [2, p. 26], lllf, Mo is the support function of
a nonempty compact convex set. By the representation of a compact
convex set in terms of its support function, Mo is the support function of
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It follows on reference to (6.8) that
We remark that M o vanishes

noting that the origin of Rn is &n

Y> < Mo(a) )

M o is the support' function of r(,lA(Po)] .

only ab the origin of R* , as we see on
inner point of nlA(Po)l .

(6.10)

(7.r )

n { <n,
yeRn

7. The Schwarz Lemma extremal problem. The Schwarz Lemma
extremal problem for a Riemann surface I may be solved in terms of @

and. M as we shall now see. We recall that one is concerned with given
points a, b(Ia) e-F andoneseekstomaximize l/(b)l inthefamily
of functions f analytic ort X , taking values of modulus less than one, and
satisfying f(a) : 0 . The set of values /(å) is a closed circular disk with
center 0 having a positive radius less than one. With the aid of the Möbius
transformation z-->(I+z) l(L-z) the problem reduces to maximizing
Reg(ö) inthe family of functions g analytic on -F, having positive real
parts and normalized to take the value L at a. With A(u) now having
as components the a(u;ya), Rel,(u;b,0) and Im tr(u;b ,0) ancl with
ReI,(u; å, 0) the (g+2)nd component of A(u) we see that the maximum
Reg(ö) is r + Mo(t,0) .It follows that the maximum l/(å)l is

Mo$, 0) I lMo\, 0) + 2l

The extremalg may bedeterminedasfollows. Let A : @r,, "' ,Ux+L, 1,0)
be such that ilI(il : Mo\ ,0) and let E denote the set of q e I
satisfying <@(q),U): M(y). Then the @(q), qeU, are linearly
independent. The point (0, "' ,0 , Mo(|, 0) , 0) admits a unique bary-
centricrepresentation of the form )0., t{l)o(il, t(q) 2o, )t1q1 : t.
The l(q) are determined algebraically on the basis of these facts. X'or the
extremal g wehave Reg:Zt(q)uo. T}ne extremal g and hence the
extremal / normalized to take a positive value at b are thereby determined.

8. The Painlev6 problem for Riemann surtaces. The support function
Jl[o leads to a theoretical solution of the Painlevd problem for Riemann
surfaces. A solution for the case of plane regions was given by
P. R,. Garabedian l5l. The problem of Painlevd, we recall, is to obtain
a, necessary and sufficient condition for a given Riemann surface to admit
non-constant bounded aaalytic functions.

We suppose that we -have at hand a given nonaompact, Riemann surface
o and"that.,@*)? is an exhaustion of o satisfyi4g the following con-

ditions: J2, is relatively compact, 6n c Qn+t , fr 9, = fu (o - 9,) and
consists of a finite number of disjoint regular analytic Jordan curves,
n: L,2, "'. We fix ,a'e Qt and a local uniformizer 0, 0(01': a.
Given a positive integeru we introduce An,, ort the space of harmonic
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functions on d)* as a
of the conjugates on
imaginary parts of

map A relative
CUfVeS Ttr "'

to Q* formed in terrns of the periods

, Tx**l , as above and the real and

k: I , "' ,a .(8.1)

(8.6)

2

KT
(u " q(:-t)(o) ,

Euler characteristic of n* . It is supposed that the
are so arranged that the last component is

Here In denotes the
components of An,,(u)

(8.2)
C,"r^
y!

Let M, of (6.6) be taken relative to A,,, and let p(n ,y) denote the value
that Mo takes at the coordinate vector of R2' whose last component is
I and others are 0 . It is to be observed that n --> p(n, r,) is decreasing,
7t : l 12 r "'

We shall show that the double sequence (p(n , r)) yields a, necessa,ry
and sufficient condition of the desired kind. In fact, we have

T h e o r e m 8.1. A necessary and, suffi,ci,ent cond,ition for I to admi,t
noncqnstant bound,ed, anal,ytic functions i,s that

(8.s) ,op l-u- p(n,D1 > o .

o^fzr- l-

(u " 0)9-')(o)

Proof. Suppose that !2 admits a nonconstant bounded analytic func-
tion. We are then assured that there exists a function ö analytic on d) ,
nonconstant, taking values of modulus less than one and satisfying
b(a) :0. For some q e{1, -1, i, -i }, and a, t']ne function f :
l+qb, which is analytic on !? and nonconstant, and has positive real
part, satisfies

(8.4) fm (f " O;t'r1O;

X'or this y and all positive integers n , the inequality

(8.5) p(n , r) å Im 17 " 01t't 101 1 at

holds since Re (/ I o,) belongs to Po relative to o, . The condition (8.3)
follows.

