AREA METHOD AND UNIVALENT FUNCTIONS WITH QUASICONFORMAL EXTENSIONS

OLLl LEHTO and OLLl TAMMI

1. Introduction

For a function \(z \mapsto z + \sum b_n z^{-n} \), univalent for \(|z| > 1\), the area of the set of its omitted values can be easily expressed in terms of the coefficients \(b_n \). The obvious fact that this area is non-negative leads to the area theorem

\[
\sum_{n=1}^{\infty} n |b_n|^2 \leq 1.
\]

Let \(S \) be the class of functions \(f \), holomorphic and univalent in the unit disc \(D \), and so normalized that

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n.
\]

Rolf Nevanlinna [4] was the first to observe that some basic properties of functions \(f \in S \) can be derived from the area theorem in a very simple manner: not only does the inequality \(|a_2| \leq 2\) follow immediately, but straightforward integration yields sharp bounds for \(|f(z)|\) and \(|f'(z)|\).

Our aim in this paper is to show that the area method and its modifications lead quite easily to general inequalities for univalent functions with quasiconformal extensions. In Section 2 we first give a (known) generalization of the area theorem for class \(S \). A sharp version of it is derived in Section 3, by means of Schwarz's lemma, for the subclasses of \(S \) whose functions admit quasiconformal extensions with uniformly bounded maximal dilatations. Some of its consequences are discussed in Sections 4 and 5.
2. Power inequality in S

For a function $f \in S$ we write

$$[f(z)]^{-\nu} = \sum_{n=-\nu}^{\infty} b_{\nu n} z^n, \quad \nu = 1, 2, \ldots.$$ \hspace{1cm} (2.1)

Owing to normalization, the first coefficients $b_{-\nu}$ are equal to 1. Choose complex parameters x_1, x_2, \ldots, x_N and denote

$$F(z) = \sum_{\nu=1}^{N} x_{\nu} [f(z)]^{-\nu}.$$ \hspace{1cm} (2.2)

Then

$$F(z) = \sum_{n=-N}^{\infty} y_n z^n$$

with

$$y_n = \sum_{\nu=1}^{N} b_{\nu n} x_{\nu},$$ \hspace{1cm} (2.3)

if we set $b_{\nu n} = 0$ for $\nu < -N$.

For a positive $\rho < 1$, direct computation gives

$$\int_{|z|=\rho} \overline{F(z)} \, dF(z) = 2\pi i \sum_{n=-N}^{\infty} n |y_n|^2 \rho^{2n}. $$ \hspace{1cm} (2.4)

Application of Green's formula shows that

$$i \int_{|z|=\rho} \overline{F(z)} \, dF(z) \geq 0.$$ \hspace{1cm} (2.5)

Hence, letting $\rho \to 1$ we obtain from (2.4) the "Power inequality"

$$\sum_{n=1}^{\infty} n |y_n|^2 \leq \sum_{n=1}^{N} n |y_n|^2.$$ \hspace{1cm} (2.6)

(Schiffer – Tammi [6], Ahlfors [1]).

This formula contains some well-known inequalities as special cases. For $N = 1$, (2.5) reduces to the classical area theorem

$$\sum_{n=1}^{\infty} n |b_{n1}|^2 \leq 1.$$ \hspace{1cm} (2.6)

The Grunsky inequalities also follow from (2.5) with a suitable choice of the parameters x_n.

3. Power inequality in S_k

Let S_k, $0 < k < 1$, be the class of quasiconformal homeomorphisms f of the plane for which $f \mid D \in S$ and whose complex dilatation μ satisfies the condition $||\mu||_\infty \leq k$. The subclass of S_k whose functions map the point ζ to infinity is denoted by $S_k(\zeta)$. The class $S_0(\zeta)$ contains the single element

$$z \mapsto z(1-z/\zeta)^{-1}.$$

Suppose μ is a measurable function which satisfies $||\mu||_\infty < k$ and vanishes in D. If ζ and w are given complex numbers, $|\zeta| \geq 1$, $|w| < 1$, then there is a unique mapping $f(\ ,w)$ of class $S_{|w|}(\zeta)$ with complex dilatation $w\mu/k$. We denote by $a_n(w)$, $b_n(w)$ and $y_n(w)$ the coefficients of $f(\ ,w) \mid D$, defined by (1.1), (2.1) and (2.2).

