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l. Asymptotic values. Let us consider entire functions f(") of
a complex variable z. We set -F(r) : maxlf(z)l on l"l :, and define
the order g and type z by

q: lim*ypry, r: rims logF('l
uPd

A function of finite positive order g is said to be of minimum, mean
ormaximumtypeif r:0,0(t1@ or r: oo respectively.

Let I be a curve in the z-plane which stretches out towards infinity.
Suppose f(z) hasafinitelimit a as z--> oo along .1. Then o issaidtobe
an asympttot'i,c aal,ue of the function /(z). On this topic much has been

written since the conjecture of Denjoy in 1907, that the number n of
asymptotic values is bounded by n . 2 p. This fact was proved more than
20 years later by Ahlfors, Beurling, Carleman and others.

2. What happens to tho derivative? A number of authors have
later investigated the following problem. Question: Let & be a fi'ni,te
number anil suTrytose that f(z) --> ct, a,s z --> @ al'ong a curue I . Is i't then

necessari,l,y true that f '(") ---0 as z-> a along I ?

Jaenisch [4] has made an extensive study of this question, earlier taken
up by Plancherel, P6lya, Delange, Gaier and others. Functions up to ord.er

l/2 , minimum t;rye, have no finite asymptotic values because their mini-
mum modulus is unbounded. according to the classical theorem by Wiman.

However, for functions of order ll2 , mean type, the answer to the
question is yes. The same holds for functions up to order I , minimum
type, if I' is a straight line or has a curvature O(l I l"l) .

X'or functions with growth at least of order I , mean type, the &nswer

to the question is no.
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3. The scope of this investigation. From what has been said,
it remains to investigate functions of orders from 112 to I if arbitrarily
eurved paths -l. are allowed. X'or each g in this interval we intend to
construct an entire function of order g and a path ,l- which is asymptotic
for f(z) hut not for f'(z) .

Thus for functions of order p > Il2 the answer to the question posed, is no.
It still remains to study a limiting case, functions of order Il2, maxi-

mum t;rye. We indicate an analogous construction in this case also.

4. An earlier construction. One of the present authors, Sandström,
did succeed already several years ago in constructing suitable functions
inthecase ll2<g(1.

From what has been said it follows that it is useless to work with
rectilinear or weakly curved paths. Therefore, the paths chosen were of the
type here illustrated in Figure l.

Figure l.

It turned out that it was possible to construct entire functions /(z)
such that f(") --- 0 along f but not f '(z) . The latter had large values at
the corners. One thing, however, which was felt to be unsatisfactory, was
that the exact value of the order g could not be stated. Only by a con-
tinuity argument v'as it possible to infer that a suitable function could
be obtained for each order g , Il2 < g < l.

Our intention now is to obtain a direct construction for given g.

5. The method of construction. As a first step we intend to
construct, a subharmonic function z(z) resembling log lf@)l , where /(z)



(6.1)

tr'rom each P n
perpendicular to

Let us t'ake
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is the desired entire function. A subharmonic function has associated with
it a certain mass distribution in the plane which is equal to lu laken
in the sense of distribution theory. In a second step wo move the mass
a little in order to form unit masses.

In such a manner log l/(z)l and then f(z) is obtained. The method
has been used earlier, see, for instance Kjellberg [5, Ch. 4], Hayman l2].

6. Construction of the subharmonlc function. Leb g be given,
ll2<g(l. Set a:,yrt$ and consid.erthetworays I:n1nI2Q,
starting from the points with real part I , which are connected by a line
segment.

On the ray 8:n-nl2q we take a number of points
P, , Pr, ... , Pn... at distance* A, , R, , ... , Rn , ... from the origin.
It might be good to have n" f no_r> 4.

Let us, for instance, take

Rn : ezn, n : LrZ,....

we draw upwards a line segment Pnqn of length ln,
theray 8-n rrl2Q.

go

tr'igure



260 Bo I(yEr,r,BERG and BnNcr Sexostnövr

7.

defined

(7.1)

(7 .2)

where lp@l

(7.3)

h(*)-1+ log

Rr-'n'n (log Bn)'

zlt I lau'vll

ry
H

I
t-lt

(6.2)
ezn

4"'

so that tJre sum of 1,, | Ä, is convergent, a fact which will be used later.
The three segments first constructed and all the segments P,Q*P,

constitute the boundary f of a simply connected region D containing
the part of the real axis to the left of ? : I .