Suppose now that the condition (8.3) holds. For some l we have
lim,*- p(n , y) > 0 . It follows that there exists a sequence (/,) , where

f* is analSrtic and has positive real part on A*, f*(a) : I , and

inf Im (f*. 0;t'l1O;

It suffices to take /, as an extremal function in the class of functions /
analytic ort Q,, having positive real part and satisfy*S j@) : I , which
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maximizes Im (/ " 0)(")(0) . On taking a subsequence of (/") which con-
verges uniformly on compact subsets of Q , we see that its limi6 is a, non-
constant analytic function on !2 with positive real part. We conclude that
o admlt's nonconstant bounded analytic functions.

The result that we have obtained may be restated in terms of the clas-
sifi.cation theory of Riemann surfaces. We recall that Oou denotes the
class of Riemann surfaces which do not admit nonconstant bounded analytic
functions. Theorem 8.I may be recast to read: Q eon" if and only if
lim*- p(n,v) : 0, y : 1,2,...

One matter calls for comment. Given a positive integer ro we shall
construct with the aid of a method due to P.J. Myrberg [8] an a#Oo"
which contains a point a such that every bounded analytic function /
on .o has the property lhat (/.0)(")(0) :0, y:1,...,ro. Here we
have lim,-*p(n,y):0, r: l,'..,r,0. Hence with E a nonempty,
finite set of positive integers the condition

(8.7) max [nr" p(n , ,)1
t, eE ln-** J

is not necessary and suffi.cient for A # Onu .

To construct an a of the desired kind, it suffices to consider the
(zo*f)-sheeted covering of the open disk defined by z->z'otL and to
introduce a sequence of slits on two "successive sheets" lying over the
interval (0, f) such that their endpoints tend to one and satisfy the
Blaschke divergence condition. On joining the two successive sheets across
the slits in the standard manner,(the upper edge of one sheet being joined
to the lower edge of the other) we obtain a (a6* l) -sheeted covering of the
open unit disk which has the property that a bounded analytic function /
on it takes the same value at all points of the surface lying over a given
point of the open unit disk. It then follows on taking o as the unique
preimage of 0 with respect to the modified covering map that
Lf"0)(')(0) :0, y -1,...,!o.

9. Some allied problems. In this section we shall indicate how the
methods of the present paper may be applied to the study of body problems
for certain other classes of harmonic functions, for which, in fact, the
results turn out to have a very simple character. We shall be concerned.
with the harmonicHardy classes ho on X, | < p < +co . To be precise,
by the class å, we understand the class of real-valued harmonic functions
u on I satisfying the condition that lali possess a harmonic majorant
when I <p< f co andtheconditionthat z beboundedri'hen g:'.,1m.
In the former case we introduce the norm
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(9.1) ll"llp lu*lP

where a* denotes the X'atou boundary function of u . fn the latter case

we define llzll- to be sup lul . $t is to be observed that we are putting
aside the case where p : l which does not fit into the developments
of this section because of the breakdown of convenipnt propertieq. This
case c&n be treated in terms of differences of nonnegative harmonic func-
tions and may, in fact, be referred to the earlier developments of the present
paper.]

We propose
respect to & n?,atr)

(9.2) u(a)

beingald,ed,. We let 9 denotethe corresponding augmentation of @ . It is
obtained merely by the adjunction of a component equal to one. The role
of A, forinterpolation problems is apparent. It is easy to see that Ar(Bp)
is a compact convex set. We shall determine the support function of A1(Be)
intermsof P andtherebygiveacharacterizationof A1(B) in terms of V .

We start with the observation that

to charactefize the image ,f the unit ball Bp "f hp u)ith
AL obta'ined, from A by uugrnenta,tion, the comgtonent

u* öGo

Ar(u) - u* öGo , u ehp

öGo)''o ,: (*{

:*T

*[-

:h{

*{

Hence for y . Hm*L we have

<Ar(rr) , U) u* öGo.

,A>, Q €f .] Wefirst

(9.3)

(9.4)

(9.5)

(9.6)

<Y,U}

fHere <Y , A] denotes the function q + <V (q)

consider the case where p _ * co .