Theorem 1. If $f \in S_k$, then

$$\sum_{n=1}^{\infty} n |y_n|^2 \leq k^2 \sum_{n=1}^{N} n |y_n|.$$

Proof. Let μ be the complex dilatation of f, and $f(\ ,w)$ the mapping with complex dilatation $w\mu/k$ which belongs to class $S_{|w|}(f^{-1}(\infty))$. Then $w \mapsto f(z,w)$ is defined in the unit disc, and $f = f(\ ,k)$.

The $N \times N$ determinant whose rows and columns consist of the coefficients b_{nv} of f, $n, v = 1, 2, \ldots, N$, is equal to 1. In view of (2.3), we can thus associate with $f(\ ,w)$ the parameters x_v so that $y_{-n}(w) = y_{-n}$, $n = 1, 2, \ldots, N$, for each $w \in D$.

The functions $w \mapsto a_n(w)$ are known to be holomorphic in D ([3]). Thus every $w \mapsto b_n(w)$, being a polynomial of the coefficients $a_n(w)$, is holomorphic. By formula (2.3), the same is true of $w \mapsto y_n(w)$.

From (3.1) we see that $b_n(0) = 0$ for all positive values of n. Hence, by (2.3),

$$y_n(0) = 0, \quad n = 1, 2, \ldots.$$

Set $\lambda_n = |y_n|^2/y_n^2$, $n = 1, 2, \ldots$, if $y_n \neq 0$; otherwise $\lambda_n = 1$. Having fixed a natural number M, we consider the function ψ defined by

$$\psi(w) = \sum_{n=1}^{M} n \lambda_n(y_n(w))^2.$$

It is holomorphic in the unit disc, and by (3.3) has a double zero at the origin. From (2.5) it follows that

$$|\psi(w)| \leq \sum_{n=1}^{N} n |y_n|^2.$$
Hence, applying Schwarz’s lemma to the function $w \mapsto \psi(w) / w$ we obtain

$$|\psi(w)| \leq |w|^2 \sum_{n=1}^{N} |y_n|^2.$$

For $w = k$ and $M \to \infty$ this yields (3.2).

Setting $u_n = n y_n$ and applying Schwarz’s inequality to (3.2) we conclude that

$$\sum_{n=1}^{N} u_n y_n \leq k \sum_{n=1}^{N} |u_n|^2 / n.$$

(3.4)

4. Functional $a_2^2 - a_3$

An immediate consequence of Theorem 1 is the (known) area theorem for S_h:

$$\sum_{n=1}^{\infty} n |b_{n1}|^2 \leq k^2.$$

Since $b_{11} = a_2^2 - a_3$, it follows that in S_h

$$|a_2^2 - a_3| \leq k.$$

Equality can hold only if $b_{n1} = 0$ for $n > 1$. Then

$$f(z) = z (1 - a_2 z + k e^{i \theta} z^2)^{-1}, \quad z \in D.$$

This function is univalent. It is holomorphic if and only if $k e^{i \theta} z^2 - a_2 z + 1 \neq 0$ in D. This is equivalent to the condition

$$a_2 \in E_{\theta},$$

where E_{θ} is the closed ellipse onto whose exterior $z \mapsto 1 / z + k e^{i \theta} z$ maps D. Condition (4.3) implies

$$|a_2| \leq 1 + k.$$

(4.4)

If this inequality holds, there is at least one θ for which (4.3) is true.

Suppose (4.3) is fulfilled. Then (4.2), together with

$$f(z) = z \bar{z} (z - a_2 z \bar{z} + k e^{i \theta} z)^{-1}, \quad |z| \geq 1,$$

(4.5)

defines an element of S_h. By a result of Strebel [7], (4.5) is the only extension of (4.2) with this property. Hence, equality holds in (4.1) if and only if f is defined by (4.2) and (4.5), and condition (4.3) is satisfied.

The restriction (4.3) (or (4.4)) is not void if $0 < k < 1$; Schiffer and Schober [5] have proved that

$$\max_{S_h} |a_2| = 2 - 4 \zeta^2, \quad \zeta = (\arccos k) / \pi.$$
Since this is greater than $1 + k$ for $0 < k < 1$, we have $\max |a_2^2 - a_3| = k$ for $0 \leq |a_3| \leq 1 + k$, while $|a_2^2 - a_3| < k$ for $1 + k < |a_3| \leq 2 - 4 z^2$. Because the functions maximizing $|a_3|$ are unique up to trivial rotations, direct computation gives $|a_2^2 - a_3| = 1 - 16 z^2 / 3 + 16 z^4 / 3$ for $|a_2| = 2 - 4 z^2$.