We can now define the subharmonic function u(z). Let u(z) be har-
monic and positive in D, let z(0) : * I and u(z) : 0 on the boundary
.f . Then n(z) exists uniquely fuL D , a fact well-known for a half-plane
upon which D can be mapped. X'or a very simple proof, see Tideman

t7l. In the rest of the plane we set u(z) : g . The function u(z) so
constructed is subharmonic and non-negative in the whole plane.

If f simply were the rays 8:nTnl2g and u(-l): fl,
then u(z) should be rP cos e (r9 - n) in the left part' of the plane. Now
u(z) is somewhat different, a few properties are listed in Section 9.

Construction of the entire function. The function u(z) , &s

above, has the representatioo, see, e.g. Heins [3],

log
ry
H

I
t

u(z) - dpQ)

Here p(l) is a function monotonically increasing as I traverses -l- in the
direction indicated in Figure 2.

Let us set p(f ) : 0 . We remember lhat d,p(t) in the integral stands
for (I l2n)(aulan) ldfl , where lulan is the derivative in the direction
of the normal pointing into D.

We now move the mass a little bv setting

r+ !

{
signifies the integral part of p(t) . We could just as well write

where t,, r :1,2,..., signify the discontinuity points of lp,(t)1, ordered
with respect to their distances from the origin.

We shall show in Sections l0 and ll that

(7.4) - 25 log lrl



(7.5) f(") : >(t -;)
28

It then holds with good margin for large lal that

(7.6) -53log lzl < log lf@l - u(z) I -log lzl

with the aforementioned restriction for the left inequality. We show in
9a that /(z) is of order g . Because u(z) : 0 on .7-, it is seen from (7.6)

that f(z) ->0 as z--> @ along J'.

8. Study of f ' (z) . Let us fix a, Point
lfl and lf 'l near this point. We define a
If already lf '(8-)l > I we set A; : 8* .

equality lf '@)l < I holds on some interval
X'or each z on this interval we have

t; Ilf@-f@")l: I / f'(e)drl\vrt't' 
l!_J 

tt'*ol
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for lzl sufficiently large. The left inequality, however, holds only if the
distance from z to l- is at least t I l"l.

Let us now define

8* (see Figure 2) and study
nearby point A; as follows.
If lf '(8")l < I the same in-
on the prolongation of PnQn.

}'igure öu
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Because lf@")l < L I R* by (7.6) we obtain, since u(Q) - 0,

t
If@l < lf(Q-)l +ö

lbn

The left inequality in (7.6) gives for ö > l 

-l 
R, that

| ö R9-rt,(8.2) tog lf(z)l ) u(z) - 58 log lrl > rro WE - 53 log,R, .

Ifere we use an estimate of u(z) which is obtained in 9d. It is obvious
that the distance lz - Q*l , i.e. ö , must be very short for this to hold.
ff we compa,re (8.1) and (8.2) and denote by Q, the first point on the
prolongation of PnQ, for which lf'(Q,)l : I , we see that surely
lQ; - Q"l /-R;@-rrzt, for instance. It follows from (8.1) that l/(z)l+0
uniformly on QrQ'* as za -> oo .

Let us now define a certain path T' . It starts from. z: I and follows
.l to the point P, . Then it makes a detour PrQ'rPr, thereafter it follows
I to Pr, makes a detour PrQLPr, goos from P, to P", makes a detour
PTQLP, and so on.

From the construction it follows fhat f(z) -+0 as z---> 6 along -f'.
But this is not true for f '(z). At the cusps Qi of I' we have lf '(Q'-)l > | ,

but from the comments to 9c we infer ihat u(z) , lf@)l and thus lf'@)l
are close to zero in a wide strip around the segments PrP**, which are
parts of -l-' .

To sum up, we haue constructed, an entire function f (z) of ord,er Q ,
ll2 < q < t, and,apath l', asymptoti,cfor f(z) butnotfor f'(") .

9. Properties of u(z) . Let us study z(z) in Section 6, harmonic
and positive in the region D , zero on the boundary .l- and in the rest of
the plane. We need some facts aborft u(z) .

9a. u(z) is of order e (u(z) corresponds to log lf(z)l in the definition
of order in Section l).

9b. u(z) takes its maximum M(r) on l"l : , trear z - -r .

9c. u(z) --> 0 as z -> @ in the strip consisting of those z whose
distance from -l- is at most I I lzl .