In this case using (9.4) we conclude that

l<Y , U)l öGo,

and that when y is not the zero vector, equality holds if and only if
u*(q): sg <Y(q) tA) savepossiblyatthezerosof <V ,y>. It is to be
noted that the component functions of V arc linearly independent over
R " It follows that s- , the support function of Ar(B-) , is given by

:*{s *(y) l<Y ,Ull öG"
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From the condition for equality in (9.5), it follows that there is a unique
point inthe supporting plane {n tA> : s*(g) belonging to Ar(B_) ,

X'urther, as follows from, say, the linear independence of the components of
V,the origin of R*+7 is an interior point of Ar(B*).

It is easily verified that the points of determinacy of Ar(B*) (with
respectto B- ) areexactly the frontier points of Ar(B_). To see this we
proceed as follows. We recall that there is a supporting plane of Ar(B_)
passing through a given point of fu AL(B-). Let r efu Ar(B*) and let
y +O besuch that, <r,A) : s*(A), O denoting the origin of H+l .

The facts concerning the case of equality in (9.5) show that r is a point
of determinacy. We note that O is not a point of determinacy. fndeed, it
suffices to introduce harmonic measures of m+2 disjoint subarcs of ,l-
and to note that their images with respect to A, are linearly dependent
over -B to be assured that O is not a point of determinacy. It follows that
a point of int Ar(B-) is not determinate. Indeed, such a point has a
preimage z with respect to A, satisfying sup lzl 4 I , so that with o
a preimage of O with respect lo A, which is small but not the constant 0
wehave u+a eB. and Ar(ul-a) : At(u). Hence a point of determinacy
is a point of fu Ar(B-) . The identity of fu Ar(B-) and the set of points
of determinacy of Ar(B-) with respect to B- follows.

X'or y not the origin and with u, given bV

(9.7) uy(t) _ <Y ,A> öG, t e F ,

we see that Ar(ur) is the unique point of fr Ar(B*) in the supporting
plane { 1*,A}: s-(gr) }. It is now easily concluded that y-->A1(ur)
maps {llAll:1} onto tuAr(B*).

There remains to be considered the case where I < p ( * oo . Here
the Hölder inequality and the standard facts concerning the situation of
equality play an essential role. From (g.a) we obtain

*1"

l* { 
KY ,v>lPtQ-L) öGo]'-L)tP, u e Bp,(e.8)

and the fact when y is not the zero vector, equality occurs in (g.S) if and
only if
(9.e) u*(q) : c(A) l<V(q),A>lu@-l') ss <V(q),U) , q e f ,

where c(y) is the positive number yielding a function of p-norm l, namely,

case at hand are straightforward, We find that the support function, sn,
foy A1(Bp) is given by
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l*l u"'] @-1)lP
(9.10) I p(a) : l<V , U)llt@-t)

the determinacy set relative to Bo is fu A1(Be); and that wt}' y given by

(9.11) u,y(t) : c(il l<V , y>ltt'P-r) sg <V , U) öG, , t e I ,

'g --> A{ur) maps { llyll : t } univalently onto ft A1(Be} ' Qnly the
question of univalence calls for comment. If Ar(ur) : At(u") where

llAll: llzll :1, then uy:u". Hence <V,A): c<Y,z2 where c

is a positive number. By the linear independence of the components of v ,

A : oz. Since llyll: llrll : l, we conclude t}rat c: l. The asserted

univalence follows.
univalence does not hold for the corresponding map in lhe h- theory.

To see this it suffices to consider the classical carath6odory setting: -F :
{lzl <l}, I'(u;O,k), k=1,"',h (>1), u(0), and tonotethat
l"-\'^ , l"l : r, lrL : r, "', n,yield <V ,a> forwhich sg <V ,y>
are equal but the g are not proportional.

The support functions which have been determined in this section may

be applied to study "Painlev6" problems relative to the classes hp

(I<p ( *co) and, Ho (l<p < +oo) on urrestricted noncompact

Riemann surfaces. We plan to return to these questions and allied extremal

problems in a subsequent paper.
It is to be remarked that Nehari [9] has studied extremal problems for

bounded analytic functions on multiply-connected plane regions of fnite
connectivity by referring the question to the study of harmonic functions

taking values in [0, 1] . The relationship of the work of Nehari to the

ind.icated study of Ar(B*) is apparent. His results which are based on

variational methods have a qualitative character.
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