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AREA METHOD AND UNIVALENT FUNCTIONS
WITH QUASICONFORMAL EXTENSIONS

OLLI LEHTO and OLLI TAMMI

1. Introduction

For a function z +> z + > b, 2", univalent for |z > 1, the area of
the set of its omitted values can be easily expressed in terms of the coef-
ficients b, . The obvious fact that this area is non-negative leads to the
area theorem

> nlp,r £ 1.
n=1
Let S be the class of functions f, holomorphic and univalent in the
unit disc D, and so normalized that

(1.1) fz) = z+ D a,2".
n=2

Rolf Nevanlinna [4] was the first to observe that some basic properties of
functions f €S can be derived from the area theorem in a very simple
manner: not only does the inequality |a,] < 2 follow immediately, but
straightforward integration yields sharp bounds for [f(z)| and [f'(z)].

Our aim in this paper is to show that the area method and its modifica-
tions lead quite easily to general inequalities for univalent functions with
quasiconformal extensions. In Section 2 we first give a (known) generaliza-
tion of the area theorem for class §. A sharp version of it is derived in
Section 3, by means of Schwarz’s lemma, for the subclasses of S whose
functions admit quasiconformal extensions with uniformly bounded maxi-
mal dilatations, Some of its consequences are discussed in Sections 4 and 5.
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2. Power inequality in S

For a function feS we write

0

(2.1) 1™ = 3 b,2", »=12 ...

n=—v

Owing to normalization, the first coefficients b_,, are equal to 1. Choose

complex parameters ;,a,, ..., zy and denote

v

Fz) = lep[ J@17.

Then
(2.2) Fe) = X g
with
N
(23) Yo = anvxv’
r=1

if we set b,, = 0 for v << —N .
For a positive ¢ < 1, direct computation gives

@

(2.4) fl—?(z) dF(z) = 2ni > nly,/*e*.

n=—N
|zl=e

Application of Green’s formula shows that

ifﬁ(z) dF(z) = 0.

|z]=e

Hence, letting ¢ — 1 we obtain from (2.4) the “Power inequality”

@

N
(2.5) 2.1 lyl? Z_

ny_,[?
n=1 =1

(Schiffer — Tammi [6], Ahlfors [1]).
This formula contains some well-known inequalities as special cases.
For N = 1, (2.5) reduces to the classical area theorem

(2.6)

iNMs

n byt < 1.
1

The Grunsky inequalities also follow from (2.5) with a suitable choice of
the parameters z, .
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3. Power inequality in S,

Let 8,, 0 <k <1, be the class of quasiconformal homeomorphisms
f of the plane for which f | D €8 and whose complex dilatation x satisfies
the condition ||u[| < k. The subclass of S, whose functions map the
point { to infinity is denoted by S,((). The class S,({) contains the
single element

(3.1) 2 = 2(l—2z/0)t.

Suppose u is a measurable function which satisfies [ull, <k and
vanishes in D . If { and w are given complex numbers, |&| =1,
|w| <1, then there is a unique mapping f( ,w) of class 8,,() with
complex dilatation w u/k. We denote by a,(w), b,,(w) and y,(w) the
coefficients of f( , w) | D, defined by (1.1), (2.1) and (2.2).

Theorem 1. If feS,, then

0 N
(3.2) zln 2 = K Zln |y _al? .

Proof. Let u be the complex dilatation of f, and f( ,w) the mapping
with complex dilatation w u/k which belongs to class 8\, (f(0)) . Then
w > f(z, w) is defined in the unit dise, and f = f( , k).

The N x N determinant whose rows and columns consist of the coef-
ficients b_,, of f, n,v =1,2,..., N, is equal to 1. In view of (2.3), we
can thus associate with f( , w) the parameters x, sothat y_,(w) = y_,,
n=12 ..,N, for each weD.

The functions w — a,(w) are known to be holomorphic in D ([31)-
Thus every w>b,,(w), being a polynomial of the coefficients a,(w), is
holomorphic. By formula (2.3), the same is true of w i y,(w) .

From (3.1) we see that b,,(0) = 0 for all positive values of » . Hence,
by (2.3),

(3.3) y,(0) = 0, n=12 ..

Set 4, = [y,[*/ys, n = 1,2, ...,if y, # 0; otherwise 1, = 1. Having
fixed a natural number M , we consider the function y defined by

p(w) = ;nln(yn(w))z-

It is holomorphic in the unit disc, and by (3.3) has a double zero at the
origin. From (2.5) it follows that

pw)| = Zln Y -ul® -
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Hence, applying Schwarz’s lemma to the function w > y(w) /w we obtain
N

)| < (w2 nly_, 2.

n=1
For w = k and M — oo this yields (3.2).
Setting u, = ny_, and applying Schwarz’s inequality to (3.2) we
conclude that
N

> u, Y,

in=1

N
(3.4) < kD ju,f2n.
n=1

4. Functional a} — a4

An immediate consequence of Theorem 1 is the (known) area theorem
for S, :

>nlb,lt < k.

n=1
Since b,; = a2 — a,, it follows that in S,

(4.1) a2 — ay] £ k.