9d. u(z) grows rapidly near Q*, if z is located as indicated in X'igure 3
one has

(8.r )

(9.1)
{ ö na-uz

u(z)

for sufficiently large rL . As befbre t R* _. lP,,l
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comments to 9a. There are formulae giving a lower estimate of the
growth of the maximum modulus M(r) in D . Theorem 7.6 in n'uchs [r]
givesfor n>I lhat

(9.2)

fn our
which

On

(9.3)

M(I) I
M(n)

/

dt .l I
l -r -rat 8(t)) ' 4'

case lvl $)
is contained in D, is 1 n I g .

the other hand there must, for each 6 > A exist, r 6 such that

M(r)

For suppose that there exists e sequence r11r2> '.. --> co such that'

M(r*)>ri. Choose z such that Q<r<6'Because of (6.2) there

exists ra such that the region D", defined by ?r-ttl2tlatgzl
ntnl2r, lzl>r", iscontainedin D. Let Ci denotethearcir' D"

of lzl : r*. Because ri < M(r,) : u(r,si$n) , whete 0n = n by 9b,

there exists by Harnack's theorem a constant C,2 0 such that u(") >
C"ri for z eli. Tf z eD, and lzl <r, then

u(z)(e.4)

The right-hand expression is a harmonic minorant' of u(z) having
boundary values < Crr', on Cf,, zeto elsewhere. fn each point of D'
the minorants -+ * oo as n ---> @ ' Thus (9.3) must hold.

Comments to 9b. By transformation w:logz that part of D where

lzl > I is mapped into a half-strip of breadth n I g' Thegrowth of u t'o-

wards the mid.dle of the strip can be shown simply by reflection in circles.

Ur:A

ll*
l-Is
I

)

o S(a)

tr'igure 1,
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Tho procedure is indicated in X'igure 4. The points z and B(z) are
symmetrie with respect to the circle C. n'or each C chosen so that
the image B2 of B, stays in the strip where u(z) ) 0 it holds that
u{S(z)}- u(z)>0 if zeBr.

It M(r) : u(r eö) it follows that I -+ n &s r --> oo .

Comments to 9c. Take a point f on a segment P*P,+t such that
R : rcl exceeds ro defined in (9.3). Construct a semicircle above the
diameter with end points e 12 and 3 t 12 . X'orm the harmonic majorant
of u(z) equal to zero on the diameter, (3 R | 2)" on the arc. Then (see,
e.g., Nevanlinna [6, Ch.3, g2]) for lz - Cl <d<R12,

(9.5) (åa)"u(z)

Thus z(z)->0 as z--->@ inawidestriparoundtheray 8:n-
nl2g. Also, 7ulan->0 as z-> oo a,long this ray. The same holds for
theray 8: n + nl2g. fnorderto estimate u(z) urtheneighbourhood
of the segments P*Qo we consider a circle centered at Q* and with rad.ius
2ln . We obtain a majorant of u(z) on the circumference from (9.b) by
choosing il,:31o, R: R*, which gives u(z) <l2l,R-r+o. On the
rad.ius through Po we have u(z) : 0 by definition. By * : (z - Q,)rtz
the cut circle is transformed into a half-circle. rf the distance from z to
P,Qo is < ö we obtain, remembering (6.2), that

(e.6) u(z) < ! ur"tu.- 
&. 

tztt. n-7+o 3 t2{ ö E;
We have here omitted the little discussion that shows that the most

rapid growth of u(z) takes place near Q*. By taking ö : I I Ro the
validity of gc also near PoQ* is proved.

Comments to 9d. Let us go to Figure B and denote bV eli, the point
beyond @i whose distance to Q* is l* | 4 . By (9.2) M(R,) > Rt,l 4 .

Make for a moment the logarithmic transformation as in the comments
to 9b. By Harnack's thoorem for a circle we roughly obtain

(9.7)

for sufficiently Iarge n . Go back to X'igure B, set w : (z - Qn)uz and
apply Harnack's theorem taking a circle with radius {C t Z, centered
at the image point of Qi. Then, for z as in X'igure B,

Ra-Lla{ö {ö(9.8) u(z)

We see that aulon --> @ at, 

'å* 

.

log Rn
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10. The displacement

lzl

log

of the masses. Let
(7.2) we infer that

I

z be a point not on f and

zlr -ltl

(10. r )

(r0.4)

:I zl
tlattP@J

A partial integration gives that

h(z) u(z) :

which gives

( 10.2)

fn
25 log
least

( I 0.3)

th(,) u(z)t < f ld,bg

the next section we prove that the integral in (10.2) is less than

l"l if l"l is large enough and if the distance from z to f is at
L I lrl . To prove (7 .4) it remains to prove that

holds also if z is close to I.
Let us restrict ourselves to the half-plane Re z > 2 and denote by E

the set of z in this half-plane whose distanco to J' is less than t I l"l .