In the subclass $S_k(\zeta)$, the equations (4.2) and (4.5) define an extremal function, provided that $|a_2| \leq (1 + k) / |\zeta|$. In particular, for $\zeta = \infty$ we have $\max |a_2^2 - a_3| = k$ if and only if $a_2 = 0$. The maximum value of $|a_3|$ is $2 k$, the corresponding functions f being defined by $f(z) = z(1 + k e^{i\theta} z)^{-1}$ in D. Consequently, $|a_2^2 - a_3| = k^2$ for $|a_2| = 2 k$.

5. Coefficient a_4

Let f belong to $S_k(\infty)$ and have the power series coefficients a_n. The function φ, defined by $\varphi(z) = (f(z^2))^{1/2}$, is then also in $S_k(\infty)$. The standard way to estimate a_4 is to apply (3.4) to φ, with the choice $N = 3$, $u_1 = u$, $u_2 = 0$, $u_3 = 1$. It follows that

$$|a_4| / 2 - a_2 a_3 + 13 a_2^3 / 24 + a_2 u^2 / 2 + (a_3 - 3 a_2^2 / 4) u| \leq k(1 / 3 + |u|^2).$$

In estimating $|a_4|$ we can suppose, without loss of generality, that a_4 is positive. Choose $u = a_2$. Since $|a_3| \leq 2 k$, the inequality (5.1) then yields (Kühnau [2])

$$|a_4| \leq 2 k / 3 + 38 k^3 / 3.$$

This estimate is asymptotically correct as $k \to 0$, but becomes quite inaccurate as $k \to 1$. Kühnau [2] has proved that

$$|a_4| \leq 2 k / 3 + 10 k^3 / 3$$

if $k \geq (7 / 15)^{1/2}$. For $k = 1$, this gives the sharp estimate $|a_4| \leq 4$.

Using (5.1) we shall show that if the coefficients a_2, a_3, a_4 are real, then (5.2) remains valid for $k \geq 0.41$. Again we can assume that $a_4 > 0$. If (5.1) is written in the form $a u^2 + 2 b u + c \leq 0$, one sees that $u = -b / a$ is an optimal choice. This gives the inequality

$$a_4 \leq 2 k / 3 + d,$$

with

$$d = 2 a_2 a_3 - 13 a_2^3 / 12 - (a_3 - 3 a_2^2 / 4)^2 (2 k - a_2)^{-1}.$$

Wanting to establish (5.2) we can exclude the case $a_2 = 2 k$ (then $a_4 = 4 k^3$). Hence $2 k - a_2 > 0$.

Rearranging the terms we obtain
\[d = 2k a_2^2 - 7a_2^3 / 12 - (a_3 + a_2^2 / 4 - 2k a_2^2) (2k - a_2)^{-1}. \]

With \(a_2 \) fixed and \(a_3 \) variable, \(d \) attains its maximum \(M(a_2) = 2k a_2^2 - 7a_2^3 / 12 \) for
\[a_3 = -a_2^2 / 4 + 2k a_2. \]

We observe that
\[M(2k) = 10k^3 / 3. \]

Condition \(|a_2^3 - a_3| \leq k \), coupled with (5.4), yields
\[a_2 \geq h = 4k / 5 - 2(4k^2 + 5k)^{1/2} / 5. \]

For a fixed \(a_2 \) satisfying
\[-2k \leq a_2 \leq h, \]
we have \(a_3 + a_2^2 / 4 - 2k a_2 \geq 0 \) if \(a_3 \geq -k + a_2^2 \). Hence, on the interval (5.6) the choice \(a_3 = -k + a_2^2 \) gives an upper bound for \(d \), i.e.
\[d \leq 2k a_2^2 - 7a_2^3 / 12 - (5a_2^2 / 4 - 2k a_2 - k) (2k - a_2)^{-1}. \]

Thus far, the computations have been easily carried out. It remains to determine the maximum value of the majorant in (5.7) for \(-2k \leq a_2 \leq h\). We were glad to leave it to the computer to show that the maximum does not exceed \(10k^3 / 3 \) if \(k \geq 0.41 \). In view of (5.3) and (5.5), we thus obtain the desired estimate (5.2).

References

University of Helsinki
Department of Mathematics
SF-00100 Helsinki 10
Finland

Received 12 March 1975