Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 2, 1976, 307-313

AREA METHOD AND UNIVALENT FUNCTIONS WITH QUASICONFORMAL EXTENSIONS

OLLI LEHTO and OLLI TAMMI

1. Introduction

For a function $z \mapsto z + \sum b_n z^{-n}$, univalent for |z| > 1, the area of the set of its omitted values can be easily expressed in terms of the coefficients b_n . The obvious fact that this area is non-negative leads to the area theorem

$$\sum_{n=1}^{\infty} n |b_n|^2 \leq 1.$$

Let S be the class of functions f, holomorphic and univalent in the unit disc D, and so normalized that

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$

Rolf Nevanlinna [4] was the first to observe that some basic properties of functions $f \in S$ can be derived from the area theorem in a very simple manner: not only does the inequality $|a_2| \leq 2$ follow immediately, but straightforward integration yields sharp bounds for |f(z)| and |f'(z)|.

Our aim in this paper is to show that the area method and its modifications lead quite easily to general inequalities for univalent functions with quasiconformal extensions. In Section 2 we first give a (known) generalization of the area theorem for class S. A sharp version of it is derived in Section 3, by means of Schwarz's lemma, for the subclasses of S whose functions admit quasiconformal extensions with uniformly bounded maximal dilatations. Some of its consequences are discussed in Sections 4 and 5.

doi:10.5186/aasfm.1976.0220

2. Power inequality in S

For a function $f \in S$ we write

(2.1)
$$[f(z)]^{-\nu} = \sum_{n=-\nu}^{\infty} b_{n\nu} z^n, \quad \nu = 1, 2, \dots.$$

Owing to normalization, the first coefficients $b_{-\nu\nu}$ are equal to 1 . Choose complex parameters x_1 , x_2 , … , x_N and denote

$$F(z) = \sum_{\nu=1}^{N} x_{\nu} [f(z)]^{-\nu}.$$

Then

(2.2)
$$F(z) = \sum_{n=-N}^{\infty} y_n z^n$$

with

(2.3)
$$y_n = \sum_{\nu=1}^N b_{n\nu} x_{\nu},$$

if we set $b_{n\nu} = 0$ for $\nu < -N$.

For a positive $\rho < 1$, direct computation gives

(2.4)
$$\int_{|z|=\varrho} \overline{F}(z) \, dF(z) = 2\pi i \sum_{n=-N}^{\infty} n \, |y_n|^2 \, \varrho^{2n} \, .$$

Application of Green's formula shows that

$$i \int_{|\mathbf{z}|=\varrho} \overline{F}(\mathbf{z}) \, dF(\mathbf{z}) \geq 0$$
.

Hence, letting $\rho \to 1$ we obtain from (2.4) the "Power inequality"

(2.5)
$$\sum_{n=1}^{\infty} n |y_n|^2 \leq \sum_{n=1}^{N} n |y_{-n}|^2$$

(Schiffer – Tammi [6], Ahlfors [1]).

This formula contains some well-known inequalities as special cases. For N = 1, (2.5) reduces to the classical area theorem

(2.6)
$$\sum_{n=1}^{\infty} n |b_{n1}|^2 \leq 1.$$

The Grunsky inequalities also follow from (2.5) with a suitable choice of the parameters x_{p} .

3. Power inequality in S_k

Let S_k , 0 < k < 1, be the class of quasiconformal homeomorphisms f of the plane for which $f \mid D \in S$ and whose complex dilatation μ satisfies the condition $||\mu||_{\infty} \leq k$. The subclass of S_k whose functions map the point ζ to infinity is denoted by $S_k(\zeta)$. The class $S_0(\zeta)$ contains the single element

$$(3.1) z \mapsto z(1-z \mid \zeta)^{-1}.$$

Suppose μ is a measurable function which satisfies $||\mu||_{\infty} < k$ and vanishes in D. If ζ and w are given complex numbers, $|\zeta| \ge 1$, |w| < 1, then there is a unique mapping $f(\cdot, w)$ of class $S_{|w|}(\zeta)$ with complex dilatation $w \mu / k$. We denote by $a_n(w)$, $b_{n\nu}(w)$ and $y_n(w)$ the coefficients of $f(, w) \mid D$, defined by (1.1), (2.1) and (2.2).

Theorem 1. If $f \in S_k$, then

(3.2)
$$\sum_{n=1}^{\infty} n |y_n|^2 \leq k^2 \sum_{n=1}^{N} n |y_{-n}|^2.$$

Proof. Let μ be the complex dilatation of f, and $f(\cdot, w)$ the mapping with complex dilatation $w \mu / k$ which belongs to class $S_{|w|}(f^{-1}(\infty))$. Then $w\mapsto f(z\;,\;w)$ is defined in the unit disc, and $f=f(\;,\;k)$.