Equality can hold only if b,, = 0 for » > 1. Then

(4.2) fz) = 2(1 —agz + ke?22)1, zeD.

This function is univalent. It is holomorphic if and only if ke? 22 —

ayz + 1 # 0 in D . This is equivalent to the condition

(4.3) a, € By,

where Ey is the closed ellipse onto whose exterior z+>1/z + k ¢ 2 maps

D . Condition (4.3) implies

(4.4) lay| < 1+Fk.

If this inequality holds, there is at least one ¢ for which (4.3) is true.
Suppose (4.3) is fulfilled. Then (4.2), together with

(4.5) fz2) = z22(z — aq 2z + ke, 2l =1,

defines an element of S, . By a result of Strebel [7], (4.5) is the only extension
of (4.2) with this property. Hence, equality holds in (4.1) if and only if f
is defined by (4.2) and (4.5), and condition (4.3) is satisfied.

The restriction (4.3) (or (4.4)) is not void if 0 < k < 1: Schiffer and
Schober [5] have proved that

max |ay| = 2 — 4%*, x = (arccosk)/m.
Sk
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Since this is greater than 1+% for 0 < k < 1, we have max |a2 — a;]
=k for 0 <|ay <14k, while |ai—as] <k for 14k < |a,] <
2 — 4:* . Because the functions maximizing |a,| are unique up to trivial
rotations, direct computation gives |aj—ag =1 — 16x%/3 + 16* /3
for |a,| = 2 — 432,

In the subclass §,(¢), the equations (4.2) and (4.5) define an extremal
function, provided that |a,| < (1+%)/ |£|. In particular, for ¢ = o0 we
have max |aj—as| = k if and only if @, = 0. The maximum value of
lay| is 2k, the corresponding functions f being defined by f(z) =
2(1 + ke? z)7 in D . Consequently, |as—a,| = k2 for |a,| = 2k.

5. Coefficient a,

Let f belong to S,(o0) and have the power series coefficients a, . The
function ¢, defined by ¢(z) = (f(2%)"2, is then also in S,(c0). The
standard way to estimate @, isto apply (3.4) to ¢, with the choice N = 3,
Uy = U, Uy = 0, ug = 1. It follows that

(6.1)  Jag/2 —ayas + 13a3[24 + ayu?[2 + (a3 — 3a/4)u|
< k(1/3+ ).
In estimating |a,| we can suppose, without loss of generality, that a, is

positive. Choose u = a, . Since |a,| < 2k, the inequality (5.1) then yields
(Kithnau [2])

lag| < 2k/3 + 38%3/3.

This estimate is asymptotically correct as & —= 0, but becomes quite
inaccurate as k — 1 . Kithnau [2] has proved that

(5.2) la,] < 2k/3 + 1043/ 3

if & = (7/15)12. For k = 1, this gives the sharp estimate |a,| < 4.

Using (5.1) we shall show that if the coefficients a,, a;, a, are real,
then (5.2) remains valid for £ > 0.41 . Again we can assume that a, > 0 .
If (5.1) is written in the form au® + 2bu + ¢ < 0, one sees that u =
—b/a is an optimal choice. This gives the inequality

(5.3) a, < 2k/3 +d,
with
d = 2aya3 —13a3 /12 — (a; — 3ak[4)2(2k — a,)!.

Wanting to establish (5.2) we can exclude the case a, = 2k (then a, =
4k%). Hence 2k — a,> 0.
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Rearranging the terms we obtain
d = 2ka2 —7a3/12 — (a3 + a3 |4 — 2kay,)? (2k — ay)t.

With a, fixed and a, variable, d attainsits maximum M(a,) = 2 k ai —
7a3 /12 for
(5.4) ag = —a3 |4+ 2ka,.
We observe that
(5.5) M2k = 10k/3.

Condition |a3 — a4| <k, coupled with (5.4), yields

ay = h = 4k/5— 24k + 5k)12/5.

For a fixed a, satisfying
(5.6) 2k < ay, < h,

we have a; + a3/4 — 2ka, >0 if ay; = —k + a5. Hence, on the in-
terval (5.6) the choice a; = —k + a3 gives an upper bound for d, i.e.

(6.7 d £ 2ka2 —7a3/12 — (5a3/4 — 2ka, — k2(2k — ay)L.

Thus far, the computations have been easily carried out. It remains to
determine the maximum value of the majorantin (5.7) for —2% <a, <h.
We were glad to leave it to the computer to show that the maximum does
not exceed 10 k% /3 if k = 0.41 . In view of (5.3) and (5.5), we thus obtain
the desired estimate (5.2).
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