We have just seen that the subharmonic function h(z) - 25log lzl < u(z)

on the boundary of E if lzl is large enough. Because u(z)'-> 0 on this
boundary as lzl --+ oo (proved in 9c) there exists a constant K such that
h(z) - 25logl"l < K on the boundary. If we set

n,t-\ fmax {h(z} 25 log l"l , K } for z e E ,
u\P t \rr ekewhere,

we obtain a function which is subharmonic in the half-plane consi-

dered and equal to K on its boundary. Tho order of h(z) and then
a(z) is 4 I because if follows from the form of (7.3) that the maximum
modulus of h(z) on lzl : , is taken in the left half-plane where h(z) is
closely connected to u(z) by (10.2) which has order q ( I .

By the theorem of Phragmdn-Lindelöf it folldws I'hat a(z) < K in
the half-plane. In particular for z eE we obtain h(z) - 21loglzl < K
and since u(") > 0 also h(") - u(") <25loglzl + K. As we seeinnext
section that the number 25 could be chosen somewhat smaller, the validity
of (10.3) is obvious and also (7.4).

11. The varlation of the logarlthm. We want to estimate the integral
in (10.2) but begin with an arbitrary straight line instead of T . Let us
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fix z,Irl
and V zl

circles ltl _ t and lt zl _
proximately on lnl - lrl and
the corresponding point w will
r,vhich are situated in the ring
means that the variation of log

L the set of t on the line where ltl
Möbiustransformation w_l zlt the
L I lzl will, for large l"l , be mapped ap-

l*l - L I l"l'. When t runs through L
run through those parts of a line or a circle
betrveen the two circles mentioned. That
lwl can be = 6 log lzl at most, i.e.

=; 6 log lzl{
zl
_-ltl

at most for large l"l .

We also need a corresponding estimate for a short lino segment such
as PnQo, i.e.

(1 I .1)

(1 r .2)

(t r .3)

lo'"*l'

Qn

f
Pn

I 
ot"* a rog (r lzl ldtl

Wtlt - zl)
zlI - -ltl

Qn

Pn

Qn:f
Pn

On P*Q*, whose length is ln, we have ltl = E*. If we know that
It - zl > lzl l2 then the integral in (11.2) can be = 2l* l-8, at most.

We are now in a position to ostimate the variation of log ll - z I tl
on -/' supposing that the distance ftom z to .f is I l lzl at least. If there
is a PnQ* in the ring lzll2<t<3lzll2 the variation on P,QoPn
can be = l2log lzl at most.

On each one of therays 8: n T nl29 the variationis = 6lo9 lzl
at most. The sum of the variations on all remaining line segments is bounded
by a fixed constant. Thus

! aroslr
zl
TI

for sufficiently large lzl; the coefficient could be taken somewhat less
than 25.

12. Some final comments. We formulated a question in Section 2.
'Ihe answer is yes for functions of order ll2 , mean type, the answer is
no for functions of order g > l12. Thus there is a limiting case to investigate,
namely functions of order ll2 , maximum type. To obtain them in our
manner we have to replace the rays 8: n T nl2 g by curves closer to
the positive real axis. The growth is estimated as w&s done in ga. Let us
wnte M(r) : A(r) ruz where lim sup A(r) : oo as r -> @. In (8.2) the
factor RX-ttz will be replaced by A(R,). fn order to succeed with the
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same sort of proof we need that A(R,) surpasses some multiple of (log -8")2.

We leave open the question of what is true in this connection for functions
having a weaker growth within the class of functions of order ll2 , maxi-
mum t54le.

Let us at last mention that the -Do-functions of Mittag-Leffler could

be used. for our constructions. These functions, together with all the
derivatives, tend to zero in an angular region. Suppose we have constructed

as described here above one suitable function /(z) of order g and a path -l'.
If wetake o suchthat g{o(I, then I("):f(")+Etr,(-") is

an example of a function of order o' > I with I(z) --> 0 along .l' but
not X'(z) .
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