The $N \times N$ determinant whose rows and columns consist of the coefficients $b_{-n\nu}$ of f, n, $\nu = 1, 2, ..., N$, is equal to 1. In view of (2.3), we can thus associate with $f(\cdot, w)$ the parameters x_{ν} so that $y_{-n}(w) = y_{-n}$, $n = 1, 2, \dots, N$, for each $w \in D$.

The functions $w \to a_n(w)$ are known to be holomorphic in D ([3]). Thus every $w \mapsto b_{n\nu}(w)$, being a polynomial of the coefficients $a_i(w)$, is holomorphic. By formula (2.3), the same is true of $w \mapsto y_n(w)$.

From (3.1) we see that $b_{n\nu}(0) = 0$ for all positive values of n. Hence, by (2.3),

$$(3.3) y_n(0) = 0, n = 1, 2, \dots$$

Set $\lambda_n = |y_n|^2 / y_n^2$, n = 1, 2, ..., if $y_n \neq 0$; otherwise $\lambda_n = 1$. Having fixed a natural number M, we consider the function ψ defined by

$$\psi(w) = \sum_{n=1}^{M} n \lambda_n(y_n(w))^2.$$

It is holomorphic in the unit disc, and by (3.3) has a double zero at the origin. From (2.5) it follows that

$$|\psi(w)| \leq \sum_{n=1}^{N} n |y_{-n}|^2.$$

Hence, applying Schwarz's lemma to the function $w \mapsto \psi(w) / w$ we obtain

$$|\psi(w)| \leq |w|^2 \sum_{n=1}^N n |y_{-n}|^2.$$

For w = k and $M \to \infty$ this yields (3.2).

Setting $u_n = n y_{-n}$ and applying Schwarz's inequality to (3.2) we conclude that

(3.4)
$$\left|\sum_{n=1}^{N} u_n y_n\right| \leq k \sum_{n=1}^{N} |u_n|^2 / n.$$

4. Functional $a_2^2 - a_3$

An immediate consequence of Theorem 1 is the (known) area theorem for S_k :

$$\sum_{n=1}^{\infty} n |b_{n1}|^2 \leq k^2$$
.

Since $b_{11} = a_2^2 - a_3$, it follows that in S_k (4.1) $|a_2^2 - a_3| \le k$.

Equality can hold only if $b_{n1} = 0$ for n > 1. Then

(4.2)
$$f(z) = z(1 - a_2 z + k e^{i\vartheta} z^2)^{-1}, \quad z \in D.$$

This function is univalent. It is holomorphic if and only if $k e^{i\vartheta} z^2 - a_2 z + 1 \neq 0$ in D. This is equivalent to the condition

where E_{∂} is the closed ellipse onto whose exterior $z \mapsto 1/z + k e^{i\partial} z$ maps D. Condition (4.3) implies

$$(4.4) |a_2| \leq 1+k .$$

If this inequality holds, there is at least one ϑ for which (4.3) is true. Suppose (4.3) is fulfilled. Then (4.2), together with

(4.5)
$$f(z) = z \,\overline{z(z)} - a_2 \, z \,\overline{z} + k \, e^{i\vartheta} \, z)^{-1} , \quad |z| \ge 1 ,$$

defines an element of S_k . By a result of Strebel [7], (4.5) is the only extension of (4.2) with this property. Hence, equality holds in (4.1) if and only if f is defined by (4.2) and (4.5), and condition (4.3) is satisfied.

The restriction (4.3) (or (4.4)) is not void if 0 < k < 1: Schiffer and Schober [5] have proved that

$$\max_{S_k} |a_2| = 2 - 4 \, \varkappa^2 \,, \quad \varkappa = (\arccos k) \, / \, \pi \,.$$

Since this is greater than 1+k for 0 < k < 1, we have $\max |a_2^2 - a_3| = k$ for $0 \le |a_2| \le 1+k$, while $|a_2^2 - a_3| < k$ for $1+k < |a_2| \le 2-4 \varkappa^2$. Because the functions maximizing $|a_2|$ are unique up to trivial rotations, direct computation gives $|a_2^2 - a_3| = 1 - 16 \varkappa^2 / 3 + 16 \varkappa^4 / 3$ for $|a_2| = 2 - 4 \varkappa^2$.

In the subclass $S_k(\zeta)$, the equations (4.2) and (4.5) define an extremal function, provided that $|a_2| \leq (1+k) / |\zeta|$. In particular, for $\zeta = \infty$ we have max $|a_2^2 - a_3| = k$ if and only if $a_2 = 0$. The maximum value of $|a_2|$ is 2k, the corresponding functions f being defined by $f(z) = z(1 + k e^{i\vartheta} z)^{-2}$ in D. Consequently, $|a_2^2 - a_3| = k^2$ for $|a_2| = 2k$.

5. Coefficient a_4

Let f belong to $S_k(\infty)$ and have the power series coefficients a_n . The function φ , defined by $\varphi(z) = (f(z^2))^{1/2}$, is then also in $S_k(\infty)$. The standard way to estimate a_4 is to apply (3.4) to φ , with the choice N = 3, $u_1 = u$, $u_2 = 0$, $u_3 = 1$. It follows that

(5.1)
$$|a_4| 2 - a_2 a_3 + 13 a_2^3 / 24 + a_2 u^2 / 2 + (a_3 - 3 a_2^2 / 4) u|$$

$$\leq k(1 / 3 + |u|^2).$$

In estimating $|a_4|$ we can suppose, without loss of generality, that a_4 is positive. Choose $u = a_2$. Since $|a_2| \leq 2k$, the inequality (5.1) then yields (Kühnau [2])

$$a_4 \mid \leq 2 k / 3 + 38 k^3 / 3$$
.

This estimate is asymptotically correct as $k \to 0$, but becomes quite inaccurate as $k \to 1$. Kühnau [2] has proved that

$$(5.2) |a_4| \leq 2k/3 + 10k^3/3$$

if $k \ge (7 \mid 15)^{1/2}$. For k = 1 , this gives the sharp estimate $|a_4| \le 4$.

Using (5.1) we shall show that if the coefficients a_2 , a_3 , a_4 are real, then (5.2) remains valid for $k \ge 0.41$. Again we can assume that $a_4 > 0$. If (5.1) is written in the form $a u^2 + 2b u + c \le 0$, one sees that u = -b/a is an optimal choice. This gives the inequality

$$(5.3) a_4 \leq 2 k / 3 + d,$$

with

$$d = 2 a_2 a_3 - 13 a_2^3 / 12 - (a_3 - 3 a_2^2 / 4)^2 (2 k - a_2)^{-1}$$

Wanting to establish (5.2) we can exclude the case $a_2 = 2 k$ (then $a_4 = 4 k^3$). Hence $2 k - a_2 > 0$.

Rearranging the terms we obtain

 $d = 2 k a_2^2 - 7 a_2^3 / 12 - (a_3 + a_2^2 / 4 - 2 k a_2)^2 (2 k - a_2)^{-1}.$

With a_2 fixed and a_3 variable, d attains its maximum $M(a_2) = 2 k a_2^2 - 7 a_2^3 / 12$ for

$$(5.4) a_3 = -a_2^2 / 4 + 2 k a_2.$$

We observe that

(5.5) $M(2 k) = 10 k^3 / 3$.

Condition $|a_2^2 - a_3| \leq k$, coupled with (5.4), yields

$$a_2 \geq h = 4 k / 5 - 2(4 k^2 + 5 k)^{1/2} / 5$$

For a fixed a_2 satisfying

 $(5.6) -2 k \leq a_2 \leq h ,$

we have $a_3 + a_2^2/4 - 2 k a_2 \ge 0$ if $a_3 \ge -k + a_2^2$. Hence, on the interval (5.6) the choice $a_3 = -k + a_2^2$ gives an upper bound for d, i.e.

$$(5.7) \quad d \leq 2 k a_2^2 - 7 a_2^3 / 12 - (5 a_2^2 / 4 - 2 k a_2 - k)^2 (2 k - a_2)^{-1}.$$

Thus far, the computations have been easily carried out. It remains to determine the maximum value of the majorant in (5.7) for $-2 k \leq a_2 \leq h$. We were glad to leave it to the computer to show that the maximum does not exceed 10 $k^3/3$ if $k \geq 0.41$. In view of (5.3) and (5.5), we thus obtain the desired estimate (5.2).

References

- [1] AHLFORS, L. V.: Conformal invariants: Topics in geometric function theory. -McGraw-Hill Book Company, New York etc., 1973.
- [2] KÜHNAU, R.: Zum Koeffizientenproblem bei den quasikonform fortsetzbaren schlichten konformen Abbildungen. - Math. Nachr. 55, 1973, 1-6.
- [3] LEHTO, O.: Quasiconformal mappings and singular integrals. Symposia Mathematica XVII, Istituto Nazionale di Alta Matematica, Roma, Academic Press, New York-London, 1976.
- [4] NEVANLINNA, R.: Über die schlichten Abbildungen des Einheitskreises. Övers. Finska Vet. Soc. Förh. 63 A 7, 1920.
- [5] SCHIFFER, M., and G. SCHOBER: Coefficient problems and generalized Grunsky inequalities for schlicht functions with quasiconformal extensions. -To appear.
- [6] SCHIFFER, M., and O. TAMMI: A Green's inequality for the power matrix. -Ann. Acad. Sci. Fenn. Ser. A I 501, 1971, 1-15.

[7] STREBEL, K.: Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises. - Comment. Math. Helv. 39, 1964, 77-89.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 12 March 1975